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Semiclassical limit of the Bogoliubov–de Gennes equation

Jacky J. Chong, Laurent Lafleche, and Chiara Saffirio

Abstract. In this paper, we rewrite the time-dependent Bogoliubov–de Gennes (BdG) equation
in an appropriate semiclassical form and establish its semiclassical limit to a two-particle kinetic
transport equation with an effective mean-field background potential satisfying the one-particle
Vlasov equation. Moreover, for some semiclassical regimes, we obtain a higher-order correction to
the two-particle kinetic transport equation, capturing a nontrivial two-body interaction effect. The
convergence is proven for C 2 interaction potentials in terms of a semiclassical optimal transport
pseudo-metric.

Furthermore, combining our current results with the results of Marcantoni et al. [Ann. Henri
Poincaré (2024)], we establish a joint semiclassical and mean-field approximation of the dynamics
of a system of spin-12 Fermions by the Vlasov equation in some weak topology.

To Thomas Kappeler, in memory of his unwavering human and professional support

1. Introduction

1.1. The time-dependent Bogoliubov–de Gennes equation

We consider the time-dependent Bogoliubov–de Gennes (BdG) equation, sometimes also
referred to as the generalized Hartree–Fock equation or the Hartree–Fock–Bogoliubov
equation. It describes the time evolution of generalized one-particle reduced density oper-
ators, which are self-adjoint operators � acting on h˚ h, satisfying the operator bound
0 � � � 1h˚h, and having the form

� D

�
 ˛

�x̨ 1 � x

�
; (1.1)

where h D L2.Rd ;C/ denotes the one-particle state space and xA represents the operator
whose integral kernel is the conjugate of the kernel of the operator A. Here, the bounded
linear operators  and ˛ acting on h are called, respectively, the one-particle density oper-
ator and the pairing operator. It follows from the properties of � that  and ˛ satisfy

0 �  � 1; ˛� D �x̨; ˛ D ˛x; and j˛�j2 � .1 � /; (1.2)

where jAj D
p
A�A.
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The BdG equation models many-body dynamics with an interparticle interaction po-
tential U , which we assume to satisfy, for some constant C � 0, the conditions

U.x/ D U.�x/; U 2 L2loc.R
d /; and U 2 � C.1 ��/: (1.3)

Let p D �i„rx denote the momentum operator with „ D h=.2�/, where h is the Planck
constant, and define the Hartree–Fock Hamiltonian associated with  by the operator

H D
jpj2

2
C V � X :

In the above expression, V is the multiplication operator by the mean-field potential
defined by

V .x/ D U � diag./.x/ D
Z

Rd

U.x � y/.y; y/ dy;

and X is the exchange operator defined through its integral kernel

X .x; y/ D U.x � y/.x; y/:

Moreover, we define the generalized Hartree–Fock Hamiltonian acting on h˚ h by the
matrix operator

H� D

 
H X˛
X�˛ �xH

!
:

Then, the BdG equation reads

i„ @t� D ŒH� ; ��; (1.4)

where ŒA; B� WD AB � BA is the operator commutator. Equivalently, equation (1.4) can
be written as the following coupled system of equations:

i„ @t D ŒH ; �C X˛˛� � ˛X�˛; (1.5a)

i„ @t˛ D H˛ C ˛xH C X˛.1 � x/ � X˛: (1.5b)

Notice that if ˛ D 0, then  solves the Hartree–Fock equation

i„ @t D ŒH ; �: (1.6)

This justifies the claim that the BdG equation is a generalization of the Hartree–Fock
equation with a non-zero pairing operator. Observe also the fact that the self-adjointness
of � and 0 � � � 1h˚h are preserved under the BdG dynamics; in particular, the prop-
erties (1.2) remain true along the dynamics. We refer to [7] for discussions regarding the
well-posedness and additional properties of the equation. In fact, conditions (1.3) are taken
from [7], which guarantees the global well-posedness of solutions.
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1.2. Semiclassical regimes, classical phase space dynamics, and useful notations

The purpose of this paper is to study the BdG equation (1.4) in the semiclassical regime,
that is on space-time scales where the Planck constant h becomes negligible. To make
connection with earlier studies on the effective approximation of many-body interacting
fermionic systems (see Section 4), we set N D Tr./ and write

U.x/ D
1

N
K.x/;

whereK WRd !R is independent ofN and „ and satisfies conditions (1.3), and the factor
N�1 is the mean-field coupling constant.

In the context of the semiclassical limit, it is convenient to define the scaled operator

� WD
1

Nhd
 (1.7)

so that hd Tr.�/ D 1. We will call positive operators verifying this trace normalization
density operators and denote this class of operators by P .h/. We also define the semi-
classical Schatten norms, which are quantum analogs of the Lebesgue norms on the phase
space, by

k�kLp WD hd=p.Tr.j�jp//1=p: (1.8)

These norms are helpful in identifying the necessary scaling of quantum objects that will
lead to a nontrivial semiclassical limit.

In the case of zero pairing, we see that the scaling (1.7) leads to rewriting equa-
tion (1.6) as follows:

i„ @t� D ŒH�;�� with H� D
jpj2

2
C V� � h

d X�; (1.9)

where V� D K � %.x/ and %.x/ is the spatial distribution of particles defined by

%.x/ D diag.�/.x/ WD hd�.x; x/ (1.10)

and the exchange operator X� has the integral kernel

X�.x; y/ D K.x � y/�.x; y/: (1.11)

Furthermore, with this scaling, it is known that in the semiclassical limit „ ! 0 one can
recover classical phase space dynamics from the Hartree–Fock dynamics (see, e.g., [6,39,
42]). More precisely, one obtains as the semiclassical approximation of equation (1.9) the
Vlasov equation

@tf C � � r�f CEf � r�f D 0 with f .0; �; �/ D f in.�; �/ � 0; (1.12)
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where f is a time-dependent probability density on R2d D Rd� �Rd
�

and Ef D �rVf is
the self-consistent force field associated to the mean-field potential Vf .�/D .K � �f /.t;�/
with �f the spatial density defined by

�f .t;�/ D

Z
Rd

f .t; �; �/ d�:

In this work, we want to extend the above result to the case of the BdG equation (1.5),
with a non-zero pairing operator ˛. To this end, we define the two-particle operator

�˛ D � j˛ih˛j (1.13)

as the orthogonal projection in h ˝ h onto the function defined by .x; y/ 7! ˛.x; y/,
and where � > 0 is chosen so that h2d Tr.�˛/ D 1. This allows us to rewrite the BdG
equation (1.5) in the equivalent form (2.6), as shown in Section 2.1, and compare it with
its classical analog

@tf C � � r�f CEf � r�f D 0; (1.14a)

@tF C �12 � r�12F CE12 � r�12F D
1

N
rK.�1 � �2/ � .r�1 � r�2/F; (1.14b)

where F.z12/D F.z1; z2/� 0 is a two-particle distribution, that is, a probability distribu-
tion defined over the two-particle phase space R2d �R2d , with .z1; z2/D .�1; �1; �2; �2/
and �12 WD .�1; �2/ 2 R2d� , �12 WD .�1; �2/ 2 R2d

�
, and E12 WD .Ef .�1/; Ef .�2//.

Notice that system (1.14) is well posed. Indeed, being that equation (1.14a) is a Vlasov
equation with smooth interaction K, it is well posed by standard techniques (see, e.g.,
[17]). Given f , a solution of equation (1.14a), and the corresponding vector field E12,
equation (1.14b) is simply a linear transport equation with smooth vector field, which
is well posed by standard characteristics methods. Heuristically, for N fixed, equation
(1.14b) describes the dynamics of a typical pair of particles which follow the flow cre-
ated by a background f and are correlated by the interaction force 1

N
rK. If the l.h.s. of

equation (1.14b) is absent, then it is clear that the evolution of independent particles will
remain independent.

1.3. Semiclassical optimal transport pseudo-metric and main result

We now introduce the tools that we will use in our main theorem to prove the semiclassical
limit of the BdG equation (2.6).

Denote z D .�; �/ 2 R2d . Let f be a probability density function on R2d and � 2
P .h/. A coupling of f and � is a measurable function  W z 7! .z/ defined for almost
all z 2 R2d with values in the space of bounded linear operators acting on h such that, for
almost all z 2 R2d , we have that .z/ � 0 and it satisfies the conditions

hd Trh..z// D f .z/ and
Z

R2d

.z/ dz D �: (1.15)
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The set of all couplings of f and � is denoted by C.f;�/. Next, we define the semiclassical
optimal transport pseudo-metric by

W2;„.f;�/ D

�
inf

2C.f;�/

Z
R2d

hd Trh.c.z/.z// dz
� 1
2

(1.16)

with the cost function c.z/ defined by the unbounded operator whose action on test func-
tions ' gives

.c.z/'/.x/ D j� � xj2'.x/C j� � pj2'.x/

andpD�i„rx . The notation Trh.c/ should in general be understood as Trh.c
1=2c1=2/

if c is not trace class. The above semiclassical optimal transport pseudo-metric between
density operators and classical phase space functions was first introduced in [23]. It can
be viewed as an intermediate notion between the classical Monge–Kantorovich distance
(Wasserstein distance) of exponent 2 on the space of Borel probability measures and the
quantum optimal transport pseudo-metric on the space of density operators defined in [22].
The properties of these pseudo-metrics can be found in [8, 23, 25, 37].

