EMS Surv. Math. Sci. 12 (2025), 123-154 © 2025 European Mathematical Society
DOI 10.4171/EMSS/92 Published by EMS Press
This work is licensed under a CC BY 4.0 license

The second Picard iteration of NLS on the 2d sphere
does not regularize Gaussian random initial data

Nicolas Burq, Nicolas Camps, Mickaél Latocca, Chenmin Sun, and
Nikolay Tzvetkov

Abstract. We consider the Wick-ordered cubic Schrodinger equation (NLS) posed on the two-
dimensional sphere, with initial data distributed according to a Gaussian measure. We show that the
second Picard iteration does not improve the regularity of the initial data in the scale of the classical
Sobolev spaces. This is in sharp contrast with the Wick-ordered NLS on the two-dimensional tori,
a model for which we know from the work of Bourgain that the second Picard iteration gains one
half-derivative. Our proof relies on identifying a singular part of the nonlinearity. We show that this
singular part is responsible for a concentration phenomenon on a large circle (i.e., a stable closed
geodesic), which prevents any regularization in the second Picard iteration.

1. Introduction

1.1. Context

The present work is motivated by the study of the influence of the background geometry on
the low-regularity well-posedness theory for nonlinear Schrédinger equations (and more
generally for dispersive partial differential equations). Due to infinite propagation speed,
even the short-time nonlinear evolution is sensitive to the geometry and (at least for certain
geometries based on the model case of the 2d sphere) high-frequencies instabilities occur
(see, e.g., [13, 16]). We prove in this work that these instabilities persist for randomized
initial data, which exposes a fundamental obstruction for extending to the 2d sphere the
probabilistic well-posedness theory for NLS that was developed in the case of Euclidean
geometries over the past thirty years.

In the case of integrable partial differential equations, the best results concerning low-
regularity well-posedness are exploiting fine properties of the Lax pair structures yielding
thus results going beyond the scope of applicability of more traditional PDE techniques.
Thomas Kappeler was a pioneer in the use of integrability techniques in the context of
low-regularity well-posedness of dispersive partial differential equations; see [27,28,33].
Integrability methods will not be used in the present paper, but we believe that using
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random data techniques in the context of integrable partial differential equations is an
interesting line of research.

1.1.1. The nonlinear Schrodinger equation on compact surfaces. Given (M, g) acom-
pact Riemannian surface without boundary, the cubic Schrodinger equation (NLS) posed
on M reads

i3+ Agu = Aul®u, (t,x) e Rx M, (NLS)

where A € R dictates the attractive (A < 0) or repulsive (A > 0) nature of the nonlinear
interaction. When s > 1, the Sobolev embedding and a fixed-point argument easily solve
the Cauchy problem associated to (NLS): for every bounded set B C H*(M ), there exist
Tp > 0 and a unique solution map

®:uge B — (t— D (ug)) € C([-Tg,Tp]; H*(M)).

For ug € B, the mapping ¢ € [-Tg, Tg] — @' (ug) solves (NLS) in the integrated form,
through the Duhamel formula, with initial data u:

t
@' (ug) = e''? uo—ix[ A0 (1) 2D (ug)dt’. (1.1)
0

Moreover, @ is uniformly continuous (it is actually analytic). When solving the fixed-point
problem (1.1) by a Picard iteration scheme, we write

t
. . Y ) c ol . .
' (ug) = &P ug — lk/ U= | oA 12 ¢1'A 4y di’ + higher-order expansions.
0

The first nonlinear term is precisely the second Picard iteration.

Motivated by the conservation laws associated with the equation, the main question is
to determine the largest Sobolev space in which the flow map extends (uniformly) contin-
uously. The L?- properties of the eigenfunctions of —A play a key role in this program.

For general (M, g), the L? estimates on the eigenfunctions come with some derivative
loss. These estimates are well known from the works of Hormander [32] and Sogge [36]
and are recalled in (3.4). They turn out to be optimal for the 2d sphere. Then, motivated by
the study of nonlinear waves, Burq-Gérard-Tzvetkov [14] obtained semiclassical L?LS°
Strichartz estimates with %—derivative loss and extended the uniform local well-posedness
up to HS(M) with s > % So far, it is the lowest common regularity where uniform local
well-posedness is known for all (M, g). Besides, in the defocusing case (A > 0), the
(coercive) conserved energy combined with the local well-posedness in H' (M) leads to
global well-posedness in HS(M) for all s > 1. Hani [30] extended the range of global
well-posedness in H¥(M) with s > %

In the Euclidean case, when M = T2 is the flat tori, Bourgain [4, 5] proved that the
scaling invariance dictates the well-posedness threshold: the flow map extends uniformly
continuously in H¥(T?) for all s > 0 (see also the very interesting recent work [31] for
the global well-posedness in this range). This fails when s < 0 [21,22], and the endpoint
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s = 0 is a challenging open problem. The Strichartz estimate due to Bourgain—-Demeter
[8] extends the local well-posedness result for s > 0 to the case of irrational tori.

Outside the Euclidean case, the only fairly well-understood situation is the case of the
2d sphere or more generally of a Zoll surface (a surface on which the geodesic flow is
periodic, see [3]). In these geometries, the Cauchy problem is uniformly well posed [15]
uptos > % and this is optimal [2, 13].

Firstly, the uniform well-posedness result above H ¥ (S?) follows from a bilinear re-
finement of the Strichartz estimate due to Burq—Gérard—Tzvetkov [15]. This bilinear esti-
mate results from the localization of the spectrum of the Laplace operator on a Zoll surface
combined with a general bilinear estimate on the spectral projectors (which is true on any
surface).

Conversely, instabilities in H* (Sz) when s < % arise from eigenfunctions that con-
centrate on a stable closed geodesic, such as the equator in the case of the sphere (and
more generally on a surface with a closed stable geodesic [39]). These eigenfunctions are
the highest-weight spherical harmonics and were also used to construct stationary solu-
tion in the defocusing case [41]. In the present paper, we use a broader family of spherical
harmonics with high weight to evidence instabilities in a probabilistic setting.

1.1.2. Statistical approaches to nonlinear waves. In [17], Burq and Lebeau consid-
ered a natural probability measure on the space of spherical harmonics and proved that
almost every random orthonormal basis is uniformly bounded in L?(S?), when p < +oo,
contrasting with the L?-bounds discussed above. For instance, the n-th highest-weight
spherical harmonics have their L*-norm growing like n% due to concentration around
a large circle. Former works [1, 35, 40] also go in the direction of improving the L?-
estimates for generic eigenfunctions.

The natural question is whether this enhanced Sobolev embedding for generic func-
tions on the sphere can lead to probabilistic well-posedness below the deterministic thresh-
olds = % or not.

When s is small enough such that instabilities are known to occur in H* for some ini-
tial data, the probabilistic well-posedness theory initiated by Burq—Tzvetkov [18, 19] after
the pioneering work of Bourgain [7] consists in the construction of full-measure subsets
of H® (for some natural measures) made of initial data that lead to strong solutions. In
addition, the obtained probabilistic solution can be seen as the unique limit in H* of the
(deterministic) flow applied to (suitable) smooth approximations of the initial datum.

