Rend. Lincei Mat. Appl. 35 (2024), 501–509 DOI 10.4171/RLM/1049

© 2025 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a CC BY 4.0 license

Fluid Mechanics. – *Remarks on a comparison principle for a doubly singular quasilinear anisotropic problem*, by LUIGI MONTORO and BERARDINO SCIUNZI, communicated on 14 February 2025.

ABSTRACT. – In these notes, using some arguments of Montoro, Sciunzi, and Trombetta (2025), we prove a new general version of a comparison principle for sub-supersolutions to a singular quasilinear problem driven by the anisotropic operator. As a consequence, we deduce a uniqueness result for weak solutions to the problem

$$(\mathcal{P}) \qquad \begin{cases} -\Delta_p^H u = \theta \frac{u^{p-1}}{H^0(x)^p} + \frac{1}{u^{\gamma}} + f(x,u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

and then we analyze, in the anisotropic setting, the question of the existence of solutions to a subdiffusive problem in the whole \mathbb{R}^N .

KEYWORDS. - comparison principle, Finsler anisotropic operator, Picone identity.

MATHEMATICS SUBJECT CLASSIFICATION 2020. - 35B51 (primary); 35J62, 35A02 (secondary).

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the doubly singular quasilinear anisotropic problem

 $(\mathcal{P}) \qquad \begin{cases} -\Delta_p^H u = \theta \frac{u^{p-1}}{H^0(x)^p} + \frac{1}{u^{\gamma}} + f(x, u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$

where $\Omega \subset \mathbb{R}^N$ is a bounded C^2 domain, $0 \in \Omega$, $1 , <math>\theta \ge 0$, $\gamma > 0$, H° , f are suitable functions defined here below and $-\Delta_p^H u$ is the anisotropic *p*-Laplace operator, which for suitable smooth functions is given by

(1.1)
$$-\Delta_p^H u := -\operatorname{div}(H^{p-1}(\nabla u)\nabla H(\nabla u)).$$

The anisotropic function H in (1.1) is a Finsler norm that satisfies the following set of assumptions:

- (*h_H*) (i) $H \in C^{2,\beta}_{loc}(\mathbb{R}^N \setminus \{0\})$ and such that $H(\xi) > 0 \ \forall \xi \in \mathbb{R}^N \setminus \{0\};$ (ii) $H(s\xi) = |s|H(\xi) \ \forall \xi \in \mathbb{R}^N \setminus \{0\}, \ \forall s \in \mathbb{R};$
 - $(1) \quad H(s_{\zeta}) = |s| H(\zeta) \quad \forall \zeta \in \mathbb{R} \quad (0), \forall s \in \mathbb{R},$
 - (iii) *H* is *uniformly elliptic*, which means set $B_1^H := \{\xi \in \mathbb{R}^N : H(\xi) < 1\}$ is uniformly convex, i.e.,

(1.2)
$$\exists \Lambda > 0$$
: $\langle D^2 H(\xi)v, v \rangle \ge \Lambda |v|^2 \quad \forall \xi \in \partial B_1^H, \ \forall v \in \nabla H(\xi)^\perp.$

The function $H^{\circ}: \mathbb{R}^N \to [0, +\infty)$ in (\mathcal{P}) is the dual norm of H defined as

$$H^{\circ}(x) = \sup_{H(\xi) \le 1} \langle \xi, x \rangle.$$

In all the paper, we assume that the nonlinearity f satisfies the following hypothesis (denoted by (hp_f) in the sequel):

$$(hp_f)$$
 $f: \Omega \times (0, \infty) \to \mathbb{R}_0^+$ is a measurable function such that $f(x, t) \le a(x) + b(x)t^{p^*}$ for some nonnegative functions $a, b \in L^{\infty}(\Omega)$.

Note that hypothesis (hp_f) is required when considering $W_{loc}^{1,p}$ -solutions to state problem (\mathcal{P}) ; see Definition 1.1 below. In the case $\theta = 0$, if the solution u is a priori bounded, this assumption can be removed, e.g., in the case of locally Lipschitz continuous nonlinearities.