Likewise, for any two-particle probability density function F.z1; z2/ on R2d � R2d

and two-particle density operator �2 2 P .h˝ h/, we denote by W2;„.F; �2/ their semi-
classical optimal transport pseudo-metric, defined in the same way with h replaced by
h˝ h and R2d replaced by R2d �R2d .

We are now ready to state our main results. In our first theorem, we will be concerned
with the limit to the following classical equations corresponding to equations (1.14a)–
(1.14b) with N D1:

@tf C � � r�f CEf � r�f D 0;

@tF C �12 � r�12F CE12 � r�12F D 0:
(1.17)

Theorem 1.1. Let d � 3 and assume N„ � C , where C does not depend on N and „,
K be an even, real-valued function such that r2K 2 L1.Rd ;R2d /, yK 2 L1.Rd /, and
x 7! jxjK.x/ 2 L1.Rd /. Let .; ˛/ be a solution of the BdG equations (1.5), and let �
and �˛ be their scaled versions defined in (1.7) and (1.13) with initial data .�in; �in

˛ / 2

P .h/ �P .h˝2/ such that

hd Tr.�in
jpj4/; hd Tr.�in

jxj4/; and k�in
kLd (1.18)

are uniformly bounded in „. Let .f; F / be the solutions of the system (1.17) with initial
conditions .f in; F in/, which are probability density functions defined on R2d and R2d �
R2d , respectively, and such thatZ

R2d

jzj2f in.z/ dz <1 and
“

R2d�R2d

.jz1j
2
C jz2j

2/F in.z1; z2/ dz1 dz2 <1:

Then, there exist a constant C dependent on kKkC 2 and the semiclassical Schatten norms
of �in but independent of N and „ such that, for any t � 0,

W2;„.f;�/
2
CW2;„.F;�˛/

2
�
�

W2;„.f
in;�in/2 CW2;„.F

in;�in
˛ /
2
C „

�
eCe

Ct

: (1.19)
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Remark 1.1. The optimal transport pseudo-metrics that are used in the above theorem are
not distances since W2;„.f;�/ � d „ (see [25]). However, they still imply convergence in
the semiclassical regime „ ! 0. More precisely, introducing the Wigner transform

f�.�; �/ D

Z
Rd

e�i��y=„�.�C
y

2
; � �

y

2
/ dy; (1.20)

and the Husimi transform Qf� D gh � f� with gh.z/ D .�„/�de�jzj
2=„, it holds (see [23,

Theorem 2.4])

W2.f; Qf�/
2
�W2;„.f;�/

2
C d „;

and so, convergence of W2;„.f; �/ to 0 implies the convergence of the Husimi transform
of � (and so, also its Wigner transform, see [42]) to f with respect to the classical Wasser-
stein distance W2. On the other hand, the right-hand side of inequality (1.19) is also small
initially and, if the operator � is sufficiently regular, Qf� is close to f , as follows from the
following inequality which follows from [37, Theorem 1.1] and [24, Theorem 3.5]:

W2;„.f;�/ �W2.f; Qf�/C
p
d„ CD� „;

whereD�Dkrfp�kL2.R2d / is proportional to the Wigner–Yanase skew information of �.

Remark 1.2. The double-exponential growth on the right-hand side of (1.19) is due to
the propagation of the Schatten norm Ld for �. We can get a better bound in terms of
time dependence in the regime where Nhd is of order 1. Indeed, in this case, k�kLd � 1

and then the eCe
Ct

can be replaced by a function of the form eƒ.t/ for some polynomial
function ƒ.

Remark 1.3. The restriction on the dimension in Theorem 1.1 arises from the proofs
presented in Section 3, which are of a purely technical nature. However, for the purposes
of the application discussed in Section 4, we are primarily concerned with the case d D 3.

In the next theorem, we consider semiclassical regimes, which allow us to obtain a
nontrivial order 1=N two-body interaction effect correction to the dynamics of F .

Theorem 1.2. Under the same assumptions as in Theorem 1.1 but with Nh ! 0 and
.f; F / solutions of the system (1.14), let Tr.j˛inj2/ � C.Nh/2. Then, there exist T and
CT , independent of „ and N but dependent on kr2KkL1 and the semiclassical Schatten
norms of �in, such that, for any t 2 Œ0; T �,

W2;„.f;�/
2
CW2;„.F;�˛/

2
� CT

�
W2;„.f

in;�in/2 CW2;„.F
in;�in

˛ /
2
C „

�
: (1.21)

Remark 1.4. In this paper, the regime Nh ! 0 is purely mathematical. This regime
allows us to capture the next order 1=N correction as seen in system (1.14), but this
requires an assumption on the size of Tr.j˛inj2/, which is technical and due to Proposi-
tion 2.2.
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Remark 1.5. As an immediate consequence of Theorem 1.1 and the main result of Mar-
cantoni et al. in [43, Theorem 3.3], we establish a global-in-time joint semiclassical and
mean-field approximation of the dynamics of a system of spin-1

2
fermions with quasi-

free initial data that are close to Slater determinant-like states by solutions of the Vlasov
equation. In particular, we establish the convergence in some negative Sobolev space. See
Theorem 4.2 in Section 4.

1.4. Previous known results

As the BdG equation (1.5) can be seen as a generalization of the Hartree–Fock equation,
we briefly review the literature concerning the semiclassical limit from the Hartree–Fock
equation to the Vlasov equation. Equation (1.12) can be seen as the semiclassical approxi-
mation of a system of many interacting quantum particles, as pointed out in the pioneering
works by Narnhofer and Sewell [45] and by Spohn [49] where the Vlasov equation was
obtained directly from the many-body Schrödinger equation with smooth interaction in
the combined mean-field and semiclassical regime. This has been reconsidered in [27]
and more recently in [10, 13], where the case of the Coulomb potential with a N depen-
dent cut-off has been addressed. Moreover, a combined mean-field and semiclassical limit
for particles interacting via the Coulomb potential has been treated in [26] for factorized
initial data whose first marginal is given by a monokinetic Wigner measure (that can be
seen as the Klimontovich solutions to the Vlasov equation), which leads to the pressureless
Euler–Poisson system.

Most of the above-mentioned works rely on compactness methods that do not allow for
an explicit bound on the rate of convergence, which is essential for applications. For this
reason, the Hartree equation (1.9) has been considered as an intermediate step to decouple
the problem into two separate parts, namely, to prove the convergence of the mean-field
limit from the many-body Schrödinger equation towards the Hartree equation, and then
the semiclassical limit from the Hartree equation to the Vlasov equation. In this paper, we
are interested in the latter problem, which has been largely studied in different settings. It
was first proven by Lions and Paul in [42], and later in [19,44], that the Wigner transforms
of the solutions of the Hartree equation (1.9) converge in some weak sense to solutions of
the Vlasov–Poisson equation. Quantitative rates of convergence were then obtained, first
in the case when the Coulomb potential is replaced by a smoother potential, in Lebesgue-
type norms [1–3,6] and in a quantum analogue of the Wasserstein distances [23]. The case
of singular interactions was then treated in [35, 36] with the same quantum Wasserstein
distances, and in [39, 46, 47] in Lebesgue-type norms. In particular, for K D jxj�1, the
explicit rate has been established in [34, 35] for the weak topology and in [39, 46] for the
Schatten norms.

In a different setting, the semiclassical limit has also been studied for local perturba-
tions of stationary states in the case of infinite gases in [41].

The BdG equation is known to offer a self-consistent field description of a system
of fermionic particles (See [15]). The global well-posedness in the energy space of the
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time-dependent BdG equation in R3, with potential U including the Coulomb potential
and „ fixed, can be found in [7]. This result was subsequently improved in [18] to include
positive singular potentials up to and including

U.x/ D jxj�2C" for 0 < " � 2;

via techniques from dispersive PDE theory. In fact, well-posedness and finite-time blowup
of solutions to the BdG equation in energy space with a pseudo-relativistic kinetic energy
were discussed prior in [31, 40]. For completeness, let us also mention the fact that the
well-posedness theory of a related system of coupled equations, also called the time-
dependent Hartree–Fock–Bogoliubov equations in the “spinless bosonic” setting, was first
studied locally in time in [28–30] for the pure-state case and improved to global-in-time
results along with obtaining global-in-time dispersive estimates in [11, 12, 14, 33]. The
equations were also studied in the mixed-state case in [4].

