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Transformation of the Gibbs measure of the cubic NLS
and fractional NLS under an approximated

Birkhoff map

Giuseppe Genovese, Renato Lucà, and Riccardo Montalto

Abstract. We study the Gibbs measure associated to the periodic cubic nonlinear Schrödinger equa-
tion. We establish a change of variable formula for this measure under the first step of the Birkhoff
normal form reduction. We also consider the case of fractional dispersion.

Dedicated to the memory of Thomas Kappeler

1. Introduction

We study the cubic non-linear Schrödinger equation with fractional dispersion ˛ > 0

@tu D i.jDxj
2˛uC � juj2u/; x 2 T WD R=.2�Z/; (1.1)

where � D ˙1, depending on the defocusing or focusing character of the equation: for
� D 1, equation (1.1) is defocusing, whereas for � D �1, it is focusing. The operator
jDxj

˛ is the Fourier multiplier defined by jDxj˛.einx/ D jnj˛einx, n 2 Z. One is typically
interested in the regime 1

2
< ˛ � 1, with ˛ D 1 being the usual cubic NLS equation and

˛ D 1
2

the cubic half wave equation. The main results of this paper are for ˛ 2 Œx̨; 1�,

where x̨ WD 1C
p
97

12
� 0:9.

As ˛ varies, equation (1.1) describes a Hamiltonian (for ˛ D 1 in fact integrable) PDE
with energy

H .˛/.u/ WD

Z
T
jjDxj

˛uj2 C
�

2

Z
T
juj4dx: (1.2)

To these energies one associates infinite dimensional Gibbs measures �˛ absolutely con-
tinuous with respect to the Gaussian measures z
˛.du/ restricted to some L2-ball:

�˛.du/ WD e
� �2 kuk

4

L4 z
˛.du/I (1.3)

see (1.6) below and the surrounding discussion for the definition of z
˛.du/. These are
central objects in this note. The construction of �1 was achieved in the seminal papers of
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Lebowitz–Rose–Speer [26] and Bourgain [8]. For fractional ˛, one can follow the same
procedure, the only delicate point being the integrability of the term e

� �2 kuk
4

L4 with respect
to z
˛ in the focusing case. This is achieved in the subsequent Proposition 5.8.

The aim of this paper is to study how the measures �˛ transform under the action of a
given canonical transformation which removes the non-resonant part of the Hamiltonian
(1.2) up to terms of order juj6. We call the reduced Hamiltonian Birkhoff normal form and
the reducing transformation approximate Birkhoff map. For general Hamiltonian systems
a classical theorem of Birkhoff establishes the existence of a canonical transformations
putting the Hamiltonian in normal form up to a remainder of a given arbitrary order (see,
for instance, [25, Theorem G.1]). The construction of such maps has been exploited in
infinite dimension for many Hamiltonian PDEs in different contexts, starting from the
pioneering papers [1,4,9]. Without trying to be exhaustive, we also mention several more
recent extensions to PDEs in higher space dimension and to quasi-linear PDEs, see [2, 3,
5–7, 11–13, 15, 23, 28].

One nice feature of the approximate Birkhoff map is that it can be expressed as a
Hamiltonian flow. Let us introduce it. Consider

ˆNt W EN ! EN ; EN WD span
®
eijx W jj j � N

¯
defined by the system of ODEs

d

dt
.ˆNt .u//.n/ DX
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

jj1j
2˛Cjj2j

2˛�jj3j
2˛�jnj2˛¤0

��

.jj1j2˛ C jj2j2˛ � jj3j2˛ � jnj2˛/
ˆNt .u/.j1/ˆ

N
t .u/.j2/ˆ

N
t .u/.j3/:

We are interested in the Birkhoff map/flowˆt WDˆ1t and, more specifically, in the 1-time
shift ˆ1, that we abbreviate to ˆ in order to simplify the notations. Clearly, the Birkhoff
map also depends on ˛, but for notational simplicity, we will not keep track of that in the
manuscript. This transformation acts on the Hamiltonian as follows:

H .˛/Œˆu� D kjDxj
˛uk2

L2
C
�

2
kuk4

L2
CR.˛/Œu�;

with R.˛/Œu� D O.juj6/ being a remainder which has a zero of order six at u D 0. This
identity can be easily justified for sufficiently regular functions, for instance, for u 2 H s ,
s > 1=2, see, e.g., [4].

Next, we shortly introduce z
˛ . Let ¹gnºn2Z be a sequence of independent, identic-
ally distributed complex centred Gaussian random variables with unitary variance. We
consider the random Fourier seriesX

n2Z

gn

.1C jnj2˛/
1
2

einx: (1.4)
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If ˛ > 1=2, this defines a function on L2.T / for almost all realisations of the sequence
¹gnºn2Z. Thanks to separability and the isomorphism between C2NC1 and

EN WD spanC¹e
inx
W jnj � N º; (1.5)

the space L2.T / inherits the measurable-space structure by a standard limit procedure
and we will denote by B.L2.T // the Borel � -algebra on L2.T /. The Gaussian measure
on B.L2.T // induced by (1.4) is denoted by 
˛ . The triple .L2.T /;B.L2.T //; 
˛/ is a
Gaussian probability space satisfying the concentration properties:

z
˛

� \
s<˛� 12

H s.T /

�
D 1; z
˛

�
H˛� 12 .T /

�
D 0:

The expectation value with respect to 
˛ is always indicated by E˛ .
Finally, we introduce the restriction of 
˛ to a ball of L2.T / as

z
˛.A/ WD 
˛.A \ ¹kukL2 � Rº/; A 2 B.L2.T // (1.6)

for some R > 0. The measure z
˛ proves useful since the L2 norm is preserved by equa-
tion (1.1).

Now, we are ready to give our main theorem (recall (1.3)).

Theorem 1.1. Let x̨ WD 1C
p
97

12
� 0:9, ˛ 2 .x̨; 1�. The approximated Birkhoff map ˆt

is well-posed for all t 2 Œ0; 1� for z
˛-almost all initial data. Moreover, ˆ D ˆ1 leaves
quasi-invariant the Gibbs measure �˛ . More precisely, given s 2 .2 � 2˛; ˛ � 1

2
/ and

A � H s.T / such that A 2 B.L2.T //, the quantityZ
A

exp
�
�

Z 1

0

d

d�
.H .˛/Œˆ� .u/�/d�

�
�˛.du/ (1.7)

is well defined and equals �˛.ˆ.A//.

The proof is based on the Tzvetkov argument for quasi-invariance [29] and the method
of [19] for the transported density (for other ways of determining the density, see [10,
17]). In particular, we exploit crucially that the approximated Birkhoff map is given by a
Hamiltonian flow, a property which is not enjoyed by the global Birkhoff map.

The restriction on ˛ in Theorem 1.1 arises from the probabilistic analysis (see Propos-
ition 5.1), but it is necessary in order to justify the dynamics as well (see Proposition 6.3).
We do not assign any special meaning to this range .x̨; 1�, x̨ WD 1C

p
97

12
� 0:9.

The restriction s > 2 � 2˛ is used in order to prove local well-posedness in H s of
the truncated (over the Fourier modes) Birkhoff map with estimates that are uniform
with respect to the truncation (see Lemma 4.1). It is not unusual when dealing with
fractional dispersion: similar conditions appear in the case of the flow of the fractional
Schrödinger equation also in [14, 16–18]. This assumption plays no role in the first part
of our Theorem 1.1, where the flow is proved to be almost surely well-posed, as H s for
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2 � 2˛ < s < ˛ � 1
2

has full z
˛ measure. However, it is relevant to determine the right
� -field we are allowed to use for quasi-invariance in the second part of Theorem 1.1. Our
result can be probably extended to include the case s D 2 � 2˛. For simplicity, we do not
attempt that here, but remark that from our proof it follows that s � 0 if ˛ D 1.

We stress that if ˛ < 1, showing that the flow of the approximate Birkhoff map is
globally well defined is quite a non-trivial task. By a direct application of the Bourgain
probabilistic globalisation method [8], we prove here global well-posedness of the flow-
map for almost all data inH .˛�1=2/� with respect to the Gibbs measure; however, it is not
clear to us how to do that deterministically, since we cannot prove local well-posedness
for data in L2 and the L2 norm is the sole conserved quantity at our disposal when ˛ < 1.

Equation (1.1) is completely integrable for ˛ D 1. In the defocusing case, exploit-
ing the complete integrability it is possible to construct a map, so-called global Birkhoff
map, which trivialises equation (1.1) and transforms the energies into non-linear Sobolev
norms [22] (alternatively the method of the paper [27] can also be applied to this con-
text). Our approximate Birkhoff map can be though of as a local approximation of the
global Birkhoff map, which is accurate about the origin. Constructing the global Birkhoff
map for a Hamiltonian PDE is a very challenging task, which has been achieved only
in few cases, namely, by Kappeler and Pöschel for the KdV equation [25], by Grebért
and Kappeler for the defocussing NLS equation [22], by Gérard, Kappeler, and Topalov
for the Benjamin–Ono equation [20, 21]. In the recent preprint [30], Tzvetkov exhibits
a large class of invariant measures with respect to the Benjamin–Ono flow (including
Gaussian-based measures), using the global Birkhoff map of Gérard, Kappeler and Topa-
lov. However, these measures are constructed on the image space of the map (that is, they
are given in terms of Birkhoff coordinates) and the author conjectures that the Birkhoff
map acts on Gibbs measure in a quasi-invariant way (see [30, Conjecture 3.1]). In the same
spirit, we conjecture that a change of variable formula similar to the one of Theorem 1.1
can be proved for map reducing the Hamiltonian in normal forms of any order. We plan to
further investigate this topic in future works.

The paper is organised as follows. The Birkhoff normal form reduction is given in
Section 2 along with a crucial estimate on the derivative along the Birkhoff flow of the
Hamiltonian at time zero. In Section 3, we give the necessary deterministic estimates on
the Birkhoff flow for ˛ D 1, while the ones for fractional ˛ are given in Section 4. In
Section 5, we give the necessary probabilistic estimates. Section 6 is devoted to the proof
of the quasi-invariance and here we also prove the probabilistic global well-posedness
of the Birkhoff flow for ˛ > x̨, x̨ WD 1C

p
97

12
� 0:9. We establish the formula for the

transported density in Section 7.

Notations

Given a function u W T ! R, we denote by f .n/ its Fourier coefficient

u.n/ WD
1

2�

Z
T
u.x/e�inxdx; n 2 Z:
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We define the Sobolev norms H s of f as

kuk2H s WD

X
n2Z

.1C jnj2s/ju.n/j2:

We also define the Fourier–Lebesgue norm for any p � 1

kukFL0;p D

�X
n2Z

ju.n/jp
� 1
p

:

A ball of radius R and centred in zero in the H s topology is denoted by Bs.R/. We drop
the subscript for s D 0 (ball of L2). We write h�i WD .1C j � j2/1=2. We write X . Y if
there is a constant c > 0 such that X � cY and X ' Y if Y . X . Y . We underscore
the dependency of c on the additional parameter a writing X .a Y . C; c always denote
constants that often vary from line to line within a calculation. AC B is the Minkowski
sum of the sets A;B , namely, AC B WD ¹x C y W x 2 A; y 2 Bº. We denote by …N the
standard orthogonal projection

…N .u/ WD
X
jnj�N

u.n/einx; …?N WD Id �…N ;

where u.n/ is the nth Fourier coefficient of u 2 L2. Also, we denote the Littlewood–Paley
projector by �0 WD …1, �j WD …2j �…2j�1 , j 2 N.

