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Fluid Mechanics. – Remarks on a comparison principle for a doubly singular quasilin-
ear anisotropic problem, by Luigi Montoro and Berardino Sciunzi, communicated
on 14 February 2025.

Abstract. – In these notes, using some arguments of Montoro, Sciunzi, and Trombetta (2025),
we prove a new general version of a comparison principle for sub-supersolutions to a singular
quasilinear problem driven by the anisotropic operator. As a consequence, we deduce a uniqueness
result for weak solutions to the problem

(P )

8̂̂<̂
:̂
��Hp u D �

up�1

H0.x/p
C

1
u
C f .x; u/ in �;

u > 0 in �;
u D 0 on @�;

and then we analyze, in the anisotropic setting, the question of the existence of solutions to a
subdiffusive problem in the whole RN .
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1. Introduction and main results

In this paper, we consider the doubly singular quasilinear anisotropic problem

(P )

8̂̂<̂
:̂
��Hp u D �

up�1

H0.x/p
C

1
u
C f .x; u/ in �;

u > 0 in �;
u D 0 on @�;

where � � RN is a bounded C 2 domain, 0 2 �, 1 < p < N , � � 0,  > 0, H ı; f
are suitable functions defined here below and ��Hp u is the anisotropic p-Laplace
operator, which for suitable smooth functions is given by

(1.1) ��Hp u WD � div.Hp�1.ru/rH.ru//:

The anisotropic function H in (1.1) is a Finsler norm that satisfies the following set of
assumptions:
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(hH ) (i) H 2 C
2;ˇ
loc .R

N n ¹0º/ and such that H.�/ > 0 8� 2 RN n ¹0º;

(ii) H.s�/ D jsjH.�/ 8� 2 RN n ¹0º, 8s 2 R;

(iii) H is uniformly elliptic, which means set BH1 WD ¹� 2 RN W H.�/ < 1º is
uniformly convex, i.e.,

(1.2) 9ƒ > 0 W
˝
D2H.�/v; v

˛
�ƒjvj2 8� 2 @BH1 ; 8v 2 rH.�/

?:

The function H ı W RN ! Œ0;C1/ in (P ) is the dual norm of H defined as

H ı.x/ D sup
H.�/�1

h�; xi:

In all the paper, we assume that the nonlinearity f satisfies the following hypothesis
(denoted by .hpf / in the sequel):

(hpf ) f W � � .0;1/! RC0 is a measurable function such that f .x; t/ � a.x/C
b.x/tp

� for some nonnegative functions a; b 2 L1.�/.

Note that hypothesis .hpf / is required when considering W 1;p
loc -solutions to state

problem (P ); see Definition 1.1 below. In the case � D 0, if the solution u is a pri-
ori bounded, this assumption can be removed, e.g., in the case of locally Lipschitz
continuous nonlinearities.

Definition 1.1. We say that u 2 W 1;p
loc .�/ is a weak supersolution (subsolution) to

(1.3) ��Hp u D �
up�1

H 0.x/p
C

1

u
C f .x; u/;

if

(i) 8! b � 9 c! W u � c! > 0 in ! and

(ii)
R
�
Hp�1.ru/hrH.ru/;r'i dx �

.�/

R
�

�
� up�1

H0.x/p
C

1
u
C f .x; u/

�
' dx,

for all ' 2 C1c .�/; ' � 0.

Finally, we say that u 2W 1;p
loc .�/ is a weak solution to (1.3) if u is both a supersolution

and a subsolution to (1.3).

Remark 1.2. We observe that since .hpf / holds and since 1 < p < N (and by Hardy
inequality, e.g., see [9, Proposition 7.5]), the right-hand side of (1.3) is well defined.

Because the solutions to (P ) generally are not in W 1;p
0 .�/, the Dirichlet datum

has to be understood in a generalized meaning.

Definition 1.3. We say that u � 0 on @� if .u � ı/C 2 W 1;p
0 .�/ for every ı > 0.

