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On the Kaup—Broer-Kupershmidt systems
Christian Klein and Jean-Claude Saut

Abstract. The aim of this paper is to survey and complete, mostly by numerical simulations, results
on a remarkable Boussinesq system describing weakly nonlinear, long surface water waves. It is
the only member of the so-called (abcd) family of Boussinesq systems known to be completely
integrable.

In memoriam Thomas Kappeler (1953-2022)

1. Introduction

In this paper, we are interested in a particular case of the so-called abcd Boussinesq
systems for surface water waves; see [5—7]:

Nt + Vv+eV-(qv) + nlaV-Av—>bAn] =0,

1 (1.1)
v: + Vn+ 65V|V|2 + u[cVAn—dAv:] = 0.

We note that Boussinesq [8] was the first to derive a particular Boussinesq system, not in
the class of those studied here though. We refer to [19-21] for details and for an excel-
lent history of hydrodynamics in the nineteenth century. In the case above, n = n(x,t),
x €eR4, d =1,2,1 € R is the elevation of the wave, v = v(x,1) is a measure of the hori-

zontal velocity, u and € are the small parameters (shallowness and nonlinearity parameters
respectively) defined as
_ h? o«
= T

where « is a typical amplitude of the wave, & a typical depth and A a typical horizontal
wavelength.

In the Boussinesq regime, € and p are supposed to be of same order, ¢ ~ u < 1, and
we will take for simplicity € = p, writing (1.1) as

Nt +V-v+e€[V-(nv) +aV-Av—bAn,] =0,

1 (1.2)
Vi +Vn+ €[§V|V|2 +cVAp— dAV,] =0.

Particular cases are formally derived in [9,22,47].
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The coefficients (a, b, ¢, d) are restricted by the condition
1
a+b+c+d= g—r,

where t > 0 is the surface tension coefficient. The reader is referred to [36] for a compre-
hensive review.

When restricted to one-dimensional, unidirectional motions, the system in (1.2) leads
to the Korteweg—de Vries (KdV) equation; see [39]:

1
U + Uy + e(§ — T)Mxxx + ecuu, = 0.

The class of systems (1.1), (1.2) model water waves on a flat bottom propagating in both
directions in the aforementioned regime (see [5—7]).

It turns out that two particular one-dimensional cases of the abcd systems have rem-
arkable properties. The first one, we will refer to as the Amick—Schonbek system, can be
viewed as a dispersive perturbation of the Saint-Venant (shallow water) system.! We refer
to [35] for a review of known results together with new numerical simulations.

The second one, referred to as the Kaup—Broer—Kupershmidt system (KBK) was intro-
duced in [9, 10] as a surface long wave model (see [9, equations (3.2), (3.3)]), and more
recently in [12] as an internal wave model. On the other hand, Kaup and Kupershmidt
introduced it as an integrable system [28,38]. It corresponds in the abcd family toa = +1,
b = ¢ = d = 0 and is written as follows:

+ vy + (nV)y + av =0,
{nl x + (V) XXX (1.3)

vy + Nx + vy =0,

where o = 1 corresponds to the “bad” KBK system and o = —1 to the “good” KBK
system. The two systems turn out to be integrable in a sense that will be detailed below.

Remark 1.1. When viewed as water wave model, the variable 7 in (1.3) represents the
elevation of the wave, so that physically the total depth ¢ = 1 + 5 should be positive. The
non-cavitation condition ¢ > 0 will be mostly ignored in what follows. Note that in terms
of (v, ¢), (1.3) becomes

(1.4)

é‘l + (;U)x + UVxxx = Ov
v + C + vvxe = 0.

Setting U = vy in (1.4) and solving for ¢ leads to the Boussinesq-like equation

3
Uyt + UiUxx + 22U Uy + EU)?Uxx —aUxxxx = 0.

! Actually, this system is a particular case of a system derived by Peregrine in [47], but Schonbek and
Amick were the first to point out its remarkable mathematical properties.
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Remark 1.2. The KBK system is sometimes written in terms of the velocity potential ¢
such that ¢, (x, 1) = v(x,1):

Nt + ¢xx + (MPx)x + tPxxxx =0,
1
i+ 0+ 560 =0.

Remark 1.3. Note that the KBK system should not be confused with the so-called Kaup—
Kupershmidt equation

Vi = Uxrxxx + 1000xxx + 2505 Vxx + 20020y

that was introduced in [29, 37], and which is the first equation in a hierarchy (different
from the KdV hierarchy) of integrable equations with Lax operator 33 + 2udy + uy, see
for instance [24]. We are not aware of a physical application of the Kaup—Kupershmidt
equation.

The paper is organized as follows. In Section 2 we will describe general facts on the
KBK system. The next section reviews the results obtained by partial differential equa-
tions (PDE) techniques while Section 4 focusses on the integrability side. In Section 5
we introduce a numerical approach to the KBK system and test it for the known soliton.
In Section 6 the known stability of the solitons is illustrated. In Section 7 the long time
behavior of KBK solutions for localized initial data is studied showing that the soliton
resolution conjecture can be applied. In Section 8 we explore the formation of dispersive
shock waves in the vicinity of shocks of the corresponding dispersionless Saint-Venant
system. We add some concluding remarks in Section 9.