We will use the well-known tail bounds for sequences of independent centred Gaussian
random variables X1; : : : ; Xd (see, for instance, [31]): the Hoeffding inequality

P

� dX
iD1

jXi j � �

�
� C exp

�
� c

�2

d

�
(1.8)

and the Bernstein inequality

P

�ˇ̌̌̌ dX
iD1

jXi j
2
�E

� dX
iD1

jXi j
2

�ˇ̌̌̌
� �

�
� C exp

�
� cmin

�
�;
�2

d

��
: (1.9)

2. The Birkhoff Normal form transformation

In this section, we introduce the finite dimensional approximated Birkhoff transformation
studied in this paper. To do so, we present some more notations.

Given the Hamiltonian function F the associated Hamilton equations are written as

@tU D XF .U /;
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where U WD .u; Nu/ 2 L2.T / WD L2.T / � L2.T / and the Hamiltonian vector field XF is
given by

XF .U / WD

�
ir NuF .U /

�iruF .U /

�
D JrUF .U /;

rUF .U / D .ruF .U /;r NuF .U //; J WD

�
0 i

�i 0

�
:

(2.1)

We also define, for any s � 0, H s.T / WDH s.T /�H s.T /. Given two Hamiltonian func-
tions F ;G W L2.T /! R, we define the Poisson bracket

¹F ;G º.U / WD DUF .U /ŒJrG .U /�: (2.2)

Given G W L2.T /! R such that its Hamiltonian vector field XF W H
s.T /! H s.T /,

s � 0, we denote by ˆF
t its Hamiltonian flow, namely,´

@tˆ
F
t .U / D XF .ˆ

F
t .U //;

ˆF
0 .U / D U:

Given a function G , one has that

G ıˆF
t D G C t¹G ;F º CRt ; Rt WD

Z t

0

.t � �/¹¹G ;F º;F º ıˆF
� d�: (2.3)

Given a Hamiltonian F WH s.T /!R, we define the truncated Hamiltonian FN WD FjEN ,
EN WD EN �EN (recall (1.5)), and the truncated Hamiltonian vector field is given by

XFN .U / WD …NXF .…NU/: (2.4)

The truncated Hamiltonian flow ˆ
FN
t W EN ! EN then solves´

@tˆ
FN
t .U / D XFN .ˆ

FN
t .U //;

ˆ
FN
0 .U / D U;

U 2 EN :

Let us now define the Birkhoff map. We set

FN � F
.˛/
N

;

F
.˛/
N
WD X
jn1j;jn2j;jm1j;jm2j�N
n1Cn2Dm1Cm2

jn1j
2˛Cjn2j

2˛¤jm1j
2˛Cjm2j

2˛

��

2i.jn1j2˛ C jn2j2˛ � jm1j2˛ � jm2j2˛/
u.n1/u.n2/ Nu.m1/ Nu.m2/:

(2.5)
The flow-map ˆNt WD ˆ

FN
t W EN ! EN defined by the system of ODEs

d

dt
.ˆNt .u//.n/

D

X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

jj1j
2˛Cjj2j

2˛¤jj3j
2˛Cjnj2˛

��

.jj1j2˛ C jj2j2˛ � jj3j2˛ � jnj2˛/
u.j1/u.j2/ Nu.j3/ (2.6)
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is Hamiltonian with respect to FN (with canonical Poisson brackets). We call this finite
dimensional Birkhoff flow and we set

ˆN D .ˆNt /tD1:

Recall that we omit the dependence on ˛ in the energy and in the Birkhoff flow map.
The following lemma is a classical fact.

Lemma 2.1. Let ˛ 2 .1=2; 1�. The Hamiltonian FN satisfies

¹kjDxj
˛…NukL2 ;FN .u/º C

�

2
k…Nuk

4
L4
D �k…Nuk

4
L2
: (2.7)

Proof. A direct computation gives

¹kjDxj
˛…Nuk

2
L2
;FN º C

�

2
k…Nuk

4
L4

D
�

2

X
jj1j;:::;jj4j�N
j1Cj2Dj3Cj4

jj1j
2˛Cjj2j

2˛Djj3j
2˛Cjj4j

2˛

u.j1/u.j2/ Nu.j3/ Nu.j4/: (2.8)

For ˛ D 1, we note that under the constraint j1 C j2 D j3 C j4, one obtains that

j 21 C j
2
2 � j

2
3 � j

2
4 D 2.j3 � j2/.j1 � j3/:

Therefore, if j 21 C j
2
2 � j

2
3 � j

2
4 D 0, then either j2 D j3 or j1 D j3. If j2 D j3, then

j1 C j2 � j3 � j4 D 0 gives j1 D j4. Similarly, if j1 D j3, then j2 D j4. The same
extends to fractional ˛ 2 .1=2; 1� thanks to [16, Lemma 2.4]. Indeed, this lemma implies
that if j1 C j2 � j3 � j4 D 0, one has the lower boundˇ̌

jj1j
2˛
C jj2j

2˛
� jj3j

2˛
� jj4j

2˛
ˇ̌

� C jj1 � j4jjj2 � j4jj
2˛�2
max ; jmax WD max¹jj1j; jj2j; jj3j; jj4jº

for some constant C > 0. This latter bound implies that if jj1j2˛ C jj2j2˛ � jj3j2˛ �
jj4j

2˛ D 0, then ¹j1; j2º D ¹j3; j4º. Therefore, the right-hand side of (2.8) takes the form

�
X

jj j;jj 0j�N

ju.j /j2ju.j 0/j2 D �k…Nuk
4
L2
:

3. The flow of the Birkhoff map for the cubic NLS

Here, we analyse the well-posedness of the Birkhoff flow. The case ˛ D 1 is easier to
deal with and will be presented first. We first provide some estimates on the Hamiltonian
vector field XFN .
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Lemma 3.1. Let ˛ D 1 and N 2 N [ ¹1º.
(i) For any � � 0 and for any u 2 H � .T /, it is

kXFN .u/kH� . kuk2
L2
kukH� : (3.1)

(ii) For any � � 0 and for any u; v 2 H � .T /, it is

kXFN .u/ �XFN .v/kH� . ku � vkH� .kuk2H� C kvk
2
H� /:

Proof. The Hamiltonian vector field is

XFN D .ir NuFN ;�iruFN /

and one computes, by recalling formula (2.5), that

@ Nu.n/FN .u/ D
X

jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

j 21Cj
2
2¤j

2
3Cn

2

� i

2.j 21 C j
2
2 � j

2
3 � n

2/
u.j1/u.j2/ Nu.j3/

D

X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

� i

2.j3 � j2/.j1 � j3/
u.j1/u.j2/ Nu.j3/:

Then, in order to deduce the desired estimates in (i)–(ii), it is enough to prove that the
trilinear form T defined by

T Œu; v; '� WD
X
n2Z

TnŒu; v; '�e
inx;

TnŒu; v; '� WD
X

jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

� i

2.j3 � j2/.j1 � j3/
u.j1/v.j2/'.j3/

(3.2)

is continuous on H � .T / and satisfies

kT Œu; v; '�kH� .� kukH� kvkL2k'kL2 C kukL2kvkH� k'kL2

C kukL2kvkL2k'kH� 8u; v; ' 2 H � .T /: (3.3)

One has

kT Œu; v; '�k2H� D

X
n2Z

hni2� jTnŒu; v; '�j
2

.
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

hni�

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
:
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By using that n D j1 C j2 � j3, one gets that hni� .� hj1i� C hj2i� C hj3i� , implying
that

kT Œu; v; '�k2H� .� T1 C T2 C T3;

T1 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

1

jj3 � j2jjj1 � j3j
hj1i

�
ju.j1/jjv.j2/jj'.j3/j

�2
;

T2 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

1

jj3 � j2jjj1 � j3j
ju.j1/hj2i

�
jjv.j2/jj'.j3/j

�2
;

T3 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

1

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jhj3i

�
j'.j3/j

�2
:

The estimate of T1; T2; T3 is similar, hence, we concentrate on the estimate for T1. By
using the Cauchy–Schwarz inequality, one obtains that, for any n 2 Z,X
j1;j22Z

1

hj1 � nihj2 � ni
hj1i

�
ju.j1/jjv.j2/jj'.j1 C j2 � n/j

.
� X
j1;j22Z

hj1i
2�
ju.j1/j

2
jv.j2/j

2
j'.j1 C j2 � n/j

2

� 1
2
� X
j1;j22Z

1

hj1 � ni2hj2 � ni2

� 1
2

.
� X
j1;j22Z

hj1i
2�
ju.j1/j

2
jv.j2/j

2
j'.j1 C j2 � n/j

2

� 1
2
� X
k1;k22Z

1

hk1i2hk2i2

� 1
2

.
� X
j1;j22Z

hj1i
2�
ju.j1/j

2
jv.j2/j

2
j'.j1 C j2 � n/j

2

� 1
2

:

Thus, T1 can be estimated as

T1 .
X
n2Z

X
j1;j22Z

hj1i
2�
ju.j1/j

2
jv.j2/j

2
j'.j1 C j2 � n/j

2

.
X
j12Z

hj1i
2�
ju.j1/j

2
X
j22Z

jv.j2/j
2
X
n2Z

j'.j1 C j2 � n/j
2

j1Cj2�nDk

.
X
j12Z

hj1i
2�
ju.j1/j

2
X
j22Z

jv.j2/j
2
X
k2Z

j'.k/j2

. kuk2H� kvk
2
L2
k'k2

L2
:

By similar arguments, one can show that

T2 . kuk2
L2
kvk2H� k'k

2
L2
; T3 . kuk2

L2
kvk2

L2
k'k2H� ;
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implying the estimate (3.3). Hence, the items (i) and (ii) follow since r NuFN D T Œu; u; Nu�,
and thus,

r NuFN .u/ � r NvFN .v/

D T Œu; u; Nu� � T Œv; v; Nv� D T Œu � v; u; Nu�C T Œv; u � v; Nu�C T Œv; v; u � v�:

The foregoing lemma implies that the flow ˆNt D ˆ
FN
t is well defined in H � .T / for

any � � 0. This follows by a standard Picard iteration. In particular, the following lemma
holds.

Lemma 3.2. LetN 2N [ ¹1º. For any u0 2 L2.T /, there exists a unique local solution
u 2 C 1.R; L2.T // which solves the Cauchy problem´

@tu.t/ D XFN .u.t//;

u.0/ D u0:

Thus, the flow ˆNt W L
2.T /! L2.T / is a well defined C 1 map. Moreover, for all � � 0,

u0 2H
� .T / and all T > 0 theH � norm is controlled as ku.t/kH� � CeCT ku0kH� , we

have u 2 C 1.Œ�T; T �; H � .T // and the flow ˆt
FN
W H � .T /! H � .T / is a well defined

C 1 map for any � 2 Œ�T; T �.

Proof. The local existence follows by a standard fixed point argument on the Volterra
integral operator

u.t/ 7! �.u/.t/ WD u0 C

Z t

0

XFN .u.�//d�

in the closed ball°
u 2 C 0.Œ�ı; ı�;H � .T // W kukL1T H�

x
WD sup

t2Œ�ı;ı�

ku.t/kH� � R
±
:

This fixed point argument requires that R is larger than ku0kH� and ıR2 � 1. If u is a
fixed point for � , one also immediately gets that u 2 C 1.Œ�ı; ı�; H � .T //. For L2 initial
data, the argument to globalize the solution is standard. The exponential control of theH �

norm up to arbitrary time T > 0 follows again looking at the Volterra integral operator and
using (3.1). Once we know that the H � norm does not blow-up in finite time we can also
extend the local H � flow to arbitrary times T > 0.