DEFINITION 1.1. We say that $u \in W^{1,p}_{loc}(\Omega)$ is a weak supersolution (subsolution) to

(1.3)
$$-\Delta_p^H u = \theta \frac{u^{p-1}}{H^0(x)^p} + \frac{1}{u^{\gamma}} + f(x, u),$$

if

(i) $\forall \omega \in \Omega \exists c_{\omega} : u \ge c_{\omega} > 0 \text{ in } \omega \text{ and}$

(ii)
$$\int_{\Omega} H^{p-1}(\nabla u) \langle \nabla H(\nabla u), \nabla \varphi \rangle \, dx \geq \int_{\Omega} \left(\theta \frac{u^{p-1}}{H^0(x)^p} + \frac{1}{u^{\nu}} + f(x, u) \right) \varphi \, dx,$$
for all $\varphi \in C_c^{\infty}(\Omega), \varphi \geq 0.$

Finally, we say that $u \in W_{\text{loc}}^{1,p}(\Omega)$ is a weak solution to (1.3) if u is both a supersolution and a subsolution to (1.3).

REMARK 1.2. We observe that since (hp_f) holds and since 1 (and by Hardy inequality, e.g., see [9, Proposition 7.5]), the right-hand side of (1.3) is well defined.

Because the solutions to (\mathcal{P}) generally are not in $W_0^{1,p}(\Omega)$, the Dirichlet datum has to be understood in a generalized meaning.

DEFINITION 1.3. We say that $u \leq 0$ on $\partial \Omega$ if $(u - \delta)^+ \in W_0^{1,p}(\Omega)$ for every $\delta > 0$. Finally, u = 0 on $\partial \Omega$ if u is nonnegative and $u \leq 0$ on $\partial \Omega$. We point out that in the study of quasilinear problems involving singular nonlinearities such as the case of $u^{-\gamma}$ in (\mathcal{P}) , we have to face the loss of regularity at the boundary; that is, the problem is singular at the boundary. Moreover, due to the singularity introduced by the presence of the Hardy potential in the critical term $u^{p-1}/H^0(x)^p$, in all the paper, we assume the following natural assumption:

(1.4)
$$u \in W^{1,p}_{\text{loc}}(\Omega) \cap L^{\infty}(\overline{\Omega} \setminus \{0\}).$$

First of all, we recall some behavior at the boundary and at zero for sub-supersolutions to (\mathcal{P}) that we need in the proof of Theorem 1.5. These results follow mainly exploiting [8, Theorem 1.4] and [4, Proposition 3.4, Theorem 1.1]. Let $d : \mathbb{R}^N \to \mathbb{R}$ be the distance function for $\partial \Omega$. Moreover, in our case, d is C^2 in $I_{\varepsilon}(\partial \Omega)$, namely, a neighborhood of $\partial \Omega$ with the *unique nearest point* property (see [6]) (recall that by assumption $\partial \Omega$ is C^2).

LEMMA 1.4. Let us assume that (hp_f) holds, let $\check{u} \in W^{1,p}_{loc}(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ be a subsolution to (\mathcal{P}) and let $\hat{u} \in W^{1,p}_{loc}(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ be a supersolution to (1.3). Then, the following hold:

(i) If $\gamma > 1$, then there exist two positive constants \check{c} , \hat{c} , and there exists ε sufficiently small such that

(1.5)
$$\hat{u} \ge \hat{c}d^{\frac{p}{p+p-1}}, \quad \check{u}(x) \le \check{c}d^{\frac{p}{p+p-1}} \quad \forall x \in I_{\varepsilon}(\partial\Omega).$$

(ii) If $0 < \gamma \le 1$, then there exist two positive constants \check{c}, \hat{c} , and there exists ε sufficiently small such that

(1.6)
$$\hat{u} \ge \hat{c}d, \quad \check{u}(x) \le \check{c}d^{\frac{p-1}{\gamma+p-1}} \quad \forall x \in I_{\varepsilon}(\partial\Omega).$$

(iii) There exist constants $\hat{c}, \check{c}, R > 0, 0 < \mu < (N - p)/p$ such that

(1.7)
$$\hat{u} \ge \hat{c}[H^0(x)]^{-\mu}, \quad \check{u}(x) \le \check{c}[H^0(x)]^{-\mu} \quad \forall x \in B_R^{H^\circ}(0)$$

where $B_R^{H^{\circ}}(0) := \{x \in \mathbb{R}^N : H^{\circ}(x) < R\}.$

All the numerical constants depend on \check{u} and \hat{u} .

The following theorem is a comparison principle for sub-supersolutions to (\mathcal{P}) with a singular-type right-hand side.

THEOREM 1.5 (Comparison principle). Let $u \in W^{1,p}_{loc}(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ be a subsolution to (\mathcal{P}) , and let $v \in W^{1,p}_{loc}(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ be a supersolution to (1.3). Let us assume $u \leq v$ on $\partial\Omega$, that (hp_f) holds and that

$$t \to \frac{f(x,t)}{t^{p-1}}$$
 is (strictly) decreasing for a.e. $x \in \Omega$.

