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Longtime dynamics for the Landau Hamiltonian with
a time dependent magnetic field

Dario Bambusi, Benoit Grébert, Alberto Maspero, Didier Robert, and
Carlos Villegas-Blas

Abstract. We consider a modulated magnetic field, B.t/ D B0 C "f .!t/, perpendicular to a fixed
plane, where B0 is constant, " > 0 and f a periodic function on the torus Tn. Our aim is to study
classical and quantum dynamics for the corresponding Landau Hamiltonian. It turns out that the
results depend strongly on the chosen gauge. For the Landau gauge the position observable is
unbounded for “almost all” non-resonant frequencies !. On the contrary, for the symmetric gauge
we obtain that, for “almost all” non-resonant frequencies !, the Landau Hamiltonian is reducible
to a two-dimensional harmonic oscillator and thus gives rise to bounded dynamics. The proofs
use KAM algorithms for the classical dynamics. Quantum applications are given. In particular, the
Floquet spectrum is absolutely continuous in the Landau gauge while it is discrete, of finite multi-
plicity, in symmetric gauge.

Thank you, Thomas, for sharing your enthusiasm
and your joy of playing with mathematics.

1. Introduction and main results

In this paper, we study the dynamics of time dependent perturbations of the Schrödinger
equation

i@t D HA#.t/ C V.t/ ; (1.1)

where HA#.t/ is the magnetic Schrödinger operator in L2.R3/:

HA#.t/ WD
X
1�j�3

�
Dxj � A

#
j .t; x/

�2
; Dx WD i�1

@

@x
;

withA#.t;x/D .A#
1.t;x/;A

#
2.t;x/;A

#
3.t;x// a time dependent vector potential, and finally

V.t; x/ is a time dependent scalar potential. We recall that the electric field is given by
EE.t; x/D� @A

#

@t
.t; x/�rxV.t; x/ and the magnetic field by EB.t; x/Drx ^A#.t; x/. We

shall assume that the magnetic field has a fixed direction orthogonal to the plane ¹e1; e2º.
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Choosing A#
3.t; x/ � 0, then A#

1.t; x/ and A#
2.t; x/ depend only on .t; x1; x2/ and

it is enough to consider the two-dimensional magnetic Hamiltonian, with a new simpler
notation,

HA#.t/ D
�
Dx1 � A

#
1.t; x/

�2
C
�
Dx2 � A

#
2.t; x/

�2
as an operator in L2.R2/. An important particular case is the constant (in position) mag-
netic field B.t/ D .0; 0;�B.t//, for which

B.t/ D @x1A
#
2 � @x2A

#
1:

This is usually studied using either the symmetric gauge or the Landau gauge, namely

the symmetric gauge: A#
1.t; x/ D .B.t/=2/x2, A#

2.t; x/ D .�B.t/=2/x1;

the Landau gauge: A#
1.t; x/ D B.t/x2, A#

2.t; x/ D 0.

In this paper, we consider the case when B slightly fluctuates around a fix value B0 > 0:

B.t/ D B0 C "f .!t/;

where ! 2 Rn is a frequency vector, f is a periodic function real analytic on the torus Tn

and " > 0 is a small parameter.
Mathematically, the source of most of the interesting features of the Landau Hamilton-

ian rests in the fact that when " D 0 the Hamiltonian is degenerate, in the sense that it is
equivalent (unitary equivalent in the quantum case, canonically equivalent in the classical
case) to the Hamiltonian of a one-dimensional harmonic oscillator. As a result the quantum
spectrum of the system is composed just by essential spectrum and coincides with the set®

�j D 2B0.j C 1=2/ W j 2 N
¯
:

The case " ¤ 0 will be discussed in the two different gauges:

(i) the Landau gauge HL.t/ D .Dx1 � B.t/x2/
2 CD2

x2
;

(ii) the symmetric gauge HsL.t/ D .Dx1 � B.t/x2=2/
2 C .Dx2 C B.t/x1=2/

2.

Notice that, for " D 0, B.t/ D B0 hence HL and HsL are gauge equivalent, but for " ¤ 0
this equivalence is broken.

It turns out that both the main part of the Hamiltonian and the time dependent per-
turbation are quadratic polynomials in the position and the momentum variables, and this
allows to study the problems (both classical and quantum) using the ideas of [3], namely
by using classical KAM theory to conjugate the Hamiltonian to a suitable normal form
whose dynamics is easy to study. The results depend drastically of the choice of the gauge:

In case (i), provided ! is non-resonant, a condition which is fulfilled in a set of asymp-
totically full measure, we get that for "¤ 0 the position observable is unbounded as t!1
as well for the classical motion and the quantum motion. It may be surprising that for a
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dynamical system a non-resonance condition generates an instability.1 As a consequence,
in the quantum side, we prove that the Floquet spectrum is absolutely continuous.

In case (ii), we prove that for ! in a set of asymptotically full measure, the dynamics
is reducible to a harmonic oscillator with two degrees of freedom, hence with bounded
dynamics. As a consequence, in the quantum side, we prove that the Floquet spectrum is
discrete with finite multiplicity.

Notice thatHL.t/ andHsL.t/ are gauge equivalent modulo a quadratic scalar potential
(see Section 1.3). Therefore, the two models are not physically equivalent: in the two cases
we have the same magnetic field but not the same electric field.

1.1. Main result in the Landau gauge

We consider first the Landau gauge, namely,

HL.t/ D
�
Dx1 � B.t/x2

�2
CD2

x2
; B.t/ > 0; (1.2)

with B.t/ WD B0 C "f .!t/, f is real analytic on the torus Tn, yf .0/ D 0, and ! 2
Œ0; 2�/n WD D. Here and below, we denote by yf .k/ the k-th Fourier coefficients of f :

yf .k/ WD .2�/�n
Z

Tn

f .�/e�ik�� d�:

We decompose the Hamiltonian HL.t/ in (1.2) as

HL.t/ D HL CRL.!t/;

where

HL D .Dx1 � B0x2/
2
CD2

x2
;

RL.!t/ D �2"f .!t/x2.Dx1 � B0x2/C "
2f .!t/2x22 :

We denote by hL.t/ the corresponding classical Hamiltonian

hL.t; x; p/ D
�
p1 � B.t/x2

�2
C p22 D hL.x; p/C rL.!t; x; p/: (1.3)

We introduce now complex coordinates in which the classical Hamiltonian hL has the
form of a degenerate two-dimensional Harmonic oscillator. First, introduce the symplectic
variables

Q1 D
�1

B0
.p1 � B0x2/; P1 D p2;

Q2 D
�1

B0
.p2 � B0x1/; P2 D p1:

1But the phenomenon is similar to that encoded in [3, Theorem 3.3], in which the non-resonance
condition is used to eliminate from the Hamiltonian as many terms as possible, so that one remains only
with the terms actually generating the instability.
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In these variables, we have
hL D B

2
0Q

2
1 C P

2
1 :

Then we introduce the complex variables

z1 D
B0Q1 C iP1
p
2B0

; z2 D
B0Q2 C iP2
p
2B0

;

fulfilling idzi ^ dxzi D dQi ^ dPi , i D 1; 2. In these variables

hL D 2B0jz1j
2:

The link with the initial coordinates .x;p/ 2 R4 is given by .z1; z2/D �0.x;p/, where �0
is the linear symplectic transformation �0WR4 ! C2 such that

z1 D
B0
p
2B0

�
B0x2 � p1

B0

�
C i

p2
p
2B0

;

z2 D
B0
p
2B0

�
B0x1 � p2

B0

�
C i

p1
p
2B0

:

In order to state the first result, we need to define a constant c! , which is only defined
for ! fulfilling a non-resonance condition. To this end, we preliminary restrict the set of
the allowed frequencies.

