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Stokes waves are unstable, even very small ones

Ryan P. Creedon, Huy Q. Nguyen, and Walter A. Strauss

Abstract. WS: it is difficult to write about Thomas Kappeler in the past tense. He was a brilliant
mathematician, but more importantly he was a wonderfully open, generous, and friendly person.
I was fortunate that we had many opportunities to spend time together and discuss mathematics.
I greatly miss him.

A Stokes wave is a traveling free-surface periodic water wave that is constant in the direction
transverse to the direction of propagation. Even Stokes waves of very small amplitude are unsta-
ble when subjected to various perturbations. We present a brief survey of this phenomenon with
emphasis on transverse perturbations.

Dedicated to the memory of Thomas Kappeler

We consider classical water waves that are irrotational, inviscid, and incompressible with
constant density. The water is modeled by the Euler equations
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rP D �gez ; r � u D 0;

in three dimensions, where u is the velocity, P is the pressure and � is the density. The
term �gez represents the force of gravity, pointing downwards. In addition, the water lies
below an unknown free surface S . On S there are the two boundary conditions. (i) The
fluid velocity u is tangential to S (due to lack of spouts, etc.). (ii) The pressure P is a
constant on S (due to air pressure and assumed lack of surface tension).

Such waves have been studied for over two centuries, notably by Stokes [27]. A Stokes
wave is a two-dimensional steady wave traveling in a fixed horizontal direction at a fixed
speed c. It has been known for a century that a curve of small-amplitude Stokes waves
exists [17, 21, 28]. Several decades ago, it was proven that the curve extends to large
amplitudes as well [16].

Of course, water waves can become turbulent, especially large ones. Before the 1960s,
it was widely believed that the very small Stokes waves should be stable because the
dispersion relation gives no hint of temporal growth. However, in 1967, Benjamin and
Feir [1] discovered, to the general surprise of the fluids community, that a small long-
wave perturbation of a small Stokes wave in the same direction of propagation will lead to
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exponential instability. This is known as the modulational (or Benjamin–Feir or sideband)
instability, a phenomenon whereby deviations from a periodic wave are reinforced by the
nonlinearity, leading to the eventual breakup of the wave into a train of pulses. Rigorous
proofs of the modulational instability were discovered in 1995 by Bridges and Mielke [6]
in the case of finite depth, provided the depth is larger than a critical depth d0, and in
2020 by two of the current authors [22] for infinite depth. A more detailed description
of the instability, including the figure-8 pattern of the unstable eigenvalues, was found
numerically in [12] and asymptotically by another of the current authors [9]. This detailed
description was proven rigorously by Berti et al., first in the deep water case [2] and then
in the finite-depth case [3] if the depth is larger than d0. Recently, the much more subtle
critical depth case was treated in [4].

A different type of instability due to perturbations in the same direction of propagation
(that is, the longitudinal direction) was detected in 1981 in the numerical work of McLean
[18, 19]. It is called high-frequency instabilities because they develop away from the ori-
gin of the complex plane, appearing as small isolas (bubbles) centered on the imaginary
axis. In contrast to modulational instabilities, high-frequency instabilities occur at all val-
ues of the depth. The first plot of the high-frequency instabilities was due to Deconinck
and Oliveras [12], thirty years after McLean’s work. Among the challenges in plotting
these instabilities was to find the longitudinal wave numbers of the perturbation that cor-
respond to each high-frequency isola, which exist in narrow intervals that drift as the
amplitude of the Stokes wave increases. In [10], a perturbation method was developed to
obtain an asymptotic expansion of these intervals in addition to an asymptotic expansion
of the maximum growth rates of the high-frequency instabilities. This revealed for the first
time analytically that such instabilities can grow faster than the modulational instability at
certain finite depths. These high-frequency results have since been made rigorous in the
recent work [14].

Both modulational and high-frequency instabilities are created by longitudinal pertur-
bations that have different periods compared to those of the Stokes waves. On the other
hand, what was unanswered was whether a small Stokes wave could be unstable when per-
turbed in both horizontal directions while keeping the longitudinal period unperturbed.
This transverse instability problem was studied numerically first by Bryant [7] and was
followed by much more detailed work of McLean et al. [18–20]. While these remark-
able papers did detect transverse instabilities, a mathematical proof has been missing ever
since. This problem is truly three dimensional.