L. MONTORO AND B. SCIUNZI

Then,

$$u \leq v$$
 in Ω .

The proof relies on the one of Theorem 1.5 in [7], also correcting an inaccuracy in the choice of the test functions. An immediate consequence of Theorem 1.5 in a more regular context is the following uniqueness result.

COROLLARY 1.6. Let 0 < q < p - 1 and $0 \le h(x) \in L^{\infty}(\Omega)$. The problem

(1.8)
$$\begin{cases} -\Delta_p^H u = h(x)u^q & \text{in }\Omega, \\ u > 0 & \text{in }\Omega, \\ u = 0 & \text{on }\partial\Omega \end{cases}$$

has at most one positive weak solution $u \in C^1(\overline{\Omega})$.

Finally, we shall use Theorem 1.5 for the study of some subdiffusive problems in \mathbb{R}^N . In particular, let us consider the following problem:

$$(\mathcal{P}_1) \qquad \begin{cases} -\Delta_p^H u = h(x) \text{ in } \mathcal{D}'(\mathbb{R}^N), \quad u > 0 \text{ in } \mathbb{R}^N, \\ u \in W^{1,p}_{\text{loc}}(\mathbb{R}^N), \end{cases}$$

with $h \in L^{\infty}_{loc}(\mathbb{R}^N)$, $h \ge 0$. Let us define also the following second problem:

$$(\mathcal{P}_2) \qquad \begin{cases} -\Delta_p^H u = h(x)u^q \text{ in } \mathcal{D}'(\mathbb{R}^N), \quad q < p-1, \ u > 0 \text{ in } \mathbb{R}^N, \\ u \in W_{\text{loc}}^{1,p}(\mathbb{R}^N). \end{cases}$$

Our result in this context is the Brezis–Kamin result [2, Theorem 1] in the anisotropic framework.

THEOREM 1.7. Problem (\mathcal{P}_1) has a bounded solution if and only if (\mathcal{P}_2) has a bounded solution.

In the next section, we prove Theorems 1.5 and 1.7.

2. Proof of Theorems 1.5 and 1.7

We start with the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. For $\delta > 0$, let us define $v_{\delta} = (v + \delta)$ and

$$w_{\delta} = (u^p - v_{\delta}^p).$$

Since v > 0 a.e. in Ω , then, by continuity,

$$\operatorname{supp}(u^p - v^p_{\delta})^+ \subset \Omega.$$

Therefore, recalling Definition 1.1, using (iii) of Lemma 1.4, we deduce that

$$\frac{w_{\delta}^+}{u^{p-1}}$$
 and $\frac{w_{\delta}^+}{v_{\delta}^{p-1}}$

are good test functions for (\mathcal{P}) and (1.3). Therefore,

$$(2.1) \quad \int_{\Omega} H^{p-1}(\nabla u) \left\langle \nabla H(\nabla u), \nabla \left(\frac{w_{\delta}^{+}}{u^{p-1}}\right) \right\rangle dx$$
$$-\int_{\Omega} H^{p-1}(\nabla v) \left\langle \nabla H(\nabla v), \nabla \left(\frac{w_{\delta}^{+}}{v_{\delta}^{p-1}}\right) \right\rangle dx$$
$$\leq \int_{\Omega} \left(\frac{u^{p-1}}{H^{0}(x)^{p}u^{p-1}} - \frac{v^{p-1}}{H^{0}(x)^{p}v_{\delta}^{p-1}}\right) w_{\delta}^{+} dx$$
$$+ \int_{\Omega} \left(\frac{1}{u^{\gamma}u^{p-1}} - \frac{1}{v^{\gamma}v_{\delta}^{p-1}}\right) w_{\delta}^{+} dx + \int_{\Omega} \left(\frac{f(x,u)}{u^{p-1}} - \frac{f(x,v)}{v_{\delta}^{p-1}}\right) w_{\delta}^{+} dx.$$