Definition 1.1. The set D0 � Œ0; 2��n is the set of the frequencies ! such that there exist
positive  , � such that

j! � k C 2B0j �


1C jkj�
; 8k 2 Zn;

j! � kj �


jkj�
; 8k 2 Zn n ¹0º:

Remark that such a set has full measure in Œ0; 2��n. We now introduce

c! WD

Z
Tn

g!.�/
2 d�; (1.4)

where the function

g!.�/ WD �
1
p
2B0

X
k¤0

! � k

! � k C 2B0
yf .k/eik�� ;

is well defined for ! 2 D0 (recall that f is real analytic). Furthermore, in the following,
we will say that two polynomials are O."/ close to each other, if their coefficients are
O."/ close to each other.
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Our first result is the following.

Theorem 1.2. There exists "0 > 0 such that for j"j < "0, there exist

• an asymptotically full measure set of frequencies C" � D0 satisfying

lim
"!0

meas.D0 n C"/ D 0I

• a linear, symplectic change of variable � , depending on !, t , ", which is close to the
identity, namely � D I CO."/ uniform in the other parameters,

such that, for! 2C", the time quasiperiodic Hamiltonian hL.t;x;p/ in (1.3) is conjugated
to the constant coefficient quadratic Hamiltonian�

hL.t/ ı �
�1
0

�
ı � D b."/jz1j

2
C c."/.z2 � xz2/

2; (1.5)

where
b."/ D 2B0 CO."

2/; c."/ D c!"
2
CO."4/ (1.6)

and c! is given by (1.4).

In the new coordinates .z1; z2/ the motion is easily computed:

z1.t/ D e�ib."/tz1.0/;

=z2.t/ D =z2.0/; <z2.t/ D �4c."/=z2.0/t C<z2.0/:

Let us come back to the original coordinates .x; p/. First we remark that the Hamiltonian
on the right-hand side of (1.5) takes the form

b."/

2B0
hL.x; p/C ˛c."/p

2
1

with hL the original Landau Hamiltonian and ˛ ¤ 0 a numerical constant. As a conse-
quence, the corresponding dynamics is just given by the standard circular motion of a
particle in a magnetic field with a slightly different frequency and with superimposed a
uniform motion in the direction of x1. This uniform motion is the new effect which gives
rise to the growth of the solution. Actually this description holds in the system of coor-
dinates introduced by the KAM procedure. In the true original coordinates this motion is
slightly deformed, so that it has superimposed a small oscillation. Precisely the motion for
the quadratic Hamiltonian hL.t/ is a linear flow ˆB.t/, where we have�

x.t/

p.t/

�
D ˆB.t/

�
x.0/

p.0/

�
;

where ˆB.t/ is a real 4 � 4 symplectic matrix (it is the classical Hamiltonian flow of the
classical Hamiltonian hL.t/). Then we have the following corollary.
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Corollary 1.3. For ! 2 C" with ˛ ¤ 0, we have

x1.t/ D x1.0/C ˛c."/p1.0/t C
1

B.t/

�
p2.t/ � p2.0/

�
C a";!.t/ � x.0/C b";!.t/ � p.0/;

where ja";!.t/j C jb";!.t/j D O.1/ for 0 < " < 1 and t 2 R.
Moreover, modulo an error term of the form E

za;zb
.t/ D za.t/ � x.0/C zb.t/ � p.0/, such

that uniformly for t 2 R, ! 2 C", we have

jza.t/j C jzb.t/j D O."/;

and

p2.t/ D
p
2B0=.z1.t//; z1.t/ D e�2ibtz1.0/;

p1.t/ D p1.0/; x2.t/ D
p1.0/

B.t/
C

p
2B

3=2
0

B.t/2
<z1.t/:

In particular, if both c! and p1.0/ are not zero, then the classical flow is not bounded
as soon as " ¤ 0 is small enough.

Remark 1.4. Clearly, in view of (1.4), c! ¤ 0 holds for ! in a set of asymptotically
full measure and for f in a set of codimension 1 (e.g. in L2). For instance, by a simple
calculus one has that if f .�/ D sin.�/ (and thus n D 1) then c! ¤ 0 as soon as ! ¤ 2B0.

From the result on the classical evolution of x1.t/, we get a direct application to the
large time evolution of the quantum position observable yx1.t/. Let us explicit our nota-
tions: we denote by yxj and ypj , j D 1; 2, the position and momentum operator

yxj .x/ D xj .x/; ypj D
1

i
@

@xj
 ;  2 H1

osc;

x D .x1; x2/; p D .p1; p2/:

For r � 0, H r
osc is the weighted Sobolev space associated with the harmonic oscillator

H0 WD yp
2 C yx2:

H r
osc D

®
 2 L2.R2/ W H r=2

0  2 L2.R2/
¯
;

endowed with the norm k kr D kH
r=2
0  kL2.R2/. Recall that we are working here with

polynomials classical Hamiltonians of degree at most 2, so the correspondence classical-
quantum is exact. This means that�

yx.t/

yp.t/

�
D ˆB.t/

�
yx

yp

�
;

where .yx.t/; yp.t// is the solution of the Heisenberg equation.
Our first quantum corollary regards the existence of solutions of the quantum Landau

Hamiltonian undergoing unbounded growth of Sobolev norms. Computing ˆB.t/ and
using Corollary 1.3, we get the following.



Longtime dynamics for the Landau Hamiltonian with a time dependent magnetic field 161

Corollary 1.5. Let ! 2 C". Then

yx1.t/ D yx1 C ˛c!"
2t yp1 C .1C "

4t /
�
A";!.t/ � yx C B";!.t/ � yp

�
;

where ˛ ¤ 0 and c! is given by (1.4), and jA";!.t/j C jB";!.t/j D O.1/. In particular, if
c! ¤ 0, there exists K � 0 such that for any  2 H1

osc, we have

kyx1.t/ k0 � ˛c! t "
2
kDx1 k0 �K.1C "

4t /k k1:

In particular, if " is sufficiently small, then kyx1.t/ k0%C1 as t %C1. We also have
a lower bound for the quantum average of the time evolution of the position observable,
for  2 H

1=2
osc :

jh ; yx1.t/ ij � ˛c! t "
2
jh ;Dx1 ij �K.1C "

4t /k k1=2:

Our second corollary regards the Floquet spectrum of the time quasiperiodic Hamilton-
ian HL.t/.