It is also worth mentioning that the Hartree–Fock–Bogoliubov equations were recently
obtained in [43] as the mean-field approximation of a system of N interacting fermions
with initial state close to quasi-free states with non-zero pairing operator. For the associ-
ated equilibrium problem, namely, the study of the Hartree–Fock–Bogoliubov functional
and its connection to BCS theory of superconductivity and superfluidity, we refer to the
review papers [5, 32] and references therein.

1.5. Plan of the paper

The rest of the paper is organized as follows. In Section 2, we present the outline of
the proof, give a useful equivalent formulation of the BdG equation, and present some
preliminary estimates. Section 3 is devoted to the proof of the main results, while Section 4
provides an application of Theorem 1.1 in the setting of the work [43] about mean-field
theory for interacting fermionic systems with non-zero pairing.

2. The strategy: Semiclassical Bogoliubov–de Gennes equation

In this section, we present the strategy of the proof, which relies on an ad hoc rewriting of
the BdG equation (1.5) in the form (2.6), representing the main novelty of our approach.

We first recall that the case of the zero pairing relies on Dirac’s correspondence prin-
ciples, which in particular tell that if two quantum observables A and B correspond to
classical observables a.�; �/ and b.�; �/, then their scaled commutator 1

i„
ŒA; B� should

correspond to the Poisson bracket ¹a; bº D rxa � r�b � r�a � rxb, and that one should
recover the classical dynamics in the limit h! 0. It is indeed easy to see that the Vlasov
equation (1.12) can be written in terms of Poisson brackets as @tf D ¹Hf ; f º, where

Hf D
j�j2

2
C Vf :
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Hence, with the observation that the exchange term (1.11) vanishes as h! 0, one expects
that the Hartree–Fock evolution (1.9) converges to the Vlasov dynamics (1.12) for h small,
which can be proved using the Wigner transform, as is done in the literature mentioned in
Section 1.4.

In the case of non-zero pairing, the semiclassical approximation of the BdG equation
is less clear. The main difficulty comes from the fact that the correspondence principle
of quantum mechanics is not immediately applicable to the pairing operator. Our strategy
consists in recasting the problem for  and ˛ in terms of the positive self-adjoint density
operators � and �˛ and consider their time evolution.

2.1. Rescaling the BdG equation

To study the semiclassical limit of the pairing operator, we start by noticing from condi-
tions (1.2) that it follows

�˛ WD
1

N
Tr.j˛j2/ � 1 �Nhdk�k2

L2 2 Œ0; 1/: (2.1)

To better understand ˛, it is more natural to consider its integral kernel and view the kernel
as a two-particle wave function. Hence, assuming ˛ ¤ 0, we define the normalized pairing
wave function as

‰˛.x1; x2/ WD
1

k˛kL2
˛.x1; x2/:

Following our scaling convention of  and identity (1.2), it is suggestive to consider the
rescaled projection operator acting on h˝ h and its normalization

A˛ WD
1

Nh2d
j˛ih˛j and �˛ WD h

�2d
j‰˛ih‰˛j :

Clearly, A˛ D �˛�˛ and �˛ satisfies the normalization h2d Tr.�˛/ D 1.
To make connection with classical phase space dynamics, we need to recast the BdG

equation in terms of the rescaled operators � and �˛ . Define X˛ by expression (1.11) and
notice that X˛˛� D Nh2d�˛ Tr2.K12�˛/, which then implies

X˛˛� � ˛X�˛ D Nh
2d�˛ Tr2.ŒK12;�˛�/ DW Nh

d�˛ŒK12;�˛�W1: (2.2)

Here, Tr2.�/ denotes the partial trace with respect to the second Hilbert space and K12
denotes the operator of multiplication by K.x1 � x2/ on h˝ h. Hence, we see that equa-
tion (1.5a) has the form

i„ @t� D ŒH�;��C �˛

�
1

N
K12;�˛

�
W1

;

where H� is defined as in equation (1.9).
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To rewrite equation (4.16b), we view ˛ D ˛.x1; x2/ as a two-body wave function as
opposed to it being a Hilbert–Schmidt operator. Then, the equation has the form

i„ @t˛.x1; x2/ D

�
�
„2

2
�x1 �

„2

2
�x2 C

1

N
K.x1 � x2/

�
˛.x1; x2/

C hd
Z

Rd

.K.x1 � y/CK.y � x2//�.y; y/˛.x1; x2/ dy

� hd
Z

Rd

.K.x1 � y/CK.y � x2//�.x1; y/˛.y; x2/ dy

� hd
Z

Rd

.K.x1 � y/CK.y � x2//�.x2; y/˛.x1; y/ dy; (2.3)

or more compactly

i„ @t˛ D

�
H12 C

1

N
K12

�
˛ � hd�12K12˛; (2.4)

where �12 WD �˝ 1C 1˝ � and H12 WD H� ˝ 1C 1˝ H�.
To make connection with classical mechanics, it is better to consider the two-particle

operator A˛ instead of ˛. Using equation (2.4), it follows that A˛ satisfies

i„ @tA˛ D
�
H12 C

1

N
K12.1 �Nhd�12/; A˛

�
� hd ŒK12;�12�A˛:

Since �˛ D h2d Tr.A˛/, taking the trace of the above equation yields

i„
d
dt
�˛ D �h

d
hŒK12;�12�iA˛ ; (2.5)

where hBiA WD h2d Tr.AB/ if A and B are operators acting on L2.R2d /. Finally, sum-
marizing the above discussion and using the fact that A˛ D �˛�˛ , we obtain the equations

i„ @t� D ŒH�;��C
�˛

N
ŒK12;�˛�W1; (2.6a)

i„ @t�˛ D

�
H12 C

1

N
K12.1 �Nhd�12/;�˛

�
C hd

�
ŒK12;�12� � hŒK12;�12�i�˛

�
�˛: (2.6b)

In particular, the traces of � and �˛ are conserved.
Now, by the correspondence principle, one can expect, at least in the case when K is

a sufficiently regular potential, that F.z12/D F.z1; z2/ WD F�˛ .z1; z2/ defined on R2d �
R2d solves in the limit „ ! 0 and N !1

@tF C �12 � r�12F CE12 � r�12F D 0;
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where �12 D .�1; �2/ and E12 WD .Ef .�1/; Ef .�2// with

Ef .�/ WD �rVf and Vf .�/ D

“
R2d

K.� � �1/f .z1/ dz1:

In fact, if Nhd � 1, then, to the order 1=N , we expect to have

i„ @t� D ŒH�;��C
�˛

N
ŒK12;�˛�W1;

i„ @t�˛ D

�
H12 C

1

N
K12;�˛

�
as the leading order dynamics; that is, formally, when „ ! 0, we have that

@tf C � � r�f CEf � r�f D
�˛

N

Z
R2d

rK.� � �2/ � r�F.z; z2/ dz2; (2.7a)

@tF C �12 � r�12F CE12 � r�12F D
1

N
rK.�1 � �2/ � .r�1 � r�2/F: (2.7b)

Remark 2.1. As already pointed out in Remark 1.1, estimates in the semiclassical optimal
transport distance give accuracy up to „ since W2;„.f; �/

2 � d„. In particular, the terms
on the right-hand side of equations (2.7) with the 1=N in front are meaningful only if
h � 1=N , which is allowed from some semiclassical regime but does not include, for
instance, the regime Nhd D 1.

2.2. Conservation laws and a priori estimates

As indicated in the previous discussion, if .�;�˛/ solves system (2.6), then it follows that

hd Trh.�/ D 1 and h2d Trh˝h.�˛/ D 1 (2.8)

hold for all t � 0 provided the identities hold at initial time. Define the one-particle density
operator (first marginal) associated to �˛ by

�˛W1 WD h
d Tr2.�˛/ D

1

Nhd�˛
j˛�j2 � 0: (2.9)

In light of the semiclassical scaling, the last inequality in formula (1.2) gives

Nhd�2 C �˛�˛W1 � �; (2.10)

which is preserved by the BdG dynamics. As an immediate consequence, we have

0 � �˛�˛W1 � � �
1

Nhd
1: (2.11)

Moreover, since �˛ D h
�2d j‰˛ih‰˛j is a rank one operator, it verifies 0 � �˛ � h

�2d1.
The right-hand side inequality is sharp, and more generally, k�˛kLp D h�2d=p

0

.
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As proved, for instance, in [7], the following energy functional is conserved:

E WD hd Tr.jpj2�/C
1

2

Z
Rd

V�� �
h2d

2
Tr.X��/C

�˛

N
h2d Tr.K12�˛/: (2.12)

In particular, ifK 2L1 and the energy is initially bounded uniformly in „, then the kinetic
energy of � is bounded uniformly in „ and time, and more precisely,

hd Tr.jpj2�/ � E C

�
1C

�˛

N

�
kKkL1 � E C 2kKkL1 DW CE;K : (2.13)

Moments of order 2 of �˛W1 are also bounded uniformly in „ and time by the energy since
by formula (2.11)

�˛h
d Tr.�˛W1jpj

2/ � hd Tr.�jpj2/ � CE;K :

For the two-particle density operator �˛ , this can be written as h2d Tr.�˛jp1j
2/ � CE;K ,

where p1 is the momentum operator acting on the first variable. By symmetry, the same
is true by replacing p1 by p2, and so, we deduce that

�˛h
2d Tr

�
�˛.jp1j

2
C jp2j

2/
�
� CE;K :

We can propagate higher-order moments. In our case, it will be sufficient to propagate
order 4 moments, as shown in the following proposition.