Lemma 3.3. Let s � 0, T > 0,R> 0,N 2N [ ¹1º. Assume that kwN kL2 ;kvN kL2 �R.
Then, for jt j . T it holds

kˆNt .v/ �ˆ
N
t .w/kH s .R;T kv � wkH s : (3.4)

Proof. The argument easily follows using Lemma 3.2, the inequalities of Lemma 3.1 and
the Duhamel representation of truncated flows. By time reversibility, the same bound holds
for the inverse flow. This ends the proof.
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We now prove the convergence of the flow of the truncated vector field to the one of
the non-truncated vector field. The flow ˆt D ˆ

F
t is the flow of the Hamiltonian vector

fieldXF , whereas the flow ofˆNt Dˆ
FN
t is the flow associated to the Hamiltonian vector

field XFN (recall (2.1)) where FN .u/ D F .…Nu/.

Lemma 3.4. Let u0 2 L2.T /. It holds

sup
�2Œ�1;1�

kˆ� .u0/ �ˆ
N
� .…Nu0/kL2 ! 0 as N !C1: (3.5)

Moreover, if K � L2.T / is compact, then

sup
u02K

sup
�2Œ�1;1�

kˆ� .u0/ �ˆ
N
� .…Nu0/kL2 ! 0 as N !C1: (3.6)

Proof. Recalling (2.4) and by setting uN WD …Nu, one has

XF .u/ �XFN .uN / D XF .u/ �…NXF .uN /

IdD…NC…?N
D …?NXF .u/C…NXF .u/ �…NXF .uN /

D R0N .u/CRN .u/; where

R0N .u/ WD …NXF .u/ �…NXF .uN /; RN .u/ WD …
?
NXF .u/:

(3.7)

The latter computation is needed in order to estimate the difference of the solutions of the
following Cauchy problem. Given U0 2 L2.T /, we consider´

@tu D XF .u/;

u.0/ D u0;

´
@tuN D XFN .uN /;

uN .0/ D …Nu0;
(3.8)

with sup�2Œ�1;1� kuN kL2 � R and sup�2Œ�1;1� kukL2 � R for some R � 0. By (3.7), one
obtains that ıN WD u � uN satisfies the following problem:´

@�ıN D R0N .u/CRN .u/;

ıN .0/ D …
?
Nu0:

(3.9)

This implies that

ıN .�/ D …
?
Nu0 C

Z �

0

R0N .u.z; �//dz C

Z �

0

RN .u.z; �//dz;

since sup�2Œ�1;1� kuN kL2 � R and sup�2Œ�1;1� kukL2 � R, by applying Lemma 3.1 item
.i i/, one obtains that for any z 2 Œ�1; 1�

kR0N .u.z; �//kL2 .
�

sup
�2Œ�1;1�

kuN kL2 C sup
�2Œ�1;1�

kukL2
�2
kıN kL2 . R2kıN kL2 ;

implying that ıN .�/ satisfies the integral inequality

kıN .�/kL2 � k…
?
Nu0kL2 C

Z 1

�1

kRN .u.z; �//kL2dz C CR
2

ˇ̌̌̌ Z �

0

kıN .z/kL2dz

ˇ̌̌̌
:
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By the Grönwall inequality, one then gets that

sup
�2Œ�1;1�

kıN kL2 D sup
�2Œ�1;1�

kıN .�/kL2 .R k…?Nu0kL2 C
Z 1

�1

kRN .u.z; �//kL2dz:

Clearly,
…?Nu0 ! 0 as N !1 in L2.T / (3.10)

in L2.T /. We will show that Z 1

�1

kRN .u.z; �//kL2dz ! 0 (3.11)

as N ! C1. This can be proved by the Lebesgue dominate convergence. Indeed, again
by applying Lemma 3.1 (i), one gets that for any � 2 Œ�1; 1�

kXF .u.�//kL2 . ku.�/k3
L2

. R3:

This implies that, for any � 2 Œ�1; 1�,

…?NXF .u.�//! 0 as N !1 in L2.T / (3.12)

and
sup
N2N

sup
�2Œ�1;1�

kRN .u.�//kL2 . R3:

Therefore, equation (3.11) follows by dominated convergence. This completes the proof
of (3.5). To show (3.6), we note that the sequences (3.10)–(3.12) are monotone and that
the functions

.U0; �/ 2 .K; Œ�1; 1�/! ˆt .u0/ �ˆ
N
t .u0/

are continuous (by Lemma 4.3), thus, the point-wise convergence to zero is promoted to
uniform convergence by using the Dini criterion.

Recall that we are abbreviating ˆ D .ˆt /jtD1 and ˆN D .ˆNt /jtD1.

Lemma 3.5. Let A be a compact set in the L2.T / topology. For all " > 0, we can find N"
sufficiently large so that

ˆ.A/ � ˆN .AC B."// 8N > N": (3.13)

Proof. Set
‰N .v/ WD .ˆ

N /�1ˆ.v/:

Then, equation (4.15) follows once we prove that for all v 2 A and all " > 0 there is N"
large enough such that

kv �‰N .v/kL2.T/ < " for all N > N": (3.14)
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Indeed, assuming (3.14), we have for any v 2 A

‰N .v/ 2 v C B."/ � AC B."/I

thus,
ˆ.v/ D ˆN‰N .v/ 2 ˆ

N .v C B."//;

which readily implies (3.13). The proof of (3.14):

kv �‰N .v/kL2.T/ D k.ˆ
N /�1ˆN .v/ � .ˆN /�1ˆ.v/kL2.T/

.R kˆN .v/ �ˆ.v/kL2.T/;

where we used Lemma 3.3 and the fact that the L2 norms of ˆN .v/ and of ˆ.v/ are
bounded by kvkL2 D R. By Lemma 3.4 for all " > 0, there is a N" such that

kˆN .v/ �ˆ.v/kL2.T/ � ";

and (4.16) is proved.

4. The flow of the Birkhoff map for the fractional NLS

In this section, we prove local well-posedness for the flow of the Birkhoff map associated
to the fractional NLS, i.e., ˛¤ 1. We will do it for ˛ > 3

4
, that is sufficient for our purposes.

Let us shorten

ˆ.j1; j2; j3/ WD j
2˛
1 C j

2˛
2 � j

2˛
3 � n

2˛ with n D j1 C j2 � j3:

We will crucially use the following lower bound (see, for instance, [16, Lemma 2.4]):

jˆ.j1; j2; j3/j & jj1 � j3jjj2 � j3j.hj1i C hj2i C hj3i/�.2�2˛/: (4.1)

Lemma 4.1. Let ˛ > 3
4

and N 2 N [ ¹1º. Then, the following holds.
(i) For any s � 2 � 2˛, for any u 2 H s.T /,

kXFN .u/kH s .s kuk2H skukL2 : (4.2)

(ii) For any s � 2 � 2˛, for any u; v 2 H s.T /, one has

kXFN .u/ �XFN .v/kH s . ku � vkH s .kuk2H s C kvk
2
H s /:

Proof. The Hamiltonian vector field is XFN D .ir NuFN ;�iruFN /, and one computes
that

@ NunFN D
X

jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

j 2˛1 Cj
2˛
2 ¤j

2˛
3 Cn

2˛

� i

2ˆ.j1; j2; j3/
u.j1/u.j2/ Nu.j3/:
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Then, in order to deduce the desired estimates in .i/-.i i/, it is enough to prove that
the trilinear form T defined by

T Œu; v; '� WD
X
n2Z

TnŒu; v; '�e
inx;

TnŒu; v; '� WD
X

jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

� i

2ˆ.j1; j2; j3/
u.j1/v.j2/'.j3/

is continuous on H s for s � a D 2 � 2˛, namely,

kT Œu; v; '�kH s .s kukH skvkH sk'kL2 C kukH skvkL2k'kH s C kukL2kvkH sk'kH s :

(4.3)
We have

kT Œu; v; '�k2H s

D

X
n2Z

hni2sjTnŒu; v; '�j
2

(4.1)
.
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

hni� .hj1i C hj2i C hj3i/
a

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
:

By using that n D j1 C j2 � j3, one gets that hnis .� hj1is C hj2is C hj3is , implying
that

kT Œu; v; '�k2H� .s T1 C T2 C T3;

T1 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

.hj1i C hj2i C hj3i/
ahj1i

s

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
;

T2 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

.hj1i C hj2i C hj3i/
ahj2i

s

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
;

T3 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

.hj1i C hj2i C hj3i/
ahj3i

s

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
:

The estimates of T1; T2; T3 can be done similarly, hence, we estimate only the term T1.
The term T1 can be split into three terms, namely,

T1 . A1 C A2 C A3;

A1 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

hj1i
sCa

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
;



Quasi-invariance under the Birkhoff map 41

A2 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

hj1i
shj2i

a

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
;

A3 WD
X
n2Z

� X
jj1j;jj2j;jj3j�N
j1Cj2�j3Dn

hj1i
shj3i

a

jj3 � j2jjj1 � j3j
ju.j1/jjv.j2/jj'.j3/j

�2
:

The terms A1; A2; A3 are estimated by similar techniques, hence, we only provide an
estimate of A1. By the triangular inequality, one has

hj1i
sCa
D hj1i

s
hj1i

a . hj1is.hj3ia C hj1 � j3ia/
. hj1ishj3iahj1 � j3ia:

The latter inequality, together with the Cauchy–Schwarz inequality implies that for any
n 2 ZX

j1;j22Z

1

hj1 � nihj2 � ni1�a
hj1i

s
ju.j1/jjv.j2/jhj1 C j2 � ni

a
j'.j1 C j2 � n/j

.
� X
j1;j22Z

hj1i
2s
ju.j1/j

2
jv.j2/j

2
hj1 C j2 � ni

2a
j'.j1 C j2 � n/j

2

� 1
2

�

� X
j1;j22Z

1

hj1 � ni2hj2 � ni2.1�a/

� 1
2

.
� X
j1;j22Z

hj1i
2s
ju.j1/j

2
jv.j2/j

2
hj1 C j2 � ni

2a
j'.j1 C j2 � n/j

2

� 1
2

�

� X
k1;k22Z

1

hk1i2hk2i2.1�a/

� 1
2

.
� X
j1;j22Z

hj1i
2s
ju.j1/j

2
jv.j2/j

2
hj1 C j2 � ni

2a
j'.j1 C j2 � n/j

2

� 1
2

by using that 2.1 � a/ > 1. Thus, A1 can be estimated as

A1 .
X
n2Z

X
j1;j22Z

hj1i
2s
ju.j1/j

2
jv.j2/j

2
hj1 C j2 � ni

2a
j'.j1 C j2 � n/j

2

.
X
j12Z

hj1i
2s
ju.j1/j

2
X
j22Z

jv.j2/j
2
X
n2Z

hj1 C j2 � ni
2a
j'.j1 C j2 � n/j

2

j1Cj2�nDk

.
X
j12Z

hj1i
2s
ju.j1/j

2
X
j22Z

jv.j2/j
2
X
k2Z

hki2aj'.k/j2

. kuk2H skvk
2
L2
k'k2a

s�a

. kukH skvkL2k'kH s :
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By similar arguments, one can estimate A2; A3; T2; T3, and hence, one obtains the bound
(4.3). Hence, the items (i) and (ii) follow since r NuFN D T Œu; u; Nu�, and thus,

r NuFN .u/ � r NuFN .v/ D T Œu; u; Nu� � T Œv; v; Nv�

D T Œu � v; u; Nu�C T Œv; u � v; Nu�C T Œv; v; u � v�:

The latter lemma implies that the flow ˆNt D ˆ
FN
t is well defined in H s.T / for any

s � 2� 2˛ when ˛ > 3=4. This follows by a standard Picard iteration. More precisely, the
following lemma holds.