Corollary 1.6. The quantum dynamics U";!.t; 0/ of HL.t/ is conjugated to the quantum
dynamics e�it zHL;";1 of the stationary Hamiltonian

zHL;";1 WD b."/.D
2
zx1
C zx21/C c."/D

2
zx2
:

Moreover, as far as b."/> 0 and c."/> 0, the spectrum �.HL;";1/ of zHL;";1 is absolutely
continuous, with thresholds at the Landau levels,

�.HL;";1/ D
[
j�0

Œb."/.j C 1=2/;C1Œ :

Proof. Denote by hL;";1 WD b."/jz1j2C c."/.z2 �xz2/2 the stationary classical Hamilton-
ian to which hL.t/ is conjugated, see (1.5). In the real coordinates .x; p/, we have

hL;";1.x; p/ D
b."/

2
.p22 C x2/

2
C
c."/

2
.x1 � p2/

2:

By the symplectic change of coordinates zx1 D x1 � p2; zp1 D p1, zx2 D x2 � p1; zp2 D p2,
we have

zhL;";1.zx; zp/ D b."/. zp
2
2 C zx2/

2
C c."/ zp21 :

The first part of the corollary follows.
For the second part notice that we have the following family of generalized eigenfunc-

tions:
‰j;�.x1; x2/ D  j .x1/eix2�

such that we have

zHL;";1‰j;� D
�
b."/.j C 1=2/C c."/�2

�
‰j;� :

Hence, we get a description of the spectrum of zHL;";1.
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1.2. Main result in the symmetric gauge

We still consider a magnetic Schrödinger operator with a time-quasiperiodic magnetic
field, i.e. B.t/ D B0 C "f .!t/ with f real analytic on the torus Tn and yf .0/ D 0, but
now in the symmetric gauge, namely

HsL.t/ D
�
Dx1 �

1

2
B.t/x2

�2
C

�
Dx2 C

1

2
B.t/x1

�2
; (1.7)

and the frequency vector ! in the set of non-resonant frequencies D0 of Definition 1.1.
We can write

HsL.t/ D HsL CRsL.!t/;

where

HsL D
�
Dx1 �

1

2
B0x2

�2
C

�
Dx2 C

1

2
B0x1

�2
;

RsL.!t/ D "f .!t/

�
x1

�
Dx2 C

B0

2
x1

�
� x2

�
Dx1 �

B0

2
x2

��
C
1

4
"2f .!t/2.x21 C x

2
2/:

We denote by hsL.t/ the corresponding classical Hamiltonian

hsL.t/ D
�
p1 �

B.t/

2
x2

�2
C

�
p2 C

B.t/

2
x1

�2
D hsL C rsL.!t/: (1.8)

We introduce the symplectic variables

p01 D x1; x02 D x2; x01 D �p1; p02 D p2;

and in these variables hsL reads

hsL D
�
x01 C

B0

2
x02

�2
C

�
p02 C

B0

2
p01

�2
:

Then in the new symplectic variables .y1; y2; �1; �2/ defined by

y1 D
1
p
B0
x01 C

p
B0

2
x02; �1 D

p
B0

2
p01 C

1
p
B0
p02;

y2 D
1
p
B0
x01 �

p
B0

2
x02; �2 D

p
B0

2
p01 �

1
p
B0
p02;

we obtain that hsL is the degenerate two-dimensional Harmonic oscillator

hsL D B0.y
2
1 C �

2
1/ D 2B0jz1j

2;

where z1 D .y1 C i�1/=
p
2, and similarly z2 D .y2 C i�2/=

p
2. We denote by �0 the

linear symplectic transformation from R4 to C2 defined by .z1; z2/ D �0.x; p/. We note
that in the complex variables the symplectic form reads:

dy1 ^ d�1 C dy2 ^ d�2 D i.dz1 ^ dxz1 C dz2 ^ dxz2/:
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In order to state the next result we introduce

d! D

Z
Tn

h.�/2 d�; (1.9)

where

h.�/ D �
1
p
2B0

X
k¤0

! � k C 2iB0
! � k C 2B0

yf .k/eik�� :

Remark 1.7. The number d! is well defined and real for ! 2 D0.

Our next result shows that, in the symmetric gauge, the perturbed classical Hamilton-
ian hsL.t/ in (1.8) is conjugated to a two-dimensional Harmonic oscillator which is non-
degenerate provided the constant d! ¤ 0.

Theorem 1.8. There exists "0 > 0 such that for j"j < "0, there exist

• an asymptotically full measure set of frequencies C" 2 D0 satisfying

lim
"!0

meas.D0 n C"/ D 0I

• a linear, symplectic change of variable � , depending on !; t; ", which is close to the
identity, namely � D I CO."/ uniform in the other parameters,

such that, for ! 2 C", and provided d! in (1.9) does not vanish,�
hsL.t/ ı �

�1
0

�
ı � D b."/jz1j

2
C d."/jz2j

2 (1.10)

with
b."/ D 2B0 CO."

2/; d."/ D d!"
2
CO."4/;

and d! is given by (1.9) and does not vanish for ! 2 C".

In the new coordinates, the motion of (1.10) is easily computed:

z1.t/ D e�ib."/tz1.0/; z2.t/ D e�id."/tz2.0/:

In particular, in the symmetric gauge, provided the constant d! in (1.9) does not vanish,
all the trajectories are bounded, contrary to what happens in the Landau gauge.

Also in this case we are able to describe the quantum flow, which in this case is uni-
formly bounded in any Sobolev space H r

osc. Let U";!.t; s/ be the quantum propagator
defined by the Hamiltonian HsL.t/ in (1.7). So we have

i@tU";!.t; s/ D HsL.t/U";!.t; s/; U";!.s; s/ D I:

Corollary 1.9. There exists "0 > 0 such that for j"j � "0, for any r > 0, there exist 0 <
cr � Cr such that if ! 2 C", for any  0 2 H r

osc, we have

crk 0kr � kU";!.t; 0/ 0kr � Crk 0kr 8t 2 R: (1.11)
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Proof. We follow the proof given in [3, Corollary 1.3]. We shall give here only the main
steps. For simpler notation, we assume that B0 D 1. Let

HsL;";1 D
b."/

2

�
. yp1 � yx2/

2
C yp22

�
C
d."/

2

�
. yp2 � yx1/

2
C yp21

�
;

and
Z1 D . yp1 � yx2/

2
C yp22 ; Z2 D . yp2 � yx1/

2
C yp21 :

Notice thatZj Dyz�j yzj . Moreover, ŒZ1;Z2�D 0, so ŒHsL;";1;Z1CZ2�D 0. ButZ1CZ2
is a non-degenerate harmonic oscillator, hence e�itHsL;";1 0 satisfies the estimates (1.11).
Then as in [3], from the classical KAM construction there exists

�";!.t; x; p/ D

�
x

p

�
� S";!.t/

�
x

p

�
;

where S";!.t/ is a symmetric matrix with uniformly bounded entries.
Let U";!.t/ D ei" O�";!.t/, we have

U";!.t; 0/ D U
�
";!.t/e

�itH";1U";!.t/:

Using [3, Theorem 2.7], uniformly in .t; "; !/, we have

zcrk kr � kU
�
";!.t/ kr �

zCrk kr ;

and we get (1.11).

Corollary 1.10. The symmetric Landau Hamiltonian HsL.t/ is reducible to a stationary
Hamiltonian HsL;";1 with a discrete spectrum with all eigenvalues of finite multiplicities
as far b."/ > 0; d."/¤ 0. Moreover, up to a linear symplectic transformation,HsL;";1 is
a combination of two one-dimensional harmonic oscillators

HsL;";1 D b."/.D
2
x1
C x21/C d."/.D

2
x2
C x22/:

Proof. Keeping the notations of the proof of Corollary 1.9, since Z1 C Z2 has compact
inverse, it has pure point spectrum and there exists a basis of eigenfunctions, which since
ŒZ1; Z2� D 0, can be chosen in such a way that they are also eigenfunctions of both Z1
and Z2. Thus, if one denotes by

�i;j D j C
1

2
; j 2 N

the eigenvalues ofZi , one has thatHsL;";1 is diagonal in the same basis, with eigenvalues

�j1;j2."/ D b."/
�
j1 C

1

2

�
C d."/

�
j2 C

1

2

�
:

So the symmetric Landau Hamiltonian HsL.t/ is reducible to a stationary Hamiltonian
HsL;";1 with a discrete spectrum with all eigenvalues of finite multiplicities as far as
b."/ > 0, d."/ ¤ 0.
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1.3. About the change of gauge

The fact that one has a completely different behavior in the case of the Landau gauge and
in the case of the symmetric gauge could seem surprising at first sight, however we remark
that they correspond to different physical situations. Indeed, the electric and the magnetic
field are given by

B D rx � A.x; t/ and E D �
@A

@t
.x; t/ � rxV.x; t/:

Thus, in the time dependent case, they differ for the case of the Landau gauge and the
case of the symmetric gauge. As is well known, there exists a gauge transformation which
allows to pass from one gauge to the other by keeping the same electromagnetic fields.
For example, the electric and magnetic fields can be chosen as

V.x; t/ D 0; A.x; t/ D B.t/.x2; 0; 0/;

or as

V.x; t/ D �
B 0.t/

2
x1x2; A.x; t/ WD

B.t/

2
.x2;�x1; 0/:

The first corresponds to the Landau gauge, while the second corresponds to the symmetric
gauge plus a scalar potential.