Proposition 2.1. Let .�;�˛/ be a solution of the BdG equation (2.6), and

Mn WD h
d Tr.�jpjn/ and Nn WD h

d Tr.�jxjn/

denote the velocity and position moments of order n 2 N of the operator �. Then, for any
t � 0,

M2.t/�CE;K ; M4.t/
1=2
�M4.0/

1=2
C CK t;

N2.t/
1=2
�N2.0/

1=2
CC

1=2

E;K
t; N4.t/

1=4
� 1CN4.0/

1=4
CC „3tCC

�
M4.0/

1=2
Ct
�3=2

;

where CK D 3.„k�KkL1 C 2krKkL1
p
CE;K/ and C only depends on d and CK .

Proof. To simplify the computations, we write the evolution equation for � given by equa-
tion (2.6a) in the form

i„ @t� D
1

2
Œjpj2;��C ŒK12;��W1 with � D �˝2.1 � X12/C

�˛

N
�˛;

where X12 is the operator that exchanges the first and second coordinate; that is, for any
' 2 h˝ h, X12'.x1; x2/D '.x2; x1/. Observe that� is self-adjoint. Then, it follows from
the cyclicity of the trace that

i„
d
dt
M4 D h

2d Trh˝h

�
ŒK12;��jp1j

4
�
D h2d Trh˝h

�
�Œjp1j

4; K12�
�
:
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By Leibniz formula for commutators, Œjp1j
4; K12�D jpj

2Œjp1j
2; K12�C Œjp1j

2; K12�jpj
2,

and so, since � is self-adjoint, it gives

„
d
dt
M4 D 2h

2d Im Trh˝h

�
�jp1j

2Œjp1j
2; K12�

�
:

Since Œp1; K12� D �i„rK12, where rK12 denotes the operator of multiplication by
rK.x1 � x2/, it follows that

Œjp1j
2; K12� D �i„.p1 � rK12 CrK12 � p1/ D �„

2�K12 � 2i„rK12 � p1;

and so, it follows from the cyclicity and Hölder’s inequality for the trace that

d
dt
M4 � 2„k�KkL1k�jp1j

2
kL1.h˝2/ C 4krKkL1kp1�jp1j

2
kL1.h˝2/: (2.14)

Now, we decompose � into the three terms that define it and use the triangle inequality
for the trace norm. Notice indeed that for the first term we get

k�˝2jp1j
2
kL1.h˝2/ D k�jpj

2
kL1 � k

p
�kL2k

p
�jpj2kL2 DM

1=2
4 ;

k�˝2X12jp1j
2
kL1.h˝2/ D k�

˝2
jp2j

2
kL1.h˝2/ D k�jpj

2
kL1 �M

1=2
4 ;

k�˛jp1j
2
kL1.h˝2/ � k

p
�˛kL2k

p
�˛jp1j

2
kL2 D hd

�
Trh˝2

�
�˛jp1j

4
�� 1

2 � ��1=2˛ M
1=2
4 ;

where the last inequality follows from inequality (2.11). Similarly, for the second term on
the right-hand side of inequality (2.14), use the fact that, for � D �˝2, � D �˝2X12, or
� D �˛�˛ ,

kp1�jp1j
2
kL1.h˝2/ � kp1�kL2.h˝2/k�jp1j

2
kL2.h˝2/ �M

1=2
2 M

1=2
4 ;

and this gives finally, since N � 1, �˛ � 1 and M2 � CE;K ,

d
dt
M4 � 6

�
„k�KkL1 C 2krKkL1

p
CE;K

�p
M4;

from which the result follows by Grönwall’s lemma.
The propagation of position moments follows just by writing for n D 2 or n D 4

i„
d
dt
Nn D

1

2
Tr.Œjpj2;��jxjn/ D

1

2
Tr.�Œjxjn; jpj2�/:

Therefore, since 1
i„
Œjxj2; jpj2� D 2.x � pC p � x/, it follows from Hölder’s inequality for

Schatten norms that

d
dt
N2 D 2Re Tr.�x � p/ � 2M 1=2

2 N
1=2
2 ;

which yields the inequality for N2 by Grönwall’s lemma. On the other hand, it follows
from [36, Lemma 3.2] that

d
dt
.1CN4/ D 2Re Tr.�jxj2.x � p C p � x// � C

�
M
1=4
4 N

3=4
4 C „N2

�
:
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By Hölder’s inequality for Schatten norm, the fact that N0 D 1, and Young’s inequality
for the product, „N2 � „N

1=2
4 � „3 CN

3=4
4 , it gives a differential inequality for y.t/ D

1CN4.t/ of the form
y0 � C

�
M
1=4
4 C „

3
�
y3=4;

which again leads to the result by Grönwall’s lemma.

In the remainder of the section, we obtain uniform-in-„ estimate for the semiclassical
Schatten norms for � along the BdG dynamics in the case of bounded potential K for
different semiclassical scaling regimes.

Proposition 2.2. Let yK 2 L1. Suppose that �D �.t/ is a solution to equation (2.6a) with
�.0/ D �in 2 Lp . We have the following.

(i) In a regime whereN„ � C holds for some fixed C > 0, independent ofN and „,
then there exists CK > 0, dependent only on K, such that we have the estimate

k�kLp � k�in
kLpeCK t :

(ii) If � in
˛ �CNh

2d=p for some constantC independent of „, then there existsC > 0
independent of „ such that, for any t 2 Œ0; T � with T D Ch1�d=p ,

k�kLp � C and �˛ � CNh
2d=p: (2.15)

Proof. By equation (2.6a), we have

1

p

d
dt
k�k

p

Lp D
hd

p

d
dt

Tr.�p/ D
2

N 2„
Im Tr.�p�1X˛˛�/: (2.16)

Therefore, by Hölder’s inequality, we obtain the bound

d
dt
k�kLp �

4�

N 2hdC1
kX˛kL2pk˛�kL2p :

Now, it follows from the formula

X˛ D
Z

Rd

yK.!/e!˛e�! d!;

where e! is the operator of multiplication by the function e!.x/ D e�2i�!�x that

kX˛kL2p � CKk˛kL2p ; (2.17)

where CK D k yKkL1 . Therefore, by definition (2.9) and inequality (2.11), we get

d
dt
k�kLp �

2CK

N„
k�˛�˛W1kLp �

2CK

N„
k�kLp ; (2.18)

and Part (i) follows from Grönwall’s lemma.
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To prove Part (ii), we will also need to study the size of �˛ along the BdG dynamics.
By equation (2.5), cyclicity of the trace, symmetry of �˛ and K12, and equation (2.2), we
have

d
dt
�˛ D

8�hd�1

N
Im Tr.�X˛˛�/:

Again, using Hölder’s inequality and inequality (2.17), we get that

d
dt
�˛ �

4CK

N„
k�kLpk˛k2

L2p0 � 8�CKh
d�1�˛k�kLpk�˛W1kLp0 : (2.19)

Applying the Schatten space embedding inequality

k�˛W1kLp � h�d=pk�˛W1kL1 D h�d=p;

to the first inequality in formula (2.18) and to inequality (2.19) yields the following system
of differential inequalities: ´

u0 � Av;

v0 � auv;

where u.t/D k�.t/kLp and v.t/D �˛.t/ with AD 4�CK
Nh1Cd=p

large and a D 8�CKhd=p�1

small. Setting U.t/ D u.t=a/ and V.t/ D A
a
v.t=a/, it can be written as´

U 0 � V;

V 0 � UV:

It implies, for instance, that

.U 2 C V /0 D 3UV � U 3 C 2V 3=2 � 2.U 2 C V /3=2:

Hence,

.U.t/2 C V.t//�1=2 � .U.0/2 C V.0//�1=2 � t I

that is,

k�k2Lp C A�˛=a �
k�ink2

Lp C A�
in
˛ =a�

1 �
�
k�ink2

Lp C A� in
˛ =a

�1=2
at
�2 ;

and formula (2.15) follows from the fact that

a

A
D 2Nh2d=p:
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3. Proof of the main results

In this section, we prove Theorems 1.1 and 1.2, and so, we will estimate the semiclassi-
cal optimal transport pseudo-metric between solutions of the BdG equation (2.6) and the
corresponding proposed classical coupled equations (1.17) or (1.14).