2. Generalities on the Kaup-Broer—Kupershmidt system

We recall here that the Kaup—Broer—Kupershmidt system is the one-dimensional version
of the two-dimensional (abcd Boussinesq) system

N+ V-v+eV-(nv) + €AV -v=0, o = £1,
2.1

vi+Vn+ §V|V|2 =0,
which is linearly well-posed when o« = —1. The local well-posedness of the Cauchy prob-
lem is established in [30] (see also [51]). The more difficult question of long time existence
(that is on time scales of order O(1/¢)) is established in [51] under the non-cavitation con-
dition 1 + en > 0.
On the other hand, (2.1) is ill-posed when & = +1. Note that the ill-posed version can
be turned into a well-posed system by using the BBM trick, leading to

Nt +V-v+eV-(ngv) —eAn, =0,
1
vi 4+ Vn —i—e§V|v|2 =0,

for which the long-time existence is established in [51], see also [11].
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From now on, we will restrict to the one-dimensional case with most of the time € = 1.
The linearized “bad” KBK system (¢« = 1 in (1.3)) is Hadamard ill-posed since the dis-
persion relation is w? = k? — k*, showing the short wave ill-posedness. It was established
in [1] that nonlinearity does not erase the problem, making the Cauchy problem ill-posed
in all Sobolev spaces in the sense that arbitrary small smooth solutions can blow-up in
arbitrary short time in Sobolev spaces norms.

Remark 2.1. Following [38], the change of variable v = v, n = h — v, transforms the
Kaup-Broer—Kupershmidt system with « = 1 into the (ill-posed) system

{ht + vx + hxx + (Vh)x =0,

(2.2)
Vs 4+ hy — Uxx + V0, =0,

with dispersion w(k) = +ik~'1 — k2.
On the other hand, in the well-posed case @ = —1, the change of variable v = v,
n = h + ivy leads to the (linearly well-posed) “Schrodinger-like” system

{ht + vy —ihxx + (Vh)x =0,

. (2.3)
vy +hy +ivyx + vV, =0,

with dispersion w(k) = +ik(1 + k?)'/2
As recalled in [46], Broer [9] and Kaup [28] derived the system in dimensional form

h3  hot
n: + hO‘l’xx + (n‘l’x)x + (?0 - po_g)bexx =0,
2.4)

1
¢r + 5(¢x)2 +gn =0,

where 7 is the elevation of the wave, ¢ the velocity potential evaluated at the free surface,
the constant /i is the quiescent water depth, g > 0 is the gravitational acceleration, T > 0
is the surface tension coefficient and p the density of the fluid.

The “bad” version corresponds to pure gravity waves (t = 0) or to gravity-capillarity
waves with small surface tension (t/(gp) < h3/3, correspondingtob =d =c¢ =0,a >0
in (1.2)). The “good” version occurs with strong surface tension, that is, when 7/(gp) >
h3/3, (a not too physical case ...), corresponding to b = d = ¢ = 0,a < 0in (1.2). The
difference in nature of the equation depending on the capillarity is reminiscent of that
of the Kadomtsev—Petviashvili equation (KP-II for gravity waves and KP-I for gravity-
capillarity waves with strong surface tension) although both KP-II and KP-I are well-
posed!

Remark 2.2. Despite the fact that the Kaup—Broer—Kupershmidt system with the plus
sign is linearly ill-posed, it possesses solitary wave solutions (n(x — kt),v(x — kt)) when
k > 1.% This has been found by Kaup [28] using the Inverse Scattering machinery, and

2In the classical version, a = 1/3.
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who also proved the existence of N-solitons. Matveev and Yavor [41], exhibited a vast
class of almost periodic solutions containing /N -soliton solutions as a degenerate case; see
also [46]. The existence of undular bores is proven in [23].

A direct approach to the existence of solitary waves is given in [13] with ¢ = 1/3.
Actually a solitary wave satisfies the equations

W2 = Ry(u) = %1)2(1) —@k -2 -k +2). n=v(k-2).

where the derivative is taken with respect to £ = x — kt.
By studying the function R;, one shows that there exists a unique solution v(£), which
is even and monotone for £ > 0 for any k > 1. More precisely, the solution v () reads

2(k2 - 1)

T cosh(V3R2 - DE) + k.

2(k% — 1)(k cosh(y/3(k2 — 1)) + 1)
(cosh(y/3(k2 = 1)) + k)2 '

When 1 < k < 2, the corresponding 7(§) is also monotonically decreasing for £ > 0, while
this is no longer true when k > 2. One notices that for 1 < k < 2, we have

v(é)

We also have

() =

[vllzee = lInllzee = 2(k — 1).

3. The Kaup-Broer—Kupershmidt system by PDE techniques

We recall that the Cauchy problem for (2.1) with o« = —1 is well-posed in both spatial
dimensions one and two under the non-cavitation condition 1 4 €7 > 0 on time scales of
order O(1/¢); see [51].