Additionally, this approach is motivated by the construction of global recurrent solu-
tions using the Gibbs invariant measures (supported in (),.., H ~*(M)) and, more broadly,
the study of the transport of Gaussian measures by nonlinear flows. In the Euclidean
setting, or more recently when the target space is a Riemannian manifold [11], the prob-
abilistic approach has led to several significant advances. An overview is much beyond
the scope of this introduction. Nonetheless, to motivate our main result, we recall the key
mechanism driving the probabilistic method.
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In the Euclidean case, the probabilistic decoupling between the Fourier modes of the
initial datum leads to nonlinear smoothing effects. Namely, the second Picard iteration
gains, say, o-derivatives (for some fixed o > 0) for almost every initial data (see [7] and
Theorem 1.2). The standard linear-nonlinear decomposition trick consists in solving the
fixed-point problem for the re-centered solution

v(t) := @ (ug) — e ug, v(0) =0,

(formally) solution to (NLS) with a stochastic forcing term (which corresponds to the
second Picard iteration in (1.1)) and mixed terms depending both on v and e*2 uq. By
understanding the mixed terms, one may indeed run a fixed-point argument for v in H*%9,
provided s + o is greater than the deterministic regularity threshold.

1.2. Set-up and main results of the present work

The current paper is a preliminary step towards a probabilistic well-posedness theory for
the cubic nonlinear Schrodinger equation posed on a non-Euclidean compact surface. In
this work, we consider randomized initial data distributed according to a Gaussian mea-
sure, and we prove that the second Picard iteration does not gain any regularity. This is in
sharp contrast with the case of the torus and precludes the construction of strong solutions
by using the Bourgain linear-nonlinear decomposition.

In order to make our statement precise, we introduce some notations. We consider the
NLS equation on S? with a Wick-ordered nonlinearity:

idu—(—A+ Du=:|uPu: (t,x)eRxS?, (NLS)
where A is the Laplace—Beltrami operator on S? and the renormalized nonlinearity is'
P (0 = (U =200 ulx), ¥ €S2

The norm L2(S?) is associated to the scalar product
(18 = [ rzedo)

where the Lebesgue measure on S? is normalized such that the sphere has volume 1
(see (2.1)).

On the torus T2, the Wick ordering removes the nonlinear interactions that are not
regularizing. Indeed, since the mass is preserved, ||u||i2u is a linear term, which is not
regularizing. It is more subtle in the case of the sphere. The reason is that the amplitudes of

!There is another convention of wick cubic power defined formally as (Ju(x)|> — 2E|u ||i2 (Sz))u(x).

As [u(x)]> —E|u ||i2(Sz) is well defined for almost all the initial data we will consider later (distributed
according to the Gaussian free field), these two conventions are equivalent.
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the eigenfunctions depend in a complicated way on the physical space variable x, whereas,
on flat tori, the plane waves have a constant amplitude equal to 1. This point is discussed
in Remark 3.4. We stress that if u is a solution to (NLS), then

o(t) i= 22 4y (1.2)
is a solution to the standard cubic NLS
idv+ Av = |v|?v. (1.3)

Hence, the regularity properties studied in this article also hold for the solutions of (1.3)
thanks to the Gauge transform (1.2). The second Picard iteration of (NLS) reads

t
Tea(toup) = —i/ Q=B (1] it (A1) 12 G0 (A=D) yy)gy,
0

Let us turn to the spectral properties of —A + 1, as the self-adjoint operator with domain
H?(S?). It has a discrete spectrum with eigenvalues

M =n’+n+1, neN

n

so that A, ~ n at infinity. The eigenvalues are degenerate in the sense that they have
multiplicity 2z + 1, and the eigenspace is spanned by the spherical harmonics of degree
n, denoted by (Y, x)k|<n- They are the restriction to S? of the harmonic homogeneous
polynomials of degree n. We recall some properties in Section 2 and prove a concentration
property of many of them on a geodesic circle.

For n € N, we denote by &, the eigenspace

&, =ker(—A +1— Aﬁ Id) = spanc{b, « | |k| < n},
where (b, x)k|<n is @ general orthonormal basis of &,. This gives a spectral resolution of
L2(S?):
L*(S*) =P &n. &n=mL*(S?),

n>0
where 1, is the orthogonal projector on &, defined by

Ty = Z < |bn,k>bn,k-

|k|<n

The Sobolev norm H*(S?) is equivalent to

1
(DAl f ageny)

n>0

Given N € N,

P_yu = Z U

n:A, <N
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is the orthogonal projection on the space spanned by the eigenfunctions with eigenvalues
<N.

We can now define the Gaussian measures. Fix a probability space (2, ¥, P), an
orthonormal basis (b, )neN,k|<n Mmade of eigenfunctions of —Ago, and i.i.d. complex
standard Gaussian random variables (g, k )neN, |k|<n, Namely,

1
gnk(@) = —=
n ﬁ
where g, x and b, ; are independent real-valued standard Gaussian random variables on

(2, F,P). Given « € R, the Gaussian measure [y is the probability measure induced by
the mapping

(@nk (@) + iby i (@),

©EeQ> ¢ = 2," Y gnk(@)bn. (1.4)
n=0 |k|<n
The case o = 1 corresponds to the Gaussian free field, which is used to define the formally
invariant Gibbs measure. We detail the properties of functions in the support of [y in
Section 3. At this stage, it is important to note that the law of Gaussian measures does
not depend on the choice of the orthonormal basis (b, k). Nevertheless, to evidence some
instabilities, we will work with the particular basis made of spherical harmonics (Y, k),
presented in Section 2.
Note also that the typical regularity of ¢© is H*~17%(S?) in the sense that, for all
>0,
/’La(Ha_l_s(Sz)) =1, but /La(Ha_l(Sz)) =0.

According to the Weyl’s law, this regularity property does not depend on the surface M.
In the particular case of the sphere, our main result is that the typical regularity of the
second Picard iteration is not better than the regularity of ¢ .

Theorem 1.1. Fix ¢t > 0 and a > L. There exist No € N and n > 0 such that, for all

2
N > Ny, 1
NtlIn(N)2 < [ Is2(t, P<nPo) | 12(@; o1 (52))- (L1.5)

We give some comments.

 The logarithmic divergence of the H* ! (S?)-norm should be viewed as a lack of
regularization for the second Picard iteration, contrasting with the case of the tori,
rational or irrational (see Theorem 1.2).

»  More precisely, we proved the divergence of quadratic moment of the H%~1(S?)-
norm of the second Picard iteration of the frequency truncated initial data. This is
likely to yield the almost sure divergence of this random process, but we do not have
a self-contained elementary proof of this result.

