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On the low regularity phase space of the Benjamin–Ono
equation

Patrick Gérard and Petar Topalov

Abstract. In this paper, we prove that the Benjamin–Ono equation is globally in time C 0-well-

posed in the Hilbert spaceH�1=2;
p

log.T ;R/ of periodic distributions inH�1=2.T ;R/ with
p

log-
weights. The space H�1=2;

p
log.T ;R/ can thus be considered as a maximal low regularity phase

space for the Benjamin–Ono equation corresponding to the scale H s.T ;R/, s > �1=2.

Dedicated to the memory of our friend and collaborator Thomas Kappeler

1. Introduction

In this paper, we study the Benjamin–Ono equation on the torus T WD R=2�Z,

@tu D @x
�
j@xju � u

2
�
; (1)

where u � u.x; t/, x 2 T , t 2 R is real valued and j@xj W H
ˇ
c ! H

ˇ�1
c , ˇ 2 R, is the

Fourier multiplier
j@xj W

X
n2Z

Ov.n/einx
7!

X
n2Z

jnj Ov.n/einx; (2)

where Ov.n/, n 2 Z, are the Fourier coefficients of v 2 Hˇ
c and Hˇ

c � H
ˇ .T ;C/ is the

Sobolev space of complex valued distributions on the torus T . Equation (1) was intro-
duced in 1967 by Benjamin [2] and Davis and Acrivos [4] as a model for a special regime
of internal gravity waves at the interface of two fluids. It is well known that (1) admits a
Lax pair representation (cf. [16]) that leads to an infinite sequence of conserved quantities
(cf. [3, 16]) and that it can be written in Hamiltonian form with Hamiltonian

H .u/ WD
1

2�

Z 2�

0

�1
2

�
j@xj

1=2u
�2
�
1

3
u3
�
dx (3)

by the use of the Gardner bracket

¹F;Gº.u/ WD
1

2�

Z 2�

0

�
@xruF

�
ruG dx; (4)
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where ruF and ruG are the L2-gradients of F; G 2 C 1.Hˇ
c ;R/ at u 2 Hˇ

c . By the
Sobolev embedding H 1=2

c ,! L3.T ;C/, the Hamiltonian (3) is well defined and analytic
on H 1=2

c , the energy space of (1). The problem of the existence and the uniqueness of the
solutions of the Benjamin–Ono equation is well studied; see [6, 10, 13, 18] and references
therein. We refer to [13, 18] for an excellent survey and a derivation of (1).

By using the Hamiltonian formalism for (1), it was recently proved in [6, 10] that for
any s > �1=2, the Benjamin–Ono equation has a homeomorphic Birkhoff map

ˆ W H s
r;0 ! h

1
2Cs

r;0 ; u 7!
�
.ˆ�n.u//n��1; .ˆn.u//n�1; ˆ0.u/ D 0

�
; (5)

where, for ˇ 2 R,
H
ˇ
r;0 WD

®
u 2 Hˇ

c j Ou.0/ D 0; xu D u
¯

(6)

and
h
ˇ
r;0 WD

®
z 2 hˇc j z0 D 0; z�n D Nzn 8n � 1

¯
(7)

is a real subspace in the Hilbert space of complex-valued sequences

hˇc WD

²
.zn/n2Z

ˇ̌̌̌ X
n2Z

hni2ˇ jznj
2 <1

³
; hni WD max.1; jnj/; (8)

equipped with the norm kzk
h
ˇ
c
WD
�P

n2Zhni
2ˇ jznj

2
�1=2. For ˇ D 0, we set

L2r;0 � H
0
r;0; L2c � H

0
c ; `2r;0 � h0r;0; `2c � h0c :

By [8,9], the Birkhoff map (5) is a bianalytic diffeomorphism. It transforms the trajectories
of the Benjamin–Ono equation (1) into straight lines that have constant frequencies on any
given isospectral set (infinite torus) of potentials of the corresponding Lax operator (see
(12) below). In this sense, the Birkhoff map can be considered as a non-linear Fourier
transform that significantly simplifies the solutions of (1). This fact allows us to prove that
for any �1=2 < s < 0, (1) is globally C 0–well-posed onH s

r;0 (see [10]), improving in this
way the previously known well-posedness results (see [14, 15]). Additional applications
of the Birkhoff map include the proof of the almost periodicity of the solutions of the
Benjamin–Ono equation and the orbital stability of the Benjamin–Ono traveling waves
(see [10, Theorems 3 and 4] and [9]).

In order to formulate our results, we define for any ˇ 2R the Hilbert space of periodic
distributions in Hˇ

c ,

H
ˇ;
p

log
c � H

ˇ;
p

log
c .T ;C/ WD

²
u 2 Hˇ

c

ˇ̌̌̌ X
n2Z

hni2ˇ log.hni C 1/ j Ou.n/j2 <1
³
; (9)

as well as the spaces

H
ˇ;
p

log
r;0 WD H

ˇ
r;0 \H

ˇ;
p

log
c ;

h
ˇ;
p

log
r;0 WD h

ˇ
r;0 \ h

ˇ;
p

log
c
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and

h
ˇ;
p

log
c WD

²
.zn/n2Z 2 hˇc

ˇ̌̌̌ X
n2Z

hni2ˇ log.hni C 1/ jznj2 <1
³
:

Note that for any s > �1=2 we have the compact embedding

H s
r;0 ¤ H

�1=2;
p

log
r;0 :

Our first result concerns the extension of the Birkhoff map (5) from H s
r;0 with s > �1=2

to the space H�1=2;
p

log
r;0 .

Theorem 1.1. The Birkhoff map (5) extends to a homeomorphic map ˆ W H�1=2;
p

log
r;0 !

h
0;
p

log
r;0 .

As a consequence from this theorem, we obtain the following corollary.

Corollary 1.1. The Benjamin–Ono equation (1) is globally in time C 0–well-posed in
the phase space H�1=2;

p
log

r;0 . More specifically, for any t 2 R and s > �1=2, the flow
map S t W H s

r;0 ! H s
r;0 defined in [10, Theorem 1] extends to a continuous flow map S t W

H
�1=2;

p
log

r;0 ! H
�1=2;

p
log

r;0 . Furthermore, for any T > 0, the associated solution map S W

H
�1=2;

p
log

r;0 !C.Œ�T;T �;H
�1=2;

p
log

r;0 /, u0 7! ¹t 7! S tu0; t 2 Œ�T;T �º, is continuous and

the corresponding trajectories are almost periodic as functions from R to H�1=2;
p

log
r;0 .

Remark 1.1. Recently, Killip, Laurens, and Vişan [12] found a different proof of the
well-posedness on H s

r for every s > �1=2, which can be generalized to the Benjamin–
Ono equation on the real line. It would be interesting to know whether the methods of [12]
lead to a similar well-posedness result on H�1=2;

p
log

r .R/.

Remark 1.2. The first author recently derived in [5] an explicit formula for the solution
of the Benjamin–Ono equation on the torus. It can be easily checked that this formula
holds for every initial datum in H�1=2;

p
log

r;0 .T /. It does not seem straightforward to get
Corollary 1.1 from this formula only.

Next, we come to some important limitations of the above extension, which are spe-
cific to the bottom regularity H�1=2;

p
log

r;0 . First, we start with the lack of weak continuity.

Proposition 1.1. The map ˆ is not weakly continuous from H
�1=2;

p
log

r;0 to h
0;
p

log
r;0 , and

the flow map of the Benjamin–Ono equation is not weakly continuous from H
�1=2;

p
log

r;0 to

H
�1=2;

p
log

r;0 . In fact, there exists a sequence of smooth initial data converging weakly to 0

in H�1=2;
p

log
r;0 , and such that the sequence of corresponding solutions does not converge

to 0 in D 0.T / on any time interval Œ0; T � with T > 0.

The proof of Proposition 1.1 consists in revisiting the counterexample of [10] and in
observing that the H�1=2;

p
log

r;0 regularity is critical in this construction.
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The second limitation concerns the smoothness of the Birkhoff map and is in sharp
contrast with the results of [8, 9].

Proposition 1.2. The (bi-analytic) Birkhoff map (5) cannot be extended to an analytic
map

ˆ W H
�1=2;

p
log

r;0 ! h
0;
p

log
r;0 : (10)

In fact, we prove that (5) cannot be extended to a C 2-map

ˆ W H
�1=2;

p
log

r;0 ! h
0;
p

log
r;0

in a neighborhood of the origin.