Here, we announce the first rigorous proof of transverse instability of small Stokes
waves [11].

Before describing the proof, it is important to note that there are several other models
of water waves for which the transverse instability has been studied rigorously. One such
model includes the presence of surface tension, that is, gravity-capillary waves. However,
it should be kept in mind that the presence of surface tension drastically changes the
mathematical problem. The transverse instability for solitary (non-periodic) waves in such
a model was rigorously discussed by a number of authors, including Bridges [5], Pego and
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Sun [25], and Rousset and Tzvetkov [26]. The transverse instability for periodic waves in
this model was recently studied by Haragus, Truong, and Wahlen [13].

We now specify the parameters of our problem. Let x and y denote the horizontal
variables and z the vertical one. For simplicity, we assume here that the depth is infinite.
We are confident that our proof generalizes to the finite-depth case. Consider the curve of
Stokes waves traveling in the x-direction and with a given period, say, 2� without loss of
generality. This curve is parametrized by a small parameter " which represents the wave
amplitude of the Stokes waves. Such a steady wave can be described in the moving .x; z/
plane (where x � ct is replaced by x) by its free surface S D ¹.x; y; z/ j z D ��.xI "/º
and by its velocity potential  �.xI "/ restricted to S .

Our perturbation of �� takes the form x�.x/e�tCi˛y , where x� has the same period 2� as
the Stokes wave, � 2 C is the growth rate of the perturbation, and ˛ 2 R is the transverse
wave number of the perturbation. The goal is to find at least one value of ˛ that leads to
instability, that is, Re � > 0. After linearizing the nonlinear water wave system about a
Stokes wave and performing a conformal mapping change of variables, we find that the
exponents � are eigenvalues of a linear operator L";ˇ , where ˇ D ˛2. Motivated by [20],
we first determine a resonant transverse wave number ˛� so that the unperturbed oper-
ator L0;ˇ� with ˇ� D ˛2� has an imaginary double eigenvalue �0 D i� . This eigenvalue
corresponds to the lowest-possible resonance that generates a Type II transverse instabil-
ity according to McLean [20], of which there are infinitely many higher-order resonances
that have the potential to generate higher-order transverse instabilities. (We expect how-
ever that higher-order transverse instabilities have slower growth rates for small Stokes
waves.) In order to capture the transverse instabilities, we introduce a small parameter ı
for the perturbation of ˇ about ˇ�. Our main result is that the perturbed operator L";ˇ�Cı

has eigenvalues �˙ with non-zero real parts that bifurcate from �0, as stated in the fol-
lowing theorem.

Theorem 1. There exist "0 > 0 and ı0 > 0 such that, for all " 2 .�"0; "0/ and ı 2
.�ı0; ı0/, the operator L";ˇ�Cı has a pair of eigenvalues

�˙ D i

�
� C

1

2
T ."; ı/

�
˙
1

2

p
�."; ı/; (1)

where T and � are real-valued, real-analytic functions such that T ."; ı/ D O.ı/ and
�."; ı/D O.ı2/ as ."; ı/! .0; 0/. Furthermore, there exist �0 2 R and �1 > 0 such that,
for

ı D ı."; �/ D �0"
2
C �"3 with j� j < �1;

we have �."; ı."; �// > 0 for sufficiently small ". Thus, the eigenvalue �C has positive
real part for such ı and for " is sufficiently small. Moreover, Re �C D O."3/ as "! 0

for each � . This means that there exist transverse perturbations of the given Stokes wave
whose amplitudes grow temporally like et Re�C .