» It is not clear whether the threshold o > % is technical or not. It appears when we

prove that the fully paired interactions are regularizing (so that they do not cancel

the divergent term). We refer to [24] for a discussion on the notion of probabilistic

criticality, which is heuristically related with this threshold.
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Theorem 1.1 indicates that the linear evolution is not a good approximation of the solu-
tion, even if the initial data are randomized. In this light, the structure of the probabilistic
solution (if it ever exists, in a suitable sense) associated to ¢5 cannot be

u(r) = e A=Y p@ 4 smoother remainder.

In the deterministic setting, the consideration of high-frequency limits in [16] also indi-
cates that on the 2d sphere, when s < %, the linear evolution of an initial data in H*(S?)
does not approximate well the solution.

While proving Theorem 1.1, we isolate a singular resonant interaction between
high and low frequencies. This interaction will play a key role in the probabilistic well-
posedness theory we develop in the subsequent work [12]. It is now well established
that adapted ansatz in the spirit of paracontrolled calculus allows one to go beyond the
linear-nonlinear decomposition of Bourgain [7]. The strategy is to perform an induction
on frequency scales and absorb the singular high x low interactions in a linear operator
applied to the high-frequency part of the initial data. We refer, for instance, to the intro-
duction of [10] for discussion on the modern techniques, such as the random averaging
operators [24,38] and the random tensors [23]. The precursors of these methods, for the
wave equation, were [9, 29]. Finally, we stress that in both [9, 20] the second Picard iter-
ation is not smoother than the initial data. This was rigorously proved by Oh [34] in the
case of the Szegd equation which is covered by the result in [20].

In a second result, proved in Appendix 5, we propose a self-contained proof of the
gain of %—derivative of the second Picard iteration in the case of irrational tori, for initial
data distributed according to the Gaussian free field. We define

t

Ips(t.uo) = / == (|t (A=) 12 i (Bg=1) ) gy

0
where, for 8 > 0, the rescaled Laplacian —Ag is the rescaled Laplacian:
_hp = R, 4 B,
On the torus, the Gaussian free field is induced by the random variable
1 -
Pr() = > —gn(®)e™™,
nez? <n)

where (n) = (1 + Q(n))/2, with for n = (k,m) € Z2, Q(n) = k? + B2m?. We have
that ¢¢ € HO~(T é) for almost every w.

Theorem 1.2 (Regularity of the first iteration on tori). For o = 1, and for all ¢ > 0, there
exists C > 0 such that, forall N € N andt € R,

1253 (2. P<ng?)l (1.6)

1 <

L3(QH27°(T2) —

This result is implicitly contained in [7] (see also [25]). For completeness and to put
Theorem 1.1 into context, we give a short proof.
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Organization of the article

The proof of Theorem 1.1 in the case of the sphere is given in Section 4 and mostly relies
on a quantitative concentration property, which is proven in Section 2.2. We also recall
or prove preliminary properties on the spherical harmonics in Section 2, and on Gaussian
measures on S? in Section 3 together with some preparations on the nonlinearity. Finally,
we prove Theorem 1.2 in Section 5.

2. Spherical harmonics

2.1. Spherical harmonics

The polar (colatitudinal) coordinate is 6 € (0, ), the azimuthal (longitudinal) coordinate
is @ € (0,27), and p € R is the radial distance so that S = {x € R3 | |p| = 1}. We have

(x1. X2, x3) = (psin(f) cos(g). psin(f) sin(p). p cos(0)).

With this coordinates system, the Lebesgue measure is
1
do = — sin(68)dfde, 2.1
4

and the Hermitian scalar product is

27 b4
(f 1822 = % /0 /0 £(6,90)g(0, ¢)sin(6)dAde.

With this normalization, S? has volume 1. Note that this coordinate system is singular on
the axis (Ox3). The (shifted) Laplace-Beltrami operator on the sphere reads

Ag2 +1 L » L2 'n@a +1 (2.2)
— =———————|sinf— . .
s sin? 0 dp2  sinf 96

It is a self-adjoint operator with domain H?(S?), and it has discrete spectrum. The eigen-
values are

M =n’4+n+1, neN,

n
with multiplicity 2n + 1. The normalized spherical harmonics, defined as the restrictions
to S? of the harmonic homogeneous polynomials, form a particular orthonormal basis of

eigenfunction. Forn € N and k € {—n,...,n}, we denote by Y}, x the spherical harmonics
of degree n and order k. In spherical coordinates, we have
Yosc(0.9) = €% 0,1(8),  vnx(8) = cngeLni(cos(6)), (2.3)

where L, x (cos(0)) is the associated Legendre function of degree # and order k, and ¢,

is a normalization constant
n—=k)!
o = \/(2n+ He—l

(n+ k)’
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Proposition 2.1. Spherical harmonics (Y k)1<n,|k|<n form an orthonormal basis of
L2(S?) made of eigenfunctions of the Laplace operator on S?. They satisfy

(—Ag2 + DYy = A2Y,k, neN* ke{-n,...,n},
with A2 =n? +n + 1.

We refer to [36] and [37, Chapter V] for a detailed analysis of the spherical harmonics.

2.2. Concentration of spherical harmonics with high order

It follows from the expression of the Laplace operator on the sphere (2.2) that v, x is
solution on (0, ) to

2
—(sin(@)%) Va k() + (k2 = n(n + 1) sin(0))v 4 () = 0. 2.4)

The next proposition claims that in the high-frequency regime n — oo a large family
of spherical harmonics with high weights (when |k| is close to n) concentrate their mass
near the equator (corresponding to the region 6§ = 7). Given § € (0, 1), we denote

Cs 1= {x =0,9)eS?|8< |cos(9)|}. (2.5)

Proposition 2.2. Forall § > 0, n > 1, and k € Z such that

v

nn+ 1)1 —8% <k? <n?, (2.6)

we have

ez ()Y s (Lzs2) S5 -

The proof relies on utilizing semiclassical functional calculus in the high-frequency
regime to quantitatively exploit the ellipticity of equation (2.4) away from the equator. A
different approach, based on ordinary differential equations, can be found in [26, Section
3], where families of spherical harmonics with high weight |k| ~ n are used to saturate
certain L7 spectral cluster bounds.

Proof. In order to use semiclassical functional calculus and prove this proposition, we
will extend v,, x to a function defined on the whole real line R. For this purpose, we make

the change of variable
f O,m)—>R

6 > tanh™!(cos(6)).

Note that f is a C*°-diffeomorphism and that we have the identity: for all 8 € (0, 7),

sin®(f) = 1 — cos*(6) = 1 —tanh®(f(6)) = m'
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This yields
1

—1y/ _
m, S0 =

16 =-

cosh(y)’ 2.7)

which in turn implies that

oo 1 _ T . 1
/_Oo W'v”’k o fTN(y)Pdy = /0 [Un i (0)|? sin(0)d0 = 7 (2.8)

We set

1

(2m)2

—1 i R
COSh(y)vn,kOf (»), yeR,

ﬁn,k(y) =

so that

/ Bn () Pdy = 1.