We now focus on the one-dimensional “good” KBK system with € = 1, which has the
Hamiltonian structure

8H 8H
7}z+ax—=0» Uy + 0y — =0,
sv an

where the Hamiltonian J is given by
1
s =35 [0+ + @2 dx,
Remark 3.1. The Hamiltonian of the “bad” KBK system is

H = %/[nz + (1 + nv? — (v3)]dx.
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Remark 3.2. Both the “bad” and “good” KBK system have the conserve quantity:

Hy = / nudx.
R

Angulo [2] proved that the Cauchy problem for the “good” KBK system is locally
well-posed in HS~1(R) x H*(R), s > 3/2.% Surprisingly, he also found an additional
conservation law namely

1
1.0 = 5 [[4020 +502) + 402 + 408) + 472 + 602(0.)?
— 16nVVxx — 4n(ve)? + 100v% 4+ 21> + v* + 67702 + nv4] dx.

The existence of such a conservation law suggests that the “good” KBK system is
integrable in the sense of Inverse Scattering. We refer to the next section for further
information on this issue. Actually, /3 can be viewed as the Hamiltonian of the (linearly
well-posed) higher order system

5,,3,,3 5, 14 1,
vt—nxxx+77x+{zv +Z77 “FEUU +§U —ZUUxx—va}XZO,

3 3
Nt + Vxxxxx — 2VUxxx + Ux + {EUUJZC - E(vzvx)x 3.D

1 5 1 3 1
= 20 = 2070)xx + 5 (102)x + S0+ §v3 + E(vnz) + §v3n}x =0,

which can be written

81 ol
M+ 0= =0, v +dx— =0.
Sv an
We are not aware of results on the Cauchy problem for (3.1).
In order to get a further insight into the “good” KBK system, it is useful to diagonalize

the linear part to obtain the equivalent system; see [51]:

€
Nt + Jelx + 5N1(77, w) =0,
p 3.2)
Wy — JGwX + 5N2(77, w) = 07

where J. = (I —€02)"/2, and

N1, w) = 0x[(¢ +w) 7 (= )] + Sl (= w) I (= )],
Na(n.w) = 0x[(n + w) I —w)] = Je[IT (i — w) I (e — w)]-
Since
1

1+ e)V/2 _ 128 = ’

3A local well-posedness result in a weighted space with less regularity was obtained in [30].
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the system (3.2) becomes

€
N + €2 Hnex + Ren + S Ni(n.w) =0,
(3.3)
wy — el/zjt’wxx — Rcw + §N2(77» w) =0,

where Rc is the (order zero) skew-adjoint operator with symbol
i§
(14872 + g
Thus, the “good” KBK system is equivalent to a system having a decoupled “Benjamin—
Ono-type” linear part. This property allows to apply the techniques used to obtain the local
well-posedness of the Benjamin—Ono equation in low regularity spaces. Note that this

approach would yield existence on the “short” time range O(1/./€); see the discussion
in [51].

Remark 3.3. In a recent paper, Melinand [42] derived various dispersive estimates (for
example, Strichartz, local Kato smoothing, and Morawetz) for a large class of (abcd)
systems including the Kaup-Broer—Kupershmidt system, both in one and two spatial
dimensions. These estimates should play an important role for the local resolution of the
Cauchy problem in “large” functional spaces and in the proof of the possible scattering of
small solutions.

We conclude this section by alluding to results in [16], concerning the evolution of
discontinuous initial data under the flow of the “good” KBK system. Actually, a Riemann-
type problem is considered with initial data

n(x,t =0)=n andv(x,t =0)=v; forx <O,
n(x,t =0) =ngandv(x,t =0) =vg forx >0,
and one finds in [16] a classification of the wave patterns evolving from these initial dis-

continuities.

3.1. Traveling wave solutions

Following Angulo [2] who considered the case € = 1, we now consider the traveling wave
solutions of (1.3) that is solutions of the form U, = (n, v) with

n(x,t) =n(x —ct), v(x,t)=¢(x—-ct)

with ¢ € R constant so that (n, ¢) satisfies the system (we have assumed that (n, ¢) vanish
at infinity which is natural in the water waves context):

—cn+¢ +eng —egp” =0,
¢2
—cq,’)—i—n—i—e?:O,

where ’ denotes the derivative with respective to § = x — ct.
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Eliminating n from the second equation yields

62

3 ¢ =0. (3.4)

—e¢” + (1 —c*)p + %Cegbz —

From [4, Theorem 5] non-trivial solitary waves exist if and only if |c| < 1. Actually, (3.4)
can be integrated by standard methods, leading to, for |c| < 1, a unique even solution (up
to translations), which reads when € = 1 as; see [2]:

2(1 —c?)
cosh(v/1 —c2§) — ¢

from which we deduce the expression for v¢ ¢:

e (®) = R ® = e ® - 2va® G

2(1—c?)
e[cosh(v/1 — c2e1/2§) — ]

We now turn to stability issues for the above solitary wave, following Angulo [2] who
solved the problem with € = 1 and actually proved using the method in [25] that the
solitary wave is orbitally stable in L2(R) x H!(R) for |c| < 1. This uses the fact that U,
can be viewed as a critical point of the functional F = ®; — ¢y, that is, it satisfies

Ve e(§) =

(@1 — cDg)'(Ue) =0,

where

1
Ou(vn) = 5 [ 102407+ 00+ (027 d
R
dDO(v,n)z/ vndx.
R

Angulo proved, moreover, using the higher order conservation law, that the Cauchy prob-
lem is globally well-posed in H*~1(R) x H*(R),s > 2 provided the initial data (19, vo)
are L2(R) x H!(R)-close to some translation of the solitary wave. This is one of the few
known results on the global well-posedness of the Cauchy problem for abcd Boussinesq
systems.