Notation. In addition to the spaces introduced above, we will also use the Hardy space

H
ˇ
C WD

®
f 2 Hˇ

c j
Of .n/ D 08n < 0

¯
; ˇ 2 R (11)

as well as the spaces of complex-valued sequences

h
ˇ
C WD

²
.zn/n�1

ˇ̌̌̌ X
n�1

hni2ˇ jznj
2 <1

³
;

h
ˇ;
p

log
C WD

²
.zn/n�1 2 h

ˇ
C

ˇ̌̌̌ X
n�1

hni2ˇ log.hni C 1/ jznj2 <1
³

and

h
ˇ
�0 WD

²
.zn/n�0

ˇ̌̌̌ X
n�0

hni2ˇ jznj
2 <1

³
:

We will denote the norm in Hˇ
c by k � kˇ and set k � k WD k � k0. Similarly, the norm in

H
ˇ;
p

log
c will be denoted by k � kˇ;plog, and the norm in h

ˇ;
p

log
c (resp., h

ˇ
�0) will be denoted

by k � k
h
ˇ;
p

log
c

(resp. k � k
h
ˇ
�0

). For ˇD 0, we setL2C �H
0
C, `2C WD h0C, and `2�0 WD h0�0. We

will also need the Banach space `1C of complex-valued absolutely summable sequences
.zn/n�1 and the quadratic forms

hf jgi WD
1

2�

Z 2�

0

f .x/g.x/ dx; hf; gi WD
1

2�

Z 2�

0

f .x/g.x/ dx; f; g 2 L2c :

Now, take u 2 H s
c with s > �1=2 and consider the pseudo-differential expression

Lu WD D � Tu (12)

where D WD �i@x and Tu W H 1Cs
C ! H s

C is the Toeplitz operator

Tuf WD ….uf /; f 2 H 1Cs
C ;
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where … � …C W H s
c ! H s

C is the Szegő projector

… W H s
c ! H s

C;
X
n2Z

Ov.n/einx
7!

X
n�0

Ov.n/einx;

onto the Hardy space H s
C, introduced in (11). Note that, when restricted to H 1Cs

C , D
coincides with the Fourier multiplier (2). An important role in the integrability of the
Benjamun–Ono equation is played by the shift operator S WHˇ

C!H
ˇ
C, f .x/ 7! eixf .x/,

ˇ 2 R (cf. [6]). It is not hard to see (cf., e.g., [7, Lemma 1 (ii)]) that for any given u 2 H s
c

with s > �1=2 the pseudo-differential expressions Tu and Lu define bounded linear maps

Tu W H
1Cs
C ! H s

C and Lu W H
1Cs
C ! H s

C: (13)

By Corollary 5.2 below, this does not extend to log-spaces with s D �1=2.

2. The Lax operator in log-spaces

In this section, we establish the basic properties of the Lax operator (12) with potential
u 2 H

�1=2;
p

log
c . In view of Corollary A.1, for u 2 H�1=2;

p
log

c , the pseudo-differential
expression Lu � D � Tu defines a continuous map

Lu W H
1=2
C ! H

�1=2
C :

In what follows, we will think of Lu as an unbounded operator on H�1=2C with domain
Dom.Lu/ D H

1=2
C . Let us fix u0 2 L2c and choose u 2 B�1=2;plog.u0/,

B�1=2;
p

log.u0/ WD
®
u 2 H

�1=2;
p

log
c

ˇ̌
ku � u0k�1=2;

p
log < 1=.4K0/

¯
; (14)

whereK0>0 is the constant appearing in Corollary A.1. As in [10], consider the sesquilin-
ear form

Qu0;�.f; g/ WD h�i@xf jgi �
˝
….u0f /

ˇ̌
g
˛
� �hf jgi; (15)

where

� 2 ƒu0 WD
®
� 2 C

ˇ̌
Re.�/ < �

�
1C �.ku0k/

�¯
;

�.ku0k/ WD C0ku0k
�
1C ku0k

�
;

and C0 > 0 is a positive constant defined below. One easily sees that [10, Lemma 3.2]
continues to hold for complex-valued u 2 H s

c , �1=2 < s � 0. Then, we set s D 0 in
[10, Lemma 3.2], choose C0 WD 2C 22;0, and argue as in the proof of [10, Lemma 3.3] to
obtain the following lemma.

Lemma 2.1. There exist a constant K > 0 such that for any u0 2 L2c and for any f; g 2
H
1=2
C , one has

1

2
kf k21=2 �

ˇ̌˝
Qu0;�f

ˇ̌
f
˛ˇ̌
;

ˇ̌˝
Qu0;�f

ˇ̌
g
˛ˇ̌
�
�
1C j�j CKku0k

�
kf k1=2kgk1=2
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uniformly in � 2 ƒu0 . If u0 2 L2r;0 and � 2 ƒu0 \ R, then hQu0;�f jf i � 0 for any

f 2 H
1=2
C .

Now, we apply the Lax–Milgram lemma to obtain from Lemma 2.1 that for any � 2
ƒu0 the continuous map

Lu0 � � W H
1=2
C ! H

�1=2
C

is a linear isomorphism such that

.Lu0 � �/�1

H�1=2C !H
1=2
C

� 2: (16)

This implies that, for any u 2 B�1=2;plog.u0/ and � 2 ƒu0 , we have

Lu � � D Lu0 � � � T Qu D
�
I � T Qu.Lu0 � �/

�1
�
.Lu0 � �/; (17)

where Qu WD u � u0 and I is the identity. It follows from Corollary A.1 and the fact that
u 2 B�1=2;

p
log.u0/ that

kT QukH1=2
C !H

�1=2
C

� K0k Quk�1=2;
p

log < 1=4: (18)

By combining this with (16), we see that kT Qu.Lu0 ��/
�1k

H
�1=2
C !H

�1=2
C

<1=2, and hence,

in view of (17), the map Lu � � W H
1=2
C ! H

�1=2
C is a linear isomorphism such that

.Lu � �/
�1
D .Lu0 � �/

�1
X
k�0

�
T Qu.Lu0 � �/

�1
�k
; (19)

where the Neumann series converges in L.H
�1=2
C ;H

�1=2
C / uniformly inu2B�1=2;plog.u0/

and � 2 ƒu0 . In particular, the map

.Lu � �/
�1
W H
�1=2
C ! H

1=2
C

is bounded for u and � chosen as above. As a consequence, we obtain the following
theorem.

Theorem 2.1. For any given u2H�1=2;
p

log
c the pseudo-differential expression (12) defines

a closed operator Lu on H�1=2C with domain Dom.Lu/ D H
1=2
C . This operator has a

compact resolvent, and hence, a discrete spectrum. Moreover, the following statements
hold.

(i) Take u0 2 L2c and assume that u 2 B�1=2;plog.u0/. Then, the half-plane ƒu0
belongs to the resolvent set of Lu.

(ii) The map

.u; �/ 7! .Lu � �/
�1; B�1=2;

p
log.u0/ �ƒu0 ! L

�
H
�1=2
C ;H

1=2
C

�
(20)

is well defined and analytic.
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Proof of Theorem 2.1. We already proved that for a given u0 2 L
2
c and for any u 2

B�1=2;
p

log.u0/ and � 2 ƒu0 the map (20) is well defined. The analyticity of (20) follows

from (16) and the uniform convergence of the Neumann series in (19) in L.H
�1=2
C ;H

�1=2
C /.

Since the embeddingH 1=2
C �H

�1=2
C is compact, the map .Lu � �/�1 WH

�1=2
C !H

1=2
C �

H
�1=2
C is compact for � 2 ƒu0 . This proves that for u 2 B�1=2;plog.u0/ the unbounded

operator Lu onH�1=2 with domain Dom.Lu/DH
1=2
C is closed and has a compact resol-

vent. Since the radius of the ball B�1=2;plog.u0/ is independent of the choice of u0 2 L2c ,

the above holds for any u 2 H�1=2;
p

log
c .

Let us now assume that the potential u is real-valued, u 2 H�1=2;
p

log
r;0 , and set

B
r;0

�1=2;
p

log
.u0/ WD B�1=2;

p
log.u0/ \H

�1=2;
p

log
r;0 :

We can then choose u0 2 L2r;0 such that u 2 Br;0
�1=2;

p
log
.u0/ and define the unbounded

operator
Lsym
u WD LujDom.Lsym

u / (21)

on L2C with domain

Dom.Lsym
u / WD .Lu � ��/

�1.L2C/ � H
1=2
C (22)

for some �� 2 ƒu0 \R. The map

C sym
u WD .Lsym

u � ��/
�1
W L2C ! L2C (23)

is a composition of the following bounded linear maps:

L2C ,! H
�1=2
C

. Lu���/
�1

��������! H
1=2
C ,! L2C: (24)

Hence, C sym
u is bounded and compact. Since u is real-valued, hLuf jgi D hf jLugi for

any f; g 2 Dom.Lsym
u /. This implies that C sym

u is symmetric, and hence, selfadjoint. In
particular, we obtain that Lsym

u is a selfadjoint operator in L2C with domain Dom.Lsym
u /

and compact resolvent. Now, we can apply the Hilbert-Schmidt theorem to (23) to obtain
the following specification of Theorem 2.1 in the case when u 2 H�1=2;

p
log

r;0 .

Theorem 2.2. Assume that u 2 H�1=2;
p

log
r;0 . Then, the following statements hold.

(i) The operator Lsym
u defined by (21) and (22) is selfadjoint on L2C with domain

Dom.Lsym
u / dense in H 1=2

C (and L2C).

(ii) The operator Lsym
u has a compact resolvent and a discrete spectrum

Spec.Lsym
u / D

®
�0 � �1 � � � � � �n � �nC1 � � � �

¯
(25)
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that consists of infinitely many simple (real) eigenvalues such that �n !1 as
n!1 and

�nC1 � 1C �n; n � 0: (26)

The corresponding normalized eigenfunctions fn 2H
1=2
C (n� 0) form an ortho-

normal basis in L2C.