1.4. Related literature

Most of the literature about the Landau Hamiltonian regards the asymptotic behavior of
the perturbed spectrum under time independent perturbations, for example scalar poten-
tials in different classes. These works ensure conditions on the perturbation so that the per-
turbed spectrum is asymptotically localized around the Landau levels ¹2B0.jC1=2/ºj2N ,
a fact which is not trivial due to the infinite multiplicity of these. We mention, for example,
the works [15, 20, 21, 29–31] and references therein.

The case of time dependent perturbations, such as (1.1), is less studied. We men-
tion [8,34,35], which prove the existence of the quantum flow, and [4,22,26] giving time
upper bounds on the dynamics. The present paper aims to prove finer properties about the
quantum dynamics, and in particular investigates the dichotomy of “existence of solutions
with unbounded trajectories” vs “all trajectories are bounded”. This question has received,
in the last decade, a lot of attention.

In case of linear, time dependent Schrödinger equations, such as (1.1), the first result
about existence of solutions with unbounded paths is due to Bourgain [6] on the torus.
Recently, several works have considered non-degenerate Harmonic oscillators on Rd and
constructed time dependent perturbations in the form of pseudodifferential operators [9,
23], polynomial functions [3, 17–19], or classical potentials [11, 32], that create solutions
with unbounded trajectories. We also cite the recent results [24, 25] which prove that
generic, time periodic, pseudodifferential perturbations provoke instability phenomena.
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On the opposite side, many works prove that, when the perturbation is small in size
and quasiperiodic in time with a non-resonant frequency !, all trajectories are bounded in
Sobolev spaces. There results are based on KAM reducibility methods ensuring that the
linear propagator has operatorial norm (in Sobolev spaces) bounded uniformly in time,
in the same spirit of our Corollary 1.9. This is the case, in great generality, for systems
in one-spatial dimensions: limiting ourselves to results considering perturbations of the
Harmonic oscillator on R, we cite [1,2,7,14,33]. In a higher-dimensional setting, such as
the one of equation (1.1), there are few KAM reducibility results. We cite [10, 28] for the
Schrödinger on Td , [3, 13] for the Harmonic oscillators on Rd , [27] for the wave on Td ,
and [5, 12] for transport equations on Td .

2. Proofs of main theorems

2.1. Proof of Theorem 1.2

We prefer to work in the extended phase space in which we add the angles � 2 Tn as new
variables and their conjugated momenta I 2 Rn. So our phase space is now

Tn
�Rn �C4

3 .�; I; z1; z2/;

with C2 considered to be a real vector space. The symplectic form is dI ^ d� C idz ^ dxz
and the Hamiltonian equations of a Hamiltonian function h.�; I; z1; z2/ are

PI D �
@h

@�
; P� D

@h

@I
; Pz1 D �i

@h

@xz1
; Pz2 D �i

@h

@xz2
: (2.1)

In this framework, the Hamiltonian equation associated with the classical time-dependent
Hamiltonian function hL in (1.3) is equivalent to the autonomous Hamiltonian system
in (2.1) with

h D h0 C r1 C r2

and

h0 D ! � I C 2B0jz1j
2; (2.2)

r1 D ".z1 C xz1/
�
z1 C xz1 � i.z2 � xz2/

�
f .�/; (2.3)

r2 D
"2

2B0

�
z1 C xz1 � i.z2 � xz2/

�2
f .�/2: (2.4)

The proof of Theorem 1.2 follows a KAM strategy: we want to eliminate the angles in h
by canonical changes of variables. This canonical change of variables will be constructed
as time-1 flows, ˆ1�, of some Hamiltonian �. We begin by computing explicitly the first
two KAM steps and then we will be in position to apply a KAM theorem with symmetry,
namely Theorem 3.4. First, we construct the first change of variables and we begin by
solving a so-called homological equation.
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Lemma 2.1. Let

�1 WD i"
X

k2Znn¹0º

yf .k/eik��
�

z21
! � k C 4B0

C
xz21

! � k � 4B0
C 2

z1xz1

! � k

�
C ".z2 � xz2/

X
k2Znn¹0º

yf .k/eik��
�

z1

! � k C 2B0
C

xz1

! � k � 2B0

�
;

then �1 solves the following homological equation:

¹�1; h0º C r1 D 0: (2.5)

Proof. First recall that

¹F;Gº WD

nX
jD1

@F

@�j

@G

@Ij
�
@F

@Ij

@G

@�j
C i

X
jD1;2

@F

@zj

@G

@xzj
�
@G

@zj

@F

@xzj
:

Then we introduce

N.�; z1/ D
X

k2Znn¹0º

yf .k/eik��
�

z1

! � k C 2B0
C

xz1

! � k � 2B0

�
;

M.�; z1/ D
X

k2Znn¹0º

yf .k/eik��
�

z21
! � k C 4B0

C
xz21

! � k � 4B0
C 2

z1xz1

! � k

�
in such a way, we have

�1 D i"M C ".z2 � xz2/N:

So, since h0 in (2.2) does not depend on z2, we get

¹�1; h0º D i"¹M;h0º C ".z2 � xz2/¹N; h0º:

Then we compute

¹N; h0º D i
X

k2Znn¹0º

.k � !/ yf .k/eik��
�

z1

! � k C 2B0
C

xz1

! � k � 2B0

�
C i

X
k2Znn¹0º

yf .k/eik��
�

2B0z1

! � k C 2B0
C
�2B0xz1

! � k � 2B0

�
D i.z1 C xz1/f .�/;

and

¹M;h0º D i
X

k2Znn¹0º

.k � !/ yf .k/eik��
�

z21
! � k C 4B0

C
xz21

! � k � 4B0
C 2

z1xz1

! � k

�
C i

X
k2Znn¹0º

yf .k/eik��
�

4B0z
2
1

! � k C 4B0
C
�4B0xz

2
1

! � k � 4B0

�
D i.z1 C xz1/2f .�/;

from which (2.5) follows.
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Then since

¹�1; h0º C r1 D 0;
®
�1; ¹�1; h0º

¯
D �¹�1; r1º;

we get

h ıˆ1�1 D hC ¹�1; hº C
1

2

®
�1; ¹�1; h0º

¯
CO."3/

D h0 C
1

2
¹�1; r1º C r2 CO."