Finally, u D 0 on @� if u is nonnegative and u � 0 on @�.
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We point out that in the study of quasilinear problems involving singular nonlin-
earities such as the case of u� in (P ), we have to face the loss of regularity at the
boundary; that is, the problem is singular at the boundary. Moreover, due to the singular-
ity introduced by the presence of the Hardy potential in the critical term up�1=H 0.x/p ,
in all the paper, we assume the following natural assumption:

(1.4) u 2 W
1;p

loc .�/ \ L
1
�
x� n ¹0º

�
:

First of all, we recall some behavior at the boundary and at zero for sub-supersolutions
to (P ) that we need in the proof of Theorem 1.5. These results follow mainly exploiting
[8, Theorem 1.4] and [4, Proposition 3.4, Theorem 1.1]. Let d WRN !R be the distance
function for @�. Moreover, in our case, d is C 2 in I".@�/, namely, a neighborhood
of @� with the unique nearest point property (see [6]) (recall that by assumption @�
is C 2).

Lemma 1.4. Let us assume that .hpf / holds, let Lu 2 W 1;p
loc .�/ \ C.

x� n ¹0º/ be a
subsolution to (P ) and let Ou 2 W 1;p

loc .�/ \ C.
x� n ¹0º/ be a supersolution to (1.3).

Then, the following hold:

(i) If  > 1, then there exist two positive constants Lc; Oc, and there exists " sufficiently
small such that

(1.5) Ou � Ocd
p

Cp�1 ; Lu.x/ � Lcd
p

Cp�1 8x 2 I".@�/:

(ii) If 0 <  � 1, then there exist two positive constants Lc; Oc, and there exists "
sufficiently small such that

(1.6) Ou � Ocd; Lu.x/ � Lcd
p�1
Cp�1 8x 2 I".@�/:

(iii) There exist constants Oc; Lc; R > 0, 0 < � < .N � p/=p such that

(1.7) Ou � OcŒH 0.x/���; Lu.x/ � LcŒH 0.x/��� 8x 2 BH
ı

R .0/;

where BHıR .0/ WD ¹x 2 RN W H ı.x/ < Rº.

All the numerical constants depend on Lu and Ou.

The following theorem is a comparison principle for sub-supersolutions to (P ) with
a singular-type right-hand side.

Theorem 1.5 (Comparison principle). Let u 2 W 1;p
loc .�/ \ C.

x� n ¹0º/ be a subso-
lution to (P ), and let v 2 W 1;p

loc .�/ \ C.
x� n ¹0º/ be a supersolution to (1.3). Let us

assume u � v on @�, that .hpf / holds and that

t !
f .x; t/

tp�1
is (strictly) decreasing for a.e. x 2 �:
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Then,
u � v in �:

The proof relies on the one of Theorem 1.5 in [7], also correcting an inaccuracy in
the choice of the test functions. An immediate consequence of Theorem 1.5 in a more
regular context is the following uniqueness result.

Corollary 1.6. Let 0 < q < p � 1 and 0 � h.x/ 2 L1.�/. The problem

(1.8)

8̂̂<̂
:̂
��Hp u D h.x/u

q in �;
u > 0 in �;
u D 0 on @�

has at most one positive weak solution u 2 C 1.x�/.

Finally, we shall use Theorem 1.5 for the study of some subdiffusive problems
in RN . In particular, let us consider the following problem:

(P1)

8<:��Hp u D h.x/ in D 0.RN /; u > 0 in RN ;

u 2 W
1;p

loc .R
N /;

with h 2 L1loc.R
N /, h � 0. Let us define also the following second problem:

(P2)

8<:��Hp u D h.x/uq in D 0.RN /; q < p � 1; u > 0 in RN ;

u 2 W
1;p

loc .R
N /:

Our result in this context is the Brezis–Kamin result [2, Theorem 1] in the anisotropic
framework.

Theorem 1.7. Problem (P1) has a bounded solution if and only if (P2) has a bounded
solution.

In the next section, we prove Theorems 1.5 and 1.7.

2. Proof of Theorems 1.5 and 1.7

We start with the proof of Theorem 1.5.