(iii) The operators Lsym
u and Lu (cf. Theorem 2.1) have the same eigenvalues and

root spaces. In particular, the eigenvalues �n (n � 0) of Lu (when ordered as in
(25)) are simple and depend real analytically on the potential u 2 H�1=2;

p
log

r;0 .

(iv) Take u0 2 L2r;0, u 2 Br;0
�1=2;

p
log
.u0/, and �� 2 ƒu0 \R. Then, there exist con-

stants 0 < c < C such that for any f 2 H 1=2
C ,

ckf k21=2 �
˝
.Lu � ��/f

ˇ̌
f
˛
� C.1C j��j/kf k

2
1=2: (27)

The constants in (27) can be chosen uniform in u 2 Br;0
�1=2;

p
log
.u0/ and �� 2

ƒu0 \R.

Proof of Theorem 2.2. Assume that u 2 H�1=2;
p

log
r;0 . The fact that Lsym

u is selfadjoint is

already proved. The density of the domain Dom.Lsym
u / in H 1=2

C follows from (24) since
L2C is dense in H�1=2C and .Lu���/�1 W H

�1=2
C ! H

1=2
C is a linear isomorphism. This

proves item (i).
In order to prove (ii), recall that C sym

u � .L
sym
u � ��/

�1 W L2C ! L2C is compact and
symmetric with respect to the scalar product h�; �i onL2C. Hence, we can apply the Hilbert-
Schmidt theorem to conclude that there exists an orthonormal basis of eigenfunctions of
C

sym
u in L2C. Since the kernel of C sym

u is trivial, zero is not an eigenvalue of C sym
u . Hence,

there are infinitely many real eigenvalues �n (n � 0) of C sym
u that converge to zero in

R. In view of (23), we then conclude that �n D 1=.�n � ��/, where �n (n � 0) is the
spectrum of Lsym

u . The fact that the spectrum of Lsym
u is bounded below follows from

the fact that any eigenfunction of Lsym
u is also an eigenfunction of Lu with the same

eigenvalue. This follows directly from the definition (21) and the inclusion Dom.Lsym
u / �

H
1=2
C � Dom.Lu/. The simplicity of the spectrum of Lsym

u and the inequality (26) can be
obtained from the max-min principle in the same way as in [6, Proposition 2.2].

Let us now prove item (iii). We already mentioned that any eigenfunction of Lsym
u is

an eigenfunction of Lu with the same eigenvalue. Let � 2 C be an eigenvalue of Lu and
let V� � H

1=2
C be its (finite dimensional) root space. Since the root space is an invariant

subspace of Lu and since the operator LujV� W V� ! V� is symmetric with respect to the
restriction of the scalar product h�j�i to V�, we conclude that � is real and V� consists of
eigenvectors of Lu with eigenvalue �. The same argument shows that the eigenspaces V�
and V� of Lu corresponding to different eigenvalues �¤ � are orthogonal in L2C. Hence,
if � 2 R is an eigenvalue of Lu that is not an eigenvalue of Lsym

u then its eigenfunction
f is orthogonal to the eigenfunctions fn (n � 0) of Lsym

u , that contradicts the fact that
fn (n � 0) is an orthonormal basis in L2C. Hence, � is an eigenvalue of Lsym

u . A similar
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argument also shows that the eigenspaces V� of Lu are one dimensional. This proves
the first statement in .i i i/. The analytic dependence of �n � �n.u/ with n � 0 on u 2
H
�1=2;

p
log

r;0 then follows from Theorem 2.1 (ii), the simplicity of the eigenvalue �n, and
the properties of the Riesz’s projector.

(iv) Choose u; u0, and �� as in item (iv). As in (17), we have

Lu � �� D R.Lu0 � ��/ D .Lu0 � ��/
zR; (28)

where
R WD I � T Qu.Lu0 � ��/

�1 and zR WD I � .Lu0 � ��/
�1T Qu (29)

and Qu � u � u0. It follows from (16) and (18) that

kT Qu.Lu0 � ��/
�1
k
H
�1=2
C !H

�1=2
C

< 1=2; k.Lu0 � ��/
�1T QukH1=2

C !H
1=2
C

< 1=2;

uniformly on the choice of u 2 B�1=2;plog and �� 2 ƒu0 \R. This implies that the oper-

ators R W H�1=2C ! H
�1=2
C and zR W H 1=2

C ! H
1=2
C are linear isomorphisms that have

well-defined (as convergent power series) square roots

p
R W H

�1=2
C ! H

�1=2
C and

p
zR W H

1=2
C ! H

1=2
C

that are also linear isomorphisms. Since the potentials u; u0 and the constant �� are real,
we obtain from (29) that hRf jgi D hf j zRgi for any f 2 H�1=2C and g 2 H 1=2

C . This,
together with the second equality in (28) and the definition of the square roots as conver-
gent power series implies that˝p

Rf
ˇ̌
g
˛
D
˝
f
ˇ̌p
zRg
˛

and
p
R.Lu0 � ��/ D .Lu0 � ��/

p
zR:

Then, for any f 2 H 1=2
C ,˝

.Lu � ��/f
ˇ̌
f
˛
D
˝
R.Lu0 � ��/f

ˇ̌
f
˛
D
˝p
R.Lu0 � ��/f

ˇ̌p
zRf
˛

D
˝
.Lu0 � ��/

p
zRf
ˇ̌p
zRf
˛
: (30)

Item (iv) now follows from (30) and Lemma 2.1.

Let us now take u 2 H�1=2;
p

log
r;0 and choose u0 2 L2r;0 and �� 2 ƒu0 as in Theo-

rem 2.2 (iv). Following [6], we consider the nth gap


n.u/ WD �n.u/ � �n�1.u/ � 1 � 0; n � 1;

that is well defined by Theorem 2.2 (ii) and non-negative in view of (26). We have

0 �

nX
kD1


k.u/ D �n.u/ � �0.u/ � n; (31)
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and hence,
�n.u/ � nC �0.u/; n � 1: (32)

It follows from the estimate (27) that �0.u/ > �� which implies that

�0.u/ � �
�
1C �.ku0k/

�
(33)

in view of the arbitrariness of the choice of �� 2 ƒu0 . Hence, for a given �� 2 ƒu0 \R,
we have that

�0.u/ � �� � �
�
�� C .1C �.ku0k//

�
> 0 (34)

uniformly in u 2 Br;0
�1=2;

p
log
.u0/. Theorem 2.1 allows us to define the meromorphic func-

tion (cf. [6])
H�.u/ WD

˝
.Lu C �/

�11
ˇ̌
1
˛

with poles at ¹��n.u/ jn � 0º. By arguing as in the proof of [6, Proposition 3.1], one sees
that

H�.u/ D
1

�0 C �

1Y
nD1

�
1 �


n

�n C �

�
;

where the infinite product converges absolutely and we set 
n � 
n.u/, n � 1, and �n �
�n.u/, n� 0, for simplicity of notation. The arguments in the proof of [6, Proposition 3.1]
also show that one has the trace formula

1X
nD1


n.u/ D ��0.u/ � 0; (35)

where the sequence .
n.u//n�1 is absolutely summable. As a consequence from (31) and
(35), we obtain that �n � nD �

P
k>n 
k , and hence, �n.u/ � n. By combining this with

(32) and (33), we then conclude that

n � .1C �.ku0k// � nC �0.u/ � �n.u/ � n; n � 0; (36)

uniformly in u 2 Br;0
�1=2;

p
log
.u0/. Note that the estimate

nC �0.u/ � �n.u/ � n; n � 0; (37)

holds for any u 2 H�1=2;
p

log
r;0 . Further, note that the statements of Lemmas 2.5 and 2.7

in [6] are purely algebraic in nature and continue to hold for u 2 H�1=2;
p

log
r;0 since, by

Theorem 2.2, all the quantities involved are well defined. In particular, we obtain that

hf0.u/j1i ¤ 0 and hfn.u/jSfn�1.u/i ¤ 0; n � 1;

where fn.u/ (n � 0) is an orthonormal basis of eigenfunctions of Lu in L2C (see Theo-
rem 2.2 (ii)). This allows us to choose the orthonormal basis fn.u/ (n � 0) in a unique
way by imposing the conditions (cf. [6, Definition 2.8])

hf0.u/j1i > 0 and hfn.u/jSfn�1.u/i > 0; n � 1: (38)
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In what follows, we will assume that fn.u/, n � 0, denotes this particular orthonormal
basis. Note that Theorem 2.1 (ii), the simplicity of the eigenvalues of Lu, and the proper-
ties of the Riesz’s projector imply that for any given n � 0 the map

fn W H
�1=2;

p
log

r;0 ! H
�1=2
C ; u 7! fn.u/; (39)

is real-analytic1.
As above, we fix u0 2L2r;0 and choose �� 2ƒu0 \R. By Theorem 2.2 (iv), there exist

constants 0 < c < C such that inequality (27) holds uniformly in u 2 Br;0
�1=2;

p
log
.u0/. In

particular, this implies that the sesquilinear form

Qu;�� W H
1=2
C �H

1=2
C ! C; .f; g/ 7!