We start evaluating the left-hand side of (2.1). We observe that

$$\nabla w_{\delta}^{+} = p(u^{p-1}\nabla u - v_{\delta}^{p-1}\nabla v)\chi_{\{u \ge v_{\delta}\}},$$

where $\chi_{\{u \ge v\}}$ denotes the characteristic function of the set $\{x \in \Omega : u \ge v\}$:

$$(2.2) \int_{\Omega} H^{p-1}(\nabla u) \left\langle \nabla H(\nabla u), \nabla \left(\frac{w_{\delta}^{+}}{u^{p-1}}\right) \right\rangle dx \\ - \int_{\Omega} H^{p-1}(\nabla v) \left\langle \nabla H(\nabla v), \nabla \left(\frac{w_{\delta}^{+}}{v_{\delta}^{p-1}}\right) \right\rangle dx \\ = \int_{\Omega} H^{p-1}(\nabla u) \left\langle \nabla H(\nabla u), \frac{\nabla w_{\delta}^{+} u^{p-1} - (p-1)u^{p-2} \nabla u w_{\delta}^{+}}{u^{2(p-1)}} \right\rangle dx \\ - \int_{\Omega} H^{p-1}(\nabla v) \left\langle \nabla H(\nabla v), \frac{\nabla w_{\delta}^{+} v_{\delta}^{p-1} - (p-1)v_{\delta}^{p-2} \nabla v w_{\delta}^{+}}{v_{\delta}^{2(p-1)}} \right\rangle dx \\ = \int_{\Omega} H^{p}(\nabla u) - p H^{p-1}(\nabla u) \frac{v_{\delta}^{p-1}}{u^{p-1}} \left\langle \nabla H(\nabla u), \nabla v_{\delta} \right\rangle + (p-1) H^{p}(\nabla u) \frac{v_{\delta}^{p}}{u^{p}} dx \\ + \int_{\Omega} H^{p}(\nabla v_{\delta}) - p H^{p-1}(\nabla v_{\delta}) \frac{u^{p-1}}{v_{\delta}^{p-1}} \left\langle \nabla H(\nabla v_{\delta}), \nabla u \right\rangle + (p-1) H^{p}(\nabla v_{\delta}) \frac{u^{p}}{v_{\delta}^{p}} dx$$

L. MONTORO AND B. SCIUNZI

$$\geq \int_{\Omega} H^{p}(\nabla v_{\delta}) - pH^{p-1}(\nabla u) \left(\frac{v_{\delta}}{u}\right)^{p-1} \langle \nabla H(\nabla u), \nabla v_{\delta} \rangle + (p-1)H^{p}(\nabla u) \frac{v_{\delta}^{p}}{u^{p}} dx + \int_{\Omega} H^{p}(\nabla u) - pH^{p-1}(\nabla v_{\delta}) \left(\frac{u}{v_{\delta}}\right)^{p-1} \langle \nabla H(\nabla v_{\delta}), \nabla u \rangle + (p-1)H^{p}(\nabla v_{\delta}) \frac{u^{p}}{v_{\delta}^{p}} dx := \int_{\Omega} A_{1}(x) dx + \int_{\Omega} A_{2}(x) dx \geq 0,$$

where we used the fact that $A_1(x), A_2(x) \ge 0$ a.e. in Ω . This follows, using a density argument, by the fact that

$$H^{p}(\nabla v_{\delta}) \geq pH^{p-1}(\nabla u) \left(\frac{v_{\delta}}{u}\right)^{p-1} \langle \nabla H(\nabla u), \nabla v_{\delta} \rangle + (p-1)H^{p}(\nabla u) \frac{v_{\delta}^{p}}{u^{p}},$$
$$H^{p}(\nabla u) \geq pH^{p-1}(\nabla v_{\delta}) \left(\frac{u}{v_{\delta}}\right)^{p-1} \langle \nabla H(\nabla v_{\delta}), \nabla u \rangle + (p-1)H^{p}(\nabla v_{\delta}) \frac{u^{p}}{v_{\delta}^{p}},$$

in Ω ; see Proposition [8, Proposition 3.1]. Therefore, using (2.1), we get

$$\int_{\Omega} \left(\frac{u^{p-1}}{H^0(x)^p u^{p-1}} - \frac{v^{p-1}}{H^0(x)^p v_{\delta}^{p-1}} \right) w_{\delta}^+ dx + \int_{\Omega} \left(\frac{1}{u^{\gamma+(p-1)}} - \frac{1}{v^{\gamma} v_{\delta}^{(p-1)}} \right) w_{\delta}^+ dx + \int_{\Omega} \left(\frac{f(x,u)}{u^{p-1}} - \frac{f(x,v)}{v_{\delta}^{p-1}} \right) w_{\delta}^+ dx \ge 0$$

and then, by the monotonicity of $t \to 1/t^{\alpha}$ and that $v < v_{\delta}$, it follows that