Proof of Theorem 1.5. For ı > 0, let us define vı D .v C ı/ and

wı D .u
p
� v

p

ı
/:
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Since v > 0 a.e. in �, then, by continuity,

supp.up � vp
ı
/C � �:

Therefore, recalling Definition 1.1, using (iii) of Lemma 1.4, we deduce that

wC
ı

up�1
and

wC
ı

v
p�1

ı

are good test functions for (P ) and (1.3). Therefore,Z
�

Hp�1.ru/

�
rH.ru/;r

�
wC
ı

up�1

��
dx

�

Z
�

Hp�1.rv/

�
rH.rv/;r

�
wC
ı

v
p�1

ı

��
dx

�

Z
�

�
up�1

H 0.x/pup�1
�

vp�1

H 0.x/pv
p�1

ı

�
wC
ı
dx

C

Z
�

�
1

uup�1
�

1

vv
p�1

ı

�
wC
ı
dx C

Z
�

�
f .x; u/

up�1
�
f .x; v/

v
p�1

ı

�
wC
ı
dx:

(2.1)

We start evaluating the left-hand side of (2.1). We observe that

rwC
ı
D p.up�1ru � v

p�1

ı
rv/�¹u�vıº;

where �¹u�vº denotes the characteristic function of the set ¹x 2 � W u � vº:

Z
�

Hp�1.ru/

�
rH.ru/;r

�
wC
ı

up�1

��
dx

(2.2)

�

Z
�

Hp�1.rv/

�
rH.rv/;r

�
wC
ı

v
p�1

ı

��
dx

D

Z
�

Hp�1.ru/hrH.ru/;
rwC

ı
up�1 � .p � 1/up�2ruwC

ı

u2.p�1/
i dx

�

Z
�

Hp�1.rv/hrH.rv/;
rwC

ı
v
p�1

ı
� .p � 1/v

p�2

ı
rvwC

ı

v
2.p�1/

ı

i dx

D

Z
�

Hp.ru/�pHp�1.ru/
v
p�1

ı

up�1

˝
rH.ru/;rvı

˛
C.p�1/Hp.ru/

v
p

ı

up
dx

C

Z
�

Hp.rvı/�pH
p�1.rvı/

up�1

v
p�1

ı

˝
rH.rvı/;ru

˛
C.p�1/Hp.rvı/

up

v
p

ı

dx
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�

Z
�

Hp.rvı/�pH
p�1.ru/

�
vı

u

�p�1˝
rH.ru/;rvı

˛
C.p�1/Hp.ru/

v
p

ı

up
dx

C

Z
�

Hp.ru/�pHp�1.rvı/

�
u

vı

�p�1˝
rH.rvı/;ru

˛
C.p�1/Hp.rvı/

up

v
p

ı

dx

WD

Z
�

A1.x/ dx C

Z
�

A2.x/ dx � 0;

where we used the fact that A1.x/; A2.x/ � 0 a.e. in �. This follows, using a density
argument, by the fact that

Hp.rvı/ � pH
p�1.ru/

�
vı

u

�p�1˝
rH.ru/;rvı

˛
C .p � 1/Hp.ru/

v
p

ı

up
;

Hp.ru/ � pHp�1.rvı/

�
u

vı

�p�1˝
rH.rvı/;ru

˛
C .p � 1/Hp.rvı/

up

v
p

ı

;

in �; see Proposition [8, Proposition 3.1]. Therefore, using (2.1), we getZ
�

�
up�1

H 0.x/pup�1
�

vp�1

H 0.x/pv
p�1

ı

�
wC
ı
dx

C

Z
�

�
1

uC.p�1/
�

1

vv
.p�1/

ı

�
wC
ı
dx C

Z
�

�
f .x; u/

up�1
�
f .x; v/

v
p�1

ı

�
wC
ı
dx � 0

and then, by the monotonicity of t ! 1=t˛ and that v < vı , it follows thatZ
�

�
up�1

H 0.x/pup�1
�

vp�1

H 0.x/pv
p�1

ı

�
wC
ı
dx

C

Z
�

�
f .x; u/

up�1
�
f .x; v/

v
p�1

ı

�
wC
ı
dx � 0:

(2.3)

We use dominated convergence in both terms of (2.3). Indeed, for the first term, we
have that ˇ̌̌̌

up�1

H 0.x/pup�1
�

vp�1

H 0.x/pv
p�1

ı

ˇ̌̌̌
wC
ı
� 2

up

H 0.x/p
2 L1.�/:

For the second term, in the set ¹x 2 � W u � vº, we deduceˇ̌̌̌
f .x; u/

up�1
�
f .x; v/

v
p�1

ı

ˇ̌̌̌
wC
ı
�
f .x; u/

up�1
up C

f .x; v/

vp�1
up

D
f .x; u/

up�1
up�¹u�1º C

f .x; v/

vp�1
up�¹u�1º

C
f .x; u/

up�1
up�¹u>1º C

f .x; v/

vp�1
up�¹u>1º

� C.1C up�¹u>1º/ 2 L
1.�/:

(2.4)
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We point out that to get (2.4), we used the fact that by our assumptions (see .hpf /)
f .x; t/ � C if t � 1, f .x; t/=tp�1 is decreasing (together with the fact that f .x; 1/ 2
L1.�/) and that u=v � C in some neighborhood of the boundary @�, thanks to (i)–(ii)
of Lemma 1.4. Passing to the limit in (2.3), we haveZ

�

�
f .x; u/

up�1
�
f .x; v/

vp�1

�
.up � vp/Cdx � 0:

This actually implies (f .x; t/=tp�1 is strictly decreasing) .up � vp/C D 0 a.e. Hence,
u � v in �.

Proof of Theorem 1.7. We start proving that

Existence for (P1) H) Existence for (P2):

Let us consider the solution uR of the problem

(2.5)

8̂̂<̂
:̂
��Hp un D h.x/u

q
n in Bn.0/;

un > 0 in Bn.0/;
un D 0 on @Bn.0/:

Such a solution exists by minimization and belongs to W 1;p
0 .Bn.0// \ C

1. xBn.0//;
see [1, 3, 5]. Moreover, un is unique by Corollary 1.6. The sequence un is increasing
in n: indeed, if n0 > n, u0n is a supersolution to (2.5). By using Theorem 1.5 in this
more regular context, we deduce that un � u0n. Let C be a positive constant such that
Cp�1�q�kuk

q

L1.RN /
andu a solution to (P1). Then, vDCu is a supersolution to (P2).

In fact,
��Hp v D C

p�1h.x/ � h.x/vq; in RN :

Using the same comparison argument, we have that un � v. Therefore,

u� WD lim
n!C1

un

since un is increasing and consequently u� � v. Using the C 1;˛ regularity results,
exploiting the Arzelà–Ascoli theorem, we haveZ

RN
Hp�1.ru�/

˝
rH.ru�/;r'

˛
dx D

Z
RN

h.x/u�
q
' dx;

for every ' 2 C1c .RN /; namely, u� is a solution to (P2).
Finally, we show that

Existence for (P2) H) Existence for (P1):
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Assuming u a bounded solution to (P2), by the classical regularity result, we deduce
that u 2 C 1.RN /. Let us define

v D
p � 1

p � q � 1
u
p�q�1
p�1 :

Testing with ' 2 C1c .RN /, we haveZ
RN

H.rv/p�1
�
rH.rv/;r'

�
dx

D

Z
RN

H.ru/p�1
�
rH.ru/;r.u�q'/

�
dx C q

Z
RN

u�q�1H.ru/p' dx

�

Z
RN

h.x/' dx:

(2.6)

Let un 2 W 1;p.Bn.0// \ C
1;˛. xBn.0// the solution to

(2.7)

8̂̂<̂
:̂
��Hp un D h.x/ in Bn.0/;
un > 0 in Bn.0/;
un D 0 on @Bn.0/:

Using (2.6) and (2.7), by the comparison principle, we deduce un � v. Moreover, un
increase as n!C1, again by the comparison principle. Passing to the limit, we get
that u WD limn!C1 un is a bounded solution to (P1).
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