3/: (2.6)

Next we wish to compute explicitly ¹�1; r1º. In view of the expressions of �1 and r1, we
first compute

¹M; .z1 C xz1/
2
º D 2.z1 C xz1/¹M; z1 C xz1º;

¹M; .z1 C xz1/.z2 � xz2/º D .z2 � xz2/¹M; z1 C xz1º;

¹M; z1 C xz1º D 2i
X

k2Znn¹0º

yf .k/eik��
�

z1

! � k C 4B0
�

xz1

! � k � 4B0
C
xz1 � z1

! � k

�
D �8iB0

X
k2Znn¹0º

yf .k/eik��
�

z1

! � k.! � k C 4B0/
C

xz1

! � k.! � k � 4B0/

�
and

¹N; .z1 C xz1/
2
º D 2.z1 C xz1/¹N; z1 C xz1º;

¹N; .z1 C xz1/.z2 � xz2/º D .z2 � xz2/¹N; z1 C xz1º;

¹N; z1 C xz1º D �4iB0
X

k2Znn¹0º

yf .k/eik��

.! � k/2 � 4B20
:

Therefore,

¹�1; r1º D
®
i"M C ".z2 � xz2/N; ".z1 C xz1/

�
z1 C xz1 � i.z2 � xz2/

�
f .�/

¯
D 2i"2f .�/.z1 C xz1/¹M; .z1 C xz1/º C "2.z2 � xz2/f .�/¹M; .z1 C xz1/º

C 2"2f .�/.z2 � xz2/.z1 C xz1/¹N; z1 C xz1º � i"2.z2 � xz2/2f .�/¹N; z1 C xz1º

D "2f .�/
�
2i.z1 C xz1/C .z2 � xz2/

�
¹M; .z1 C xz1/º

� i"2f .�/.z2 � xz2/
�
2i.z1 C xz1/C .z2 � xz2/

�
¹N; z1 C xz1º

D "2f .�/
�
2i.z1 C xz1/C .z2 � xz2/

��
¹M; .z1 C xz1/º � i.z2 � xz2/¹N; z1 C xz1º

�
D �4i"2B0f .�/

�
2i.z1 C xz1/C .z2 � xz2/

�
�

X
k2Znn¹0º

yf .k/eik��
�

2z1

! � k.! � k C 4B0/
C

2xz1

! � k.! � k � 4B0/
� i

z2 � xz2

.! � k/2 � 4B20

�
:

(2.7)
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At the next KAM step we remove from 1
2
¹�1; r1º C r2 all the "2 terms except resonant

monomials, i.e. in our case, jz1j2 and .z2 � xz2/2. In view of the expressions (2.7), (2.4),
we thus obtain

h2 D h ıˆ
1
�1
ıˆ1�2 D h0 C a!"

2
jz1j

2
C c!"

2.z2 � xz2/
2
CO."3/; (2.8)

where

c! D �
X

k2Znn¹0º

yf .k/ yf .�k/

�
2B0

.! � k/2 � 4B20

�
�

1

2B0
hf 2i

D �

X
k2Znn¹0º

yf .k/ yf .�k/

�
2B0

.! � k/2 � 4B20
C

1

2B0

�
D �

1

2B0

X
k2Znn¹0º

yf .k/ yf .�k/
.! � k/2

.! � k/2 � 4B20
;

as stated in (1.4), while

a! D 8B0
X

k2Znn¹0º

yf .k/ yf .�k/

�
1

.! � k/..! � k/C 4B0/
C

1

.! � k/..! � k/ � 4B0/

�
C

1

B0
hf 2i

D

X
k2Znn¹0º

yf .k/ yf .�k/

�
16B0

.! � k/2 � 16B20
C

1

B0

�
D

1

B0

X
k2Znn¹0º

yf .k/ yf .�k/
.! � k/2

.! � k/2 � 16B20
:

To end the proof of Theorem 1.2, we just have to iterate this KAM step and to prove
the convergence of such a process. In particular, we will check that we only remain with
resonant monomials, i.e. in our case, jz1j2 and .z2 � xz2/2.

Concretely, Theorem 1.2 is obtained by applying Theorem 3.4 to the Hamiltonian (2.8)
taking �1 WD 2B0C a!"2, c0 WD c!"2, and "0 WD "3. We stress that the difference between
the estimate (3.6) in Theorem 3.4 and the estimate (1.6) in Theorem 1.2 is due to the
specific form of r in (2.3) and the fact that yf .0/ D 0.

2.2. Proof of Theorem 1.8

We still work in the same framework as in Section 2.1, i.e. in the extended phase space in
which we add the angles � 2 Tn as new variables and their conjugated momenta I 2 Rn.
So our phase space is still Tn �Rn �C2 3 .�; I; z1; z2/ (see (2.1)).

In this framework the Hamiltonian equation associated with the classical time depen-
dent Hamiltonian function (1.8) hsL.t/ is equivalent to the autonomous Hamiltonian sys-
tem (2.1) with h D h0 C r , where

h0 D ! � I C 2B0jz1j
2 and r D rsL.�/:
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To compute explicitly this term, in the coordinates introduced in Section 1.2, recall that

x2 D x
0
2 D

1
p
B0
.y1 � y2/ D

1
p
2B0

�
z1 C xz1 � .z2 C xz2/

�
;

x1 D p
0
1 D

1
p
B0
.�1 C �2/ D

1

i
p
2B0

�
z1 � xz1 C .z2 � xz2/

�
;

p1 �
B0

2
x2 D �x

0
1 �

B0

2
x02 D �

p
B0y1 D �

p
B0
p
2
.z1 C xz1/;

p2 C
B0

2
x1 D p2 �

B0

2
�1 D

p
B0�1 D

p
B0

i
p
2
.z1 � xz1/:

Therefore, r.�/ reads

r.�/ D "f .�/
�
y1.y1 � y2/C �1.�1 C �2/

�
C

"2

4B0
f .�/2

�
.y1 � y2/

2
C .�1 C �2/

2
�

D
"

2
f .�/

�
.z1 C xz1/

�
z1 C xz1 � .z2 C xz2/

�
� .z1 � xz1/

�
z1 � xz1 C .z2 � xz2/

��
C

"2

8B0
f .�/2

��
z1 C xz1 � .z2 C xz2/

�2
�
�
z1 � xz1 C .z2 � xz2/

�2�
D "r1 C "

2r2:

We follow the same strategy than in the previous section and we are interested by the
quadratic terms in z2, xz2 after the second KAM step. At the first step (at order "), we do
not have such terms (in r1), and thus we eliminate all the terms of order " by a symplectic
change of variables ˆ1�1 , where �1 is the solution to the homological equation

¹�1; hsLº D �r1:

Since
r1 D �"f .�/.z1z2 C xz1xz2/C quadratic terms in z1; xz1;

we take (with � D 2B0)

�1 D �i"
X
k¤0

yf .k/eik��
�

z2z1

k � ! C �
C

xz2xz1

k � ! � �

�
C quadratic terms in z1, xz1:

Then, using (2.6), the quadratic terms in z2, xz2 after the second KAM step come from the
quadratic terms in z2, xz2 in 1

2
¹�1; r1º and in r2. From r2, we get

"2f .�/2

4B0
z2xz2;

and from 1
2
¹�1; r1º, we get

�
1

2
"2f .�/

X
k¤0

yf .k/eik��
�
xz2z2

k � ! C �
�

z2xz2

k � ! � �

�
:
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Now the second KAM step will eliminate all eik��z2xz2 for k ¤ 0, and therefore, like
in (2.8), we obtain

h2 D h ıˆ
1
�1
ıˆ1�2 D ! � I C .2B0 C a"

2/jz1j
2
C d!"

2
jz2j

2
CO."3/; (2.9)

where

d! D
1

4B0

X
`

yf .`/ yf .�`/C
X
`¤0

yf .`/ yf .�`/
2B0

.` � !/2 � 4B20

D
1

4B0

X
`¤0

yf .`/ yf .�`/
.` � !/2 C 4B20
.` � !/2 � 4B20

;

as stated in (1.9). Then, if d! ¤ 0, h2 appears as a perturbation of the non-degenerate
Hamiltonian .2B0 C a"2/jz1j2 C d!"2jz2j2, and we can apply Theorem 3.5.