Lemma 4.2. Let ˛ > 3=4 andN 2N [ ¹1º. For any u0 2H s.T /, s � 2� 2˛, ku0kH s �

R, there exist a time T˛ D T˛.R/ D c˛
R2
> 0, c˛ � 1, and a unique local solution u 2

C 1.Œ�T˛; T˛�;H
s.T // which solves the Cauchy problem´

@tu.t/ D XFN .u.t//;

u.0/ D u0:

Thus, the flow ˆNt W H
s.T / ! H s.T /, t 2 Œ�T˛; T˛� is a well defined C 1 map and

ku.t/kH s . ku0kH s . In the case where ˛ D 1, one has that T˛ D 1.

Proof. The local existence follows by a standard fixed point argument on the Volterra
integral operator

u.t/ 7! �.u/.t/ WD u0 C

Z t

0

XFN .u.�//d�

in the closed ball°
u 2 C 0.Œ�T˛; T˛�;H

s.T // W sup
jt j<T˛

kukH s WD sup
t2Œ�T˛ ;T˛ �

ku.t/kH s � R
±
:

This fixed point argument requires thatR is larger than ku0kH s and TR2Dc˛ with c˛�1
small enough. If u is a fixed point for � , then it must be u 2 C 1.Œ�T˛; T˛�;H s.T //.

Lemma 4.3. Let ˛ > 3=4, s � 2� 2˛, N 2 N [ ¹1º. Assume that kwkH s ; kvkH s � R.
It is

sup
jt j<T˛

kˆNt .v/ �ˆ
N
t .w/kH s .R;T˛ ;s kv � wkH s : (4.4)

Proof. The argument easily follows using Lemma 4.2, the inequalities of Lemma (4.1)
and the Duhamel representation of truncated flows.

We now prove the convergence of the flow of the truncated vector field, to the one of
the non-truncated vector field. The flow ˆt D ˆ

F
t is the flow of the Hamiltonian vector

field XF whereas the flow ofˆtN D ˆ
t
FN

is the flow associated to the Hamiltonian vector
field XFN where FN .u/ D F .…Nu/.
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Lemma 4.4. Let ˛ > 3=4, 2 � 2˛ � s0 < s, R > 1 and N 2 N [ ¹1º. Then,

sup
ku0kHs�R

sup
�2Œ�T˛ ;T˛ �

kˆ� .u0/ �ˆ
N
� .u0/kH s0 . RN�.s�s

0/: (4.5)

Proof. Given u0 2 H s.T /, we consider´
@tu D XF .u/;

u.0/ D u0;

´
@tuN D XFN .uN /;

uN .0/ D …Nu0:

If ku0kH s � R, then the corresponding solutions satisfy

sup
�2Œ�T˛ ;T˛ �

kuN .�/kH s ; sup
�2Œ�T˛ ;T˛ �

ku.�/kH s . R:

By (3.7), one obtains that vN WD u � uN satisfies the following problem:´
@�vN D A.u; uN /vN CRN .u/;

vN .0/ D …
?
Nu0:

This implies that

vN .�/ D …
?
Nu0 C

Z �

0

RN .u/.z/dz C

Z �

0

A.u; uN /.z/vN .z/dz:

We have that kukL1� H s
x
;kuN kL1� H s

x
�R and we need to estimate kvN .t/kH s0 with s0 < s.

By applying Lemma 4.1 item (ii), one obtains that for any z 2 Œ�T˛; T˛�

kA.u; uN /.z/Œ'�kH s0 .
�

sup
�2Œ�T˛ ;T˛ �

ku.�/kH s0 C sup
�2Œ�T˛ ;T˛ �

kuN .�/kH s0

�2
k'kH s0

. R2k'kH s0 ;

implying that VN .�/ satisfies the integral inequality

kvN .�/kH s0 � k…
?
Nu0kH s0 C

Z T˛

�T˛

kRN .u/.z/kH s0dz C CR
2

ˇ̌̌̌ Z �

0

kvN .z/kH s0dz

ˇ̌̌̌
(4.6)

for all � 2 Œ�T˛; T˛�. We have (recall T˛ D c˛
R2

)ˇ̌̌̌ Z �

0

kvN .z/kH s0dz

ˇ̌̌̌
�

c˛
R2

sup
j� j�T˛

kvN .z/kH s0 :

Plugging this into inequality (4.6) and then taking the sup over � 2 Œ�T˛; T˛� of the new
inequality, we arrive at

sup
j� j�T˛

kvN .�/kH s0 � k…
?
Nu0kH s0 C

Z T˛

�T˛

kRN .u/.z/kH s0dz C Cc˛ sup
j� j�T˛

kvN .z/kH s0 :
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Since c˛ � 1, we can reabsorb the last term on the right-hand side into the left-hand side
and we arrive at

sup
j� j�T˛

kvN .�/kH s0 . k…?Nu0kH s0 C

Z T˛

�T˛

kRN .u/.z/kH s0dz:

By standard smoothing properties, one has that

k…?Nu0kH s0 . N�.s�s
0/
ku0kH s . RN�.s�s

0/;

and by using also Lemma 4.1 (i), one gets thatZ T˛

�T˛

kRN .u/.z/kH s0dz

D

Z T˛

�T˛

k…?NXF .u.z//kH s0dz . N�.s�s
0/

Z T˛

�T˛

kXF .u.z//kH sdz

. N�.s�s
0/

Z T˛

�T˛

ku.z/k3H sdz . N�.s�s
0/ c˛
R2
R3 . c˛RN

�.s�s0/:

This implies
sup
j� j�T˛

kvN .�/kH s0 . RN�.s�s
0/

from which we deduce the statement.

We need an approximation result that allows to construct a flowˆt on t 2 Œ�1; 1� once
we have suitable estimates on the approximated flow ˆNt that are uniform over N 2 N.

Proposition 4.5. Let ˛ > 3=4 and 2 � 2˛ � s0 < s, R > 0 and " > 0. Let A � Bs.R/.
There existsN sufficiently large (depending on ˛; s; s0; ";R) such that the following holds.
If

sup
t2Œ�1;1�

sup
u02A

kˆNt .u0/kH s � R; (4.7)

then the flow ˆt .u0/ is well defined on t 2 Œ�1; 1� for all u0 2 A. Moreover,

sup
t2Œ�1;1�

kˆt .u0/ �ˆ
N
t .u0/kH s0 � " 8u0 2 A: (4.8)

Remark 4.6. The assumption (4.7) on the truncated flow ˆNt will be verified in Proposi-
tion 6.3.

Proof. Recall that c˛ D T˛R � 1, where T˛ is the local existence time of ˆt (see
Lemma 4.2). Let J be the smallest integer such that J c˛

2.R2C1/
� 1. We have

2.R2 C 1/

c˛
� J <

2.R2 C 1/

c˛
C 1:
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We partition the interval Œ0; 1� into J � 1 intervals of length c˛
2.R2C1/

and a last, possibly
smaller interval. We will compare the approximated flow ˆNt and ˆt (which exists only
for small times) on these small intervals and we will glue the local solutions. Let

s0 < sJ < � � � < s2 < s1 < s0 D s:

We proceed by induction over j D 0; : : : ; J . Assuming thatˆt is well defined on Œ0; .j C
1/ c˛
2.R2C1/

� and that

sup
t2Œ0;j c˛

2.R2C1/
�

kˆt .u0/ �ˆ
N
t .u0/kH sj � N

��j (4.9)

for some �j > 0, we will show thatˆt .u0/ is well defined on Œ0; .j C 2/ c˛
2.R2C1/

� and that

sup
t2Œ0;.jC1/ c˛

2.R2C1/
�

kˆt .u0/ �ˆ
N
t .u0/kH sjC1 � N

��jC1 ; (4.10)

for a suitable �jC1 > 0, provided N is sufficiently large. In particular, we take N so large
in such a way that we also have N��jC1 < ". Using the induction procedure up to j D J ,
the statement would then follow.

The induction base j D 0 is covered by Lemmas 4.2 and 4.4 and by the fact that
A � Bs.R/.

Regarding the induction step, we first prove (4.10). Then, using the assumption (4.7)
and the triangle inequality, we get

sup
t2Œ0;.jC1/ c˛

2.R2C1/
�

kˆt .u0/kH sjC1 � RCN
��jC1 < 2R: (4.11)

By (4.11), we then use Lemma 4.2 (with 2R in place of R) to show that ˆt .u0/ is well
defined on Œ0; .j C 2/ c˛

2.R2C1/
�.

Now, we show (4.10). If the sup in (4.10) is attained for t 2 Œ0; j c˛
2.R2C1/

�, then (4.10)
follows by (4.9) simply taking �jC1 D �j . On the other hand, if the sup is attained for
t 2 Œj c˛

2.R2C1/
; .j C 1/ c˛

2.R2C1/
�, using the group property of the flow, we need to prove

sup
t2Œj c˛

2.R2C1/
;.jC1/ c˛

2.R2C1/
�

kˆt ĵ c˛
2.R2C1/

.u0/ �ˆ
N
t ˆ

N
j c˛
2.R2C1/

.u0/kH sjC1 � N
��jC1 :

To do so, we decompose

kˆt ĵ c˛
2.R2C1/

.u0/ �ˆ
N
t ˆ

N
j c˛
2.R2C1/

.u0/kH sjC1

� kˆt ĵ c˛
2.R2C1/

.u0/ �ˆtˆ
N
j c˛
2.R2C1/

.u0/kH sjC1 (4.12)

C kˆtˆ
N
j c˛
2.R2C1/

.u0/ �ˆ
N
t ˆ

N
j c˛
2.R2C1/

.u0/kH sjC1 ; (4.13)

and we will handle these two terms separately.
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To bound (4.12), we first note that by the induction assumption (4.9) and by the
assumption (4.7), we have for N large enough

k ĵ c˛
2.R2C1/

.u0/kH sj � RCN
��j < RC ":

Using this fact, the assumption (4.7) and the fact that the stability estimate (4.4) is time-
translation invariant, we apply (4.4) to get

sup
t2Œj c˛

2.R2C1/
;.jC1/ c˛

2.R2C1/
�

kˆt ĵ c˛
2.R2C1/

.u0/ �ˆtˆ
N
j c˛
2.R2C1/

.u0/kH sjC1

.RC";s k ĵ c˛
2.R2C1/

.u0/ �ˆ
N
j c˛
2.R2C1/

.u0/kH sjC1 � N
��jC1 ;

where in the last step we used the induction assumption (4.9), where 0 > �jC1 > sjC1 � sj
and N sufficiently large.

In order to bound the term (4.13), we use the stability estimate (3.4) and initial datum
ˆN
j c˛
2.R2C1/

.u0/, that is allowed recalling the assumption (4.7). Thus, for �jC1 as above we

arrive to

sup
t2Œj c˛

2.R2C1/
;.jC1/ c˛

2.R2C1/
�

kˆtˆ
N
j c˛
2.R2C1/

.u0/ �ˆ
N
t ˆ

N
j c˛
2.R2C1/

.u0/kH sjC1

.R N sjC1�sj <
1

2
N��jC1 ;

provided that N is sufficiently large. This concludes the proof.