˝
.Lu � ��/f

ˇ̌
g
˛
; (40)

gives an equivalent Hilbert structure in H 1=2
C . Since the system of eigenfunction

Qfn WD fn=
p
�n � ��; n � 0; (41)

is complete inH 1=2
C and orthonormal with respect to (40), we conclude that it is a basis in

H
1=2
C . (Recall from (34) that �n > ��.) By the Parseval’s identity, for any f 2 H 1=2

C ,

Qu;��.f; f / D

1X
nD0

ˇ̌
Qu;��.f;

Qfn/
ˇ̌2
D

1X
nD0

.�n � ��/
ˇ̌
hf jfnij

2:

This, together with (27), implies that

ckf k21=2 �

1X
nD0

.�n � ��/
ˇ̌
hf jfni

ˇ̌2
� C.1C j��j/kf k

2
1=2:

By combining this with (36), we then see that there exist constants 0 < ~1 < 1 independent
of the choice of u 2 Br;0

�1=2;
p

log
.u0/ such that, for any f 2 H 1=2

C ,

~21

1X
nD0

.hni C 1/j Of .n/j2 �

1X
nD0

.hni C 1/jhf jfnij
2
�

1

~21

1X
nD0

.hni C 1/j Of .n/j2: (42)

Let us now consider the Fourier transform corresponding to the orthonormal basis fn
(n � 0),

KuI0 W L
2
C ! `2�0; f 7!

�
hf jfni

�
n�0

; (43)

together with its restriction to H 1=2
C ,

KuI1=2 WD KuI0jH1=2
C

W H
1=2
C ! h

1=2
�0 : (44)

Note that the image of (44) is dense in h
1=2
�0 since it contains all finite sequences cn 2 C

(0 � n � N ) with N � 0. This, together with (42), implies that (44) is a linear isomor-
phism.

1Here, we ignore the complex structure on H�1=2C and consider the space as real.
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Remark 2.1. The argument above also shows that for any u 2 H�1=2;
p

log
r;0 the orthonor-

mal basis fn 2 H
1=2
C (n � 0) in L2 gives a basis in H 1=2

C such that for any f 2 H 1=2
C the

Fourier series f D
P
n�0hf jfnifn converges in H 1=2

C and .hf jfni/n�0 2 h
1=2
�0 . Since

(44) is an isomorphism we also see that for any given .xn/n�0 2 h
1=2
�0 there exists f 2

H
1=2
C such that hf jfni D xn, n � 0.

We then interpolate between the maps (43) and (44) as well as their inverses K�1uI0 W

`2�0 ! L2C and K�1
uI1=2

W h
1=2
�0 ! H

1=2
C to conclude (cf. [17, Example 3, Appendix to

Section IX.4]) that for any u 2 Br;0
�1=2;

p
log
.u0/, 0 � � � 1, and for any f 2 H 1=2

C ,

~21

1X
nD0

.hni C 1/� j Of .n/j2 �

1X
nD0

.hni C 1/� jhf jfnij
2
�

1

~21

1X
nD0

.hni C 1/� j Of .n/j2:

By integrating these inequalities with respect to � on the interval 0 � � � 1, we obtain
that for any f 2 H 1=2

C ,

~21 kf k
2
1=2;1=

p
log �

1X
nD0

hni

log.hni C 1/

ˇ̌
hf jfni

ˇ̌2
�

1

~21
kf k2

1=2;1=
p

log (45)

with 0 < ~1 < 1 independent of the choice of u 2 Br;0
�1=2;

p
log
.u0/. This inequality implies

that the map

KuI1=2;1=
p

log W H
1=2;1=

p
log

C ! h
1=2;1=

p
log

�0 ; f 7!
�
hf jfni

�
n�0

; (46)

is a linear isomorphism. Hence, the map conjugate to (46) with respect to the L2C- and the
`2�-pairing,

K�
uI1=2;1=

p
log W h

�1=2;
p

log
�0 ! H

�1=2;
p

log
C ;

and its inverse

KuI�1=2;
p

log WD
�
K�
uI1=2;1=

p
log

��1
W H
�1=2;

p
log

C ! h
�1=2;

p
log

�0 (47a)

are also linear isomorphisms. It is a straightforward task to see that

KuI�1=2;
p

log f D
�
hf jfni

�
n�0

8f 2 H
�1=2;

p
log

C ; (47b)

and that, in view of (45),

~1kf k�1=2;
p

log �


KuI�1=2;plog f




h
�1=2;

p
log

�0

�
1

~1
kf k�1=2;

p
log (48)

uniformly in f 2 H�1=2;
p

log
C and u 2 Br;0

�1=2;
p

log
.u0/. Let

eDom.Lu/ WD .Lu � ��/�1
�
H
�1=2;

p
log

C

�
� H

1=2
C
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be the domain of the operator Lu in H�1=2;
p

log
C . For any u 2 H�1=2;

p
log

r;0 and � 2 R, we
have the following commutative diagram:

H
1=2
C

eDom.Lu/ h
1=2;
p

log
�0

H
�1=2
C H

�1=2;
p

log
C h

�1=2;
p

log
�0

Lu�� Lu��

K
.1/
u

`u��

Du;�

K
.2/
u

(49)

where `u W h
1=2;
p

log
�0 ! h

�1=2;
p

log
�0 is the multiplication .zn/n�0 7!

�
�nzn

�
n�0

, and the

maps K.1/u and K.2/u stand for KuI1=2jfDom.Lu/ and KuI�1=2;plog (see (47a), (47b)). For �
in the resolvent set of Lu, there is a well-defined “diagonal” map (cf. (36))

Du;� WD .`u � �/
�1KuI�1=2;

p
log: (50)

The operator DuI� will play an important role in our study of the Birkhoff map. The map
KuI�1=2;

p
log as well the maps `u � �, and DuI� (for � in the resolvent set of Lu) are

linear isomorphisms.

Remark 2.2. By Corollary 5.2, the space eDom.Lu/ does not coincide with H 1=2;
p

log
C .

This is in contrast with the case of the scale H s
r;0, s > �1=2 (cf. [10, Lemma 3.10]).

We will need an (improved) explicit formula for the constant appearing on the left-
hand side of (48). To this end, we fix u 2 H�1=2;

p
log

r;0 and consider the operator Lu on

H
�1=2
C with domain H 1=2

C (cf. Theorem 2.1). It follows from Remark 2.1 that, for any
f 2 H

1=2
C , ˝

.Lu � �0/f
ˇ̌
f
˛
D

X
n�0

.�n � �0/jhf jfnij
2
� 0;

where �0 � �0.u/ is the first eigenvalue of Lu. This together with Corollary A.1 then
implies that

kf k2 �
˝
.Lu � �0 C 1/f

ˇ̌
f
˛
D h�i@xf jf i �

˝
….uf /

ˇ̌
f
˛
C .��0 C 1/kf k

2

�
�
2 � �0 CK0kuk�1=2;

p
log
�
kf k21=2; f 2 H

1=2
C :

Hence, for any f 2 H 1=2
C ,

kf k2 �
˝
.Lu � �0 C 1/f

ˇ̌
f
˛
�Mukf k

2
1=2;

where
Mu WD 2 � �0 CK0kuk�1=2;

p
log: (51)

This inequality together with (37) implies that there exists a constant C�0 � 1 (chosen
uniformly on bounded sets of �0 in R�0) such that, for any f 2 H 1=2

C ,

kKuI1=2f k
2

h
1=2
�0

� C�0Mukf k
2
1=2; (52)
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whereKuI1=2 WH
1=2
C ! h

1=2
�0 is the linear isomorphism (44). As above, we then interpolate

between the maps KuI1=2 W H
1=2
C ! h

1=2
�0 and KuI0 W L2C ! `2�0 to obtain that, for any

0 � � � 1 and f 2 H 1=2
C ,X

n�0

.hni C 1/� jhf jfnij
2
� .C�0Mu/

�
X
n�1

.hni C 1/� j Of .n/j2;

where, in order to accommodate the slight change of the weights, we chooseC�0 � 1 larger
if necessary. By integrating this inequality with respect to � on the interval 0 � � � 1, we
conclude that for, any f 2 H 1=2

C ,X
n�0

hni

log.hni C 1/
jhf jfnij

2
� C�0Mu

X
n�1

hni

log.hni C 1/
j Of .n/j2:

This implies that, for any f 2 H 1=2;1=
p

log
C ,

KuI1=2;1=plogf


2

h
1=2;1=

p
log

�0

� C�0Mukf k
2
1=2;1=

p
log:

We then argue by duality (as in the proof of (48)) to conclude that

kf k2
�1=2;

p
log � C�0Mu



KuI�1=2;plog f


2

h
�1=2;

p
log

�0

; (53)

where KuI�1=2;plog W H
�1=2;

p
log

r;0 ! h
�1=2;

p
log

�0 is the linear isomorphism (47a), (47b).
Further, we set f �…u in (53) and use that h…ujfni D �hLu1jfni D ��nh1jfni, n� 0,
to conclude from (37) that

1

2
kuk2
�1=2;

p
log � C�0Mu



�h1jfn.u/i�n�0

2h1=2;plog
�0

(54)

with (possibly different) C�0 � 1 chosen uniformly on bounded sets of �0 in R�0. In view
of (51), the estimate (54) can be written in the form

�
1

2
kuk2
�1=2;

p
log C Akuk�1=2;

p
log C B � 0;

where

A WD K0C�0


�h1jfni�n�0

2h1=2;plog

�0

; B WD .2 � �0/C�0


�h1jfni�n�0

2h1=2;plog

�0

:

This implies that kuk�1=2;plog is bounded by the two roots of the quadratic polynomial
�
1
2
z2 C Az C B D 0. Hence, for any given R > 0, we can choose the constant C�0 � 1

and a constant CR > 0 such that, for any u 2 H�1=2;
p

log
r;0 that satisfies

max
�
j�0.u/j;



�h1jfn.u/i�n�0

h
1=2;
p

log
�0

�
� R; (55a)
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we have that C�0Mu � CR, and hence, by (50) and (53),

.Du;�0.u/�1/�1

h
1=2;
p

log
�0 !H

�1=2;
p

log
C

< CR: (55b)

Summarizing the above, we obtain the main result in this section.