3. Proofs of the two reducibility theorems

In this section, we prove the two reducibility theorems that we need to conclude the proofs
of Theorem 1.2 and Theorem 1.8.

First, it is useful to change the notation in order to make clear that the variable xz is
not necessarily the complex conjugate of z: we only have to define the concept of real
submanifold of the phase space and it depends on the variables we use (see Definition 3.1
and Remark 3.3 below for more details).

So, first of all we define

�j WD zj ; �j WD xzj ; j D 1; 2: (3.1)

Definition 3.1. For .�; �/ 2 C 4, define the involution

.�; �/ 7! I.�; �/ D .x�; x�/;

the states .�; �/ such that .�; �/ D I.�; �/ will be said to be real.

Remark 3.2. The Hamiltonians we are dealing with are real when .�; �/ is real.

In order to deal with the Hamiltonian (2.8) whose expansion up to order "2 only
depends on z1, xz1 and z2 � xz2, it is useful to introduce the following canonical change
of variables

� 02 WD �2 � �2; �02 WD �2: (3.2)

In these variables (and omitting primes) (2.8) reads

h2 D ! � I C .2B0 C a!"
2/�1�1 C c!"

2�22 CO."
3/:
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Remark 3.3. In these variables, the involution I takes the form (omitting the primes)

.�1; �1; �2; �2/ 7! I.�1; �1; �2; �2/ � .x�1; x�1; x�2; �2 � �2/ (3.3)

and the real submanifold reads: �1 D N�1, �2 is real and 2<.�2/ D �2.
In all the situations we will encounter the Hamiltonian is independent of �2, therefore the
fact that the reality condition becomes more complicate will be completely irrelevant. Of
course, in the following a Hamiltonian expressed in the variables (3.2) will be said to be
real if it takes real values for real .�; �/, i.e. for .�; �/ which are fixed points with respect
to the involution (3.3).

The first theorem we will prove concerns quasiperiodic in time Hamiltonians of the
form

h"0.t; �; �/ D �1�1�1Cc0�
2
2 C "0q.!t; �1; �1; �2/; (3.4)

where q is a polynomial in .�1; �1; �2/ homogeneous of degree 2 with coefficients that
depend quasiperiodically on time. The important point is that q does not depend on �2.
In the following, for � > 0, we denote Tn

� WD ¹x C iy W x 2 Tn; y 2 Rn; jyj � �º.

Theorem 3.4. Assume that �1 > 0 and that Tn � C4 3 .�; �/ 7! q.�; �/ 2 C is a poly-
nomial in .�1; �1; �2/ homogeneous of degree 2, independent of �2, with coefficients real
analytic in � 2 Tn

� for some � > 0 (i.e. real when .�; �/ is real and � 2 Tn). Then there
exists "� > 0 and C > 0, such that for j"0j < "�,

• there exists a set E"0 � .0; 2��
n with meas..0; 2��n n E"0/ � C"

1=9
0 ;

• for any ! 2 E"0 , there exists an analytic map � 7!A!.�/ 2 sp.2/, such that the change
of coordinates

.� 0; �0/ D eA!.!t/.�; �/ (3.5)

conjugates the Hamiltonian equations of (3.4) to the Hamiltonian equations of a hom-
ogeneous polynomial

h1.�; �/ D �1."0/�1�1 C c."0/�
2
2

with
j�1."0/ � �1j � C"0; jc."0/ � c0j � "0: (3.6)

Finally, A! is "0-close to zero and eA!.!t/ leaves invariant the space of real states.

The second reducibility theorem deals with Hamiltonians of the form (in the original
variables (3.1))

h".t; �; �/ D �1�1�1 C �2�2�2 C "
3q.!t; �1; �1; �2; �2/ (3.7)

in which one has that the frequencies depend on ! 2 D and " and fulfill

c � j�1.!/j � C; c"2 � j�2.!/j � C"
2; j@!�1j; j@!�2j � C"

2; (3.8)
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with some positive c; C . So it is designed to deal with Hamiltonian (2.9). The difference
with the standard KAM context is that the second frequency is of order "2 while the pertur-
bation is of order "3. The following theorem says that the standard conclusion still holds
true, i.e. that the inhomogeneous Hamiltonian system associated with (3.7) is reducible
for almost all values of !:

Theorem 3.5. Assume (3.8) and that Tn �C4 3 .�; �;�/ 7! q.�; �;�/2C is a polynomial
in .�1; �1; �2; �2/ homogeneous of degree 2, with coefficients analytic in � 2 Tn

� for some
� > 0 and taking real values when � 2 Tn and � is the complex conjugate of �. Then there
exists "� > 0 and C > 0, such that for j"j < "�,

• there exists a set E" � .0; 2��
n with meas..0; 2��n n E"/ � C"

1=9;

• for any ! 2 E", there exists an analytic map � 7! A!.�/ 2 sp.2/ such that the change
of coordinates

.� 0; �0/ D eA!.!t/.�; �/

conjugates the Hamiltonian equations of (3.4) to the Hamiltonian equations of a hom-
ogeneous polynomial

h1.�; �/ D z�1."/�1�1 C z�2."/�2�2

with
jz�j ."/ � �j j � C"

3; j D 1; 2:

Finally, A! is "-close to zero.

In the remainder of this section, we give the details of the proof of Theorem 3.4 while
we only point out the small changes needed to prove Theorem 3.5.

In fact, the proof of Theorem 3.4 is very standard, but since we are dealing with a
degenerate Hamiltonian h0, we have to be a little careful. The fact that the perturbation q
is independent of �2 is crucial here. If not, the Poisson bracket ¹h; �º could generate new
quadratic terms in .�2; �2/ and the iteration could diverge.

3.1. General strategy

The canonical change of variables is constructed by applying a KAM strategy to the fol-
lowing Hamiltonian:

h.y; �; �; �/ D ! � y C �0�1�1 C "q.!t; �1; �1; �2/

in the extended phase space Rn � Tn � C2 endowed with the standard symplectic form
dy ^ d� C id� ^ d�. We will say that the Hamiltonian h is in normal form if it reads

h.y; �; �; �/ D ! � y C a�1�1 C c�
2
2 D ! � y CN.�/; (3.9)

where a and c are real constants (independent of � ).
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Let q � q! be a polynomial Hamiltonian homogeneous of degree 2. We write

q.�; �; �/ D
X
˛;ˇ

q˛;ˇ .�/�
˛�ˇ ; (3.10)

where the coefficients q˛;ˇ .�/ are analytic functions of � 2 Tn
� , we used the standard

notation
�˛�ˇ WD �

˛1
1 �

˛2
2 �

ˇ1
1 �

ˇ2
2 ;

and according to the independence on �2 and the fact that this must be a quadratic poly-
nomial, one has the restrictions

ˇ2 D 0; j˛j C jˇj D 2: (3.11)

The size of such polynomial function depending analytically on � 2 Tn
� and C 1 on

! 2 D � .0; 2��n will be controlled by the norm

Œq��;D WD sup
j=� j<�;!2D
˛;ˇ; jD0;1

j@j!q˛;ˇ .�/j;

and we denote by Q.�;D/ the corresponding class of Hamiltonians of the form (3.10)–
(3.11), whose norm Œ���;D is finite.