(o]

In what follows, we may abuse notations and write § = f~1(y) for y € R. We have from
the chain rule and from (2.7) that

d 2n)? d
Eﬁn,k(J’) = —tanh(y)0, (y) — cosh(y) Sin(@@vn,k(@)- (2.9)
We deduce from this that d
H—ﬁn,k <1 (2.10)
dy L2(R)
Indeed,
[[tanh ¥, k[l 2Ry < 0nkll2@®) < 1,
and
L IR PN [ st ) o S OIPIT 0l
cosh(y) g ™ L2(R) R cosh(y) n.k

:/ sin®(0)|v),  (0)]?d6 < 1.
0

Moreover, we deduce from (2.9) that

e d
352 Ok (y) = (tanh®(y) = DBy k() — tanh(2) Bk ()
y y

dy
(27)2
cosh(y)

d2
o2

(2 cos(6) sin(@)%vn,k(G) + sin?(6) u,,,k(e)).

Plugging in expression (2.9), we deduce that

d2 d 27)2 d\?
) = —(1 4 2cos<9)@)ﬁn,k<y) + C(Osflzy) (sinw)@) 0k (0).
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Therefore, we conclude form (2.4) that v, x € C*°(R) solves

d? d\. > 2 .

—Upx +|1+2cos(8)— |v,x — (k* —n(n + 1)sin“(0))v, = 0. 2.1D)

dyz ™ dy ’ ’

We can now introduce the semiclassical parameter in the high-frequency regime n —
00!
1
hi=mm+1)"2, h~pooon L.

For the rest of the proof, we denote
a = |k|h.
This parameter should not be confused with the parameter « in definition (1.4) of the

initial data, which is not involved in this proof. Multiplying equation (2.11) by h? gives

2
_hzdd?ljn’k(y) + (0 = sin2(0(0)) T i (y) — 2h* COS(Q(y))%ﬁn,k(y) o

(2.12)
We reformulate (2.12) as follows:
(2.12) <= Po(y,hDy) (T k) = 2h* cos(e(y))%ﬁ,,,k(y) + h?,
where P, is a differential operator of order 2 with symbol
Pa(y,£) = £ +a® —sin®(B(»)).
We deduce from (2.10) that
IPa(y. hDy)bn i N2y < 72, (2.13)

Consider

Char(Po) = {(y.£) € R? | pa(1.§) = 0} = {(y.§) € R? | £ + o® —sin*(0(y)) = 0},

and set, for 6§ € (0, 1), »
Cs:={y €eR |8 < |cos(B(y))} (2.14)

Observe that, for all § € (0, 1),
V1-82 <a = Char(Py) CR\ Cs.
Indeed,

V1-62 <«
T = 1-8 <sin’(0(y)) = |cos(B(y))| <.
{ £2 + a? —sin?(0) =0
Hence, in the regime where v'1 — §% < @, Char(P,) concentrates near the equator as &
goes to 0. By the use of semiclassical functional calculus, we will deduce from this that
Up k also concentrates its mass near the equator in this regime.
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Lemma 2.3. Ler § € (0, 1), and suppose that ~/1 — §2 < a. Then, for all y € C2°(R)
such that
x=1onCys, suppy C (‘3%8,

where Eg is defined in (2.14), there exists a bounded operator Q j such that, for all
he(0,1),
1Qu.nllL2®)y—12®) Ss 1,
and
Qa1 © Pa(y, hDy) — xWL2®)y>L2®) S5 h-

Proof. Fix § € (0, 1) and suppose that +/1 — §2 < «. The key point is that P, (y, hDy) is
elliptic in the region 525, and the proof follows from the standard parametrix construction
of elliptic operators. Since we only need to invert P, (y, 2D, in the elliptic region up to
order 1 in &, we propose a self-contained proof.

We introduce the symbol

1(»)
Pa(y.8)’

Recall that for all y € supp(y), € € R, and v/1 — §2 < « we have

pa(y.§) = €2 + a® —sin*(6(y))
> 1—68%—sin?(8(y))

= cos*(A(y)) — &
> §2. (2.15)

q(y.&a) =

The semiclassical pseudodifferential operator Q, (v, 2D, ) associated with g is defined via
its Schwartz kernel as follows:

iy—2)&

1
QuU DI = [ K2 @z Ko = 5o [ 7 g0

Observe that

i=2) =)t
(y—z)e 7 =—ihde(e 7 ). (2.16)
Hence, integrating by parts twice yields that
5 h =2k 5
(=2 K(y.2)=—o— | e 7 9q(y.§:0)dE,
T JR

It follows from (2.15) that, for all k € N, «, § such that +/1 —§2 <« < 1 and forall £ € R,

sup [0gq (v, & )| Sk §7(8) 72,
yeR
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Hence,

sup (v — 221K 2)] < h54( /R (E)“dé) < hs

(v,2)eR?

Moreover, we have the trivial bound

sup  |K(y.2)] < h—ls—Z( / <s>—2ds) <l
R

(7,2)eR?

Therefore,
4 . h 1
sup |K(y,z)|dy <6 *sup [ min T dy
zeR JR zeR JR (y—2)* h
1 h
< 8—4(/ —ds—}-/ —zds)
isl<h B ls|>h §
<&

Since the computations are the same when changing the role of y and z, we prove that

when v/1 — 82 < «, then

sup [ 1K(y.2)ldz + sup f K(y.2)ldy < 57,
yeR JR zeR JR

uniformly in / € (0, 1). It follows from Schur’s test that Q,, (v, 4 Dy) is bounded on L?(R),
uniformly in 2 € (0, 1), with

[Qu(y. hDy)l|12®)—>L2®) < 8+ (2.17)

The Schwartz kernel of the operator

Re(y,hDy) = Qu(y,hDy) o Po(y,hDy) — x(y)

is given by
() - wpar 14t
K(3.2) = @) =910 [ e e
where
P (y) :=ssin*(6(y)).
We write .
orzi= [ oz +a -
0
so that

P() —9(2) = (y —2)e(y.2).
It follows from (2.16) and integration by parts that

1 i(y—z d
H(y.2) = —iﬁﬂ(y,Z)X(Y)/Rag(p : é))e(h)s &
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We proceed with the estimate on the kernel of Q,, and we integrate by parts twice (using
(2.16)) to get
h2
|K(y,z)| <6°° min(l, —2)
ly =z
We deduce

sup / (v 2)[dy + sup / K (v, 2)ldz < 57,
zeR JR yeR JR

and we conclude from Schur’s test that
IRa(y,hDy)llp2512 < §~Ch.
This concludes the proof of Lemma 2.3 with an implicit constant < §76. ]

We now complete the proof of Proposition 2.2 as follows. We have from Lemma 2.3,
from (2.17), and from (2.13) that

”Xﬁn,k”Lz(R) = ”Q(x(y’hDy)Pa(Y»hDy)ﬁn,k _Ra(y’hDy)ﬁn,k”Lz(R) s h.