3.1. A dynamics for the couplings

A coupling associated to F and �˛ is a measurable function

‡ W .z1; z2/ 7! ‡ .z1; z2/

defined for almost all .z1; z2/ 2 R2d � R2d with values in the space of bounded linear
operators acting on h˝ h such that, for almost all .z1; z2/ 2 R2d � R2d , ‡ .z1; z2/ � 0
and

h2d Trh˝h.‡ .z1; z2// D F.z1; z2/ and
“

R2d�R2d

‡ .z1; z2/ dz1 dz2 D �˛:

Then, the semiclassical optimal transport pseudo-metric between F and �˛ is

W2;„.F;�˛/ WD

�
inf

2C.F;�˛/

“
R2d�R2d

h2d Trh˝h.C .z1; z2/‡ .z1; z2// dz1 dz2

� 1
2

;

(3.1)
where C .z1; z2/ WD c.z1/˝ 1C 1˝ c.z2/, that is,

C .z1; z2/‰.x1; x2/ D
�
j�1 � x1j

2
C j�1 � p1j

2
�
‰.x1; x2/

C
�
j�2 � x2j

2
C j�2 � p2j

2
�
‰.x1; x2/:

For all  in 2C.f in;�in/ and‡ in
2C.F in;�in

˛ /, let .;‡ / be the solution to the Cauchy
problem

@t D ¹Hf ;º C
1

i„
ŒH�;�C

1

i„

�˛

N

Z
R2d

hd Tr2.ŒK12;‡ .z1; z2/�/ dz2 (3.2a)

and

@t‡ D ¹Hf12 ;‡ º C
�

N
rK.�1 � �2/ � .r�1 � r�2/‡

C
1

i„

�
H�12 CK12

�
1

N
� hd�12

�
;‡

�
C
hd

i„

�
ŒK12;�12� � hŒK12;�12�i�˛

�
‡ (3.2b)

with ..0/;‡ .0//D . in;‡ in/ and � 2 ¹ 0; 1 º. More precisely, we will set �D 0 to prove
Theorem 1.1 and � D 1 to prove Theorem 1.2. Notice that, in complete analogy with the
well-posedness theory for the system (1.14a)–(1.14b), one deduces the existence of the
coupling dynamics .;‡ /. It is then not difficult to see that, with the above equations, the
property of being a coupling is kept along the dynamics (cf. [23, Lemma 5.1]).
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3.2. Estimating the semiclassical optimal transport pseudo-metrics

Let us now define the quantities

E.t/ WD

Z
R2d

hd Tr1.c.z1/.z1// dz1; (3.3)

E‡ .t/ WD

“
R2d�R2d

h2d Tr12.C .z1; z2/‡ .z1; z2// dz1 dz2; (3.4)

where Tr1 D Trh and Tr12 D Trh˝h. Since .;‡ / is a solution to the coupling Cauchy
problem (3.2), one obtains the following equations:

dE.t/

dt
D

Z
R2d

hd Tr1
�
¹c.z1/;Hf º.z1/

�
dz1 (3.5a)

C
1

i„

Z
R2d

hd Tr1

�
Œc.z1/;

1

2
jpj2 C V��.z1/

�
dz1 (3.5b)

�
hd

i„

Z
R2d

hd Tr1
�
Œc.z1/; X��.z1/

�
dz1 (3.5c)

C
1

i„

�˛

N

“
R2d�R2d

h2d Tr12
�
Œc.z1/˝ 1; K12�‡ .z1; z2/

�
dz1 dz2; (3.5d)

and using the fact that

C .z1; z2/ŒK12;�12� � ŒC .z1; z2/;K12�12� D C .z1; z2/�12K12 �K12�12C .z1; z2/;

we can write

dE‡ .t/

dt
D

“
R2d�R2d

h2d Tr12
�
¹C .z1; z2/;Hf12º‡ .z1; z2/

�
dz1 dz2 (3.6a)

C
1

i„

“
R2d�R2d

h2d Tr12
�
ŒC .z1; z2/;H�12 �‡ .z1; z2/

�
dz1 dz2 (3.6b)

�
�

N

“
R2d�R2d

h2d Tr12
�
r�12C .z1; z2/ � rK�12‡ .z1; z2/

�
dz1 dz2 (3.6c)

C
1

i„N

“
R2d�R2d

h2d Tr12
�
ŒC .z1; z2/;K12�‡ .z1; z2/

�
dz1 dz2 (3.6d)

�
2hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�12C .z1; z2/‡ .z1; z2/

�
dz1 dz2 (3.6e)

�
hd

i„
hŒK12;�12�i�˛

“
R2d�R2d

h2d Tr12
�
C .z1; z2/‡ .z1; z2/

�
dz1 dz2:

(3.6f)

3.2.1. Estimates for E . To estimate the right-hand side of identity (3.5), let us focus
on term (3.5c) since the first two terms are already handled in [23, Theorem 2.5]. For
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term (3.5c), we notice that

Œj� � xj2; X��.x; y/ D
1

2
K.x � y/..x � y/ � 2.� � y// � .x � y/�.x; y/;

which yields the estimateˇ̌̌̌
hd

i„

Z
R2d

hd Tr1
�
Œj�1 � xj

2; X��.z1/
�

dz1

ˇ̌̌̌
� Chd�1kj�jK.�/kL1kŒx;��kL1 C Ch

d�1
kKkL1kŒx;��kL1E : (3.7)

Next, to estimate the part involving Œj� � pj2; X��, recall the identity

Œjp � �j2; X�� D .p � �/ � Œp; X��C Œp; X�� � .p � �/

D .p � �/ � XŒp;�� C XŒp;�� � .p � �/;

and the fact that, for any �2P .h/ andA;B are self-adjoint possibly unbounded operators,
we have that

Tr..AB C BA/�/ � Tr..A2 C B2/�/:

Then, it follows thatˇ̌̌̌
hd

i„

Z
R2d

hd Tr1
�
Œj�1 � pj

2; X��.z1/
�

dz1

ˇ̌̌̌
� Ch2d�2kXŒp;��k2L1 C CE : (3.8)

By inequality (2.17), Hölder’s inequality, and the continuous embedding of Schatten
spaces into Schatten spaces of higher exponent, taking into account the dependence of
the norm with respect to „, we have that

RHS (3.8) � Ch2d�2k yKk2
L1
kŒp;��k2L1 C CE

� 2C 0Kh
2d�2
kp
p
�k2L1k�kL1 C CE

� 2C 0Kh
3d=2�3

kp
p
�k2

L4k�kLd C CE

� 2C 0Kh
.3d�7/=2

�
hd Tr.jpj2�jpj2/

� 1
2 k�k

3=2

Ld C CE :

(3.9)

We proceed similarly to estimate kŒx;��kL1 in inequality (3.7); that is, we write

hd�1kŒx;��kL1 � Ch
.3d�7/=2

�
hd Tr.jxj2�jxj2/

�1=2
k�k

3=2

Ld : (3.10)

Now, combining inequalities (3.7) and (3.9), we obtain the following bound:

j(3.5c)j � CKh.3d�7/=2.M4 CN4/
1=2
k�k

3=2

Ld

C CK
�
1C h.3d�7/=2.M4 CN4/

1=2
k�k

3=2

Ld

�
E ;

where M4 D Tr.�jpj4/ and N4 D Tr.�jxj4/.
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Next, notice that

1

i„
Œc.z1/˝ 1; K12� D .�1 � p1/ � rK12 CrK12 � .�1 � p1/; (3.11)

where x2 is viewed as a constant; then, we can rewrite term (3.5d) as follows:

j(3.5d)j D
2�˛

N
Re
“

R2d�R2d

h2d Tr12
�
.�1 � p1/ � rK12‡ .z1; z2/

�
dz1 dz2

�
�˛

N

“
R2d�R2d

h2d Tr12
�
j�1 � p1j

2‡ .z1; z2/
�

dz1 dz2 (3.12a)

C
�˛

N

“
R2d�R2d

h2d Tr12
�
jrK12j

2‡ .z1; z2/
�

dz1 dz2: (3.12b)

It is clear that term (3.12a) is bounded by �˛
N

E‡ . For term (3.12b), we use the fact that
rK12 is a bounded multiplication operator of norm krK12kL1 , Hölder’s inequality, and
the fact that h2d Tr12.‡ .z1; z2// D F.z1; z2/ has integral one on R2d � R2d to deduce
that term (3.12b) is bounded by krKk2L1

�˛
N

. Hence, combining our calculations with the
result in [23], we obtain the bound

dE

dt
�
�
C 0K C CKh

.3d�7/=2.M4 CN4/
1=2
k�k

3=2

Ld

�
E C

�˛

N
E‡

C
�˛

N
krKk2L1 C CKh

.3d�7/=2.M4 CN4/
1=2
k�k

3=2

Ld ; (3.13)

where C 0K depends on the uniform bound of r2K.