Remark 3.4. We are not aware of explicit formulas for N-solitons of the “good” KBK
system.
3.2. Remarks on the stationary solutions

We comment here on the stationary solutions of the “good” KBK system (here we keep
the dependence in €). Assuming that such a solution vanishes at infinity. In one spatial
dimension (7, v) should satisfy

2
" € 3 € 2
- - =0, = ——v°,
v 4 v v n v
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and v can be expressed in terms of the profile of the soliton of the focusing cubic nonlinear
Schrodinger equation, leading to the explicit form

2
€ cosh(e=1/2x)"

v(x) =

In the two-dimensional case, one has

€2 €
V. [—AV +v— ?|V|2V] =0, n= —5|V|2. (3.6)

Any solution v of
2
€
—AvV+v— ?|v|2v =0, 3.7
solves (3.6).
Equation (3.7) is a particular case of the equation of a bound state solution of a vector
nonlinear Schrédinger equation. It is proven in [15] that (3.7) has a solution whose com-
ponents are constant multiples of the ground state of the corresponding scalar nonlinear

Schrodinger equation. In both cases it would be interesting to investigate the stability of
those solutions with respect to the “good” KBK system.

4. The Kaup-Broer—-Kupershmidt system by IST techniques

The connection of (1.3) with the theory of integrable systems was first noticed in [28, 38]
for both the “bad” and “good” cases. Actually, Kaup [28], proved that the KBK system is
the compatibility condition for a pair of linear equations.

Writing the KBK system as

L+ (Cv)x £ vxxx =0, ve+vve+8& =0, =1+n,
the two aforementioned linear equations are
1 \2
e = £ (2 - zv) ~¢lv.
1 1
valﬂ - (A + EU)WX.

12

Kaup also wrote the formulation of the direct and inverse scattering problems and the
formula for the soliton solution. Kupershmidt [38] showed how the KBK system can be
derived in bi-Hamiltonian form. He considered in fact a more general class of systems that
he described as the “richest integrable known system known to date”:

Ur + hy + Buxx +uuy =0,
hi + QUxxx — lghxx =0,
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where o and § are arbitrary real constants. Note that the system is linearly well-posed if
and only if @ < —B2. The KBK systems correspond to 8 = 0, > 0 for the “bad” one,
o < 0 for the “good” one. Kupershmidt derived a corresponding hierarchy by making use
of the theory of non-standard integrable systems.

As already alluded to, the integrable system structure of the KBK systems yields exis-
tence of various special solutions, both in the “good” and the “bad” case. For instance,
Sachs [50] wrote an infinite family of rational solutions of the “bad” KBK system. In [14],
Clarkson obtains a larger class of rational solutions in terms of the generalized Hermite
and generalized Okamoto polynomials for both the “good” and “bad” version of the KBK
system. Furthermore, Ito in [27] (see also [50]) exhibited an infinite family of commuting
Hamiltonian flows associated to an infinite set of commuting integrals F;, such that

{Fp, #H} =0,

where {, } is the Poisson bracket and # the Hamiltonian of the KBK system. This leads
to a hierarchy of KBK Boussinesq systems.
The second one in the “bad” case is

1
v+ Z(v3 + 6VC + 4vyy)x =0,
| (4.1)
&+ Z(31)% + 322 4 302 + 6VVxy + 4Lxx)x = 0,

where again { = 1 + n. Note that, contrary to the “bad” KBK system, the linear part
in (4.1) is decoupled and well-posed. The Hamiltonian corresponding to (4.1) is

1 3
Hy(v,¢) = 2 /l;{v% + 3v§2 + 20xxC + 208x + Evzvxx} dx.

Remark 4.1. The system (4.1) is different from another integrable system introduced by
Kupershmidt [37] as the s-mKdV system and which, in the notation of [53] where one also
finds a bi-Hamiltonian formulation of the equation, is written

Vt — Uxxx + 61)21)x = 3(MxxMx — 6(NxnV)x = 0, 4.2)
N — HMxxx + 6(v% — vx) + 320,V — vyx)n = 0. '
Actually, (4.2) is obtained after a Miura-type transform
u=—vx =>4, E=nc+nv
from the so-called super-KdV equation (s-KdV); see [37,53]:
U — Uxxx — OUUyx + 128E =0, 43)
Er — 4&xx — 6UE, — 3Euy = 0.