Hence, according to (2.8),

1YnkllLzcess) = 10nicll 25y < 1xUnkllzw) < Csh,

which completes the proof of Proposition 2.2. |

3. Preparations

3.1. Gaussian measures

Recall that the Gaussian measure j, of parameter & € R is defined in (1.4). To present
some properties of the random functions ¢, (@) in the support of 1., we need to first recall
the local Weyl law for —Agp2.

Lemma 3.1 (Local Weyl’s law). For every n € N, every orthonormal basis (b, i) of E,,
and every x € S?, we have

1
2n + 1

> bus(0) = 1. G.1)

lk|<n
We detail the very concise proof of this lemma.

Proof. Givenn € N and (b, ) x|<» an orthonormal basis of &,, the integral kernel of the
orthogonal projector 77, onto &, is

Ko(x,3) = ) bui(0byi(v),  (x,) € (7).

lk|<n
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It follows from the rotational invariance of the operator —Age that, for all R € SO3,
7, o R = Rom,,
which in turns implies that, for every (x, y) € (S?)? and R € SOs,
Kn(Rx.y) = Kn(x,R7'y).
In particular, for all x € S2,
K, (Rx, Rx) = K,(x, x).
Since SO; acts transitively on S?, we deduce that

xeS? Ky(x,x) = Z |bn,k(x)|2

|kl<n

is a constant function. Integrating over x € S? and using the assumption that the spherical
harmonics are normalized, we conclude the proof of the identity (3.1). ]

Let us now reorganize the terms in series (1.4), which defines the Gaussian measure
Mo Given an orthonormal basis (b, k), we group the eigenfunctions in clusters of same
eigenvalue, with multiplicity 2n + 1, and write

— (@=3)
=D A" D k@b =Y T ey
n>0 k|<n n>0

where, forn € N,

=8

|k|<

and Xn = An( 2’/’1“)%. Since A, and Xn have the same asymptotic up to a factor 2, we
abuse notations and we keep writing

An & Ay

For every n > 0, ef; can be seen as a Gaussian vector on &,,, with

E(ef) =0, Cov(ey) = Idg,.

2n +1

where Cov(e?) is the covariance matrix of the Gaussian vector e?. We recall in the next
lemma that the law of a complex standard Gaussian vector is invariant under the action of
the unitary group.

Lemma 3.2. Forall X ~ Nc (0
have

, 2n+11d8n) and A € U(8,), the unitary group of &,, we

L(AX) = £(X).
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Proof. For Y arandom variable, we denote by ¢y its characteristic function. For all £ € €,

gax () = E[e'€14X)] = E[e/47E1X)] = oy (4%¢)

S BT EAT __1 g2
=e 2n+1 ”A S”LZ =e 2n+1 IIS”LZ — (pX(E)
This proves the lemma. ]

A consequence of the above lemma is that the law of ey —and therefore the law [1q—
does not depend on the choice of the orthonormal eigenbasis of &,. Alternatively, we
could fix x and view ey (x) as a complex standard Gaussian random variable. Indeed,
E[e?(x)] = 0 and, according to (3.1),

1
® _ 2 _
Var(e;! () = 5 3 g = 1.

|k|<n

In particular, the law of e; (x) does not depend on the point x on the sphere.
Let us now recall the elementary property of complex standard Gaussian variables: for
all n, k, we have
Elgn k] = Elg; 4] = Elgnxlgn kI’ = 0.

In particular, we deduce from the above identities and from the definition

@) =Qn+ 172 Y gui(@by(x)

|k|<n

that, for fixed n > 0 and (x, y) € (S?)?,
Eley (x)ley (0] = Eleyy (x) ey [I72(g2)] = 0. (3.3)

For fixed x € S?, we will use the fact that ey (x) is B,-measurable, where B, is the o-
algebra generated by (g, k)k|<n- The independence of B, from B, whenever n # n’
plays an important role in the multilinear estimates involving the random functions ey .

3.2. L?-bounds

We recall the eigenfunctions estimates due to Sogge [36]. There exists C > 0 such that,
foralln > O0and f € L%(S?),

1_1

1
1
An 277, 2<p<6,
70 fllLrs2y) < Cllztn fllL2(s2) ';_z (3.4)

An 7, 6<p=<oo.

In contrast, we prove that the L? (S?)-norm of a L2(S?)-normalized Gaussian spheri-
cal harmonic e? has its moment of order p uniformly bounded in .

Lemma 3.3. There exists C > 0 such that, forall p > 2 andn > 0,

||ez)||Lf,(Q;L§(s2)) <C{p. 3.9
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Proof. We deduce from Lemma 3.1 and from Khintchine’s inequality that there exists
C > Osuch that, foralln > 0, x € S2, er(x),and p > 2,

lew ()l @) = CV/P-
Subsequently, we deduce from Fubini’s theorem that

= (/SZ ||€Z)(X)||Ilj5d0(x))p < CVOI(SZ)%ﬁ _ C\/_’

=

since we normalized the Lebesgue measure such that vol(S?) = 1. This concludes the
proof of Lemma 3.3. |

In [17], the authors prove some more precise large deviation estimates, using the con-
centration of the measure.
3.3. Decomposition of the nonlinearity
We decompose the Wick cubic power into three parts:
: |u|2u T = |u|2u — 2||u||iz<§z)u
= N (u) + No(u) + N3(u),

where

'/vl(u) = E lnzaénl,nzyéng,”nlunnzﬂﬂmu»

ni,n2,n3

No(@) =2 ) Lnysoms (1w > = [ [ 72 2)) Tm, 1

ni,n2

N3(u) = Z |7Tnu|277nu - 2||JT,,M||22(S2)7'L’"M_
n

We isolate the resonant interaction from N5 :
. 2 2
Mo res @) 1= 2" gy Ty (g (|7 e[ = (|70, 1} 2(g2))) -
ni,ny

As we will see in the next section, the term N rs is responsible for the divergence of the
second Picard iteration (1.5) claimed in our main theorem.

Remark 3.4. In the case of the torus T2, where the plane waves e!™* have constant
amplitude, we have that, for all n € Z2 and x € T2,

in-x |2 inx )2
|elnx| - ”emx”LZ(Td) =0

so that the term N, does not exist after the Wick ordering. On the sphere, however, the
variable x in the physical space has a role to play and pointwise in x, the Wick square

2 2
|€,(;’(X)| - ||ez)”L2(§)
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has no reason to vanish. Still, it does vanish on average (both in space and in probability
measure):

L e8P = ey o) = [ e = e 3 6,0P @) = 0.