Let us assume that Œq��;D D O."/. We search for � � �! 2 Q.�;D/ with � D O."/
such that its time-one flow ˆ� � ˆ

tD1
� transforms the Hamiltonian hC q into�

hC q.�/
�
ıˆ� D hC C qC.�/ 8! 2 DC;

where hC D ! � y CNC.�/ is a new normal form, "-close to h, and the new perturbation
qC 2 Q.�C;DC/ is of size2 O."3=2/, and DC � D is an open set "˛-close to D for some
˛ > 0. As a consequence of the Hamiltonian structure we have that�

hC q.�/
�
ıˆ� D hC ¹h; �º C q.�/CO."

3=2/:

So to achieve the goal above we should solve the homological equation:

¹h; �º D hC � h � q.�/CO."
3=2/; ! 2 DC:

Repeating iteratively the same procedure with hC instead of h, we will construct a change
of variable ˆ such that �

hC q.�/
�
ıˆ D h1; ! 2 D1

with h1 D ! � y C N.�; �/ in normal form and D1 a "˛-close subset of D. Note that
we will be forced to solve the homological equation, not only for the original normal

2Formally we could expect qC to be of size O."2/ but the small divisors and the change of analyticity
domain will led to O."3=2/.
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form h0 D ! � y C ��1�1, but for more general normal form Hamiltonians (3.9) with
N.�/D a�1�1 C c�

2
2 close to N0 D ��1�1. To control this closeness we define a norm on

N D a�1�1 C c�
2
2 as follows:

kN k WD max
�
jaj; jcj

�
:

The key remark is that 8q 2 Q.�;D/, one has ¹�2I qº � 0.

3.2. Homological equation

Proposition 3.6. Let D � D0. Let D 3 ! 7! N.!/ be a C 1 mapping that verifies@j!�N.!/ �N0� � min.1; �0/
4

(3.12)

for j D 0; 1 and ! 2 D. Let h D ! � y C N.�/, q 2 Q.�;D/ , � > 0 and K � 1. Then
there exists an open subset D0 D D0.�;K/ � D, satisfying

meas.D nD0/ � 4d2K2n�; (3.13)

and there exist �; r 2
T
0�� 0<� Q.� 0;D0/ and zN in normal form such that for all ! 2 D0,

¹h; �º C q D zN C r:

Furthermore, for all 0 � � 0 < � ,

Œr�� 0;D0 � C
e�

1
2 .���

0/K

.� � � 0/n
Œq��;D; (3.14)

Œ��� 0;D0 �
C

�2.� � � 0/n
Œq��;D; (3.15)

k@j!
zN.!/k � Œq��;D j D 0; 1; 8! 2 D: (3.16)

The constant C depends on n.

Proof. As usual we consider the “homological operator” L WD ¹h I �º and decompose the
space Q.�;D/ on the basis of its eigenfunctions. Such a basis is given by the monomials

�˛�ˇeik� ;

where ˛ and ˇ are subject to the restrictions (3.11). The corresponding eigenvalues are

i
�
�1.˛1 � ˇ1/C ! � k

�
; (3.17)

while Ker.L/ D span¹�22 ; �1�1º. So, decomposing q as in (3.10), and expand the coeffi-
cients in Fourier series:

q˛;ˇ .�/ D
X
k2Zn

yq˛;ˇ .k/e
ik� ;
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then one is led to define

�˛;ˇ .�/ D
X
jkj�K

yq˛;ˇ .k/

i.�1.˛1 � ˇ1/C ! � k/
eik� ;

where, for ˛ D .1; 0/, ˇ D .1; 0/ and for ˛ D .0; 0/, ˇ D .2; 0/ the sum is restricted to
k ¤ 0. We also define

zN WD yq1;0;1;0.0/�1�1 C yq0;2;0;0.0/�
2
2 ;

r.�; �; �/ WD
X

jkj>K;˛;ˇ

yq˛;ˇ .k/�
˛�ˇeik� ;

so that the homological equation is satisfied. Still it remains to prove the estimates of the
various terms. We give explicitly the estimate of �. To this end, we have to control the
small denominators (3.17) under the restriction

j˛1 � ˇ1j C jkj ¤ 0; jkj � K; ˛1 C ˇ1 � 2:

We define D0 to be the set for which the above small denominators are bigger than �. In
order to estimate its measure we recall the following classical lemma.

Lemma 3.7. Let f W Œ0; 1� 7! R be a C 1-map satisfying jf 0.x/j � ı for all x 2 Œ0; 1� and
let � > 0. Then

meas
®
x 2 Œ0; 1� W jf .x/j � �

¯
�
�

ı
:

Since j@!.k � !/.k=jkj/j D jkj � 1, using condition (3.12), we getˇ̌̌
@!
�
k � ! C �1.˛1 � ˇ1/

�� k
jkj

�ˇ̌̌
�
1

2
: (3.18)

Using (3.18) and Lemma 3.7, for any fixed k, we conclude that

jk � ! C �1.˛1 � ˇ1/j > �;

outside a set Fk;˛;ˇ of measure � 2d2� (the case k D 0 being evident), so that if F is the
union of Fk;˛;ˇ for jkj < K and as ˛ and ˇ vary, we have

meas.F / � 4K2nd2�:

Thus, defining D0 � D0.�;K/ D D n F , for all ! 2 D0, 0 � � 0 < � and � 2 Tn
� 0 , we get

j�˛;ˇ .�; !/j �
C

�.� � � 0/n
sup
j=� j<�

jq˛;ˇ .�/j:

The estimates for the derivatives with respect to ! are obtained by differentiating the
definition of � (for more details see, for instance, [16]).
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3.3. Iterative lemma

Theorem 3.4 is proved by an iterative KAM procedure. We begin with the initial Hamil-
tonian h0 C q0, where

h0.y; �; �; �/ D ! � y C �0�1�1Cc0�
2
2 ;

and q0 D "0q 2 Q.�0;D0/, D0 D Œ"; 2��n. Then we construct iteratively the change of
variables ˆ�m , the normal form hm D ! � y C �m�1�1 C cm�

2
2 and the perturbation qm 2

Q.�m;Dm/ as follows: Assume that the construction is done up to step m � 0, then

(i) using Proposition 3.6 we construct �mC1.!;�/, zNm.!/, rmC1.!;�/ and DmC1 �
Dm such that

¹h; �mC1º D zNm � qm C rmC1; ! 2 DmC1; � 2 Tn
�mC1

;

where 0 < �mC1 < �m has to be chosen later;

(ii) we define hmC1 D ! � y CNmC1 by

NmC1 D Nm C zNm;

and

qmC1 D rmC1 C

Z 1

0

®
.1 � t /.hmC1 � hm C rmC1/C tqm; �mC1

¯
ıˆt�mC1 dt:

(3.19)

For any regular Hamiltonian f , using the Taylor expansion of g.t/D f ıˆt�mC1 between
t D 0 and t D 1, we have

f ıˆ�mC1 D f C ¹f; �mC1º C

Z 1

0

.1 � t /
®
¹f; �mC1º; �mC1

¯
ıˆt�mC1 dt:

Therefore, for ! 2 DmC1, we get

.hm C qm/ ıˆ�mC1 D hmC1 C qmC1:

Following the general scheme above, for all m � 0, we have

.h0 C q0/ ıˆ
1
�1
ı � � � ıˆ1�m D hm C qm:

At stepm the Fourier series are truncated at orderKm and the small divisors are controlled
by �m. Now we specify the choice of all the parameters for m � 0 in term of "m which
will control Œqm�Dm;�m .