3.2.2. Estimates for E‡ . To estimate the right-hand side of equation (3.6), we need the
following identities:

¹C .z1; z2/;Hf12º D ¹c.z1/;Hf .z1/º ˝ 1C 1˝ ¹c.z2/;Hf .z2/º;
ŒC .z1; z2/;H�12 � D Œc.z1/;H��˝ 1C 1˝ Œc.z2/;H��;

and

ŒC .z1; z2/;K12�12� D Œc.z1/˝ 1; K12��12 C Œ1˝ c.z2/;K12��12
CK12.Œc.z1/;��˝ 1C 1˝ Œc.z2/;��/: (3.14)

For the first term, we see that

j(3.6a)j D
“

R2d�R2d

h2d Tr12
��
¹c.z1/;Hf .z1/º ˝ 1

�
‡ .z1; z2/

�
dz1 dz2

C

“
R2d�R2d

h2d Tr12
��

1˝ ¹c.z2/;Hf .z2/º
�
‡ .z1; z2/

�
dz1 dz2

D 2

Z
R2d

hd Tr1
�
¹c.z/;Hf .z/º‡ W1.z/

�
dz;
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where
‡ W1.z1/ WD

Z
R2d

hd Tr2.‡ .z1; z2// dz2:

Then, using the same argument as in [23], we obtain the bound

j(3.6a)j � 2
�
1Cmax

�
4kr2Kk2L1 ; 1

�� Z
R2d

hd Tr1.c.z/‡ W1.z// dz

D 2
�
1Cmax

�
4kr2Kk2L1 ; 1

��
E‡ .t/:

A similar argument holds for term (3.6b) with minor modification for the term hdX� as
seen in the above estimate for term (3.5c).

The terms (3.6c) and (3.6d) follow the same argument as in the case of the term (3.5d),
that is,

j(3.6c)C (3.6d)j �
1

N

“
R2d�R2d

h2d Tr12
�
j�1 � p1j

2‡ .z1; z2/
�

dz1 dz2

C
1

N

“
R2d�R2d

h2d Tr12
�
j�2 � p2j

2‡ .z1; z2/
�

dz1 dz2

C
1

N

“
R2d�R2d

h2d Tr12
�
jrK12 � �rK�12 j

2‡ .z1; z2/
�

dz1 dz2:

If � D 1, then we use the fact that

jrK.x1 � x2/ � rK.�1 � �2/j
2
� 2kr2Kk2L1

�
jx1 � �1j

2
C jx2 � �2j

2
�

to obtain

j(3.6c)C (3.6d)j �
2max.kr2Kk2L1 ; 1/

N
E‡ .t/:

If � D 0, then we use instead the fact that rK12 is a bounded multiplication operator to
get

j(3.6c)C (3.6d)j �
1

N
.E‡ .t/C krKkL1/:

For the term (3.6f), we notice that

jhŒK12;�12�i�˛ j D jh
2d Tr12.ŒK12;�12��˛/j � CkKkL1k�kL1 I

then, this yields the bound

j(3.6f)j � Chd�1kKkL1k�kL1E‡ .t/:

Finally, to handle the term (3.6e), we start by expanding the expression

K12�12C .z1; z2/ D K12.�1c.z1/C c.z1/�2 C �1c.z2/C �2c.z2//;
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where �1 D �˝ 1 and �2 D 1˝ �. It suffices to consider the first two terms in the above
expansion since the others are handled in the exact same manner; i.e., we estimate

hd

„
Im
“

R2d�R2d

h2d Tr12.K12�1c.z1/‡ .z1; z2// dz1 dz2; (3.15a)

hd

„
Im
“

R2d�R2d

h2d Tr12.K12c.z1/�2‡ .z1; z2// dz1 dz2: (3.15b)

In the first case, notice that

hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�1j�1 � x1j

2‡ .z1; z2/
�

dz1 dz2

D
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12Œx1;�1� � .�1 � x1/‡ .z1; z2/

�
dz1 dz2

C
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�1.�1 � x1/‡ .z1; z2/ � .�1 � x1/

�
dz1 dz2;

(3.16a)

from which it follows

j(3.16a)j � Chd�1kKkL1kŒx;��kL1E
1=2
‡
C Chd�1kKkL1k�kL1E‡

� CKh
.3d�7/=2N

1=2
4 k�k

3=2

Ld C C
�
1C hd�1kKkL1k�kL1

�
E‡ ;

where the second inequality follows the same argument as in (3.9). Similarly, we see that

hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�1j�1 � p1j

2‡ .z1; z2/
�

dz1 dz2

D
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12Œp1;�1� � .�1 � p1/‡ .z1; z2/

�
dz1 dz2

� hd Re
“

R2d�R2d

h2d Tr12
�
rK12�1 � .�1 � p1/‡ .z1; z2/

�
dz1 dz2

C
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�1.�1 � p1/‡ .z1; z2/ � .�1 � p1/

�
dz1 dz2I

(3.16b)

then, by the same argument as for inequality (3.9), we have that

j(3.16b)j � Ch.3d�7/=4kKkL1k�k
3=4

LdM
1=4
4 E

1=2
‡

C ChdkrKkL1k�kL1E
1=2
‡
C Chd�1kKkL1k�kL1E‡ :

This completes the estimate for the term (3.15a).
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To estimate term (3.15b), we follow a similar idea as above. We write

hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12j�1 � x1j

2�2‡ .z1; z2/
�

dz1 dz2

D
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�2.�1 � x1/‡ .z1; z2/ � .�1 � x1/

�
dz1 dz2;

(3.17a)

from which it follows that

j(3.17a)j � Chd�1kKkL1k�kL1E‡ :

Next, we have

hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12j�1 � p1j

2�2‡ .z1; z2/
�

dz1 dz2

D
hd

„
Im
“

R2d�R2d

h2d Tr12
�
K12�2.�1 � p1/‡ .z1; z2/ � .�1 � p1/

�
dz1 dz2

� hd Re
“

R2d�R2d

h2d Tr12
�
rK12�2 � .�1 � p1/‡ .z1; z2/

�
dz1 dz2; (3.17b)

which yields

j(3.17b)j � Chd�1kKkL1k�kL1E‡ C Ch
d
krKkL1k�kL1E

1=2
‡
:

Hence, we obtain the following bound:

j(3.6e)j � C
�
1C hd�1kKkL1k�kL1 C h

d
krKkL1k�kL1

�
E‡

C CK
�
hdk�kL1 C h

.3d�7/=2.N4 CM4/
1=2
k�k

3=2

Ld

�
:

Finally, combining the above estimates, we see that there exists a constant C , depen-
dent on K, such that we have the following inequality:

d
dt

E‡ .t/ � C
0
K

�
1C h.3d�7/=2.M4 CN4/

1=2
k�k

3=2

Ld C h
d�1
k�kL1

�
E‡ .t/

C CK

�
1 � �

N
C hdk�kL1 C h

.3d�7/=2.N4 CM4/
1=2
k�k

3=2

Ld

�
: (3.18)

In the case when Nh is bounded from below by a constant independent of N and „,
then it follows from the last inequality in formula (2.11) that

hd�1k�kL1 �
1

Nh
(3.19)

is bounded uniformly in „ and N . Moreover, by Proposition 2.1 and Proposition 2.2 (ii),
we see that k�kLd ;M4; and N4 are propagated uniformly in N and „. Then, by inequal-
ities (3.13) and (3.18), we see there exists a constant CK;�, dependent on K and �, such
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that

d
dt
.E.t/C E‡ .t// � CK;�

�
1C h.3d�7/=2.M4 CN4/

1=2
�
.E.t/C E‡ .t//

C CK;�h

�
�˛ C 1

Nh
C h.3d�9/=2.N4 CM4/

1=2

�
� CK;�g1.t/.E.t/C E‡ .t//C CK;�hg0.t/;

where gi .t/ � 1C hiC.3d�9/=2.N4 CM4/
1=2. Recalling the definition (1.16) and (3.1),

we conclude the proof of Theorem 1.1 by Grönwall’s lemma.
In the case when Nh� 1, � in

˛ � CNh
2d=p , and k�inkLp � C for some constant C

independent of „, then it follows from Proposition 2.2 that there exists C > 0 independent
of „ such that, for any t 2 Œ0; T � with T D Ch1�d=p ,

hd�1k�kL1 � h
d
p0
�1
k�kLp � C:

The moments also remain propagated uniformly in „ andN in this case. Then, by inequal-
ities (3.13) and (3.18), we see there exists CK;�, depending on K and k�kLd , such that

d
dt
.E.t/C E‡ .t// � CK;�

�
1C h.3d�7/=2.M4 CN4/

1=2
�
.E.t/C E‡ .t//

C CK;�h

�
�˛

Nh
C h.3d�9/=2.N4 CM4/

1=2

�
� C 0K;�g1.t/.E.t/C E‡ .t//C C

0
K;�hg0.t/;

where gi .t/� 1C hiC.3d�9/=2.N4CM4/
1=2 for i 2 ¹0; 1º. Notice that the last inequality

is possible since �˛=.Nh/ � Ch on Œ0; T �. Again, we conclude the proof of Theorem 1.2
by Grönwall’s lemma.