We refer to [3,43,48] for ill-posedness and well-posedness results on the Cauchy problem
for a variant of (4.3). On the other hand, we are not aware of mathematical results on the
Cauchy problem for (4.2).
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The next system in the “bad” KBK hierarchy is in the (v, {) variables

1
v + g(v“ + 120%¢ + 6L 4 6V2 4 16VVxy + 8xx)x = 0,

1
&+ g(41)3; + 12082 4+ 1608k
+ 2005y + 20058 + 8Vxxxx + 12002 + 120%v55)x = 0,

which is linearly ill-posed. More generally, the higher order flows are defined by the equa-

tions
(”) + JVH, =0,
¢,

(0 0,
<o )

and where the Hamiltonian H,, are defined inductively by

where

1
Hy =3 / W2 +*—v2)dx, JVHpy=KVHy_,
R
where K is the skew-symmetric operator
K = (lax %axv 1 )
zvax 8)3c + §0x + jé‘x

The same strategy can be applied to the “good” KBK system, starting now from the
Hamiltonian

1
H, = —/(v2§+§2+v§)dx,
2 Jr

and the new K defined as

1
K:(la" X 205V . )
Evax _ax +§0x + ng
The second equation in the hierarchy is thus

1
v + 1(03 + 6vE —4vxx)x =0,
1 4.4)
e + Z(3v2§ + 3§2 - 3v;25 — 6VVxx —48xx)x =0,

which again is linearly well-posed and correspond to the Hamiltonian

Hy(v,0) = %/R{v% + 3082 — 20,8 — 2080y — %vzvxx} dx.
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Remark 4.2. In terms of the variables (v, 1), (4.4) becomes

1
vy + Z(v3 4+ 6V + 6V — 4vyy)x = 0,
| 4.5)
’r + ‘—‘(31)2 + 302 + 6n + 3n? — 3v§ — 6VVxx — 40xx)x = 0.

Remark 4.3. Equations (4.1), (4.4) and (4.5) are systems of KdV type involving second
and third order nonlinear terms making the study of the local Cauchy problem delicate.
We refer to [18,40] for a study of the Cauchy problem for scalar dispersive equations
involving a nonlinear dispersive third order term.

The next system in the “good” KBK hierarchy is
1
vy + g(v4 + 121)2; + 6§2 - 617;% — 16vvxy — 8Lxx)x =0,
1.3 2
§o + g (070 + 12007 — 16084y
— 200, 8y — 20055 C + 8Uxxxx — 12002 — 120%055)x = 0,

which is linearly well-posed and the (v, {) version of (3.1). It corresponds to the Hamilton-
ian

1
H@.() =g /R(v“z + 60287 — 80 e + 407, 4 10002 + 487 — 207 v,,) dx.
We now briefly describe some recent progress on the Kaup—Broer—Kupershmidt sys-

tem. The paper [45] focusses on the periodic “good” KBK system and provides an explicit
form of the periodic traveling waves in terms of the Weierstrass elliptic function g:

anpE +¢) +an
anpE+¢) +axn’

1
v(é) = n(€) =Cv(§)—§v(é)2, §=(x—co).
The authors also exhibit a matrix Lax pair that is used it to prove the existence of an
infinite number of complex conservation laws.

Theorem 4.1 ([45]). The following equation holds:

(pn)t + (jn)x =0,
where the conserved densities py, are determined by the recursion

1 i . i
pL =30 + FVx: P2 =1Vp1 —2p1x + SV
n—1
Prt1 = iVpn = Pt —20nx —2 ) PkPu—k: 1> 1,
k=1
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and the conserved currents are determined by the conserved densities

1 +1 i 5
=-V+ -vp1 —=p—2,
=7 FVPL— 5P
_ 1 i i
Jn = 5VPn = ZPn+1 + FPn—1s > L.

Each complex conservation law gives rise to two real conservation laws that are polyno-
mials in 1, v and their higher order derivatives with respect to x.

The Lax pair is also used to construct the forward scattering transform for periodic
solutions and to find exact formulas for finite gap solutions.

Two-dimensional integrable generalizations of the Kaup—Broer—Kupershmidt system
are given in [44,46,49]. None of them seem physically relevant, however. On the other
hand, for capillary waves such that t/(gp) > h3/3, (2.4) is analogous to the “good” BSK
system.

Remark 4.4. The “bad” Kaup—Broer—Kupershmidt system is studied from the Inverse
Scattering point of view in [54] under the form

1
Vy E(Uz +2W — Vy)x,

v = (vw . %wx) | (4.6)

X

which is an alternative form of (2.2). Using this version of the system, (4.6) is the com-
patibility condition of the following Lax pair

U =UY, Y =V,

with

U=—-ikos+Q, Q0= %03+o+—wo_,

A~ A 1 1
V=kos+0Q0, 0= —Z(vx —v%)o3 + (ik + %)04_ — E(wx + wv)o_,

where k is a spectral parameter, 0;, j = 1,2, 3, are the classical Pauli matrices and

1 . 1 .
oy = 5(01 +1i03), o0_- = 5(01 —i07).

The Inverse Scattering mechanism described in [54] allows the construction of special
solutions such as kinks; see [54] for details.