(2.3)
$$\int_{\Omega} \left(\frac{u^{p-1}}{H^0(x)^p u^{p-1}} - \frac{v^{p-1}}{H^0(x)^p v_{\delta}^{p-1}} \right) w_{\delta}^+ dx + \int_{\Omega} \left(\frac{f(x,u)}{u^{p-1}} - \frac{f(x,v)}{v_{\delta}^{p-1}} \right) w_{\delta}^+ dx \ge 0.$$

We use dominated convergence in both terms of (2.3). Indeed, for the first term, we have that

$$\left|\frac{u^{p-1}}{H^0(x)^p u^{p-1}} - \frac{v^{p-1}}{H^0(x)^p v_{\delta}^{p-1}}\right| w_{\delta}^+ \le 2\frac{u^p}{H^0(x)^p} \in L^1(\Omega).$$

For the second term, in the set $\{x \in \Omega : u \ge v\}$, we deduce

$$(2.4) \qquad \left| \frac{f(x,u)}{u^{p-1}} - \frac{f(x,v)}{v_{\delta}^{p-1}} \right| w_{\delta}^{+} \leq \frac{f(x,u)}{u^{p-1}} u^{p} + \frac{f(x,v)}{v^{p-1}} u^{p} \\ = \frac{f(x,u)}{u^{p-1}} u^{p} \chi_{\{u \leq 1\}} + \frac{f(x,v)}{v^{p-1}} u^{p} \chi_{\{u \leq 1\}} \\ + \frac{f(x,u)}{u^{p-1}} u^{p} \chi_{\{u>1\}} + \frac{f(x,v)}{v^{p-1}} u^{p} \chi_{\{u>1\}} \\ \leq C(1+u^{p} \chi_{\{u>1\}}) \in L^{1}(\Omega).$$

We point out that to get (2.4), we used the fact that by our assumptions (see (hp_f)) $f(x,t) \le C$ if $t \le 1$, $f(x,t)/t^{p-1}$ is decreasing (together with the fact that $f(x,1) \in L^{\infty}(\Omega)$) and that $u/v \le C$ in some neighborhood of the boundary $\partial\Omega$, thanks to (i)–(ii) of Lemma 1.4. Passing to the limit in (2.3), we have

$$\int_{\Omega} \left(\frac{f(x,u)}{u^{p-1}} - \frac{f(x,v)}{v^{p-1}} \right) (u^p - v^p)^+ dx \ge 0.$$

This actually implies $(f(x,t)/t^{p-1}$ is strictly decreasing) $(u^p - v^p)^+ = 0$ a.e. Hence, $u \le v$ in Ω .

PROOF OF THEOREM 1.7. We start proving that

Existence for $(\mathcal{P}_1) \implies$ Existence for (\mathcal{P}_2) .

Let us consider the solution u_R of the problem

(2.5)
$$\begin{cases} -\Delta_p^H u_n = h(x)u_n^q & \text{in } B_n(0), \\ u_n > 0 & \text{in } B_n(0), \\ u_n = 0 & \text{on } \partial B_n(0). \end{cases}$$

Such a solution exists by minimization and belongs to $W_0^{1,p}(B_n(0)) \cap C^1(\overline{B}_n(0))$; see [1,3,5]. Moreover, u_n is unique by Corollary 1.6. The sequence u_n is increasing in *n*: indeed, if n' > n, u'_n is a supersolution to (2.5). By using Theorem 1.5 in this more regular context, we deduce that $u_n \le u'_n$. Let *C* be a positive constant such that $C^{p-1-q} \ge ||u||^q_{L^{\infty}(\mathbb{R}^N)}$ and *u* a solution to (\mathcal{P}_1) . Then, v = Cu is a supersolution to (\mathcal{P}_2) . In fact,

$$-\Delta_p^H v = C^{p-1} h(x) \ge h(x) v^q, \quad \text{in } \mathbb{R}^N.$$

Using the same comparison argument, we have that $u_n \leq v$. Therefore,

$$u^* := \lim_{n \to +\infty} u_n$$

since u_n is increasing and consequently $u^* \le v$. Using the $C^{1,\alpha}$ regularity results, exploiting the Arzelà–Ascoli theorem, we have

$$\int_{\mathbb{R}^N} H^{p-1}(\nabla u^*) \langle \nabla H(\nabla u^*), \nabla \varphi \rangle dx = \int_{\mathbb{R}^N} h(x) u^{*q} \varphi \, dx,$$

for every $\varphi \in C_c^{\infty}(\mathbb{R}^N)$; namely, u^* is a solution to (\mathcal{P}_2) .