3.4. The second Picard iteration

Fix o € R, and recall that the Gaussian measure (i, is induced by the random variable
= 2o,
n>0

where the Gaussian spherical harmonics e are defined in (3.2). We denote by u®(¢) the
linear evolution

WO (e x) = OV g = 37 i 3O ),

n>0

In order to make sense to the series in L®(R; H*(S?)) for any s € R, we also consider
the finite-dimensional approximation

s (el
P_yu®(t,x) = Z e_”’lgl)tn(a 2)e;"()c).
n:A,<N

For N € N, dyadic, set
Iy = {ii = (no.n1,n2.n3) € N* | n; <N fori €{1,2,3}}
and
F(l) {n € Tn | ny # ny, ny # ns},

(2) ={ii € Ty | no = ns, ny # ny},

1"(3) {n €Ty |ny =ny=ns}
For 71 € Ty, we denote the resonance function
Qi) = Ay — A7, + A, — A

Then, we have

t
Is2(t, P<yu®) = —i/ et(t—t/)(A—l)N(PsNuw(t/))d[/
0

t
= — / ei(t_t/)(A_l)(eNl(PSNUw(t/))
0

+ NMa(P<yu®(t')) + N3(P<yu®(t')))dt’
=1+ 11+ 11, (3.6)
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where

I _ —itA2 e i) L (a— ® S0 ,0
N(t,x) = Z € ol ——= = |AnyAnyAns) ™ ”no(enlenze )(3‘7)

Qn
ﬁel“l(\}) )
L femitQG)
Iy (1, x) = Z e P (W)(A’nl zy e D,
iiel“(z)
x (e (lew, | — llew, 17262))- (3.8)
Lz (€790 1\ a1
o) = 32 & (S ol i)
iiel“l(\?)
—itA2 —3(a—1
—2 ) e 0 1,77 6212, oy (3.9)
n>0

4. Proof of the main theorem

Given o € R, our goal is to show a logarithmic divergence in N of the H*!(S?)-norm
of (3.6).

4.1. Isolating the divergent term

We first isolate the singular contribution (3.8) from (3.7) by using probabilistic indepen-
dence, and the ingredients such as (3.3) discussed at the end of Section 3.1.

Lemma 4.1. For every a, N, and t, we have
M () |22 (@: Ho-1(s2)) — TN (D)1l 22 a1 (s2))
< [ Is2(t, P<nu®)|lL2(@;Ho1(52))
where the notations are introduced in Section 3.4

Proof. For simplicity, we consider the case « = 1. The other cases are the same up to
applying (A) T to every term. We have

”ISZ (l, PSNMw)HiZ(Q;LZ(gZ)) = ”IN (t)”zZ(Q;LZ(SZ)) + ”HN (t) + My ([)”%,Z(Q;LZ(SZ))
+ 2E[{In (1) Iy (1) + M () 2(s2)]-

We show that, for every ¢ and N,

E[(Inv @)y (#))r2s2)] = E[{In ()N (7)) 12s2)] = 0. 4.1)
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Expanding the scalar product, we have
E[(In ()N (1)) L2(s2)]
= > D Lu=nEfmolenmen) 1 s (e 1P = lle, 17 22)) 2]

ner) iery

e—th(n) 1 eil‘Q(ﬁ’) -1
) R A dny) O [ T ) (A 22) D),
x( etk )( i dmyhns) ( o )(,, )

Using the integral kernel K, of 7,,, we observe that, for every (7i,7’) € (F(l) X I‘I(Vz)),
E[(nno(enl nze:to3) | (|en2|2 ||€Z)2||L2(S2)))L2(§2)]
- /( oy Ko VB[, (02,6 (08 (e 00PN ey Jao (1o ().

We see from the non-pairing condition n, # ny,n3 of i € I’ 1(\,1) and from (3.3) that, for
fixed x and y,

E[e?, (x)22, (x)e2, ()2 (1) (le2, () = lle?, [22g2)] = 0.

This gives the first equality in (4.1). The second follows analogously, using that, for all
iel{ andii’ € T

N »and for all x, y in S2,
Eley (x)eg, (x)eq, (x)és Ml () ?]

= E[enl(x)enz(x)em(x)en,l (y)”en'l (y)”iZ(gz)] =0.
This proves (4.1). We deduce that
[ Ts2(z, PSNuw)||iZ(Q;L2(Sz)) = |1y (l)||i2(Q;L2(S2)) + [Ty (7) + My (t)||22(Q;L2(§2))7
and we conclude from the triangle inequality that

[ Is2(t, P<nu®)ll2(:r2s2)) = N (#) + My ()l 22(0;12(s2))
> Iy ()l 201 (s2)) — MY (D [l 20 -1 (s2)) |-

This concludes the proof of Lemma 4.1. ]

Let us now show that the term Il y, written in (3.9), gains one derivative with respect
to the initial data ¢. This implies in particular that it is bounded in L2(Q; H*"1(S?))
uniformly in N.

Lemma 4.2. For every a and s such that s < 3o — 2,

S[‘i,p IE[”IHN ([)||12qs(§2)] < +o00.

In particular, when a > 3, then

sup E[”HIN(I)”éufl(Sz)] < +o00.
N
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Proof. Fix N € 2N, By Minkowski and the structure of IIly (¢), we have

E[N O 2@ ]) = 3 E[ITIEPK 4O 20e2])?.
K<N
Kdyadic

NI—=

It suffices to show that there exists § > 0, depending on s and «, such that, for all K,
IE:[”HIN (Px u®)(t) ”%{s(gZ)] < K.
We have

IE[||IIIN(PK Mw)(f)”%p(sZ)]
e_it(kﬁo_kgl) —1 —3(a—1)
= ZA?LEE[ T Z (W)lnl a1} le? [e?
= no ~ “ny

n1~K
By some degree considerations, we see that the terms contribute only when ng < 3n;.
Moreover, expanding the square, we see that

IS Y D Ay T30

Ang<K ny,n~K

/( oy Kno o ELES, (e, P (e (y)|2]do<x>da(y>‘.

2

}. 4.2)

L2(S?)

X

Using the independence of ey, (x) and e/ (v) when ny # n', we see that only the terms
with n; = n contribute. Hence,

— _1
@l k> Y 3 a0

n()SK n1~K

B [ Knte ke 0OPIes, 0)ef, 025, 0o 1o )|
—6( _l)

SK® Y Y Ay PElmag(ley, Pen)7s2)

nOSKn1~K

—G(Ot—l)
SKP Y A PEled 5es)
n|~K

X

According to (3.5), we conclude that

14.2)] < K2 Z A;f(a—%) < K2s+1—6(a—%)’
n1~K

which is conclusive when
1
) <3a—2=a—l+2(a—§).

This concludes the proof of Lemma 4.2. ]
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At this stage, we proved in Lemma 4.1 and in Lemma 4.2 that there exists C > 0 such
that, forall N > 1, o > %,t eR,and s < 3a — 2,

TN () |22 @;me-1(s2)) — C =< [ Ts2(t, P<nug)llp2(0:He1(s2))- (4.3)

It remains to show the divergence of the term on the left-hand side.

4.2. Proof of the divergence claimed in Theorem 1.1

In order to demonstrate the divergence asserted in Theorem 1.1, we exploit the concen-
tration property associated with high-order spherical harmonics, as written in Proposi-
tion 2.2.