Proposition 2.1. For any u 2 H�1=2;
p

log
r;0 , we have that .h1jfn.u/i/n�0 2 h

1=2;
p

log
�0 and

Du;�0.u/�1
�
�…u � �0.u/C 1

�
D
�
h1jfn.u/

�
n�0

; (56)

where Du;� W H
�1=2;

p
log

C ! h
1=2;
p

log
�0 is given by (50). Moreover, one has

(i) for any v 2 H�1=2;
p

log
r;0 , there exist constant C � Cv > 0 and an open neigh-

borhood U.v/ of v in H�1=2;
p

log
r;0 such that

Du;�0.u/�1

H�1=2;plog

C !h
1=2;
p

log
�0

< C (57)

for any u 2 U.v/2,

(ii) for any R > 0, there exists a constant CR > 0 such that inequality (55b) holds
for any u 2 H�1=2;

p
log

r;0 that satisfies (55a).

The following remark is needed for the proof of the properness of the Birkhoff map
and its inverse.

Remark 2.3. Since for any u 2H�1=2;
p

log
r;0 the Fourier transform (43) is an isomorphism

and since KuI�1=2;plogjL2C
� KuI0, it follows from (50) and (37) that for any set U in

H
�1=2;

p
log

r;0 such that �0.u/ is bounded uniformly in U there exists C > 0 such that

Du;�0.u/�1

L2C!h1�0
;


.Du;�0.u/�1/�1

h1�0!L

2
C

< C

for any u 2 U .

Remark 2.4. The identity (56) and the estimates in Proposition 2.1 and Remark 2.3
can be interpreted as a “quasi-linearity” of the pre-Birkhoff map u 7! .h1jfn.u//n�0,
H
�1=2;

p
log

r;0 ! h
1=2;
p

log
�0 .

Proof of Proposition 2.1. For a given u 2 H�1=2;
p

log
r;0 , we set � � �0.u/ � 1 in the dia-

gram (49) and note that �0.u/� 1 is in the resolvent set of Lu. As above, we then choose
u0 2L

2
r;0 such that u 2Br;0

�1=2;
p

log
.u0/. Let us first prove that .h1jfn.u/i/n�0 2 h

1=2;
p

log
�0 .

To this end, note that Lu 1 D �…u 2 H
�1=2;

p
log

C , and hence,

1 2 eDom.Lu/:

2In fact, U.v/ can be taken to be an open ball in H�1=2;
p

log
r;0 of radius 1=.8K0/, where K0 > 0 is the

constant in Corollary A.1.
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We then obtain from the commutative diagram (49) that�
h1jfn.u/i

�
n�0
D KuI1=2 1 D Du;�0.u/�1

�
�…u � �0.u/C 1

�
2 h

1=2;
p

log
�0 :

This proves (56) and the fact that .h1jfn.u/i/n�0 2 h
1=2;
p

log
�0 . Let us now prove (57).

Since Du;�0.u/�1 D .`u � �0.u/C 1/
�1KuI�1=2;

p
log, we conclude from (48), (37), and

�0.u/ � 0, that there exists C > 0 such that, for any f 2 H�1=2;
p

log
C ,

Du;�0.u/�1f kh1=2;plog

�0

� C kf k
H
�1=2;

p
log

C

uniformly in u 2 Br;0
�1=2;

p
log
.u0/. This proves (i). Item (ii) is already proved.

3. The Birkhoff map

In this section, we extend the Birkhoff map (5) for u 2H�1=2;
p

log
r;0 and prove Theorem 1.1

stated in the Introduction. For simplicity of notation, we will identify the (real) space
h
�1=2;

p
log

r;0 with the space h
0;
p

log
C .

For a given u 2 H�1=2;
p

log
r;0 , consider the norming constants (cf. [6, Corollary 3.4])

�0.u/ WD
Y
p�1

�
1 �


p.u/

�p.u/ � �0.u/

�
(58)

and

�n.u/ WD
1

�n.u/ � �0.u/

Y
1�p¤n

�
1 �


p.u/

�p.u/ � �n.u/

�
; n � 1: (59)

The infinite products converge absolutely in view of the absolute convergence in (35) and
the fact that j�p.u/ � �n.u/j � 1 for p ¤ n and n; p � 1 (cf. (26)). Note that for any

u 2 H
�1=2;

p
log

r;0 ,
�n.u/ > 0; n � 0: (60)

This follows since the infinite products converge and since by (26),

1 �

p.u/

�p.u/ � �n.u/
D
�p�1.u/ � �n.u/C 1

�p.u/ � �n.u/
> 0

for any n; p � 0, p ¤ n. The following lemma is proved in Appendix A.

Lemma 3.1. For any n � 0, the norming constant �n.u/ is well defined and depends
continuously on the potential u 2 H�1=2;

p
log

r;0 . For any v 2 H�1=2;
p

log
r;0 , there exist an

open neighborhood U.v/ of v in H�1=2;
p

log
r;0 and constants 0 < c < C such that

c � n�n.u/ � C (61)

for any u 2 U.v/ and n � 1.
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Remark 3.1. The proof of Lemma 3.1 shows that the following version of the lemma
holds: let U be a set in H�1=2;

p
log

r;0 such that the image of the map U ! `1C, u 7!�

n.u/

�
n�1

, is a pre-compact set in `1C. Then, there exist constants 0 < c < C such that
the inequality (61) holds for any u 2 U and n � 1. Moreover, �0.u/ is bounded uniformly
for u 2 U .

We can now extend the Birkhoff map (5) for u 2H�1=2;
p

log
r;0 by setting (cf. [6, formula

(4.1)])

ˆ.u/ WD
�
ˆn.u/

�
n�1

; ˆn.u/ WD
h1jfn.u/ip
�n.u/

; n � 1: (62)

Recall from [6, Corollary 3.4] that, for u 2 L2r;0, we haveˇ̌
h1jf0.u/i

ˇ̌2
D �0.u/ and

ˇ̌
h1jfn.u/i

ˇ̌2
D 
n.u/�n.u/; n � 1: (63)

Since the quantities 
n.u/, �n.u/, and h1jfn.u/i, are well defined and depend continu-
ously on u 2 H�1=2;

p
log

r;0 (cf. Theorem 2.2 (iii), Lemma 3.1, and (39)), the relations (63)

continue to hold for u 2 H�1=2;
p

log
r;0 . In particular, we obtain from (62) and (63) that


n.u/ D
ˇ̌
ˆn.u/

ˇ̌2
; n � 1 (64)

for u 2 H�1=2;
p

log
r;0 .

We are now ready to prove Theorem 1.1 stated in the Introduction. We have the fol-
lowing theorem.

Theorem 3.1. The formula (62) defines a map

ˆ W H
�1=2;

p
log

r;0 ! h
0;
p

log
C ; (65)

which is a homeomorphism.

Proof of Theorem 3.1. We prove the theorem in several steps.
(a) The Birkhoff map (65) is well defined and injective. The fact that (65) is well

defined follows from the first statement of Proposition 2.1 and Lemma 3.1. The injectivity
of (65) follows from the explicit formulas in [6, Lemma 4.2] and the arguments in [6,
Proposition 4.3]. Note that all quantities appearing in [6, Proposition 4.3] are well defined
for u 2 H�1=2;

p
log

r;0 . Denote by Image.ˆ/ � h
0;
p

log
C the image of (65) and consider the

inverse map,
ˆ�1 W Image

�
ˆ
�
! H

�1=2;
p

log
r;0 : (66)

(b) The image of any pre-compact set with respect to the Birkhoff map (65), and its
inverse (66), is pre-compact. Let us first consider the case of the map (65). We will fol-
low the arguments in the proof of [10, Proposition 2 (iii)]. Let K be a pre-compact set in
H
�1=2;

p
log

r;0 . Without loss of generality, we will assume K � U.v/ where v 2 H�1=2;
p

log
r;0
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and U.v/ is an open neighborhood of v in H�1=2;
p

log
r;0 such that the statement of Propo-

sition 2.1 (i), Remark 2.3, and Lemma 3.1 hold. Then, in view of (56) and (62), there
exist a constant C � Cv > 0 and a linear map Ju W H

�1=2;
p

log
C ! h

0;
p

log
C such that

JujL2C
W L2C ! h

1=2
C and for any u 2 U.v/,

ˆ.u/ D Ju.…u � �0.u/C 1/ (67)

and
kJuk

H
�1=2;

p
log

C !h
0;
p

log
C

� C; kJukL2C!h
1=2
C

� C: (68)

For any integer N � 0, consider the projections

…�N W H
�1=2;

p
log

C ! H
�1=2;

p
log

C ; f 7!
X
n�N

Of .n/ einx

and
…<N W H

�1=2;
p

log
C ! H

�1=2;
p

log
C ; f 7!