Finally, we show that

Existence for
$$(\mathcal{P}_2) \implies$$
 Existence for (\mathcal{P}_1) .

Assuming *u* a bounded solution to (\mathcal{P}_2) , by the classical regularity result, we deduce that $u \in C^1(\mathbb{R}^N)$. Let us define

$$v = \frac{p-1}{p-q-1}u^{\frac{p-q-1}{p-1}}.$$

Testing with $\varphi \in C_c^{\infty}(\mathbb{R}^N)$, we have

(2.6)
$$\int_{\mathbb{R}^{N}} H(\nabla v)^{p-1} (\nabla H(\nabla v), \nabla \varphi) dx$$
$$= \int_{\mathbb{R}^{N}} H(\nabla u)^{p-1} (\nabla H(\nabla u), \nabla (u^{-q}\varphi)) dx + q \int_{\mathbb{R}^{N}} u^{-q-1} H(\nabla u)^{p} \varphi dx$$
$$\geq \int_{\mathbb{R}^{N}} h(x) \varphi dx.$$

Let $u_n \in W^{1,p}(B_n(0)) \cap C^{1,\alpha}(\overline{B}_n(0))$ the solution to

(2.7)
$$\begin{cases} -\Delta_p^H u_n = h(x) & \text{in } B_n(0), \\ u_n > 0 & \text{in } B_n(0), \\ u_n = 0 & \text{on } \partial B_n(0) \end{cases}$$

Using (2.6) and (2.7), by the comparison principle, we deduce $u_n \le v$. Moreover, u_n increase as $n \to +\infty$, again by the comparison principle. Passing to the limit, we get that $u := \lim_{n \to +\infty} u_n$ is a bounded solution to (\mathcal{P}_1) .

Data availability statement. All data generated or analyzed during this study are included in this published article.

ACKNOWLEDGMENTS. – L. Montoro and B. Sciunzi are partially supported by PRIN project 2023 (P2022YFAJH): Linear and Nonlinear PDE's: New directions and Applications. The authors are partially supported also by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

- C. A. ANTONINI G. CIRAOLO A. FARINA, Interior regularity results for inhomogeneous anisotropic quasilinear equations. *Math. Ann.* 387 (2023), no. 3-4, 1745–1776. Zbl 1531.35099 MR 4657436
- [2] H. BREZIS S. KAMIN, Sublinear elliptic equations in Rⁿ. Manuscripta Math. 74 (1992), no. 1, 87–106. Zbl 0761.35027 MR 1141779

- [3] E. DIBENEDETTO, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983), no. 8, 827–850. Zbl 0539.35027 MR 0709038
- [4] F. ESPOSITO L. MONTORO B. SCIUNZI D. VUONO, Asymptotic behaviour of solutions to the anisotropic doubly critical equation. *Calc. Var. Partial Differential Equations* 63 (2024), no. 3, article no. 77. Zbl 07831578 MR 4718589
- [5] G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations. *Nonlinear Anal.* 12 (1988), no. 11, 1203–1219. Zbl 0675.35042 MR 0969499
- [6] L. MONTORO L. MUGLIA B. SCIUNZI, Optimal second order boundary regularity for solutions to *p*-Laplace equations. *Calc. Var. Partial Differential Equations* 64 (2025), no. 2, article no. 50. Zbl 07962873 MR 4847304
- [7] L. MONTORO B. SCIUNZI, Pohozaev identity for Finsler anisotropic problems. NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 3, article no. 33. Zbl 1512.35302 MR 4549108
- [8] L. MONTORO B. SCIUNZI A. TROMBETTA, A comparison principle for a doubly singular quasilinear anisotropic problem. *Commun. Contemp. Math.* 27 (2025), no. 1, article no. 2350060. Zbl 1551.35208 MR 4833380
- [9] J. VAN SCHAFTINGEN, Anisotropic symmetrization. Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 4, 539–565. Zbl 1133.42038 MR 2245755

Received 17 July 2024

Luigi Montoro

Dipartimento di Matematica e Informatica, Università della Calabria Ponte Pietro Bucci 31B, 87036 Arcavacata di Rende (Cosenza), Italy luigi.montoro@unical.it

Berardino Sciunzi

Dipartimento di Matematica e Informatica, Università della Calabria Ponte Pietro Bucci 31B, 87036 Arcavacata di Rende (Cosenza), Italy sciunzi@mat.unical.it