Recall that we are abbreviating ˆ D .ˆt /
ˇ̌
tD1

and ˆN D .ˆNt /
ˇ̌
tD1

.

Lemma 4.7. Let ˛ > 3=4 and s � 2� 2˛, R > 0 and " > 0. Let A � Bs.R/. Assume that

sup
N2N

sup
t2Œ�1;1�

sup
u02A

kˆNt .u0/kH s � R: (4.14)

Then, if u0; v0 2 A, then

kˆNt .u0/ �ˆ
N
t .v0/kH s .R ku0 � v0kH s ; t 2 Œ�1; 1�:

Proof. By the Duhamel representation of the solution, one has

ˆNt .u0/ �ˆ
N
t .v0/ D u0 � v0 C

Z t

0

ıN .�/d�;

ıN .�/ WD XFN .ˆ
N
� .u0// �XFN .ˆ

N
� .v0//; � 2 Œ�1; 1�:

By the estimates of Lemma 4.1 and by using the assumption (4.14), we get

kıN .�/kH s .s R2kˆN� .u0/ �ˆ
N
� .v0/kH s 8� 2 Œ�1; 1�I
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and hence,

kˆNt .u0/ �ˆ
N
t .v0/kH s � ku0 � v0kH s C CR2

ˇ̌̌̌ Z t

0

kˆN� .u0/ �ˆ
N
� .v0/kH sd�

ˇ̌̌̌
:

This implies the claimed bound by using the Grönwall inequality.

Lemma 4.8. Let ˛ > 3=4, 2 � 2˛ � s0 < s, R > 0 and " > 0. Let A � Bs.R/. Assume
that

sup
N2N

sup
t2Œ�1;1�

sup
u02A

kˆNt .u0/kH s � R:

LetE �A be a compact set in theH s.T / topology. Then, for all " > 0, 2� 2˛� s0 < s
there exists N" sufficiently large so that

ˆ.E/ � ˆN .E C Bs0."// 8N > N"0 : (4.15)

Proof. Set
‰N v WD .ˆ

N /�1ˆ.v/:

Then, equation (4.15) follows once we prove for all v 2 E and all " > 0 there is N" large
enough such that

kv �‰N .v/kH s0 < " for all N > N": (4.16)

Indeed, assuming (4.16), we have for any v 2 E

‰N .v/ 2 v C Bs0."/ � E C Bs0."/;

thus,
ˆ.v/ D ˆN‰N .v/ 2 ˆ

N .v C Bs0."//;

which readily implies (4.15). The proof of (4.16):

kv �‰N .v/kH s0 D k.ˆ
N /�1ˆN .v/ � .ˆN /�1ˆ.v/kH s0

by Lemma 4.7
.R kˆN .v/ �ˆ.v/kH s0 :

Finally, by Proposition 4.5, for all " > 0, there is an N" such that

kˆN .v/ �ˆ.v/kH s0 � ";

(4.16) is proved, and the proof is concluded.

5. Main probabilistic estimates

The main result of this section is the following.
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Proposition 5.1. Let 1 � ˛ > 1C
p
97

12
� 0:9 and set

�.˛/ WD min
�
1

3
C

2˛ � 1

3.1 � ˛/
;
2˛.˛ C 1/

4 � 4˛2 C 3˛

�
> 1: (5.1)

For all p � 1, it holds 



 ddt HŒˆNt .u/�ˇ̌tD0





Lp.z
˛/

.R p
1
�.˛/ : (5.2)

Remark 5.2. Note that �.1/ D 4=3.

We start with the following deterministic estimate.

Lemma 5.3. For all ˛ 2 .3=4; 1�, it holdsˇ̌̌̌
d

dt
H .˛/ŒˆNt .u/�

ˇ̌̌̌
tD0

ˇ̌̌̌
. k…Nuk

4
L2
C k…Nuk

2
L2
k…Nuk

2
FL0;1

C k…NukL2k…Nuk
2
H2�2˛k…Nuk

3
FL0;1

:

Proof. We have

d

dt
H .˛/ŒˆNt .u/�

ˇ̌
tD0
D
®
H .˛/Œ…Nu�;FN

¯
D
®
kjDxj

˛…Nuk
2
L2
;FN

¯
C
�

2

®
k…Nuk

4
L4
;FN

¯
(2.7)
D �

�

2
k…Nuk

4
L4
C �k…Nuk

4
L2
C
�

2

®
k…Nuk

4
L4
;FN

¯
: (5.3)

The first summand in (5.3) is bounded by

k…Nuk
4
L4
� k…Nuk

2
L2

� X
jnj�N

ju.n/j

�2
� k…Nuk

2
L2
k…Nuk

2
FL0;1

: (5.4)

Hence, we need to estimate only the term ¹k…Nuk
4
L4
;FN º. By the definition of the Pois-

son brackets given in (2.2), one has that®
k…Nuk

4
L4
;FN .u/

¯
D DUG .U /ŒXFN .U /�;

where
G .U / WD

Z
T
u2 Nu2dx:

We write

DUG .U /Œh� D T1hC T2 Nh;

T1h WD 2

Z
T
u Nu2hdx; T2 Nh WD 2

Z
T
u2 Nu Nhdx:
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We have
jT1hj .

X
j1Cj2�j3�j4D0

jh.j1/jju.j2/jju.j3/jju.j4/j

.
X

j2;j3;j4

jh.j3 C j4 � j2/jju.j2/jju.j3/jju.j4/j

. khkL2
X

j2;j3;j4

ju.j2/jju.j3/jju.j4/j . khkL2kuk3FL0;1

and similarly jT2 Nhj . khkL2kuk3FL0;1 :

Therefore,
jDUG .U /ŒXFN .U /�j . kuk

3
FL0;1
kXFN .U /kL2 : (5.5)

Combining (5.5) and (4.2) (recall that 2 � 2˛ � 0) gives

j¹k…Nuk
4
L4
;FN .u/ºj D jDUG .U /ŒXFN .U /�j . kuk

3
FL0;1
kXFN .U /kL2

. kuk3
FL0;1
kXFN .U /k2�2˛ . kuk3

FL0;1
kuk22�2˛kukL2 :

(5.6)

Using (5.4) and (5.6) in (5.3), we finish the proof.

We now establish the following tail estimates.

Lemma 5.4. Let s < ˛ � 1
2

. There is c.R/ > 0 such that for all t > 0

z
˛;N .k…NukH s � t / � exp.�c.R/t
2˛
s /:

Proof. Since
k…NukH s .

X
j2N

2jsk�j…NukL2 ;

we have

z
˛;N .k…NukH s � t / . z
˛;N
�X
j2N

2jsk�j…NukH s � t

�
: (5.7)

Let now
jt WD min

®
j 2 N W 2j � .t=R/

1
s
¯

(5.8)

so that we have
2js < t=R for j < jt :

Hence, X
0�j<jt

2jsk�j…NukL2 . 2jt sR .
t

R
R D t;

z
˛;N -a.s., therefore,

z
˛;N

� X
0�j<jt

2jsk�jPNukL2 � t

�
D 0: (5.9)
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Thus, (5.7) and (5.9) give

z
˛;N .k…NukH s � t / . z
˛;N
�X
j�jt

2jsk�j…NukL2 � t

�
:

Let c0 > 0 small enough in such a way that

�j WD c0.j � jt C 1/
�2;

X
j2N

�j � 1:

Therefore, we can bound

z
˛;N

�X
j�jt

2jsk�j…NukL2 � t

�
�

X
j�jt

z
˛;N .k�j…NukL2 � �j 2
�jst /: (5.10)

For each term of this sum, we have (¹gj ºj2Z indicates a sequence of N .0; 1/ random
variables)

z
˛;N
�
k�j…NukL2 � �j 2

�jst
�
D z
˛;N

�
k�j…Nuk

2
L2
� 2�2js�2j t

2
�

� P

� X
j�2j

jgj j
2
� 22j.˛�s/�2j t

2

�
D P

� X
j�2j

.jgj j
2
� 1/ � 22j.˛�s/�2j t

2
� 2j

�
� P

� X
j�2j

.jgj j
2
� 1/ � c22j.˛�s/�2j t

2

�
;

where c > 0 is a suitable small constant and we used the fact that 2.˛ � s/ > 1 in the last
inequality. Then, from the Bernstein inequality, we get

P

� X
j�2j

.jgj j
2
� 1/ � c22j.˛�s/�2j t

2

�
� e�c2

2j.˛�s/�2j t
2

:

Thus, recalling (5.8), we have arrive at the desired estimate:

right-hand side of (5.10) �
X
j>jt

e�c2
2j.˛�s/�2j t

2

� e
�c2jt .˛�s/�2jt

t2

� exp.�c.R/t
2˛
s /:

Lemma 5.5. There is c > 0 such that

z
˛;N .k…NukFL0;1 � t / � 2 exp
�
� c

t2C2˛

R2˛

�
for all t & .logN/2 if ˛ D 1 or t & N 1�˛ for ˛ < 1.
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Proof. We have

kukFL0;1 D
X
j2N

X
n�2j

ju.n/j �
X
j2N

k�jukFL0;1 :

Then,

z
˛;N .k…NukFL0;1 � t / � z
˛;N

�X
j2N

k�j…NukFL0;1 � t

�
: (5.11)

We note that
k�jukFL0;1 � 2

j
2 k�jukL2 : (5.12)

Let now
jt WD min

®
j 2 N W R2

j
2 � t

¯
so that we have

R2
j
2 < t for j < jt : (5.13)

Therefore, using (5.12) and (5.13), we getX
0�j<jt

k�j…NukFL0;1 � 2
jt
2 R < t

for any element of B.R/, therefore,

z
˛;N

� X
0�j<jt

k�j…NukFL0;1 � t

�
D 0: (5.14)

Thus, (5.11) and (5.14) give

z
˛;N .k…NukFL0;1 � t / � z
˛;N

�X
j�jt

k�j…NukFL0;p � t

�
:

Let c0 > 0 small enough in such a way that

�j WD c0.j � jt C 1/
�2;

X
j2N

�j � 1:

We bound

z
˛;N

�X
j�jt

k�j…NukFL0;1 � t

�
�

X
j�jt

z
˛;N .k�j…NukFL0;1 � �j t /: (5.15)

We introduce the centred sub-Gaussian random variables

Yj WD k�j…NukFL0;1 �E˛Œk�j…NukFL0;1 � D
X
n�2j

jgnj �EŒjgnj�

hni˛
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and we have

z
˛;N .k�j…NukFL0;1 � �j t / D z
˛;N .Yj � �j t �EŒk�j…NukFL0;1 �/: (5.16)

Note that

E˛Œk�j…NukFL0;1 � D
X
n�2j

EŒjgnj�

hni˛
'

X
n�2j

1

hni˛
:

We set
sj WD �j t �E˛Œk�j…NukFL0;1 �:

It follows that there is C > 0 large enough such that for all t > C.log2N/
2 for ˛ D 1 or

for t > CN 1�˛ for ˛ ¤ 1
inf

j2¹jt ;:::;logN º
sj > 0: (5.17)

We have by the Hoeffding inequality


˛;N .Yj � sj / � 2 exp.�c2 j̨ s2j /: (5.18)

Thus,

right-hand side of (5.16) �
X
j�jt

2 exp.�c2 j̨ s2j / � 2 exp.�c2 j̨t s2jt /

� 2 exp
�
� c

t4

R2

�
:

In the remaining part of this section, it is convenient to shorten

GN WD
d

dt
HŒ…Nˆ

N
t .u/�

ˇ̌
tD0
: (5.19)

We have the following lemma.