Proposition 4.3. There exist n > 0 and Ny > 0 such that for all N > Ny and t € R we
have

1
[1[nlog(N)2 < |In(2)L2(9;Ha-1(52))- 4.4)
Proof. Recall that we defined in (3.8)
—it Q) -1

e (gL
Iy (., x) = Z (Tﬁ))(h.lﬁz) (@ Dﬂno(ei‘,’l(le,‘{’zlz—IIEZLIIizSz))-

= _(2)
nely

Note that when# = (n,n1,12,713) € F](\?), then the resonant function is (1) = Aﬁ — )Lﬁl .
We expand IIy (¢) on the orthonormal basis of L?(S?) made of spherical harmonics:

—it(Az—A%) _ 1

_(a—1H)€
Iy =30 3 Yok D Duygna A0 ™D
n ni

n<N |k|<n ni,na<N
x ( [ et tes, cor - e ||22(§2))Yn,k<x)do(x)).

Remark 4.4. Note that since we truncated the initial data at frequency N, we can deduce
from degree considerations on the spherical harmonics that only the modes with n < N
contribute to the above sum.

By applying Plancherel’s formula and using the fact that e/*(*s2~1 is a unitary oper-

ator on L2(S?), we obtain

”HN(I)”i[ozfl(gz) = Z Ai(a_l) Z

nsSN |k|<n

x ( [ e e - ||e:;;||,%2(S2))Y;,k(x)do<x))

y l)e_ita%_kgl) 1
Loy my Ay A2 )" =
Z ni17Fn2 17%ny A% _A%I

ni,na<N

2
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By expressing ;7 in the basis made of spherical harmonics (Y, k,) (recall that the law
of ey, does not depend on the choice of the orthonormal basis), one deduces from the
independence and from (3.3) that

—it()Lf,—)L,z,l) -1

E
A% - A}Zﬂ

—(a—1) €
37 Ly, (A A7)
ni,na<N
x ( [ et e, - ||e:;;||iz(S2)>Yn,k(x)do(x>)
e—if()tﬁ—/lﬁl) —1

12 )2
n ni

2

2
_ _1 _
= 2: Lyy s, Ay A2) 2@ 2D 20y + )7

ny,n2<N

2
. (45)

Y| [ e = e ) s 00Ty (O G000

lk1l<n1

Let us justify why only the terms with n; = n| and n, = n’, contributed to the double
sum over (ny,n’,nz,n5). Fix (x, y) € (S%). We distinguish three cases.

Case 1: ny # n'| and n, # n). Since, by assumption, n| # n’ and n; # n,, we have
from the independence of B,, and B,, from B, and By, that

]E[e;?l (X)(|€Z)2 (x)|2 - ”ezjz ||]242(S2))e:;)/1 (y)(|€f,”/2 (y)|2 - ”e’(;)/z ||i2(gz))]
= E[e, () (e, I = ey, [ 72s2)) JE[ e () (e, (I = e, [72(s2))] = 0.
where we used the identity (3.3).

Case 2: ny # n'| and ny = n’,. In this case, we have from the independence of By,
from 8, and B,, that

E[e?, () (le, ) = e, 122068 0 (e, 0P = e 122(s2))]
= Ele?, (OIE[ (2, (I = e 12252 0 (1, () = e I22(g2))] = 0.

where we used that e} (x) has zero average.

Case 3: ny = n'| and n, # n’,. By assumption, ny # n, and we deduce from the inde-
pendence of By, from B,, and B, that

E[e, () (1€, (P — e 122528 0 (12 ) = 1€, [F2s))]
= E[le%, (07 ~ lle@, 13252 JE[e, (00e2, () (1€, (0P — e [22g2)] = 0.

where we used that the first term in the second line vanishes according to (3.3).
This proves that only n; = n’1 and n, = n’2 contributed to the double sum.
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We now estimate from below (4.5), keeping only the high X [ow frequency interac-
tions, namely, when n, = 1, which are resonant at n = ny, and with k = k. Uniformly
inn, k with n > 2, we have

2
_142(e-1)
@5z 2n7', 02 E‘ L (1P GO = llef IZ2s2) Yk () *do (x)

2
- tzn_zk;z(“_l)E ,

/;2 (|eiu(-x)|2 - ||eclu”%IZ(SZ))lYn,k(x)lde’(X)

where we used that A, ~ ¢n. We deduce from (3.8) and (4.5) that

2
Ely ) es 22 Y 072 ZE‘ [S (PP = 6§ 12 62)) Yk (020 ()

2<nsN lk|<n

4.6)
Then, we use the explicit expression of e{’, and we remove a well-chosen subset from 2
(such that the remainder still has positive measure) in order to exploit the concentration of
Y1.1 near the equator. We have, for v € Q and x € S?,

e (x) = %(gl,l(w)yl,l(x) + g1,-1(0)Y1,-1(x) + g1,0(®)Y1,0(x)).

According to (2.3), we can express in spherical coordinates

3 )
Y1,1(0,9) = —\/;sin(e) e’

Then, given 0 < ¢ < 1, we define
Se={weQ|1=<]|g1(®)]? <100, |g1,-1(®)]* + |g10@)]* <&}
Note that P(S;) > 0. We write

A

PP = 1ef By = 3lena(@) (5 5@ 1) + rx.o),
where there exists C > 0 such that function r satisfies, for all x € S? and w € S,,
|r(x,w)| < Ce. 4.7
We observe that, for all § > 0,
x=(0,9) € S?\ Cry = %sinz(e) —-1> %(1 —128%), (4.8)

where Cg is defined in (2.5). Fix § > 0, w € S, and set

ank(@.8) = Sl @) [ (1= 1e, (x))(% sin?(9) — 1)|Yn,k(x)|2do(x>
SZ
bai0.8) = 3lena @) [ 16, (35020 1) a0 )

+/ r(x, )|y x (x)[*do (x)
S2
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so that
/%2 (|eio(x)|2 - ”e(lu“iz(SZ))lYn,k(x)lde'(x) = an,k(a)a 8) + bn,k(a)a 8).

Then, we deduce from the inequality (a + b)? > % — b? (for a, b € R) that, for all w,

n, k,
]

> %E[lss (@)anx(@)?] - E[ls, (@)by i (@)2]. 4.9)

1.0 [ (1ef 00 ~ e Iz o P )

Moreover, for all £,§ > 0, n, k and w € S,, we have form (4.8) that
1
an@.8) = e @1 =128 [ (1= Ty ()Y, x ()P o)

On the other hand, it follows from (4.7) and from the fact that % sin(@)2 —-1< % when
x = (0, ¢) € C; that

1
bus(@.8)] = 5111 @F [ Loy (00 Pdo) + Ce.