Substituting ı D ı."; �/ into (1), we obtain an asymptotic expansion of the unstable
eigenvalues with anO."4/ remainder. By eliminating � from this expansion in favor of its
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Figure 1. (Left) A schematic of the transverse instability isolas (orange curves) of width O."3/
drifting from �0 like O."2/. Here, �� represents the center of the isola. (Right) A comparison of
the asymptotic approximation of the transverse instability isola (2) (orange curve) and numerical
computations of the unstable eigenvalues (blue dots) when " D 0:01. The center of the isola is
subtracted from the imaginary part to show a sense of scale. The difference between the numerical
and asymptotic results is O."4/.

real and imaginary parts, denoted by �r and �i , respectively, we find that the eigenvalues
lie on an isola which is approximately the ellipse

4:085�2r
"6

C
86:059.�i C 0:389 � 0:467"

2/2

"6
D 1: (2)

We have numerically evaluated the coefficients for the sake of readability. The center of
the ellipse drifts away from the double eigenvalue i� ��0:389i along the imaginary axis
like O."2/, while its semi-major and semi-minor axes scale like O."3/. See the left panel
of Figure 1.

We can compare (2) to the numerical computations [24] of the unstable eigenvalues
obtained by the Floquet–Fourier–Hill method applied to the Ablowitz–Fokas–Musslimani
formulation of the transverse spectral problem. The right panel of Figure 1 shows the
results of these numerical computations on a Stokes wave with amplitude parameter " D
0:01. Also plotted is the corresponding asymptotic ellipse (2). The difference between the
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asymptotic and numerical results is O."4/, demonstrating excellent agreement between
the theoretical results and the numerical computations to O."3/. Even better agreement
can be found by retaining higher-order corrections of the unstable eigenvalues in a manner
similar to [10].

The isola of unstable eigenvalues found above is reminiscent of the high-frequency
isolas that appear in the longitudinal stability spectrum. It is therefore natural to compare
the growth rates of the transverse instability obtained in Theorem 1 to the known growth
rates of the longitudinal instabilities of Stokes waves, including both the high-frequency
and the Benjamin–Feir instabilities. In the infinite-depth longitudinal case, the largest
high-frequency isola has semi-major and semi-minor axes that scale likeO."4/ [10]. Thus,
our transverse instability grows at the faster rate O."3/ for sufficiently small amplitude
waves. Moreover, our instability grows slower than the largest high-frequency instability
in finite depth, which grows like O."2/ [10, 14]. On the other hand, our instability grows
slower than the Benjamin–Feir instability rate, which is O."2/ in both finite and infinite
depth [2, 3, 6, 9, 14, 23].

Now, we briefly turn to the main ideas in the proof of Theorem 1. First, we introduce
the Stokes waves and proceed with the linearization and then the flattening of the fluid
domain by means of a conformal mapping. We study the behavior of the three-dimensional
Dirichlet–Neumann operator [8] under a two-dimensional conformal mapping and prove
its analyticity in " and ı. The problem is reduced to studying the eigenvalues of the
linearized operator L";ˇ , which has a Hamiltonian form and is reversible. We find an
expression for L";ˇ by a method analogous to that in [23]. However, for the present three-
dimensional instability problem, L";ˇ involves a genuine pseudo-differential operator as
opposed to the simpler Fourier multiplier in the two-dimensional problem considered
in [2, 23]. In fact, the linear operator L";ˇ is

L";ˇ D JH";ˇ ; J D

�
0 1

�1 0

�
; H";ˇ D

"
1Cq.x;"/
� 0.x;"/

�p.x; "/@x

@x.p.x; "/�/ G";ˇ

#
;

where H";ˇ is self-adjoint. The coefficients p.x; "/; q.x; "/; �0.x; "/ depend analytically
on the Stokes wave. G";ı is the Dirichlet–Neumann operator modified by the conformal
map and the introduction of ei˛y . All four entries of H";ˇ depend on ", but only the lower
right corner depends also on ˇ.

In case " D 0, the linear operator around the laminar (flat) flow reduces to

L0;ˇ D

"
@x .jDj2 C ˇ/

1
2

�1 @x

#
;

where ˇ D ˛2. The spectrum of L0;ˇ consists of the purely imaginary eigenvalues

�0˙.k; ˇ/ D i
�
k ˙ .k2 C ˇ/

1
4
�
; k 2 Z:

There is a double eigenvalue (a resonance) whenever

�0C.�.mC 1/; ˇ/ D �
0
�.m; ˇ/:
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For our purposes, we choose the one with m D 1, which is closest to the origin. Thus,
we define ˇ� � 2:7275211479 to be the unique positive solution of �2C .ˇ� C 4/

1
4 D

1 � .ˇ� C 1/
1
4 .