Lemma 5.6. It holds for all M < N 2 N

kGN �GMkLp.z
˛/ .
p3

M 2˛�1
: (5.20)

Proof. We will prove

kGN �GMkL2.z
˛/ .
1

M 2˛�1
: (5.21)

The assertion will follow by the standard hyper-contractivity estimate [24, Theorem 5.10,
Remark 5.11], noting that GN is a multilinear form of at most 6 factors.

We use formula (5.3) in the proof of Lemma 5.3. The first summand is bounded in the
support of z
˛ byR4. For the second and the third summand, we estimate the L2.
˛/ norm
and use that it controls the L2.z
˛/ norm.
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We have

kGN �GMkL2.z
˛/ � kk…Nuk
4
L4
� k…Muk

4
L4
kL2.
˛/

C k¹k…Nuk
4
L4
;FN º � ¹k…Muk

4
L4
;FM ºkL2.
˛/:

By a direct calculation, one has that, for any N 2 N,

¹k…Nuk
4
L4
;FN º

D

X
jni j;jmi j�N;P3
iD1 niD

P3
iD1mi

c.n1; n2; n3; m1; m2; m3/u.n1/u.n2/u.n3/ Nu.m1/ Nu.m2/ Nu.m3/;

(5.22)
where the coefficients c.n1; n2; n3; m1; m2; m3/ are such that

jc.n1; n2; n3; m1; m2; m3/j . 1 8n1; n2; n3; m1; m2; m3 2 Z: (5.23)

In what follows, we will use the Wick formula for expectation values of multilinear forms
of Gaussian random variables [24, Theorem 1.28] in the following form. Let ` 2 N and
S` be the symmetric group on ¹1; : : : ; `º, whose elements are denoted by � . We have

E˛

h Ỳ
jD1

u.nj / Nu.mj /
i
D

X
�2S`

Ỳ
jD1

ımj ;n�.j /

1C jnj j2˛
'

X
�2S`

Ỳ
jD1

ımj ;n�.j /

hnj i2˛
; (5.24)

where h�i D .1C j � j2/1=2. We convey that the labelsmi (respectively, ni ) are associated to
the Fourier coefficients of Nu (respectively, u). We say that � contracts the pairs of indexes
.mj ; n�.j //, and we shorten for any � � Z` � Z`

�.�/ WD � \
®
mi D n�.i/; i D 1; : : : ; `

¯
; � 2 S`:

We also define the set x� to be obtained by� swapping the role of ni andmi i D 1; : : : ; `.
Let N > M and define for a; b 2 N

A
a;b
N;M WD

®
jna;bj; jma;bj � N; na C nb D ma Cmb;max.jma;bj; jna;bj/ > M

¯
:

Squaring and using (5.24) with ` D 4, we have

kk…Nuk
4
L4
� k…Muk

4
L4
kL2.
˛/

D

X
A
1;2
N;M�A

3;4
N;M

E˛

� 4Y
iD1

u.ni / Nu.mi /

�

D

X
�2S4

X
�.A

1;2
N;M /��.A

3;4
N;M /

1

hn1i2˛hn2i2˛hn3i2˛hn4i2˛
.

1

M 4˛�2
:
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Similarly,

B
a;b;c
N;M WD

®
jna;b;c j; jma;b;c j � N; na C nb C nc D ma Cmb Cmc ;

max.jma;b;c j; jna;b;c j/ > Mmc ¤ nb; nc
¯

and

k¹k…Nuk
4
L4
;FN º � ¹k…Nuk

4
L4
;FN ºkL2.
1/

.
X

B
1;2;3
N;M �

xB
4;5;6
N;M

E˛

� 6Y
iD1

u.ni / Nu.mi /

�

.
X
�2S6

X
�.B

1;2;3
N;M /��.

xB
4;5;6
N;M /

6Y
iD1

1

hni i2˛
.

1

M 4˛�2
:

Then, we can immediately establish the following result.

Proposition 5.7. There are C; c > 0 such that


˛.jGN �Gj � t / � Ce
�ct

1
3N

2˛�1
3
: (5.25)

Proof. Having bounded all the moments as in Lemma 5.6, we can also bound the frac-
tional exponential moment

E˛Œexp.cjGN �GM j
1
3N

2˛
3 �

1
3 /� <1; (5.26)

for a suitable constant c > 0. From (5.26), we obtain (5.25) in the standard way using
Markov inequality.

Proof of Proposition 5.1. We will prove that there is c.R/ > 0 such that for all N 2 N [
¹1º,

z
˛;N .GN � t / . e�c.R/t
�.˛/

: (5.27)

Then, the fact that (5.2) follows from (5.27) is standard.
By Lemma 5.3, we see that for u 2 B.R/,

jGN j � R
4
CR2k…Nuk

2
FL0;1

CRk…Nuk
2
H2�2˛k…Nuk

3
FL0;1

. C.R/k…Nuk
2
H2�2˛k…Nuk

3
FL0;1

:

Therefore,

z
˛;N .GN � t / � z
˛;N
�
k…Nuk

2
H2�2˛k…Nuk

3
FL0;1

� C.R/t
�
:

Lemma 5.5 yields for ˛ D 1

z
˛;N .GN � t / . e�c.R/t
4
3 for t & .logN/2: (5.28)
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For ˛ < 1, we estimate

z
˛;N .k…Nuk
2
H2�2˛k…Nuk

3
FL0;1

� C.R/t/

� z
˛;N .k…Nuk
3
FL0;1

� c.R/tk1/C z
˛;N .k…Nuk
2
H2�2˛ � c.R/t

k2/

with
k1 C k2 D 1: (5.29)

Then, using Lemma 5.5, we bound

z
˛;N .k…Nuk
3
FL0;1

� tk1/ . exp
�
� c.R/t

.2C2˛/k1
3

�
for t & N 1�˛;

and using Lemma 5.4, we have

z
˛;N .k…Nuk
2
H2�2˛ � t

k2/ . exp
�
� c.R/t

˛k2
2�2˛

�
:

We optimise choosing k1; k2 such that

˛k2

2 � 2˛
D
.2C 2˛/k1

3
:

Together with (5.29), this leads to the choice

k2 D
4 � 4˛2

4 � 4˛2 C 3˛
:

It is clear that k2 2 .0; 1/ when ˛ 2 .0; 1/, thus, this choice is admissible. We finally
arrive at

z
˛;N .GN � t / � exp
�
� c.R/t

2˛.˛C1/

4�4˛2C3˛
�
: (5.30)

Note that
2˛.˛ C 1/

4 � 4˛2 C 3˛
> 1 for ˛ >

1C
p
97

12
: (5.31)

Note also that, in order to use Lemma 5.4, we must have 2 � 2˛ < ˛ � 1=2, namely,
˛ > 5=6. This is compatible with (5.31).

When ˛ ¤ 1, t � N 1�˛ . We set T WD bt
1
1�˛ c. We bound

z
˛;N .jGN j � t / � z
˛;N .jGT j � t=2/C z
˛;N .jGN �GT j � t=2/: (5.32)

Since t � T 1�˛ , the first term can be estimated again by Lemma 5.5

z
˛;N .jGT j � t=2/ . exp
�
� c.R/t

2˛.˛C1/

4�4˛2C3˛
�
: (5.33)

For the second summand of (5.32), we observe that N > T , so Proposition 5.7 gives

z
˛;N .jGN �GT j � t=2/ � 
˛;N .jGN �GT j � t=2/ � Ce
�ct

1
3 T

2˛�1
3
� Ce�ct

1
3C

2˛�1
3.1�˛/

:
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Combining that with (5.30), (5.32), and (5.33) gives (5.27) for ˛ ¤ 1.
Finally, we take ˛ D 1. Consider t � N " for some " > 0, set T WD bt

1
" c. We bound

again as in (5.32). Since t � T ", we have

z
˛;N .jGT j � t=2/ . 2 exp.�c.R/t
4
3 /: (5.34)

Since N > T , by Proposition 5.7, we get

z
˛;N .jGN �GT j � t=2/ � 
˛;N .jGN �GT j � t=2/ � Ce
�ct

1
3 T

2˛�1
3
� Ce�c.R/t

1
3C

1
3"
:

Combining that with equations (5.28), (5.34), and taking " small enough gives (5.27)
for ˛ D 1.

The next result also follows by the considerations in this section.

Proposition 5.8. Let ˛ > 3=4 and � 2 R. The quantity E˛Œ1¹k…NukL2�Rºe
�k…Nuk

4

L4 � is
bounded uniformly in N .

Proof. Set

LN WD

´
N 1�˛ ˛ ¤ 1;

.logN/2 ˛ D 1:

We write

E˛Œ1¹k…NukL2�Rºe
�k…Nuk

4

L4 � D

Z 1
0

dtet�z
˛;N .k…Nuk
4
L4
� t /

D 1C

Z L˛;N

1

dtet�z
˛;N .k…Nuk
4
L4
� t / (5.35)

C

Z 1
L˛;N

dtet�z
˛;N .k…Nuk
4
L4
� t /: (5.36)

By Lemma 5.5, we have

(5.36) �
Z 1
L˛;N

dtet�z
˛;N .R
2
k…Nuk

2
FL0;1

� t /

� 2

Z 1
L˛;N

dt exp.�t � c.R/t1C˛/ <1:

Set T WD bt
1
1�˛ c for ˛ ¤ 1 or T WD bt

1
" c for some " > 0 if ˛ D 1. We bound

(5.35) � 1C
Z L˛;N

1

dte�t z
˛;N .k…T uk
4
L4
� t=2/ (5.37)

C

Z L˛;N

1

dte�t z
˛;N .jk…Nuk
4
L4
� k…T uk

4
L4
j � t=2/: (5.38)
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Since t � L˛;T again by Lemma 5.5, we have

(5.37)� 1C
Z L˛;N

1

dt z
˛;N .R
2
k…Nuk

2
FL0;1

�t /� 1C2

Z 1
1

dt exp.�t�c.R/t1C˛/<1:

It remains to bound (5.38). The same proof of Proposition 5.7 gives for ˛ ¤ 1

(5.38) � C
Z 1
1

dte�t�t
1
3 T

2˛�1
3
� C

Z 1
1

dte�t�t
1
3C

2˛�1
3.1�˛/

<1

(since ˛ > 3=4) and for ˛ D 1

(5.38) � C
Z 1
1

dte�t�t
1
3 T

2˛�1
3"
� C

Z 1
1

dte�t�t
1
3C

2˛�1
3"

<1

for " sufficiently small (these estimates are loose but sufficient to our end). This ends the
proof.

6. Quasi-invariance

The main result of this section is the following.

Proposition 6.1. Let ˛ 2 .x̨; 1�, x̨ WD 1C
p
97

12
� 0:9 and t 2 Œ�1; 1�. There exists Nf .t; �/ 2

Lp.�˛/ for all p � 1, such that for any measurable set A

�˛.ˆt .A// D

Z
A

Nf .t; u/�˛.du/:

In other words, we have

Nf .t; �/ WD
d.�˛ ıˆt /

d�˛
2 Lp.�˛/

for the Radon–Nikodim derivative d.�˛ıˆt /
d�˛

of �˛ ıˆt with respect to �˛ .