X
0�n<N

Of .n/ einx

as well as the projections ��N W h
0;
p

log
C ! h

0;
p

log
C and �<N W h

0;
p

log
C ! h

0;
p

log
C defined

in a similar way. Now, take " > 0. By Lemma 3.2 below, there exists an integer N" � 1
and R" > 0 such that

…�N"u

�1=2;plog � "=.2C /;



…<N"

�
u � �0.u/C 1

�


L2C
� R" (69)

for any u2K. (Note that �0.u/ is uniformly bounded onK since �0 depends continuously
on u 2 H�1=2;

p
log

r;0 .) Then, by (67), for any u 2 K,

ˆ.u/ D Ju
�
…<N".u � �0.u/C 1/

�
C Ju.…�N"u/:

This implies that
ˆ.K/ D 	1 C 	2; (70)

where

	1 WD
®
Ju.…<N".u � �0.u/C 1// j u 2 K

¯
; 	2 WD

®
Ju.…�N"u/ j u 2 K

¯
;

and ˆ.K/ denotes the set ¹ˆ.u/ j u 2 Kº. It follows from the second inequality in (68)
and the second inequality in (69) that the set 	1 is bounded in h

1=2
C , and hence, it is a

compact set in h
0;
p

log
C . Moreover, by the first inequality in (68) and the first inequality in

(69), the set 	2 is contained inside a centered at zero open ball of radius "=2 in h
0;
p

log
C . By

applying Lemma 3.2 to the compact set 	1 in h
0;
p

log
C and by taking N" � 1 and R" > 0

larger if necessary, we obtain from (70) that

��N"ˆ.K/

h
0;
p

log
C

�


��N"	1kh0;plog

C

C


��N"	2kh0;plog

C

� "
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and 

�<N"ˆ.K/

`2C � R":
This and Lemma 3.2 then imply that ˆ.K/ is a pre-compact set in h

0;
p

log
C .

Let us now prove that the image of any pre-compact set with respect to (66) is pre-
compact. Take a pre-compact setK in h

0;
p

log
C . For any u 2 ˆ�1.K/, we have thatˆ.u/ 2

K, and hence, by (64), ¹.
n.u//n�1 j u 2 ˆ�1.K/º is a pre-compact set in `1C. By
Remark 3.1, there exist constants 0 < c < C such that the inequality (61) holds for any
u 2 ˆ�1.K/ and n � 1. It then follows from (62) and the trace formula (35) that there
exists a constant R > 0 such that the condition (55a) holds for any u 2 ˆ�1.K/. By
Proposition 2.1, we then conclude that there exists a constant CR > 0 such that

�…u � �0.u/C 1 D .Du;�0.u/�1/
�1
�
h1jfn.u/i

�
n�0

;

where 

.Du;�0.u/�1/�1

h
1=2;
p

log
�0 !H

1=2;
p

log
C

� CR

for any u 2ˆ�1.K/. This and the second inequality in Remark 2.3 imply that there exist a
constant CK > 0 and a linear mapQu W h

0;
p

log
�0 !H

�1=2;
p

log
C such thatQujh1=2�0

W h
1=2
�0 !

L2C and for any u 2 ˆ�1.K/,

…u � �0.u/C 1 D Qu
�
h1jf0.u/i; ˆ.u/

�
(71)

and
kQuk

h
0;
p

log
�0 !H

�1=2;
p

log
C

� CK ; kQukh1=2�0!L
2
C

� CK : (72)

Note in addition that by Remark 3.1 the quantity jh1jf0.u/ij2 D �0.u/ is bounded uni-
formly for u 2 ˆ�1.K/. The pre-compactness of ˆ�1.K/ then follows from (71), (72),
and Lemma 3.2, in exactly the same way as in the proof of the first part of (b).

(c) The Birkhoff map (65) is continuous and onto. Since for any given n � 1 the map
(39) is continuous, we obtain from Lemma 3.1 and (62) that for any given n � 1 the
component map

ˆn W H
�1=2;

p
log

r;0 ! C

is continuous. Now, we take a sequence .uk/k�1 in H�1=2;
p

log
r;0 that converges to u in

H
�1=2;

p
log

r;0 . Since the set ¹uk j k � 1º is pre-compact in H�1=2;
p

log
r;0 , we conclude from

(b) that ¹ˆ.uk/ j k � 1º is pre-compact in h
0;
p

log
C . This implies that any subsequence of

.ˆ.uk//k�1 has a convergent subsequence. Since ˆn.uk/! ˆn.u/ as k !1, we then

conclude that ˆ.uk/! ˆ.u/ as k !1 in h
0;
p

log
C . The ontoness of the Birkhoff map

then follows since (65) is continuous, proper, and has a dense image in h
0;
p

log
C .

(d) The map ˆ�1 W h0;
p

log
C ! H

�1=2;
p

log
r;0 is continuous. This statement follows from

the arguments in (c) and the fact that the components of ˆ�1 W h0;
p

log
C ! H

�1=2;
p

log
r;0 are

continuous. The latter follows easily from [6, Lemma 4.2] and Cauchy’s formula.
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In the proof of Theorem 3.1, we use the following characterization of pre-compact
sets in H�1=2;

p
log

C (and h
0;
p

log
C ). The proof follows easily from Cantor’s diagonalization

process.

Lemma 3.2. A setK is pre-compact inH�1=2;
p

log
C if and only if for any " > 0 there exist

an integer N" � 0 and R" > 0 such that, for any u 2 K,X
n�N"

log.hni C 1/
hni

jznj
2
� "2;

X
0�n<N"

jznj
2
� R2" ;

where zn � Ou.n/, n � 0.
A similar condition (that involves the weight log.hni C 1/ instead of log.hniC1/

hni
) char-

acterizes the pre-compact sets in h
0;
p

log
C .

Corollary 1.1 follows from the arguments in [10, Section 5] (see also [11, Section 4]).

4. The lack of weak continuity of the flow map and of the Birkhoff
map

In this section, we prove Proposition 1.1. For this, we revisit the counterexample to well-
posedness in H�1=2r;0 .T / constructed in [10], of which we recall the setting.

We consider potentials of the form

u0;q.x/ D vq.eix/C vq.eix/;

where v is the following Hardy function, defined in the unit disk by

vq.z/ D
"qz

1 � qz
; 0 < " < q < 1; jzj < 1:

Note that

ku0;qk
2
�1=2;

p
log D 2"

2

1X
nD1

n�1 log.1C n/q2n � "2.log.1 � q//2 (73)

as q tends to 1. We choose

" D
ˇ

j log.1 � q/j
; (74)

where ˇ > 0 is a positive parameter which will be fixed later. Therefore, we have
ku0;qk�1=2;

p
log ! ˇ as q ! 1, and u0;q tends weakly to 0 in H�1=2;

p
log

r;0 . The study
of the Lax operator Lu0;q reduces to the study of a first order linear differential equation
in the complex domain, which is processed in [10]. From this analysis, we infer that ��
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is a negative eigenvalue of Lu0;q if and only if F.�; q/ D 0, where

F.�; q/ D FC.�; q/ � F�.�; q/;

FC.�; q/ WD

Z q

0

�t"C�.1 � qt/"

t .q � t /"
dt;

F�.�; q/ WD

Z q

0

"qt"C�.1 � qt/"

.q � t /".1 � qt/
dt;

where we recall that " is given by (74). Moreover, F.�;q/ > 0 for �D "q2=.1� q2/, and
as q ! 1, for every fixed � > 0,

FC.�; q/! 1; F�.�; q/ � �" log.1 � q2/! ˇ:

Consequently, F.�; q/ ! 1 � ˇ as q ! 1. Let us now choose ˇ > 1. Then, we infer
that F.�; q/ must vanish for some �q tending to C1 as q tends to 1. Furthermore, since
@�F.�; q/ > 0 if F.�; q/ D 0, we know that such a zero �q is unique. We conclude that
Lu0;q has a unique negative eigenvalue �0.u0;q/ D ��q , and that this eigenvalue tends to
�1. Consequently,


1.u0;q/ D �1.u0;q/ � �0.u0;q/!C1;

and therefore, the function 
1 is not weakly continuous on H�1=2;
p

log
r;0 . A fortiori, ˆ W

H
�1=2;

p
log

r;0 ! h
0;
p

log
C is not weakly continuous.