The proof continues by following the method of [2] that uses a Kato similarity trans-
formation [15] to reduce the relevant spectral data of L";ˇ to a 2 � 2 matrix L";ı with the
property that iL";ı is real and skew-adjoint. We show that the entries of this matrix are
real-analytic functions of " and ı, and we obtain convenient functional expressions for its
eigenvalues, resulting in (1). We perform lengthy expansions of L";ˇ�Cı out to third order
in both " and ı. This is a major new difficulty compared to the two-dimensional instabili-
ties studied in [2,23]. We use the expansions of L";ˇ�Cı to compute the expansions of the
Kato basis vectors and of the matrix L";ı . Next, we analyze the leading terms in the char-
acteristic discriminant �."; ı/ of L";ı . At third order, the instability eventually becomes
apparent. In order to conclude that �."; ˇ/ > 0 for ı D ı."; �/ and sufficiently small ",
we must expand the entries of the matrix in a power series up to third order in the pair
."; ı/. If the expansions were terminated before third order, one would find�."; ı/� 0 for
any choice of ı, which would be insufficient for eigenvalues with positive real part. With
the third-order expansions, however, we are able to show that �."; ı/ > 0 if ı D O."2/ is
chosen appropriately.

Our theorem turned out to be considerably more difficult than we had anticipated.
Originally, we began by attempting to take the transverse perturbation at a fixed period,
that is, ı D 0. For the reasons stated above, that approach did not yield an instability. We
used residue calculations related to the eigenfunction expansions of the unstable eigenval-
ues which led to many non-zero terms. This, coupled with the introduction of the small
parameter ı, led to extremely arduous calculations, so we took advantage of Mathematica
to check our calculations and carry out the longest ones.

Funding. The work of HQN was partially supported by NSF Grant DMS-2205710.

References

[1] T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water. Part 1. Theory.
J. Fluid Mech. 27 (1967), no. 3, 417–430 Zbl 0144.47101

[2] M. Berti, A. Maspero, and P. Ventura, Full description of Benjamin–Feir instability of Stokes
waves in deep water. Invent. Math. 230 (2022), no. 2, 651–711 Zbl 1498.76037
MR 4493325

[3] M. Berti, A. Maspero, and P. Ventura, Benjamin–Feir instability of Stokes waves in finite
depth. Arch. Ration. Mech. Anal. 247 (2023), no. 5, article no. 91 Zbl 1525.76049
MR 4632837

[4] M. Berti, A. Maspero, and P. Ventura, Stokes waves at the critical depth are modulationally
unstable. Comm. Math. Phys. 405 (2024), no. 3, article no. 56 Zbl 1542.76008 MR 4709095

[5] T. J. Bridges, Transverse instability of solitary-wave states of the water-wave problem. J. Fluid
Mech. 439 (2001), 255–278 Zbl 0976.76029 MR 1849635

https://doi.org/10.1017/S002211206700045X
https://zbmath.org/?q=an:0144.47101
https://doi.org/10.1007/s00222-022-01130-z
https://doi.org/10.1007/s00222-022-01130-z
https://zbmath.org/?q=an:1498.76037
https://mathscinet.ams.org/mathscinet-getitem?mr=4493325
https://doi.org/10.1007/s00205-023-01916-2
https://doi.org/10.1007/s00205-023-01916-2
https://zbmath.org/?q=an:1525.76049
https://mathscinet.ams.org/mathscinet-getitem?mr=4632837
https://doi.org/10.1007/s00220-023-04928-x
https://doi.org/10.1007/s00220-023-04928-x
https://zbmath.org/?q=an:1542.76008
https://mathscinet.ams.org/mathscinet-getitem?mr=4709095
https://doi.org/10.1017/S0022112001004530
https://zbmath.org/?q=an:0976.76029
https://mathscinet.ams.org/mathscinet-getitem?mr=1849635


Stokes waves are unstable, even very small ones 77

[6] T. J. Bridges and A. Mielke, A proof of the Benjamin–Feir instability. Arch. Rational Mech.
Anal. 133 (1995), no. 2, 145–198 Zbl 0845.76029 MR 1367360