In Section 2.2, we prove that in the regime where 7 is large and n(n + 1)(1 — §?) <
k? < n? (see (2.6)) the spherical harmonics {Yn,k} concentrate their mass near the equator,
precisely in the region outside C,5. Applying Proposition 2.2, we obtain that there exists
Cs such that, forall § > 0, w € Sg, n > 2 and k as in (2.6),

an @) = Zlga @1 128 = gy @),
and
bns@)] = S lgra@) + Ce.
Let§ > 0and N € N. We set
Angs:={(n.k) e N>, N <n, n(n+1)(1 -6 < k* <n?}.

We conclude from (4.9) that, when § > 0 is sufficiently small, there exists N5 > 2 such
that, for all (n, k) € A, s and & > 0 sufficiently small,

2
E‘ /;2 (le(lu(x)l2 - ”3(10”22(§2))|Yn,k(x)|2d0(x)

2
1
> ]E[lsg(w)‘ /g (PP = 69 12 g2)) Yok (020 (3) } > o P(So).
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Plugging the above estimate in (4.6), we conclude that there exist § > 0 and Ny such that,
for all N > N; and ¢ > 0 small enough,

_ 1
E”HN(t)HIan—l(SZ) 2 1? Z n 2#{k 1(n,k) € ANg,S}ﬁP(Ss) 28.e 1? log(N).
Ns<n<N

At this stage, § and ¢ are small but fixed positive constants. This completes the proof of
Proposition 4.3. ]

4.3. Conclusion

In order to complete the proof of Theorem 1.1, it suffices to inject (4.4) into (4.3). This
yields the existence of C,n > 0 and a sufficiently large integer Ny such that, for all # and
forall N > Ny,

1
[ Ts2(t, P<nug)llL2(@;me-1(s2)) = |tInlog(N)2 —C.
Taking Ny large enough compared to C gives
n 1
1252 (t. P<nug)lizz(o:me-1(s2)) = |17 log(N)2.

This completes the proof of Theorem 1.1.

5. Regularity of the first iteration on tori

In this appendix, we consider the cubic NLS on the general torus
T; = R*/(2nZ)*,

endowed with the metric g = dx? + f72dx2 for some B > 0. The cubic NLS on TE is
written as

id,v + Agy = |v]?, (5.1

where Ag = 8% + B293,. Hence, from now on, we will only concentrate on (5.1). For
n=(k,m),n = k' ,m') € Z2, we denote by Q(n,n’) = kk’ + B?mm’ the associate
quadratic form and Q(n) := Q(n,n). Then,

eitAﬂ — ‘?x—le—itQC)‘?fx.

In light of the Gaussian measure (1.4) defined in the case of S2, we consider initial data
of the form

1 .
Pr() =Y egwe,

nez? <I’l>
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where (n) = (1 + Q(n))%, and

u®(t,x) = Z grem .
neZz?

We write the Wick-ordered nonlinearity
eit(Q(n1)—0(n2)+0(n3))

N = 3 T & (O @) (@)
(n1,n2,n3)€Z>?
manins
it®(n)

: tnx
=X G S @8 @ @)

(n1,n2,n3,n)€T

where the constraint set is
r = {(nl,nz,n3,n) € (Z2)4 ‘n =ny—ny+ns, Ny #ny, Ny # n3}.
And the resonant function ® defined on I' is
@(n) := Q(n1) — Q(n2) + Q(n3) — Q(n1 —nz + n3) = 20(n1 — nz,np — n3).

The second Picard iteration is written as
t
Ir2(t.9°) = f BN W (1) dr.
0
We will now prove the gain of regularity (1.6) claimed in Theorem 1.1.

Proof. For fixed t, direct computation, independence assumption as well as the observa-
tion that E[g2] = 0 for standard complex Guassian functions yield that
2s

(n1 —ny +ns)
E[||Zr2(, ¢2)|%s] ~ . (5.2)
(250Dl ~ 2 mrmemr
To compute the right-hand side of (5.2), we decompose dyadically |n;| € N;, and assume
that NV > N® > NG is the non-increasing order of Ny, N», Ns. It would be sufficient
to obtain an inequality of the form

n=(ny,n2,n3)€lr

_ 2s
(MiN2Np)2 ) e )T vy (53
Inj|~N;, j=1,2,3 (Q(nl —Hpz,Nn3 — I’l3))
na#ny,n3
The left-hand side of (5.3) can be bounded by
N(l) 2s
(N1N2N3)™ —2 ( ) 1011 —na,na—ns)—1|<8 (5.4)
S
leZ |nj|eN;
na#ni,n3
= (N1N2N3)~ Z(N(l))zs Sup Z I\Q(nl—nz,nz—ns) —I|<8 (5.5)
lez |njleN;
na#ny,n3

for some number 0 < § < 1 to be fixed later.
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Let us now estimate the quantity (for fixed/ € Z and § < 1/4)

My, Ny N 1= 2 : 1|Q(n1—n2,n2—n3)—l|58~ (5.6)
|nj|~Nj
ny#ny,n3

Case 1: Ny > N,, N3. In this case, (5.6) can be majorized by
(N2N3)2 sup Z Liomi—nany—nz)—11<s-
nan3in2FEN3 ni:ny|~Ni,n1#n2

For fixed nj, n3, we denote by my = ny — np, mg = np —ns, |my| ~ Ny > |mg]. It is
sufficient to estimate the number of m; € Z2, |my| ~ N; such that |Q(m, mg) — | <
8. Denote by mg = (£9, 10), if no = 0 or & = 0, Q(my1, mg) € B2Z or Q(my, mg) €
Z, respectively. Then, Q(m, mg) can only take a discrete number of values. In these
situations, we have (the same dimension treatment as in [6])

#{my € Z : [my| ~ Ny, |Q(my.mo) — 1| < 8} < Ny.

Therefore, without loss of generality, we may assume that both &, and 7o are non-zero.
Denote by

mp = (b, B>no) = diag(1, BZ)mo.
Then, it is reduced to estimate the cardinality of the set

mﬁ l ' 8 }
. — < .
lmg|  |mgl|| ~ |mgl|

We observe that Ss is a rectangle with side length ~ Ny and width < 24. Since 2§ < 1/2,
we see that

z

55:2{2622:

#S5 < Ny.

Thus, the contribution of (5.4) in the sum is less than N 125_1, and the associated dyadic
summation over Nj > N,, N3 converges provided that s < %

Case 2: Ny > Np, N3. Inthis case, |Q(ny —na,np —nz)| ~ NZZ. Coming back to (5.4),
the range of the sum of / is |/| > NZ. Hence, by the crude estimate

My, N,.Ns S (N1N2N3)?,

the contribution of (5.4) is bounded by

NZZS 25—2
Z 12 < N; :

UE

Then, associated dyadic summation over N, > Ny, N3 converges, provided that s < 1.
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For the remaining situations, the argument is the same as for Case 1. For example, if
N1 ~ Ny > N3 (N ~ N3 > Njp), we can fix np, n3 (n1, ny), and do the same manipu-
lation as in Case 1.

This completes the proof of (1.6) in Theorem 1.1. |
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