Remark 4.5. There is so far no rigorous result on the complete resolution of the Cauchy
problem for the well-posed Kaup—Broer—Kupershmidt system (¢ = —1) under an appro-
priate functional setting for the initial data and the solution by using inverse scattering
techniques, and giving possibly insight into the qualitative behavior of the solutions.This
would include a rigorous theory for the direct and inverse scattering problem. We refer
to [45] for progress in this direction.
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5. Numerical approach to the Kaup-Broer-Kupershmidt system

In this section, we will detail the numerical approach used to solve the “good” KBK
system in the numerical experiments, similarly to [33,34].
We recall the conserved energy for this equation is

E= %/ (7 + (L + mv® + v3) dx. 5.1)
R

Solitons of the KBK system (with location x of the maximum for t = 0) can be written
for the velocity C € R, |C| < 1 with (3.5) in the form

2(1-C2) S 52
V= N 77: V— V", .
cosh(v/1—=C2(x —Ct — x9)) — C 2

To numerically solve the system (1.3) we essentially use the diagonalization approach
for the linear part of (3.2), (3.3). We consider the KBK system in Fourier space,
A~ . 2\~ L~ ~ A ik ~2
Ny =—ik(14+k%)v—iknv, v =—tkn—7v (5.3)
Here we use the standard definition for a Fourier transform for integrable functions u(x)
denoted by (k) with dual variable k and its inverse (in the sense of tempered distribu-
tions),

ﬁ(k)z/ u(x)e ¥ dx,  k eR,
R

1 ,
u(x) = E/]Ra(k)e”“f dk, xeR.

Introducing
~ ~ n
Uy =0V ——,
V1 +k?
we can write the system (5.3) in the form
1 n
(Ux) = Fus — ik(—v2 + —) (5.4)
' 2 V1+k?
Obviously the dispersion relation is as in (2.3), i.e., for large |k| as in the Schrodinger

equation.

For the numerical treatment, the Fourier transform in (5.4) will be approximated in
standard way by the Discrete Fourier Transform (DFT) which can be conveniently com-
puted by the Fast Fourier Transform (FFT). This is a spectral method which means
that the numerical error in approximating smooth periodic functions with N modes in
the DFT leads to a numerical error exponentially decreasing with N, see the discussion
in [52] and references therein. Thus we will in the following always work on a torus of
period 2L with L > 0, i.e., we will consider values of x € L[—m, 7], where we will
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apply N DFT modes. In an abuse of notation, we will denote the discrete Fourier trans-
form with the same symbol as the standard Fourier transform. Since the numerical error
in approximating a function with a DFT is of the order of the highest DFT coefficients,
we always use values of L and N such that the DFT coefficients decrease to machine
precision which is here of the order of 10716,

The resulting 2 N -dimensional system of equations (5.4) are of the form

ur = Lu + N(u), (5.5)

where & is a linear diagonal operator, here proportional to ik+/1 + k2, whereas N (u)
is a nonlinear term in the u 4. Due to |£| being rapidly increasing with |k|, the system is
stiff, which means that explicit time integration schemes are not efficient for such systems
due to stability conditions; see, for instance, the discussion in [26] and references therein.

However, there are efficient time integration schemes to address systems of the form
given in (5.5) with a stiff diagonal linear term; see [26] for so-called exponential time
differencing schemes (ETD). The idea of ETD schemes is to use equidistant time steps &
and to integrate equation (5.5) between the time steps ¢, and t, 1, n = 1,2, ..., with an
exponential integrator with respect to . We get

h
ultyr1) = e u(ty) + / ex(h_r)g/\f(u(t,, + 1)ty +7)dT.
0

The integral will be computed in an approximate way for which different schemes exist.

In [32], we have compared for dispersive PDEs various Runge—Kutta schemes of clas-
sical order 4 which all showed similar performance. Therefore, we apply in the following
the one by Cox—Matthews [17]. Since the method is explicit (only information of the func-
tions at the previous time step #, is needed), it is not important that the nonlinear part is
not diagonal in (5.4) as the linear part. As discussed in [31, 32], the exactly conserved
energy can be used to control the numerical error in the time integration. Whereas the
energy (5.1) is exactly conserved for the KBK system, the numerically computed energy
will depend on time due to unavoidable numerical errors. The relative energy

A= |E(t)/E0) — 1|

typically overestimates the numerical error by one to two orders of magnitude. We will
always aim at a A considerably smaller than 1073,

To test the code, we consider the soliton (5.2) for C = 0.8 as initial data. We use
N = 2! DFT modes for x € 15[—m, w] with N; = 4000 time steps for t < 1. The DFT
coefficients decrease to machine precision during the whole computation in this case, and
the relative energy is conserved to better than 10712, In Figure 1 we show the difference
between numerical and exact solution at the final time. It can be seen that it is of the order
of 10712, which shows that the code can propagate the soliton with essentially machine
precision.
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Figure 1. Difference between numerical and exact solution for soliton initial data (5.2) with C = 0.8
for t = 1, on the left 1, on the right v.
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Figure 2. The solution to the KBK system for perturbed soliton initial data of the form (6.1) with
A =1.01 and i = 1 at the final time # = 5 in blue and a fitted soliton in green, on the left v, on the
right 7.
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Figure 3. The solution to the KBK system for perturbed soliton initial data of the form (6.1) with
A =0.99 and u = 1 at the final time # = 5 in blue and a fitted soliton in green, on the left v, on the
right 7.
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Figure 4. The solution to the KBK system for perturbed soliton initial data of the form (6.1) with
A = land u = 1.01 in the upper row and p = 0.99 in the lower row fitted soliton in green, on the
left v, on the right 7.