Finally, we prove that the flow map is not weakly continuous in the same way than
in [10]. Denote by uq the Benjamin–Ono solution with the initial datum u0;q . Then, it is
proved in [10] that the function

�q.t/ D huq.t/jeixi

is bounded and satisfies, for every finite interval I ,ˇ̌̌̌ Z
I

�q.t/e�it.1�2�q/ dt
ˇ̌̌̌
D
p
2jI j CO

� 1
�q

�
:

Hence, �q.t/ cannot tend to 0 on any time interval of positive length. This completes the
proof of Proposition 1.1.

5. The convolution in log-spaces

In this section, we discuss basic properties of the convolution in the spaces with logarith-
mic weights and prove Proposition 1.2 formulated in the Introduction.

We will first prove the following auxiliary lemma.
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Lemma 5.1. There exist .xn/n2Z 2 h
�1=2;

p
log

r;0 and .yn/n2Z 2 h
1=2;
p

log
r;0 such that the

sequence zn WD
P
k�0;k¤n xkyn�k , n � 1, does not belong to h

�1=2;
p

log
C .

Proof of Lemma 5.1. Assume that .xn/n2Z 2 h
�1=2;

p
log

r;0 , .yn/n2Z 2 h
1=2;
p

log
r;0 , and zn WDP

k�0;k¤n xkyn�k for n � 1. Then, we can write

xn D

p
hnip

log.hni C 1/
an; yn D

1p
hni
p

log.hni C 1/
bn; zn D

p
hnip

log.hni C 1/
cn;

where a WD .an/n2Z 2 `
2
r;0, b WD .bn/n2Z 2 `

2
r;0 and c WD .cn/n�1 is a complex-valued

sequence. Since zn D
P
k�0;k¤n xkyn�k we obtain that, for n � 1,

cn D
X

k�0;k¤n

ak
bn�kp

hn � ki log.hn � ki C 1/
Bn;k ; (75)

where

Bn;k WD

�
hki log.hni C 1/
hni log.hki C 1/

�1=2
: (76)

The lemma will follow once we construct .an/n2Z; .bn/n2Z 2 `
2
r;0 such that .cn/n�1 … `2C.

Assume that the elements of the sequences a; b 2 `2r;0 are chosen real-valued and non-
negative,

an � 0; bn � 0; n 2 Z:

Note that the sequence .hki= log.hki C 1//k�1 is monotone increasing. This together with
(76) implies that there exists a constant C > 0 such that for any n � 1 and n=2 < k < n
we have that

Bn;k � Bn;Œn=2� � C > 0;

where Œn=2� denotes the integer part of n=2. We then obtain from (75) that

kck2
`2C
�

X
n�1

� X
n=2<k<n

ak
bn�kp

hn � ki log.hn � ki C 1/
Bn;k

�2
� C

X
n�1

� X
n=2<k<n

ak
bn�kp

hn � ki log.hn � ki C 1/

�2
: (77)

Now, assume that the sequence a 2 `2r;0 is chosen so that .an/n�1 is monotone decreasing.
Then, in view of (77),

kck2
`2C
� C

X
n�1

a2n

� X
0<l<n=2

blp
hli log.hli C 1/

�2
; (78)

where we passed to the index l WD n � k in the internal sum. By choosing b0 WD 0 and

bl WD
1p

hli log.hli C 1/.log.log.hli C 1///3=4
; jl j � 1;
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we see that b 2 `2r;0 and by the integral test’s estimateX
0<l<n=2

blp
hli log.hli C 1/

D

X
0<l<n=2

1

hli log.hli C 1/.log.log.hli C 1///3=4

� C1.log.log.hni C 1///1=4 (79)

for some positive constant C1 > 0 independent of n � 1. Hence, by (78) and (79),

kck2
`2C
� C2

X
n�1

..log.log.hni C 1///1=4an/2 (80)

for some constant C2 > 0 independent of n � 1. If we now choose a0 WD 0 and

an WD bn �
1p

hni log.hni C 1/
�

log.log.hni C 1//
�3=4 ; jnj � 1; (81)

we obtain that a 2 `2r;0 and the series on the right-hand side of (80) diverges by the integral
test. This completes the proof of the lemma.

For the proof of Proposition 1.2, we will need the following variant of Lemma 5.1. For
s > �1=2, consider the quadratic form

hsr;0 ! hsC; x 7! Q.x/ WD

�
1
p
n

X
k�0;k¤n

xk
xn�k

n � k

�
n�1

: (82)

The quadratic form (82) is well defined and bounded by Lemma 3.1 in [8].

Lemma 5.2. There exists x 2 h
�1=2;

p
log

r;0 such that Q.x/ 2 `2C but Q.x/ does not belong

to h
0;
p

log
C .

Proof of Lemma 5.2. We set x0 WD 0 and

xn WD

p
hnip

log.hni C 1/
; an D

1

log.hni C 1/.log.log.hni C 1///3=4
; jnj � 1;

where .an/n2Z is the sequence (81) from the proof of Lemma 5.1. The fact that the
sequence x WD .xn/n2Z satisfies the conditions of the lemma follows easily from the proof
of Lemma 5.1.

Corollary 5.1. The quadratic form (82) cannot be extended to a bounded quadratic form
Q W h

�1=2;
p

log
r;0 ! h

0;
p

log
C .

On a side note, let us also mention that the arguments in the proof of Lemma 5.1
above imply that in contrast to the boundedness of the maps (13) we have the following
corollary.
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Corollary 5.2. There exist u 2 H�1=2;
p

log
r;0 and f 2 H 1=2;

p
log

C such that Tuf 2 H
�1=2
C

but Tuf … H
�1=2;

p
log

C .

Let us now compute the second differential of the Birkhoff map (5) at u D 0. For
simplicity of notation, we identify the (real) space h

ˇ
r;0 with h

ˇ
C, ˇ 2 R, and write

ˆ W H s
r;0 ! h

1
2Cs

C ; u 7!
�
ˆn.u/

�
n�1

; s > �1=2: (83)

Recall from [6] and [8, formula (93)] that the differential d0ˆ W H s
r;0 ! h

1
2Cs

C of (83) at

u D 0 coincides with the weighted Fourier transform � 7! .�
y�.n/
p
n
/n�1. For the second

differential d20ˆ of (83) at u D 0, we have the following lemma.

Lemma 5.3. For s > �1=2 and for any � 2 H s
r;0,

d20ˆ.�/ D

�
�

1
p
n

X
k�0;k¤n

y�.�k/
y�.k � n/

k � n

�
n�1

: (84)

Proof of Lemma 5.3. We will follow the framework developed in [8, Section 4]. Assume
that s > �1=2. By [8, formula (58)], for any u in an open neighborhood U of zero inH s

r;0,

ˆn.u/ D �
p
n

an.u/

C
p
n�n.u/

‰n.u/; n � 1; (85)

where‰n.u/ WU !C, �n WU !R, and an WU !C, are analytic maps (cf. [8, Proposition
3.1], [8, Lemmas 4.1 and 4.3]) and C

p
� denotes the branch of the square root defined by

C
p
1D 1. Here,‰n.u/ WD hhn.u/; 1i is the nth component of the pre-Birkhof map studied

in [8, Section 3], hn.u/ WD Pn.u/en, where Pn � Pn.u/ is the Riesz projector onto the
n-th eigenspace of the Lax operator Lu � D � Tu, and en WD einx, n � 0 (cf. [8, formula
(19)]). Since hn.0/ D einx, n � 0, we conclude that ‰n.0/ D 0, n � 1. This together with
(26) and (29) in [8] implies that for any � 2 H s

r;0 and n � 1,

‰n.0/ D 0; d0‰n.�/ D
y�.�n/

n
; d20‰n.�/ D �

1

n

X
k�0;k¤n

y�.�k/
y�.k � n/

k � n
: (86)

The norming constants �n.u/, n � 0, are given by the product representation (34) in [8],
�n.u/ > 0 for u 2 U , and (see [6, Remark 5.2], [7, Corollary 6 (iv)])

C
p
n�n.0/ D 1; d0�n D 0; n � 0: (87)

We will also need the norming constants �n.u/ > 0, n � 1, u 2 U , given by the product
representation (see, e.g., [6], [8, formula (35)])

�n WD
�
1 �


n

�n � �0

� Y
k�1;k¤n

�
1 � 
n


k

.�k�1 � �n�1/.�k � �n/

�
; (88)
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where 
n� 
.u/ WD�n.u/��n�1.u/� 1� 0 are the spectral gaps and �n��n.u/, n� 0,
are the eigenvalues of the Lax operator Lu. Since the product (88) converges absolutely
and locally uniformly on U (cf. [7, Theorem 3]) we can differentiate it term by term to
conclude from �n.0/ D n, d0
n D 0, n � 1 (see [6, Remark 5.2]) that

�n.0/ D 1; d0�n D 0; n � 1: (89)

Let us now turn our attention to the quantities an.u/, n � 1, defined recursively for u 2 U
by

a0.u/ WD
C
p
�0.u/

hh0.u/; 1i
; an.u/ D

�n.u/

C
p
�n.u/

an�1.u/; n � 1; (90)

where

�n.u/ WD 1C
ın.u/

˛n.u/
; ˛n.u/ WD hPnenjeni; ˇn.u/ WD hPnSPn�1en�1jeni; (91)