Let
�˛;N .du/ WD e

� �2 k…Nuk
4

L4 z
˛;N .du/:

The convergence �˛;N ! �˛ was proven in [8, 26]. In particular, we have that for any
measurable set A for every " > 0 there is xN 2 N such that for all N > xN

j�˛.A/ � �˛;N .A/j < ": (6.1)

We also set 
?N the Gaussian measure induced by the random Fourier seriesX
jnj>N

gn

.1C jnj2/
1
2

einx:
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We define the Lebesgue measure on CN ' R2N as

LN .d…Nu/ D
Y
jnj�N

d.Reu.n//d.Imu.n//;

using the standard isomorphism between u and its Fourier coefficients. Since the flow is
Hamiltonian, we have LN .…Nˆ

N
1 .E// D LN .E/.

We start by proving the quasi-invariance of �˛ with respect to the truncated flow, which
is defined for all t .

Proposition 6.2. Let ˛ 2 .x̨; 1�, x̨ WD 1C
p
97

12
� 0:9 and recall �.˛/ > 1 defined in (5.1).

We have
�˛.ˆ

N
t .A// . .�˛.A//

1�" exp.C.R; "/.1C jt j
�.˛/
�.˛/�1 // (6.2)

for all N 2 N and " > 0.

Proof of Proposition 6.2. We compute

�˛;N .ˆ
N
t .A// D

Z
ˆNt .A/

e
� �2 k…Nuk

4

L4 z
˛.du/

D

Z
ˆNt .A/\B.R/

LN .d…Nu/

?
˛;N .dP>Nu/ exp.�H .˛/Œ…Nu�/

D

Z
A\B.R/

LN .d…Nu/

?
˛;N .dP>Nu/ exp.�H .˛/Œ…Nˆ

N
t .u/�/:

Taking the derivative in time and evaluating it at t D 0, we get

d

dt
�˛;N .ˆ

N
t .A//

ˇ̌̌
tD0

D �

Z
A\B.R/

LN .d…Nu/

?
˛;N .dP>Nu/ exp.�H .˛/Œ…Nu�/

� d
dt
H .˛/Œ…Nˆ

N
t .u/�tD0

�
D �

Z
A

�˛;N .du/GN .u/; (6.3)

where (recall (5.3) and (5.19))

GN .u/ D �
�

2
k…Nuk

4
L4
C �k…Nuk

4
L2
C
�

2
¹k…Nuk

4
L4
;FN º:

Since t 2 .R;C/! ˆNt is a one parameter group of transformations, we can easily check
that

d

dt
.�˛;N ıˆ

N
t .A//

ˇ̌̌
tDt�
D

d

dt
.�˛;N ıˆ

N
t .ˆ

N
t�.A///

ˇ̌̌
tD0
: (6.4)

Using (6.3) and (6.4) under the choice E D ˆNt A, we arrive at

d

dt
.�˛;N ıˆ

N
t .A//

ˇ̌̌
tDt�
D �

Z
ˆN
t�
A

�˛;N .du/GN .u/:
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Thus, combining the Hölder inequality and (5.2), we getˇ̌̌̌
d

dt
.�˛;N ıˆ

N
t .A//

ˇ̌̌̌
tDt�

ˇ̌̌̌
� kGN kLp�˛;N .ˆ

N
t�.A//

1� 1p .R �˛;N .ˆNt�.A//
1� 1p p

1
�.˛/ ;

(6.5)
whence

d

dt
..�˛;N ıˆ

N
t .A///

1=p .R p
1
�.˛/
�1
;

whence

�˛;N .ˆ
N
t .A// � �˛;N .A/ exp.p log.1C C.R/jt jp

1
�.˛/
�1
.�˛;N .A//

� 1p //: (6.6)

We can now show (6.2). We may and will assume �.A/ > 0. Consider

p D log
� 1

2�.A/

�
; (6.7)

and note that
.2�.A//

� 1p D e: (6.8)

By (6.1), we have that there is xN D xN.A/ such that �˛;N .A/ � 2�.A/ for all N > xN .
Thus, for sufficiently large N (6.6) reads

�˛;N .ˆ
N
t .A// � 2�˛.A/ exp

�
p log

�
1C C.R/jt jp

1
�.˛/
�1
.2�˛.A//

� 1p
��

D 2�˛.A/ exp
�
p log

�
1C C.R/jt jp

1
�.˛/
�1��

� 2�˛.A/ exp
�
C.R/jt jp

1
�.˛/
�

� 2�˛.A/ exp
�
C.R/jt j

�
ln
�

1

2�.A/

�� 1
�.˛/
�

� 2�˛.A/ exp
�
"

�
ln
�

1

2�.A/

���
exp

�
C.R; "/jt j

�.˛/
�.˛/�1

�
. �˛.A/

1�" exp
�
C.R; "/

�
1C jt j

�.˛/
�.˛/�1

��
for all " > 0, where we used (6.8) in the second line and the Young inequality in the
penultimate line. Then, equation (6.2) follows by (6.1).

For ˛ ¤ 1, we extend the flow of the Birkhoff map globally in time using the Bourgain
probabilistic argument [8].

Proposition 6.3. Let ˛ 2 .x̨; 1/, x̨ WD 1C
p
97

12
� 0:9, s < ˛ � 1

2
and t 2 Œ�1; 1�. Then, the

Birkhoff flow map (2.6) is globally well defined for �˛-almost all initial data. Moreover,
there exists 
; c; C > 0 such that

sup
t2Œ�1;1�

kˆt .u/kH s � K (6.9)
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and
sup

t2Œ�1;1�

kˆt .u/ �ˆ
N
t .u/kH s0 . KN�.s�s

0/; 0 � s0 < s (6.10)

hold for all u outside an exceptional set of �˛-measure � CK2e�cK


.

Proof. Let K > 0. We partition Œ0; 1� into J intervals of size at most

�K WD
c˛

K2 C 1
;

where c˛ is given by Lemma 4.2. Clearly,

J � c�1˛ .K
2
C 1/C 1: (6.11)

We take any s > 2 � 2˛ (note that s < ˛ � 1=2 for our choice of ˛) and set

EK;N WD
®
u … Bs.K=2/

¯
[
®
u … ˆN��K .Bs.K=2//

¯
[
®
u … ˆN�2�K .Bs.K=2//

¯
� � � [

®
u … ˆN

�.J�1/�K
.Bs.K=2//

¯
[
®
u … ˆN�J�K .Bs.K=2//

¯
:

We will show that the �˛ measure of these sets vanishes in the limitK!1 (and �K! 0).
First, we record for later use that since the density of �˛ is inL2.z
˛/ (the proof is done

by an elementary adaption of [8, Lemma 3.1]) we can use the Cauchy–Schwarz inequality
to obtain

�˛.Bs.K=2/
C / .

p
z
˛.kukH s � K=2/ . e�cK




; 
 > 2;

where we used Lemma 5.4 for the last bound.
Using (6.2), we have for some " > 0

�˛.EK;N / �

JX
jD0

�˛.ˆ
N
��K

.Bs.K=2//
C /

�

JX
jD0

.�˛.Bs.K=2//
C /1�" .R;" Je�cK


 .R;" K2e�cK



; (6.12)

where we used (6.11) in the last inequality.
Let now ¹NKºK2N be a diverging sequence and

E WD
\
K2N

EK;NK :

Using (6.12) and Proposition 4.5, we will first show that the flowˆt is well defined for all
t 2 Œ0; 1� and for all initial data in ECT . Then, we will show that �.ET / D 0, concluding
the proof of the statement (negative times are covered just by time reversibility).

Let us consider

ECK;N WD
®
u 2 Bs.K=2/

¯
\
®
u 2 ˆN��K .Bs.K=2//

¯
\
®
u 2 ˆN�2�K .Bs.K=2//

¯
� � � \

®
u 2 ˆN

�.J�1/�K
.Bs.K=2//

¯
\
®
u 2 ˆN�J�K .Bs.K=2//

¯
:
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Since
ˆNj�K .E

C
K;N / � Bs.K=2/; j D 0; : : : ; J C 1;

by the group property of the flow, we can apply Lemma 4.2 on each time interval Œj�K ;
.j C 1/�K � so that we have

sup
t2Œ0;1�

sup
N2N

sup
u2ECK;N

kˆNt .u/kH s � K: (6.13)

The bound (6.13) can be extended to times t 2 Œ�1;1� by the reversibility of the flow. Thus,
for all K > 1, we can pick NK sufficiently large and invoke Proposition 4.5, to show that
ˆt is well defined for times t 2 Œ�1; 1� and data in

EC D
[
K2N

EK;NK :

On the other hand, by (6.12), we have

�˛.E/ D �˛

� \
K2N

EK;NK ;T

�
� lim
K!1

�˛.EK;NK ;T / D 0;

as claimed.
So, the flow ˆt is defined for t 2 Œ�1; 1� for all data outside an exceptional sets EK;N

of measure smaller than CK2e�cK



(recall (6.12)). Therefore, (6.13) implies (4.8) by
Proposition 4.5 and then (6.9) easily follows. Moreover, (6.9) implies the global approx-
imation bound (6.10). Indeed thanks to (6.9) the local approximation bound (4.5) applies
for all data outside the exceptional set starting by any initial time t 2 Œ�1; 1�. This proves
the (6.10) and concludes the proof.

Proof of Proposition 6.1. Proceeding exactly as in the proof of [19, Lemma 6.2], we obtain
that, given any " > 0 we can find ı D ı."; R/ > 0 such that for all A

�˛;N .A/ � ı H) �˛;N .ˆ
N
t .A// � ": (6.14)

Next, we pass to the limit N ! 1 in this inequality, showing the quasi invariance of
the measure �˛;N . It suffices to consider only compact sets A � Bs.R/. The argument
then extends to Borel sets using the inner regularity of the Gaussian measure z
 and the
continuity of the flow map, that is, Lemma (4.3) (see [29, Lemma 8.1]).

Assume �˛.A/ � ı=2 with A compact. We have then for all sufficiently small ı0 (that
will depend on A and ı)

�˛.AC B.ı
0// � ı:

Thus, by (6.14), we have
�˛;N .ˆ

N
t .AC B.ı

0/// � ": (6.15)

For N large enough, we have

�˛.ˆt .A// � �˛.ˆ
N
t .AC B.ı

0/// � �˛;N .ˆ
N
t .AC B.ı

0///C " � 2";

where we used Lemma 4.8 in the first inequality, (6.1) in the second one and (6.15) in the
last step. Thus, absolutely, continuity of � ıˆt with respect to � is proved.



G. Genovese, R. Lucà, and R. Montalto 62

7. Density of the transported measure

In this section, we show that the density Nf of Proposition 6.1 can be obtained as a limit of
finite dimensional approximations. We define the finite dimensional approximated densit-
ies as

fN .s; u/ WD exp
�
�

Z s

0

d

d�
.H .˛/Œ…Nˆ

N
� .u/�/d�

�
: (7.1)

Following the notation ˆ� .u/ WD …1ˆ1� .u/ used in the rest of the paper, we can write
the limit density as

f1.s; u/ WD exp
�
�

Z s

0

d

d�
.H .˛/Œˆ� .u/�/d�

�
: (7.2)

The main result of this section is the following.

Proposition 7.1. Let ˛ 2 .x̨; 1�, x̨ WD 1C
p
97

12
� 0:9. The sequence ¹fN ºN2N defined

by (7.1) converges in Lp.�˛/ to f1.s; u/ and it holds f1.s; u/ WD Nf .s; u/ for �˛-almost
all u, where Nf .s; �/ is the transported density from Proposition 6.1.