6. Perturbed solitons

Angulo [2] showed that the solitons of the KBK system are stable. In this section, we
illustrate this by considering perturbations of the solitons.
We study perturbations of the form

v(x,0) = Avc(x).  n(x.0) = pnc(x), (6.1)

where v, n¢ are the solitons (5.2) for a given real velocity C with |C| < 1, and where A,
 are real numbers in the vicinity of 1. We use N = 22 DFT modes for x € 30[—, 7]
and N; = 4000 time steps for ¢ € [0, 5]. Note that the maximum of v in (5.2) is given by
1 + C, and thus strictly smaller than 2. This means that the value of A in (6.1) has to be
chosen such that this condition is satisfied. To study numerically perturbations and to see
an effect in finite time, one has to consider values of A and or u that have a finite difference
to 1. This implies that the resulting solution will be close to the original soliton, but not of
identical velocity. We fit the soliton in the following way: in the numerical solution for v
at the final time t = 5, we identify the location x¢ and the value v of the maximum. Since
the maximum value for v in (5.2) is given by 2(C + 1), we can get the value of C from
this maximum.
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Figure 5. The solution to the KBK system for the perturbed stationary solution of the form (6.1)
with A = 1 and ;& = 1.01 in the upper row and © = 0.99 in the lower row at the final time t = 5 in
blue and a fitted stationary solution in green, on the left v, on the right 7.

We show the solution to the KBK system for C = 0.8, A = 1.01 and p = 1 at the final
time together with the fitted soliton in green (the fitted velocity is 0.819) in Figure 2. It
can be seen that the solution is very close to the fitted soliton, but that there is also some
small radiation. The soliton is thus as expected stable.

The situation is very similar for initial data of the form (6.1) with A =0.99 and u = 1
as can be seen in Figure 3. The fitted soliton has velocity 0.7811. Again the final state is a
soliton plus radiation.

The same stability aspects are observed if perturbations of the form (6.1) with A = 1
and pu ~ 1 are studied as shown in Figure 4. The fitted values of the velocity are 0.8155
for 4 = 1.01 and 0.7846 for . = 0.99. In all cases the final state of the solution is a soliton
plus radiation.

For C = 0, the solutions (5.2) become stationary. If we apply the same perturba-
tions (6.1) to this solution, we find that the stationary solution is also stable. For 4 = 1 in
the initial data (6.1), we get the solutions shown in Figure 5.

The situation is similar for A = 1 as shown in Figure 6.
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Figure 6. The solution to the KBK system for the perturbed stationary solution of the form (6.1)

with A = 1 and u = 1.01 in the upper row and i = 0.99 in the lower row fitted stationary solution
in green, on the left v, on the right 7.

7. Localized initial data

In this section, we will study KBK solutions for localized initial data. The results confirm
the applicability of the soliton resolution conjecture to the KBK system, that the long time
behavior of solutions is given by solitons plus radiation.

In this section, we always use N = 2'2 DFT modes for x € 30[—x, 7] and N; = 4000
time steps. The DFT coefficients decrease to machine precision in all examples, and the
relative conservation of the energy is of the order of 1071? and better during the compu-
tations. First we consider initial data of the form

n(x,0) =0, v(x,0) = 3exp(—x?). 7.1

The resulting solution for v can be seen in Figure 7. There are strong oscillations propa-
gating to the right and smaller ones propagating to the left. And there is a solitary wave
traveling towards —oo to be discussed in more detail below.

The corresponding solution 7 can be seen in Figure 8. There is similar radiation as in
the solution v, and again a solitary structure traveling to the left.

To check whether the solitary structure near the origin is in fact evolving into a soliton,
we fit it to the soliton (5.2) as described in the previous section. We show the result of this
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Figure 7. Solution v to the KBK system for the Figure 8. Solution 7 to the KBK system for the
initial data (7.1). initial data (7.1).
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Figure 9. The solutions shown in Figure 7 and Figure 8 at the final time # = 5 in blue and a fitted
soliton in green.

fitting for v on left of Figure 9. The numerical solution is given in blue, the fitted soliton
in green. The corresponding plot for 7 is shown on the right of the same figure. It can be
seen that the agreement is already very good though there is still a considerable amount
of radiation in the vicinity of the soliton.

Note that there is no criterion known which initial data lead to which number of KBK
solitons for large times. If we consider for instance the initial data

n(x,0) = Aexp(—x?), v(x,0) =0, A€eR, (7.2)

we get with A = 3 for v the solution shown in Figure 10. In this case there is no indication
of solitons.