[7] P. J. Bryant, Oblique instability of periodic waves in shallow water. J. Fluid Mech. 86 (1978),
no. 4, 783–792 Zbl 0374.76017 MR 0495684

[8] W. Craig and C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108 (1993),
no. 1, 73–83 Zbl 0778.76072 MR 1239970

[9] R. P. Creedon and B. Deconinck, A high-order asymptotic analysis of the Benjamin–Feir insta-
bility spectrum in arbitrary depth. J. Fluid Mech. 956 (2023), article no. A29
Zbl 1516.76032 MR 4546129

[10] R. P. Creedon, B. Deconinck, and O. Trichtchenko, High-frequency instabilities of Stokes
waves. J. Fluid Mech. 937 (2022), article no. A24 Zbl 07482844 MR 4386807

[11] R. P. Creedon, H. Q. Nguyen, and W. A. Strauss, Proof of the transverse instability of stokes
waves. 2023, arXiv:2312.08469v1

[12] B. Deconinck and K. Oliveras, The instability of periodic surface gravity waves. J. Fluid Mech.
675 (2011), 141–167 Zbl 1241.76212 MR 2801039

[13] M. Haragus, T. Truong, and E. Wahlén, Transverse dynamics of two-dimensional traveling
periodic gravity-capillary water waves. Water Waves 5 (2023), no. 1, 65–99 Zbl 1518.76007
MR 4581900

[14] V. M. Hur and Z. Yang, Unstable Stokes waves. Arch. Ration. Mech. Anal. 247 (2023), no. 4,
article no. 62 Zbl 1521.35139 MR 4600217

[15] T. Kato, Perturbation theory for linear operators. Grundlehren Math. Wiss. 132, Springer,
New York, 1966 Zbl 0148.12601 MR 0203473

[16] G. Keady and J. Norbury, On the existence theory for irrotational water waves. Math. Proc.
Cambridge Philos. Soc. 83 (1978), no. 1, 137–157 Zbl 0393.76015 MR 0502787

[17] T. Levi-Civita, Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann.
93 (1925), no. 1, 264–314 Zbl 51.0671.06 MR 1512238

[18] J. W. McLean, Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid
Mech. 114 (1982), 331–341 Zbl 0494.76015

[19] J. W. McLean, Instabilities of finite-amplitude water waves. J. Fluid Mech. 114 (1982), 315–
330 Zbl 0483.76027

[20] J. W. McLean, Y. C. Ma, D. U. Martin, P. G. Saffman, and H. C. Yuen, Three-dimensional
instability of finite-amplitude water waves. Phys. Rev. Lett. 46 (1981), no. 13, 817–820
MR 0608380

[21] A. I. Nekrasov, On steady waves. Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3 (1921)
[22] H. Q. Nguyen and W. A. Strauss, Proof of modulational instability of Stokes waves in deep

water. 2020, arXiv:2007.05018v1
[23] H. Q. Nguyen and W. A. Strauss, Proof of modulational instability of Stokes waves in deep

water. Comm. Pure Appl. Math. 76 (2023), no. 5, 1035–1084 Zbl 1526.76011 MR 4569610
[24] K. Oliveras and B. Deconinck, The instabilities of periodic traveling water waves with respect

to transverse perturbations. In Nonlinear wave equations: Analytic and computational tech-
niques, pp. 131–155, Contemp. Math. 635, American Mathematical Society, Providence, RI,
2015 Zbl 1326.35283 MR 3364247

[25] R. L. Pego and S. M. Sun, On the transverse linear instability of solitary water waves with
large surface tension. Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 733–752
Zbl 1056.76016 MR 2079803