4. Application to the effective approximation of quantum systems

In this section, we combine the result from the previous section and the result in [43]. To
avoid a substantial detour from the goal of the paper, we will provide a concise intro-
duction on the method of second quantization, covering only the essential definitions
necessary for stating the main result of [43, Theorem 3.3]. Also, in this section, we assume
the scaling Nhd D 1 with d D 3.

4.1. Quasi-free approximation of interacting spin-1
2

fermions

Let H denote the complex Hilbert spaceL2.X/, whereX DRd � ¹";#º. The elements of
X are expressed as ordered pairs x D .x; �/, where x 2 Rd is the spatial variable and � 2
¹";#º is called the spin label. Notice that we have the identification H Š L2.Rd /˝ C2.
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Let H^n WD H ^ � � � ^ H denote the n-fold anti-symmetric tensor product. We define the
fermionic Fock space F over H to be the closure of algebraic direct sum

F alg.H/ WD C ˚
1M
nD1

H^n

with respect to the norm k�kF induced by the endowed inner product

h‰ jˆi D  .0/'.0/ C
X
n�1

D
 .n/

ˇ̌̌
'.n/

E
H˝n

for any pair of vectors ‰ D . .0/;  .1/; : : :/ and ˆ D .'.0/; '.1/; : : :/ in F alg.H/. A
normalized vector ‰ in F is called a Fock state or a pure state. The vacuum, defined by
the vector �F D .1; 0; 0; : : :/ 2 F , describes the state with no particles.

For every x 2 X , we define the corresponding creation and annihilation operator-
valued distributions, denoted by a�x and ax, acting on F by their actions on the n-sector
of F as follows:

.a�x‰/
.n/.xn/ WD

1
p
n

nX
jD1

.�1/j�1ı.x � xj /ı�;�j 
.n�1/.xnnj /;

.ax‰/
.n/.xn/ WD

p
nC 1 .nC1/.x; xn/;

where xn WD .x1; : : : ; xn/, xnnj WD .x1; : : : ; �xj ; : : : ; xn/; and ı�;� 0 is the Kronecker delta.
Moreover, the action of the annihilation operator on the vacuum of F is defined to be
ax�F D 0. Then, we extend the operators linearly to the whole F . It can easily be checked
that the collection of creation and annihilation operators on F satisfies the canonical anti-
commutation relations

Œax; a
�
x0 �C D ı.x � x

0/ı�;� 0 ; Œax; ax0 �C D Œa
�
x ; a
�
x0 �C D 0 (4.1)

for all x; x0 2 X , where ŒA; B�C D AB C BA is the anti-commutator of the operators A
and B . Another useful operator is given by the number operator

N D

1M
nD1

n1H^n ;

which counts the number of particles in each sector.
Consider the fermionic Fock state ‰ 2 F with an expected number of particles equal

to N , i.e., h‰ jN‰iF D N . We define its one-particle reduced density operator � and its
pairing operator ˛ to be the operators with integral kernels

�.xI y/ WD
˝
‰
ˇ̌
a�y ax‰

˛
; (4.2a)

˛.x; y/ WD
˝
‰
ˇ̌
ayax‰

˛
; �˛;‰.x12I y12/ WD

1

hd�‰
˛.x1I x2/˛.y1I y2/; (4.2b)
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where �‰ D 1
N
k˛‰k

2
2 D k˛‰k

2
L2 2 Œ0; 1� is such that h2d Tr.�˛;‰/ D 1. Notice that we

have that hd TrH.�/D 1while TrH.˛/D 0. Moreover, since we are in the case of fermions,
it follows from properties (4.1) that 0 � � � 1 and ˛ is anti-symmetric. More compactly,
we introduce the generalized one-particle density operator acting on H˚ H by

�‰ WD

�
� ˛

˛� 1 � x�

�
; (4.3)

which satisfies 0 � � � 1H˚H.
We say that ‰ is a quasi-free pure state ifD

‰
ˇ̌̌
a]1x1a

]2
x2 � � � a

]2`�1
x2`�1‰

E
D 0

and D
‰
ˇ̌̌
a]1x1a

]2
x2 � � � a

]2`
x2`‰

E
D

X
�2P2`

sgn.�/
Ỳ
jD1

D
‰
ˇ̌̌
a
]�.2j�1/
x�.2j�1/a

]�.2j/
x�.2j/‰

E
for all ` 2 N, where a] denotes either a� or a and P2` is the set of pairings, that is, the
subset of permutations of 2` elements satisfying

�.2j � 1/ < �.2j/ 8j D 1; : : : ; ` and �.2j � 1/ < �.2jC 1/ 8j D 1; : : : ; ` � 1:

In other words, observables associated with product of creation and annihilation operators
of a quasi-free state are completely characterized by � and ˛. Moreover, if‰ is quasi-free,
then �‰ is a projection operator, or more precisely,

0 � � � 1; ˛� D �x̨; �˛ D ˛x�; and j˛�j2 D �.1 � �/: (4.4)

Conversely, if � is of the form (1.1) satisfying conditions (4.4) and  is a trace class
operator, then there exists a quasi-free pure state ‰ such that �‰ D � (cf. Chapter 10
or Appendix G in [48]). Furthermore, if ‰ is a quasi-free pure state with finite expected
number of particles, then there exists a unitary transformation R, parameterized by � and
˛, such that ‰ D R�F . R is a Bogoliubov transformation (cf. [48]).

Let K.x/ be a spin-independent radial function. Define the Hamiltonian in the Fock
space by

HN D

Z
X

a�x

�
�
„2

2
�x

�
ax �.dx/C

1

2N

Z
X�X

K.x � y/a�x a
�
y ayax �.dx/�.dy/;

where � is the tensor product of the Lebesgue measure on Rd and the counting measure,
and consider the time-dependent Fock state ‰.t/ D ‰ given by

‰ D e�iHN t=„‰in
D e�iHN t=„Rin�F ; (4.5)

where ‰in is some quasi-free state such that �in WD �‰in and ˛in WD ˛‰in satisfy the fol-
lowing conditions:

hd TrH.�
in/ D 1 and �˛in � CN�1=3: (4.6)
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Then, it was proved that the quadratic in creation and annihilation operators observables
of the state ‰t are well approximated by the BdG dynamics (1.5) (with spins) in norms.
More precisely, the main result in [43] states the following.

Theorem 4.1 ([43, Theorem 3.3]). Assume K 2 L1.Rd / and yK.�/.1C j�j2/ 2 L1.Rd /.
Assume that the initial data ‰in is a quasi-free state, with �in D �‰in and ˛in D ˛‰in ,
satisfying conditions (4.6). Furthermore, assume that �in and ˛in satisfy the following
commutator bounds: there exists C > 0 independent of „ such that

sup
�2Rd

1

1C j�j
kŒei��x ;�in�kL2 � C

p
„; kŒr;�in�kL2 �

C
p
„
; kŒr; ˛in�kL2 �

C

„
5
2

: (4.7)

Suppose that‰ is given by expression (4.5) and let .�; ˛/ be a solution of the BdG dynam-
ics (1.5) with initial data .�in; ˛in/. Then, there exists �1; �2 > 0, independent of N , such
that we have the estimates for any t � 0,

k�‰ � �kL2.H/ �
1
p
N

exp.�1 exp.�2t //; (4.8)

k˛‰ � ˛kL2.H/ �
1
p
N

exp.�1 exp.�2t //; (4.9)

where L2.H/ denotes the scaled Hilbert–Schmidt norm for operators on H, also given in
terms of the integral kernel by k�k2

L2.H/
D hd

R
X�X
j�.x; y/j2�.dx/�.dy/.

Remark 4.1. In the case of zero pairing, that is, when ˛D 0, the commutator bounds (4.7)
are proven to be satisfied by the ground states of noninteracting Fermi gases in [9,16,20].
In the case of ˛ ¤ 0, these bounds are expected to hold at least when ˛ is sufficiently
small (cf. [43, Appendix A]).

The L2.H/ estimates on ˛ in the above theorem imply L1.H/ estimates for �˛W1.