First we define �0 D � , and for m � 1 we choose

�m�1 � �m DC��0m
�2;

Km D2.�m�1 � �m/
�1 ln "�1m�1;

�m D"
1=8
m�1;

where .C�/�1 D 2
P
j�1 1=j

2.
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Lemma 3.8. There exists "� > 0 depending on d , n such that, for

j"0j � "� and "m D "
.3=2/m

0 ; m � 0;

we have the following: For all m � 1, there exist an open set Dm � Dm�1, functions
�m; qm 2 Q.Dm; �m/ and Nm in normal form such that

(i) the mapping

ˆm.�; !; �/ D ˆ
1
�m
WC2
! C2; ! 2 Dm; � 2 T�m

is a linear isomorphism, C 1 in ! 2 Dm, analytic in � 2 Tn
�m

, linking the Hamil-
tonian at step m � 1 and the Hamiltonian at step m, i.e.

.hm�1 C qm�1/ ıˆm D hm C qm; 8! 2 DmI

(ii) we have the estimates

meas.Dm�1 nDm/ � "
1=9
m�1; (3.20)@j!�Nm.!/ �Nm�1.!/� � "m�1; j D 0; 1; ! 2 Dm; (3.21)

Œqm��m;Dm � "m; (3.22)

kˆm.�; !; �/ � Id kL.C2/ � "
1=2
m�1; � 2 Tn

�m
; ! 2 Dm: (3.23)

Proof. At step 1, h0 D ! � y C �0�1�1 and thus hypothesis (3.12) is trivially satisfied and
we can apply Proposition 3.6 to construct �1, N1, r1 and D1 such that for ! 2 D1,

¹h0; �1º C q0 D N1 �N0 C r1:

Then, using (3.13), we have

meas.D nD1/ � CK
2n
1 �1 � "

1=9
0

for " D "0 small enough. Using (3.15), for "0 small enough, we have

Œ�1��1;D1 � C
1

�21.�0 � �1/
n
"0 � "

1=2
0 :

Similarly, using (3.14) and (3.16), we have

kN1 �N0k � "0;

and

Œr1��1;D1 � C
"20

.�0 � �1/n
� "

3=2
0

for " D "0 small enough. In particular, we deduce kˆ1.�; !; �/ � Id kL.C2/ � "
1=2
0 . Thus

using (3.19), for "0 small enough, we get

Œq1��1;D1 � "
3=2
0 D "1:
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Now assume that we have verified Lemma 3.8 up to step m. We want to perform the
step mC 1. We have hm D ! � y CNm, and since

kNm �N0k � kNm �Nm�1k C � � � C kN1 �N0k �

m�1X
jD0

"j � 2"0;

hypothesis (3.12) is satisfied and we can apply Proposition 3.6 to construct DmC1, �mC1
and qmC1. Estimates (3.20)–(3.23) at step mC 1 are proved as we have proved the corre-
sponding estimates at step 1.

3.4. Transition to the limit and proof of Theorem 3.4

Let
E" WD

\
m�0

Dm:

In view of (3.20), this is a Borel set satisfying

meas.D n E"/ �
X
m�0

"1=9m � 2"
1=9
0 :

Let us denote ‰N .�; !; �/ D ˆ1.�; !; �/ ı � � � ı ˆN .�; !; �/. Due to (3.23), for M � N
and for ! 2 E", � 2 Tn

�=2
, it satisfies

k‰N .�; !; �/ �‰M .�; !; �/kL.C2/ �

NX
mDM

"1=2m � 2"
1=2
M :

Therefore, .‰N .�; !; �//N is a Cauchy sequence in L.C2/. Thus whenN !1 the maps
‰N .�; !; �/ converge to a limit mapping ‰1.�; !; �/ 2 L.C2/: Furthermore, since the
convergence is uniform on ! 2 E" and � 2 Tn

�=2
, .!; �/! ‰11.�; !; �/ is analytic in �

and lipschitzian in !. Moreover,

k‰1.�; !; �/ � Id kL.C2/ � "
1=2
0 :

By construction, the map ‰m.�; !; !t/ transforms the original Hamiltonian

h".t; �; �/ D N0.�; �/C "q.!t; �; �/; N0.�; �/ D �0�1�1

into
Hm.t; �; �/ D Nm.�; �/C qm.!t; �; �/:

When m!1, by (3.22) we get qm ! 0, and by (3.21) we get Nm ! N , where

N � N.!/ D N0 C

C1X
kD1

zNk DW �.!; "/�1�1 C c.!; "/.�2 � �2/:
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Further for all ! 2 E", using (3.21), we have

kN.!/ �N0k �

1X
mD0

"m � 2":

Let us denote ‰1.�/ D ‰11.�; !; �/. Denoting the limiting Hamiltonian h1.�; �/ D
N1.�; �/, we have

h"
�
�;‰1.�/.�; �/

�
D h1.�; �/; � 2 T ; .�; �/ 2 C2d ; ! 2 D":

Finally, we show that the linear symplectomorphism ‰1 can be written as (3.5). To begin
with, write each Hamiltonian �m constructed in the KAM iteration as

�m.�; �; �/ D
1

2

�
�

�

�
�Ec Bm.�/

�
�

�

�
; Ec WD

�
0 �i
i 0

�
;

where Bm.�/ is a skew-adjoint matrix of dimension 4 � 4 of size "m. Then ‰m has the
form

‰m.�; �; �/ D e
Bm.�/.�; �/:

The following lemma is proved analogously to [3, Lemma 3.5].

Lemma 3.9. There exists a sequence of Hamiltonian matrices Al .�/ such that

‰1 ı � � � ı‰l .�; �; �/ D e
Al .�/.�; �/ 8� 2 C2:

Furthermore, there exists a Hamiltonian matrix A!.�/ such that

lim
l!C1

eAl .�/ D eA1.�/; sup
j Im � j��=2

kA!.�/k � C";

and for each � 2 Tn,

‰.�; �; �/ D eA!.�/.�; �/ 8� 2 C2:

This concludes the proof of Theorem 3.4.

3.5. Changes for proving Theorem 3.5.

The main change needed for the proof of Theorem 3.5 rests in Proposition 3.6. Indeed one
has to assume the right-hand side of (3.12) to be smaller than a small constant times "2 and
the conclusion changes in the fact that at the denominator of the right-hand side of (3.15)
instead of �2, one gets

min¹"2; �2º:

In the next lines we are going to prove this version of Proposition 3.6.
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Indeed, the proof of Proposition 3.6 goes exactly in the same way, except that now the
eigenvalue (3.17) are substituted by

i
�
�1.˛1 � ˇ1/C �2.˛2 � ˇ2/C ! � k

�
with the only selection rule

j˛ � ˇj C jkj ¤ 0; jkj � K:

The estimates of the small divisors are obtained exactly in the same way as far as

j˛1 � ˇ1j C jkj ¤ 0;

however when such a quantity vanishes the modulus of the small divisor becomes

j2�2j � c"
2

(remark that in this case the normal form contains span¹�1�1º). Concerning contribution
of the terms with this denominator to the derivative with respect to !, remark that the
involved terms are

�22
2i�2

; �
�22
2i�2

(multiplied by a constant). Thus the derivative with respect to, say !i of the coefficient of
one of these terms gives, by (3.8),ˇ̌̌

�
1

2�22

@�2

@!i

ˇ̌̌
� C"�2;

which proves the claimed statement.
Then also the iterative lemma changes. Actually, only few first steps change, for which

one has at the first step
min¹"2; �2mº D "

2
I

it is easy to see that with the choices just before the statement of Lemma 3.8, after a finite
number of steps one has min¹"2; �2mº D �

2
m, and therefore after this step the iteration can

be repeated exactly in the same way as in the previous case.
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