ın.u/ WD ˇn.u/ � ˛n.u/; (92)

and S W H sC1
C ! H sC1

C is the shift operator (cf. [8, Section 4]). Since ˛n.0/ D ˇn.0/ D
henjeni D 1, we conclude from (92) that ın.0/ D 0, n � 1. By combining this with the
first formula in (91), we obtain that

�n.0/ D 1; d0�n D d0ın; n � 1: (93)

It follows from (89), (93), and (90) that

an.0/ D 1; n � 0: (94)

In order to compute the differential d0a0, consider the Taylor’s expansion of ‰0.u/ WD
hh0.u/; 1i for u 2 U at zero

‰0.u/ � hP0.u/1; 1i D �
1

2�i

I
@D0

h.Lu � �/
�11; 1i d�

D
1

2�i

X
m�1

I
@D0

˝
ŒTu.D � �/

�1�m1; 1
˛ d�
�

D �
1

2�i

I
@D0

hu; 1i

�2
d�C � � � ; (95)

where � � � stands for terms of order � 2 in u and @D0 is the counterclockwise oriented
boundary of the centered at zero closed disk of radius 1=3 in C and the neighborhood U
is chosen as in [8, Proposition 2.2]. Since the integral in (95) vanishes, we conclude that

‰0.0/ D hP0.0/1; 1i D 1; d0‰0 D 0:

By combining this with (87), we obtain from the first formula in (90) that

d0a0 D 0: (96)
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It follows from (89), (93), (94), and the second formula in (90) that

d0an D d0ın C d0an�1; n � 1:

Hence, we conclude from (96) that

d0an D
X
1�k�n

d0ık ; n � 1: (97)

In order to compute d0ın, n � 1, we argue as follows. Recall from [8, Section 5] that the
Taylor’s expansion of ın.u/ for u 2 U at zero is given by [8, formula (69)]. This implies
that

d0ın.u/ D �
X
k�0

�n;kCu;n.k/; n � 1; (98)

where

Cu;n.k/ WD
1

2�i

I
@Dn�1

Ou
�
k � .n � 1/

�
.n � 1/ � �

d�

k � �
D

´
Ou.k�.n�1//
k�.n�1/

; k ¤ n � 1;

0; k D n � 1;
(99)

and �n;k is the term of order zero in u in the expansion of hPn.u/Sekjeni for u 2 U at
zero

hPn.u/Sekjeni D �
1

2�i

X
r�0

I
@Dn

˝
.D � �/�1ŒTu.D � �/

�1�rSek
ˇ̌
en
˛
d�

D �
1

2�i

I
@Dn

hekC1jeni

.k C 1/ � �
d�C � � � ; n � 1;

where � � � stands for terms of order � 1 in u and @Dn is the counterclockwise oriented
boundary of the centered at n closed disk of radius 1=3 in C. This implies that

�n;k D �
1

2�i

I
@Dn

hekC1jeni

.k C 1/ � �
d� D ık;n�1:

By combining this with (98) and (99), we obtain that d0ın D 0, n � 1. Hence, by (97),

d0an D 0; n � 1: (100)

Finally, the expression (84) for the second differential of (83) follows from the product
rule applied twice to (85) together with (87), (94), and (100).

Proof of Proposition 1.2. The proposition follows directly from Corollary 5.1, Lemma 5.3.
In fact, take s > �1=2 and assume that the Birkhoff map (83) extends to a C 2-map

ˆ W H
�1=2;

p
log

r;0 ! h
0;
p

log
C :

Then, its second differential at zero d20ˆ W H
�1=2;

p
log

r;0 ! h
0;
p

log
C is a bounded extension

of the second differential (84) of the map (83). Since this contradicts Corollary 5.1, we
conclude that the map (83) cannot be extended to a C 2-map and, in particular, to an
analytic map.
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A. Auxiliary results

In this appendix, we provide the proofs of several technical results used in the main body
of the paper. We start with the following lemma on the pointwise multiplication of func-
tions in H 1=2

c .

Lemma A.1. For any u; v 2 H 1=2
c , we have that uv 2 H 1=2;1=

p
log

c and the map

H 1=2
c �H 1=2

c ! H
1=2;1=

p
log

c ; .u; v/ 7! uv

is bounded.

Proof of Lemma A.1. The lemma easily follows by using the dyadic decomposition of
functions (see, e.g., [1, Chapter II]). Below, we give the proof for the reader’s convenience.
For f 2 D 0.T /, we set

f�1 WD Of .0/; fn WD
X

2n�1<jkj<2nC1

'
�
k=2n

�
Of .k/ eikx ; n � 0;

where '.�/ WD  .�=2/� .�/,  2 C1c .R/ has non-negative values,  .�/D 1 for j�j �
1=2, and  .�/ D 0 for j�j � 1. Then, the functions  .�/ and '.�=2n/, n � 0, pro-
vide a partition of unity of R. As in the case on the line one then sees that f 2 H s

c ,
s 2 R, if and only if .2ns kfnk/n��1 2 `2��1. The norm on H s

c and the norm kf ks WD

.
P
n��1 2

2ns kfnk
2/1=2 are equivalent. Similarly, f 2H s;1=

p
log

c with s 2R if and only if

. 2
ns
p
hni
kfnk/n��1 2 `

2
��1, and the corresponding norms are equivalent. For u; v 2 H 1=2

c ,
we write

uv D
X

m;n��1

unvm D
X
n��1

.Snu/vn C
X
m��1

um.SmC1v/; (101)

where Snf WD
P
�1�k�n�1 fk . We have

kSnukL1 �
X
jkj�2n

j Ou.k/j � C1

� X
jkj�2n

1

k

�1=2
kuk1=2

� C2
p
hni kuk1=2

with constants C1; C2 > 0 independent of n � �1. Hence,

k.Snu/vnk � kSnukL1kvnk � C2 kuk1=2
p
hni kvnk

and from the dyadic characterization of H 1=2
c ,

2n=2p
hni
k.Snu/vnk � C3 kuk1=2 cn;
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where
P
n��1 c

2
n D 1 and C3 > 0 is independent of n � �1. By arguing as in the proof

of [1, Lemma 2.1], we then conclude that the first sum on the right-hand side of (101)
belongs to H 1=2;1=

p
log

c and



 X
n��1

.Snu/vn






1=2;1=

p
log
� C kuk1=2kvk1=2

with a constant C > 0 independent of the choice of u; v 2 H 1=2
c . The second sum on

the right-hand side of (101) is treated in the same way. This completes the proof of the
lemma.

As a corollary from Lemma A.1, we obtain the following corollary.

Corollary A.1. For any u 2 H�1=2;
p

log
c and v 2 H 1=2

c , we have that uv 2 H�1=2c and
the map

H
�1=2;

p
log

c �H 1=2
c ! H�1=2c ; .u; v/ 7! uv

is bounded. In particular, there exists a positive constant K0 > 0 such that kuvk�1=2 �

K0kuk�1=2;
p

logkvk1=2 for any u 2 H�1=2;
p

log
c and v 2 H 1=2

c .

The corollary follows easily by duality form Lemma A.1.

Proof of Lemma 3.1. Recall from (35) that, for any u 2 H�1=2;
p

log
r;0 ,

1X
pD1


p.u/ D ��0.u/; (102)

where �0.u/ and 
p.u/ � 0, p � 1, depend continuously on u 2 H�1=2;
p

log
r;0 (Theorem

2.2 (iii)). Then, by Dini’s theorem (see, e.g., [19, Theorem 8, Chapter 4]), the series in
(102) converges uniformly on compact sets of u’s in H�1=2;

p
log

r;0 . The continuity of (58)
and (59) then follows from the uniform convergence of the infinite products and the conti-
nuity of the quantities involved. Let us now prove (61). For any u 2H�1=2;

p
log

r;0 and n� 1,
we have X

p�1;p¤n


p.u/

j�p.u/ � �n.u/j
�

X
jn�pj> n

2


p.u/

jp � nj
C

X
jn�pj� n2 ;p¤n


p.u/

jp � nj

�
2

n
.��0.u//C

X
p� n2


p.u/; (103)

where we use that j�p � �nj � jp � nj by (26). Let us now pick v 2H�1=2;
p

log
r;0 and " > 0.

Then, we can choose n0 � 1 so that 2
n0
.��0.v// � "=4 and

P
p�

n0
2

p.v/ � "=4. By the

continuity of �0.u/ and
P
p�

n0
2

p.u/ with respect to u 2H�1=2;

p
log

r;0 , we then obtain that
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there exists an open neighborhood U.v/ of v in H�1=2;
p

log
r;0 such that the expression on

the right-hand side of (103) is bounded above by " uniformly in u 2 U.v/ and n � n0.
This proves that X

p�0;p¤n


p.u/

j�p.u/ � �n.u/j
� " (104)

for any u 2 U.v/ and n � n0. The existence of the constants 0 < c < C and the estimate
(61) for n � n0 then follows from (104), (59), and the continuous dependence of the
eigenvalues on the potential u 2 H�1=2;

p
log

r;0 .
The case 1 � n < n0 follows from (60) and the continuous dependence of �n.u/ on

u 2 H
�1=2;

p
log

r;0 .
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