Corollary 4.1. For any t � 0, we have the estimate

k�˛;‰W1 � �˛W1kL1.H/ �
2e2CKh

d�1t

�˛inN
C 2t C

4eCKh
d�1tp

�˛inN
Ct ;

where Ct=
p
N is the constant appearing on the right-hand side of inequality (4.9) and

CK D kKkL1 . Similarly, we also have

k�˛;‰ � �˛kL1.H˝2/ WD h
2d Trj�˛;‰ � �˛j �

e2CKh
d�1tCtp
�˛inN

: (4.10)

Hence, if �˛in � N�c with c 2 Œ1=3; 1�, then

k�˛;‰W1 � �˛W1kL1.H/ �
4e2CKh

d�1tCt

N .1�c/=2
: (4.11)
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Proof. Since Nhd D 1, it holds �˛�˛W1 D j˛
�j2. Hence,

k�˛;‰W1 � �˛W1kL1.H/ �

�‰�˛;‰W1 � �˛�˛W1�˛


L1.H/

C
j�˛ � �‰j

�˛
k�˛;‰W1kL1.H/

�
1

�˛

�
kj˛�‰j

2
� j˛�j2kL1.H/ C j�˛ � �‰j

�
�
1

�˛

�
k˛�‰ � ˛

�
k
2
L2 C 2k˛

�
‰ � ˛

�
kL2k˛�kL2 C j�˛ � �‰j

�
:

Since k˛�k2
L2 D k˛k

2
L2 D �˛ and

j�‰ � �˛j D h
d Tr.j˛‰j2 � j˛j2/ � k˛‰ � ˛k2L2 C 2k˛‰ � ˛kL2

p
�˛;

it yields

k�˛;‰W1 � �˛W1kL1.H/ �
2

�˛
k˛‰ � ˛k

2
L2 C

4
p
�˛
k˛‰ � ˛kL2 :

To finish the proof, notice first that by equation (2.5)ˇ̌̌̌
d
dt
�˛

ˇ̌̌̌
� 2hd�1kKkL1k�kL1�˛ � 2CKh

d�1�˛; (4.12)

hence e�2CKh
d�1t�˛in � �˛ , and use the previous theorem. The proof of inequality (4.10)

is similar.

4.2. SU.2/ invariance

The presence of spin labels in the BdG equation complicates our studies of its semiclassi-
cal limit. To overcome this difficulty, we need to isolate out the spin labels from the BdG
equation (cf. [5]). We start by noting the isomorphism L2.Rd � ¹";#º/Š L2.Rd /˝C2.
In particular, we have the identification between the two spaces of bounded operators

B.L2.Rd � ¹";#º// Š B.L2.Rd //˝M2�2.C/;

i.e., a bounded operator T acting on L2.Rd � ¹";#º/ is identified with the matrix

T D

�
T"" T"#
T#" T##

�
; (4.13)

where T�� are bounded operators acting on L2.Rd /. To factor out the spins, we further
restrict ourselves to the class of � operators satisfying the following SU.2/ invariance
condition in the spin space: for every S 2 SU.2/, we have that

S��S D �; where S D
�
S 0

0 xS

�
:



J. J. Chong, L. Lafleche, and C. Saffirio 316

In terms of � and ˛, the SU.2/ invariance reads

S��S D � and S�˛ xS D ˛:

By means of elementary linear algebra, we have that � is a scalar multiple of the identity
matrix and ˛ is a scalar multiple of the second Pauli matrix

� .2/ D

�
0 �i

i 0

�
;

or, equivalently, we have that

�.x; � I x0; � 0/ D �s.x; x
0/ı�� 0 and ˛.x; �; x0; � 0/ D ˛s.x; x

0/�
.2/
�� 0 : (4.14)

By the Pauli exclusion principle, we must have that ˛s is symmetric, that is,

˛s.x; x
0/ D ˛s.x

0; x/:

We also write � D �s ˝ I , where I is the 2 � 2 identity matrix and ˛ D ˛s ˝ � .2/. Also,
notice, by expressions (4.14), the last identity of conditions (4.4) now reads

j˛�s j
2
D �s.1 � �s/: (4.15)

The physical meaning of the SU.2/ invariance is discussed in [32].
By expressions (4.14), we write

H� D
�
jpj2

2
C 2K � %s.x/ � h

dX�s

�
˝ I DW H�s ˝ I and X˛˛� D .X˛s˛

�
s /˝ I:

Then, this yields the spinless equations

i„ @t�s D ŒH�s ;�s�C X˛s x̨s � ˛sXx̨s ; (4.16a)

i„ @t˛s D H�s˛s C ˛sxH�s C h
d .X˛s .1 � x�s/ � �sX˛s /; (4.16b)

or, equivalently, in matrix form

i„ @t�s D ŒH�s ; �s�; (4.17)

where

�s D

 
�s ˛s

x̨s 1 � x�s

!
and H�s D

 
H�s hdX˛s
hdXx̨s �xH�s

!
:

Notice 0 � �s � 1 is self-adjoint and �2s D �s .
Notice that the form of the system (4.16) is almost identical to that of the system (1.5),

except for the fact that ˛s is symmetric and that there is a 2 in front of K � %s . In
particular, we could reuse the argument in Section 2 to obtain a semiclassical limit for
equations (4.16) since the discussion in Section 2 is independent of the fact whether ˛ is
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a symmetric or an anti-symmetric function. In short, Theorem 1.1 remains true for �s and
˛s . Moreover, inequalities (4.8) and (4.11) now read

k�‰ � �s ˝ IkL2.H/ �
C
p
N

exp.�1 exp.�2t //;

k�˛;‰ � �˛;s ˝ IkL1.H˝2/ �
C exp.�1 exp.�2t //

N .1�c/=2
;

if the initial state is SU.2/ invariant.

4.3. The joint mean-field and semiclassical limit

It follows from Theorem 4.1 and our main result, Theorem 1.1, that one can obtain a joint
limit from the many-body model described above to the Vlasov equation. Indeed, we start
by defining the (matrix-valued) Wigner transform for an operator T of the form (4.13) by

fT .�; �/ D
Z

Rd

e�i��y=„T

�
�C

y

2
; � �

y

2

�
dy;

i.e., take the Wigner transform of each entry of T (as, for instance, in [21]). Then, it
follows from [37, Corollary 1.1] that

kf ˝ I � f�s˝IkH�1.R2d /˝C2�2 D 2kf � f�skH�1.R2d /

� 2W2;„.f;�s/C 2.1C
p
d/
p
„;

where f�s is the Wigner transform of �s and f is the solution of the Vlasov equation.
If F�˛;s˝I denotes the Wigner transform of �˛;s ˝ I , i.e., F�˛;s˝I is a 2 � 2 matrix with
entries being functions of 4d variables, then it also follows that

kF ˝ I � F�˛;s˝IkH�1.R2d�R2d /˝C2�2 D 2kF � F�˛;skH�1.R2d�R2d /

� 2W2;„.F;�˛;s/C 2.1C
p
2d/
p
„:

On the other hand, Theorem 4.1 implies an estimate inH�1 for the Wigner transforms
since the Wigner transform is an isometry from L2 to L2, and then by the continuous
embedding L2 � H�1, we have that

kf�‰ � f�s˝IkH�1.R2d /˝C2�2 � Ckf�‰ � f�s˝IkL2.X/ D Ck�‰ � �s ˝ IkL2.H/:

Similarly, by the isometry property of the Wigner transform and the quantum Sobolev
inequality (see [38, Theorem 1]), we have that

kF�˛;‰ � F�˛;s˝IkH�6.R2d�R2d /˝C2�2 � Ck�˛;‰ � �˛;s ˝ IkL1.H˝H/:

Let us summarize the result in the following theorem.
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Theorem 4.2. Let K satisfy the conditions of Theorem 1.1 and Theorem 4.1. Assume
that the initial data have the forms �in D �in

s ˝ I and ˛in D ˛in
s ˝ �

.2/ satisfying con-
ditions (4.6). Furthermore, assume that �in

s and ˛in
s satisfy the following commutator

bounds: there exists C > 0 independent of „ such that

sup
�2Rd

1

1C j�j
kŒei��x ;�in�kL2 � C

p
„; kŒr;�in�kL2 �

C
p
„
; (4.18)

and �˛in � N�c with c 2 Œ1=3; 1�. Let .f; F / be the solutions of the system (1.17) with
initial conditions .f in; F in/ satisfying the conditions of Theorem 1.1. Then, there exist
constants C; �1; �2 > 0 and a polynomial function ƒ.t/, independent of N , such that we
have the following estimates:

kf�‰ � f ˝ IkH�1.R2d /˝C2�2 � C
exp.�1 exp.�2t //

N 1=2

C
�

W2;„.f
in;�in/CW2;„.F

in;�in
˛ /C
p
„
�
eƒ.t/;

kF�˛;‰ � F ˝ IkH�6.R2d�R2d /˝C2�2 � C
exp.�1 exp.�2t //

N .1�c/=2

C
�

W2;„.f
in;�in/CW2;„.F

in;�in
˛ /C
p
„
�
eƒ.t/:

Remark 4.2. In this case, the conditions in (4.18) together with the uniform-in-„ bound
of the total energy imply the conditions (4.7). The fact that the energy is bounded in our
case indeed follows from hypothesis (1.18).
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