Combining Propositions 6.1 and 7.1, we complete the proof of Theorem 1.1.
To prove Proposition 7.1, first we show that this sequence has a limit in Lp.�˛/. This

is a consequence of the following lemmas.

Lemma 7.2. Let ˛ 2 .x̨; 1�, x̨ WD 1C
p
97

12
� 0:9. We have for all p 2 Œ1;1/

sup
N2N
kfN kLp.�˛/ <1: (7.3)

Proof. Let p � 1. We write

kfN k
p

Lp.�˛/
D

Z 1
0

dte��˛.fN .s; u/ � t
1=p/;

and changing variables t D e� , we can bound

kfN k
p

Lp.�˛/
� e C

Z 1
1

d�e��˛.fN .s; u/ � e
�
p /

D e C

Z 1
1

d�e��˛

�Z s

0

d

d�
.H .˛/Œ…Nˆ

N
� .u/�/d� �

�

p

�
: (7.4)

Now, we noteˇ̌̌̌ Z s

0

d

d�
H .˛/Œ…Nˆ

N
� .u/�d�

ˇ̌̌̌
� s max

�2Œ0;s�

ˇ̌̌̌
d

d�
H .˛/Œ…Nˆ

N
� .u/�

ˇ̌̌̌
DW s

ˇ̌̌̌
d

d�
H .˛/Œ…Nˆ

N
� .u/�

ˇ̌̌̌
�D��

ˇ̌̌̌
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for some �� 2 Œ0; s�. Therefore,

�˛

�Z s

0

d

d�
.H .˛/Œ…Nˆ

N
� .u/�/d� �

�

p

�
� �˛

�ˇ̌̌̌
d

d�
H .˛/Œ…Nˆ

N
� .u/�

ˇ̌̌̌
�D��

ˇ̌̌̌
�

�

ps

�
: (7.5)

Let

A D

²
u W

ˇ̌̌̌
d

d"
H .˛/Œ…Nˆ

N
" .u/�

ˇ̌̌̌
"D0

ˇ̌̌̌
>

�

ps

³
:

Note that if u 2 A then v D ˆN���.u/ satisfies

d

d�
H .˛/Œ…Nˆ

N
� .v/�

ˇ̌̌
�D��

D lim
"!0

"�1
�
H .˛/Œ…Nˆ

N
" ˆ

N
��.v/� �H

.˛/Œ…Nˆ
N
��.v/�

�
D lim
"!0

"�1
�
H .˛/Œ…Nˆ

N
" .u/� �H

.˛/Œ…Nu�
�
D

d

d"
H .˛/Œ…Nˆ

N
" .u/�

ˇ̌̌̌
"D0

I

hence,

ˆ���.A/ D

²
v W

ˇ̌̌̌
d

d�
H .˛/Œ…Nˆ

N
� .v/�

ˇ̌̌̌
�D��

ˇ̌̌̌
�

�

ps

³
:

Thus, using Proposition 6.2, we can continue the estimate (7.5) as follows:

�˛

�ˇ̌̌̌
d

d�
H .˛/Œ…Nˆ

N
� .u/�

ˇ̌̌̌
�D��

ˇ̌̌̌
�

�

ps

�
.˛;";R

�
�˛

�ˇ̌̌̌
d

d"
H .˛/Œ…Nˆ

N
" .u/�

ˇ̌̌̌
"D0

ˇ̌̌̌
�

�

ps

��1�"
for all " > 0. Using (5.27), we have�

�˛

�ˇ̌̌̌
d

d"
H .˛/Œ…Nˆ

N
" .u/�

ˇ̌̌̌
"D0

ˇ̌̌̌
�

�

ps

��1�"
.s;" e�C.R/.

�
ps /

�.˛/

:

Plugging this into (7.4), we have

kfN k
p

Lp.�˛/
� e C

Z 1
1

d�e
��C.R/.

�
ps /

�.˛/

. C.R; p; ˛; s/;

since we have �.˛/ > 1 (recall (5.1)). So, equation (7.3) follows.

We will also need to show that the sequence fN .t; �/ converges in measure, for all
t 2 Œ�1; 1� and, in particular, the limit is f1.t; �/.

Lemma 7.3. Let ˛ 2 .x̨;1/, x̨ WD 1C
p
97

12
� 0:9. For all t 2 Œ�1;1�, we have that fN .t; �/!

f1.t; �/ in �˛-measure as N !1.
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Proof. By the continuity of the exponential function, it is sufficient to showZ s

0

d

d�
.H .˛/Œ…Nˆ

N
� .u/�/d� !

Z s

0

d

d�
.H .˛/Œˆ� .u/�/d� (7.6)

in �˛-measure as N !1.
Since ˇ̌̌̌ Z s

0

d

d�
.H .˛/Œ…Nˆ

N
� .u/�/d� �

Z s

0

d

d�
.H .˛/Œˆ� .u/�/d�

ˇ̌̌̌
� jsj sup

�2Œ0;s�

ˇ̌̌̌
d

d�
.H .˛/Œ…Nˆ

N
� .u/�/ �

d

d�
.H .˛/Œˆ� .u/�/

ˇ̌̌̌
;

we can deduce (7.6) from

sup
�2Œ�1;1�

ˇ̌̌̌
d

d�
.H .˛/Œ…Nˆ

N
� .u/�/ �

d

d�
.H .˛/Œˆ� .u/�/

ˇ̌̌̌
! 0

in �˛-measure as N !1.
We now compute d

d�
H .˛/Œ…Nˆ

N
� .u/�. One has

d

d�
H .˛/Œ…Nˆ

N
� .u/� D ¹H

.˛/;FN º.ˆ
N
� .u//

(5.3)
D �

�

2
k…Nˆ

N
� .u/k

4
L4
C �k…Nˆ

N
� .u/k

4
L2

C
�

2

®
k…Nˆ

N
� .u/k

4
L4
;FN ıˆ

N
�

¯
:

(7.7)

We will consider the three contributions to (7.7) separately. For the first one, we must
estimate

jk…Nˆ
N
� .u/k

4
L4
� k…Nˆ� .u/k

4
L4
j D jL.gN ; : : : ; gN / � L.g; : : : ; g/j; (7.8)

where we have defined

L.h1; h2; h3; h4; / D

Z
h1h2 Nh3 Nh4

and
gN .�; u/ D …Nˆ

N
� .u/; g D ˆ� .u/:

When it does not create confusion, we will abbreviate gN .�; u/ to gN in order to simplify
the notations. We decompose telescopically

L.gN ; : : : ; gN / � L.g; : : : ; g/ D L.gN ; : : : ; gN / � L.g; gN ; : : : ; gN /

C L.g; gN ; : : : ; gN / � L.g; g; gN ; : : : ; g/

C � � �

C L.g; g; g; gN / � L.g; : : : ; g/:
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We only show how to handle the first one, as the other ones require a similar procedure.
We have

jL.gN ; : : : ; gN / � L.g; gN ; : : : ; gN /j D

ˇ̌̌̌ Z
.gN � g/gN NgN NgN

ˇ̌̌̌
� kgN � gkL4kgN k

3
L4

. kgN � gk
H

1
4
kgN k

3

H
1
4

� kgN � gk
H

1
4
kgN k

3
H s ; (7.9)

where we used the Sobolev embedding. Here, we restrict to 1
4
� s < ˛ � 1

2
, coherently

with Proposition 6.3. Note that for all ˛ 2 Œx̨; 1� we have 1
4
< ˛ � 1

2
, so the set of possible

s is non empty. Taking K D N
4s�1
32 in (6.9) and (6.10) gives

sup
t2Œ�1;1�

.kg.t; u/kH s C kg.t; u/kH s / � 2N
4s�1
32

and
sup

t2Œ�1;1�

kg.t; u/ � gN .t; u/k
H

1
4

. N�
7
32 .4s�1/; s >

1

4

for u outside an exceptional set of �˛-measure smaller than CN
4s�1
16 e�cN


 4s�116 . The two
displays above combined with the (7.9) imply that

(7.8) �
1

N
2s�1
8

with probability at least 1� CN
4s�1
16 e�cN


 4s�116 , that is, it converges in measure to zero as
N !1.

The analysis of the second contribution is similar (actually easier since we simply need
to control the L2 norm of the evolution rather than the L4).

For the last contribution, we must control L.gN ; : : : ; gN / � L.g; : : : ; g/, where now
we redefine

L.h1; h2; h3; h4; h5; h6/

WD
®
k…Nuk

4
L4
;FN

¯
(5.22)
D

X
jni j;jmi j�N;P3
iD1 niD

P6
iD4 ni

c.n1; n2; n3; n4; n5; n6/h.n1/h.n2/h.n3/ Nh.n4/ Nh.n5/ Nh.n6/

with jc.n1;n2;n3;n4;n5;n6/j. 1 (recall (5.23)). We do the same decomposition as before
(but of course in this case we have six differences to handle rather than four) and we
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explain how to estimate the first contribution:

jL.gN ; : : : ; gN / � L.g; gN ; : : : ; gN /j

.
X
jni j�N;P3

iD1 niD
P6
iD4 ni

jgN .n1/ � g.n1/jjgN .n2/jjgN .n3/jjgN .n4/jjgN .n5/jjgN .n6/j

.
X
jni j�N;P6
iD1 niD0

jgN .n1/ � g.n1/jjgN .n2/jjgN .n3/jjgN .�n4/jjgN .�n5/jjgN .�n6/j:

(7.10)

After spotting the convolution structure of (7.10) and recalling the inequality

k.a1 � a2 � a3 � a4 � a5 � a6/nk`1n �

6Y
j 1

k.aj /nk
`
6
5
n

;

we can further estimate

(7.10) � kgN � gk
FL

0; 65
kgk5

FL
0; 65
:

Then, using the inequality (for sequencies) kank
`
6
5
n

� .
P
n2Zhni

2sjanj
2/

1
2 valid for s >

1=3, we further estimate

(7.10) � kgN .�; u/ � g.�; u/kH1=3Ckgk
5
H1=3C ;

where here we restrict to 1
3
< s < ˛ � 1

2
, coherently with Proposition 6.3. Note that for

all ˛ 2 Œx̨; 1� we have 1
3
< ˛ � 1

2
, so the set of possible s is non empty. From here, we

can proceed exactly as before (from (7.9) onward) to show that also this last summand of
(7.7) converges in measure to zero as N !1. This implies the convergence in measure
of fN .t; �/ to f1.t; �/ for all t 2 Œ�1; 1�, so the proof is concluded.

Proof of Proposition 7.1. By Lemmas 7.2 and 7.3, we obtain that, for all p � 1, the
sequence fN converges in Lp.�˛/. More precisely, the uniform Lp.�˛/ bounds at a fixed
p and the convergence in measure of the sequence guarantee the convergence in Lp

0

.�˛/

for all p0 <p (see, for instance, [19, Lemma 3.7]) to a certainLp
0

.�˛/ function. Moreover,
this limit must coincide �˛-a.s. with f1 by Lemma by 7.3.

Proof of Theorem 1.1. Once we have identified theLp.�˛/ limit f1, in order to complete
the proof of Theorem 1.1, we need to show that f1 D Nf �˛-a.s., where we recall that Nf
is the density of the transport of the measure �˛ under the flow. The almost sure identity
f D Nf follows by an abstract argument which can be adapted line by line from [19,
Proposition 7.2].
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