[26] F. Rousset and N. Tzvetkov, Transverse instability of the line solitary water-waves. Invent.
Math. 184 (2011), no. 2, 257–388 Zbl 1225.35024 MR 2793858

https://doi.org/10.1007/BF00376815
https://zbmath.org/?q=an:0845.76029
https://mathscinet.ams.org/mathscinet-getitem?mr=1367360
https://doi.org/10.1017/S0022112078001391
https://zbmath.org/?q=an:0374.76017
https://mathscinet.ams.org/mathscinet-getitem?mr=0495684
https://doi.org/10.1006/jcph.1993.1164
https://zbmath.org/?q=an:0778.76072
https://mathscinet.ams.org/mathscinet-getitem?mr=1239970
https://doi.org/10.1017/jfm.2022.1031
https://doi.org/10.1017/jfm.2022.1031
https://zbmath.org/?q=an:1516.76032
https://mathscinet.ams.org/mathscinet-getitem?mr=4546129
https://doi.org/10.1017/jfm.2021.1119
https://doi.org/10.1017/jfm.2021.1119
https://zbmath.org/?q=an:07482844
https://mathscinet.ams.org/mathscinet-getitem?mr=4386807
https://arxiv.org/abs/2312.08469v1
https://doi.org/10.1017/S0022112011000073
https://zbmath.org/?q=an:1241.76212
https://mathscinet.ams.org/mathscinet-getitem?mr=2801039
https://doi.org/10.1007/s42286-023-00074-y
https://doi.org/10.1007/s42286-023-00074-y
https://zbmath.org/?q=an:1518.76007
https://mathscinet.ams.org/mathscinet-getitem?mr=4581900
https://doi.org/10.1007/s00205-023-01889-2
https://zbmath.org/?q=an:1521.35139
https://mathscinet.ams.org/mathscinet-getitem?mr=4600217
https://doi.org/10.1007/978-3-662-12678-3
https://zbmath.org/?q=an:0148.12601
https://mathscinet.ams.org/mathscinet-getitem?mr=0203473
https://doi.org/10.1017/S0305004100054372
https://zbmath.org/?q=an:0393.76015
https://mathscinet.ams.org/mathscinet-getitem?mr=0502787
https://doi.org/10.1007/BF01449965
https://zbmath.org/?q=an:51.0671.06
https://mathscinet.ams.org/mathscinet-getitem?mr=1512238
https://zbmath.org/?q=an:0494.76015
https://zbmath.org/?q=an:0483.76027
https://doi.org/10.1103/PhysRevLett.46.817
https://doi.org/10.1103/PhysRevLett.46.817
https://mathscinet.ams.org/mathscinet-getitem?mr=0608380
https://arxiv.org/abs/2007.05018v1
https://doi.org/10.1002/cpa.22073
https://doi.org/10.1002/cpa.22073
https://zbmath.org/?q=an:1526.76011
https://mathscinet.ams.org/mathscinet-getitem?mr=4569610
https://doi.org/10.1090/conm/635/12716
https://doi.org/10.1090/conm/635/12716
https://zbmath.org/?q=an:1326.35283
https://mathscinet.ams.org/mathscinet-getitem?mr=3364247
https://doi.org/10.1017/S0308210500003450
https://doi.org/10.1017/S0308210500003450
https://zbmath.org/?q=an:1056.76016
https://mathscinet.ams.org/mathscinet-getitem?mr=2079803
https://doi.org/10.1007/s00222-010-0290-7
https://zbmath.org/?q=an:1225.35024
https://mathscinet.ams.org/mathscinet-getitem?mr=2793858


R. P. Creedon, H. Q. Nguyen, and W. A. Strauss 78

[27] G. G. Stokes, On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8 (1847), 441–455
[28] D. J. Struik, Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à

profondeur finie. Math. Ann. 95 (1926), no. 1, 595–634 Zbl 52.0876.04 MR 1512296

Received 18 January 2024.

Ryan P. Creedon
Department of Applied Mathematics, University of Washington, Seattle, WA 98195;
current affiliation: Division of Applied Mathematics, Brown University, Providence, RI 02912,
USA; creedon@uw.edu

Huy Q. Nguyen
Department of Mathematics, University of Maryland, College Park, MD 20742, USA;
hnguye90@umd.edu

Walter A. Strauss
Department of Mathematics, Brown University, Providence, RI 02912, USA;
wstrauss@math.brown.edu

https://doi.org/10.1007/BF01206629
https://doi.org/10.1007/BF01206629
https://zbmath.org/?q=an:52.0876.04
https://mathscinet.ams.org/mathscinet-getitem?mr=1512296
mailto:creedon@uw.edu
mailto:hnguye90@umd.edu
mailto:wstrauss@math.brown.edu

	References