The corresponding solution 7 is shown in Figure 11. It appears that the initial data are
simply dispersed in this case. Note that the solution looks qualitatively similar for larger
values for A, for instance A = 20, there is no indication of solitons in this class of initial
data.
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Figure 10. Solution v to the KBK system for the Figure 11. Solution 7 to the KBK system for the
initial data (7.2) with 4 = 3. initial data (7.2) with A = 3.
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Figure 12. Solution v to the KBK system for the Figure 13. Solution 7 to the KBK system for the

initial data (7.2) with A = —3. initial data (7.2) with A = —3.
15 0.5
1 |
0
0.5 I 1
> 0 1 = 05 |
1
05 | ] |
i -1 |
||
! | |
-1.5 ! -1.5
-100 -50 0 50 100 -100 -50 0 50 100
X X

Figure 14. The solutions shown in Figure 12 and Figure 13 at the final time ¢ = 8 in blue and a
fitted soliton in green.
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However, the situation is different for negative A in (7.2) as can be seen for A = —3
in Figure 12. There appears to be a solitary structure near the origin.

The corresponding solution 7 can be seen in Figure 11.

As in Figure 9, we fit the left maximum to the soliton (5.2). We show the solution for v
at t = 8 with the fitted soliton in green on the left of Figure 14. The corresponding plot
for n can be seen on the right of the same figure. There is clearly a second soliton moving
to the right in this case for symmetry reasons.

Note that these initial data do not satisfy the non-cavitation condition, but that there is
no indication of a blow-up in this case. The solution appears to be smooth for all times.

8. Dispersive shock waves

Dispersive shock waves (DSWs) are zones of rapid modulated oscillations in solutions to
dispersive nonlinear PDEs in the vicinity of shocks of the corresponding dispersionless
system, here the Saint-Venant system. A possible way to study such zones for the KBK
system is to consider solutions on x scales of order 1/¢ for ¢ < 1 on time scales of
order 1/¢. This can be conveniently done by rescaling x and ¢ by a factor 1/¢. This leads
for (1.3) (we use the same notation as before):

Nt + vx + (Mu)x + & Vyxx = 0, @.1)
vy + nx +vv, =0. '
In the formal limit ¢ — 0, this leads to the Saint-Venant system
+ vy + (V) =0,
N+ vx 4+ (Mv)x 82
vy +nx +vv, =0,

the solutions of which will have shocks in finite time for hump-like initial data. The sys-
tem (8.1) can be seen as a dispersive regularization of the system (8.2). For the same initial
data leading to shocks for the Saint-Venant system, DSWs are expected in the vicinity of
the former for the system (8.1).

We use N = 2!* DFT modes for x € 3[—, 7] and 10* time steps for ¢ < 3 for the
initial data n(x,0) = exp(—x2), v(x, 0) = 0. The solution 7 for ¢ = 0.1 can be seen in
Figure 15. The initial hump splits into two humps developing strong gradients at the outer
edges where oscillations can be observed.

The corresponding solution v is shown in Figure 16. The solution is odd in x, but
shows oscillations at the same x-values as 7.

We show a close up of the oscillatory zone in Figure 17. The smaller ¢, the more rapid
the oscillations and the more they are localized to a zone sometimes called the Whitham
zone.
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Figure 15. Solution 7 to the KBK system (8.1) Figure 16. Solution v to the KBK system (8.1)
for ¢ = 0.1 and for the initial data n(x,0) = for ¢ = 0.1 and for the initial data n(x, 0) =

exp(—x2), v(x,0) = 0. exp(—x2), v(x,0) = 0.
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Figure 17. On the left, a close-up of the solutions in Figure 15 and Figure 16 at the final time = 3,
in the upper row 7, in the lower row v; on the right, the oscillatory zone for the same initial data for
e =0.01.
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Figure 18. Solution 7 to the KBK system (8.1)) Figure 19. Solution v to the KBK system (8.1)
for ¢ = 0.1 and for the initial data v(x,0) = for ¢ = 0.1 and for the initial data v(x, 0) =
exp(—x2), n(x,0) = 0. exp(—x2), n(x,0) = 0.

The situation is similar for other hump-like initial data as n(x,0) = 0 and v(x,0) =
exp(—x?2). The solution 7 for & = 0.1 can be seen in Figure 18. The solution is not sym-
metric, but there are oscillatory zones as before on both sides of the humps.

The corresponding solution v is shown in Figure 19. Note that due to the rescaling
of the original KBK system (1.3), the form of the solitons of (8.1) is slightly different. It
appears that the oscillations traveling to the left in Figure 19 are solitons.

9. Conclusion

In this paper we have presented a detailed numerical study of solutions to the “good”
KBK system (1.3). The stability of the solitons as proven by Angulo [2] was illustrated
for several examples, also for the stationary solution. It was shown that the long time
behavior of solutions for localized initial data is given by solitons plus radiation. In the
vicinity of shocks to the corresponding dispersionless Saint-Venant system, dispersive
shock waves were observed. No indication of a blow-up was found even in cases where
the non-cavitation condition is not satisfied.

It is an interesting question whether these features can also be observed in the two-
dimensional variant of the KBK system which is most probably not integrable. An impor-
tant point is whether there are two-dimensional localized solitary waves called lumps as
in the KP-I equation, or whether there are no localized two-dimensional structures as for
KP-II. The one-dimensional solitons discussed in the present paper are infinitely extended
exact solutions to the two-dimensional KBK system, so-called line solitons. Their stability
in the two-dimensional equation has to be studied as well as the question whether there
can be blow-up in two-dimensional. This will be the subject of future work.
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