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Abstract

For any holomorphic function f : X → C on a complex manifold X, we define and study
moderate growth and rapid decay objects associated to an enhanced ind-sheaf on X.
These will be sheaves on the real oriented blow-up space of X along f . We show that,
in the context of the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara,
these objects recover the classical de Rham complexes with moderate growth and rapid
decay associated to a holonomic DX -module. In order to prove the latter, we resolve a
recent conjectural duality of Sabbah between these de Rham complexes of holonomic
DX -modules with growth conditions along a normal crossing divisor by making the con-
nection with a classic duality result of Kashiwara–Schapira between certain topological
vector spaces. Via a standard dévissage argument, we then prove Sabbah’s conjecture
for arbitrary divisors. As a corollary, we recover the well-known perfect pairing between
the algebraic de Rham cohomology and rapid decay homology associated to integrable
connections on smooth varieties due to Bloch–Esnault and Hien.
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§1. Introduction

The theories of ind-sheaves (initiated in [KS01]) and enhanced ind-sheaves (estab-

lished in [DK16]) led to an extension of the classical Riemann–Hilbert correspon-

dence for regular holonomic D-modules established by Kashiwara [Kas80, Kas84]

(see also Mebkhout [Meb84] for a different proof). This correspondence states that

the de Rham functor

DRX : Db
rh(DX)

∼−−→ Db
C-c(CX)

from the derived category of regular holonomic D-modules to the derived category

of C-constructible sheaves on a complex manifold X is an equivalence of derived

categories.

It was not difficult to observe that this functor is no longer fully faithful on the

larger category of (not necessarily regular) holonomic DX -modules; the simplest

examples of this failure come from the so-called exponential DX-modules with poles

along a divisor D ⊂ X. These objects are of the form Eφ
X\D|X := (OX(∗D), d−dφ),

where the “exponent” φ ∈ OX(∗D)/OX is an (unbounded) meromorphic function

with poles along D, or more generally, a Puiseux germ defined in some sectorial

neighborhood along D.

Finding a suitable target category for this conjectural “irregular” Riemann–

Hilbert correspondence was a long-standing program that led to the development
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of the above-mentioned theories and the following result due to D’Agnolo and

Kashiwara.

Theorem 1.1 ([DK16, Thm. 9.5.3]). Let X be a complex manifold. Then there is

a fully faithful functor

DRE
X : Db

hol(DX) ↪−→ Eb
R-c(ICX),

called the enhanced de Rham functor, from the derived category of holonomic

DX-modules to the triangulated tensor category of R-constructible enhanced ind-

sheaves on X.1

From a general point of view, this result teaches us that constructible

enhanced ind-sheaves should be our objects of interest in the study of holonomic

D-modules with irregular singularities – just as we were interested in constructible

sheaves as the topological counterparts of regular holonomic D-modules. One of

the purposes of this paper is therefore to introduce objects similar to the ones

known from the classical theory of constructible sheaves.

Classical objects in the study of differential equations with irregular singulari-

ties are the de Rham complexes with moderate growth and rapid decay. The reason

why such complexes are important is the following: There are non-isomorphic D-

modules whose (classical) de Rham complexes are isomorphic. Roughly speaking,

this happens because their sheaves of holomorphic solutions are the same, even

though the growth behavior of their solutions is different, but the classical de

Rham functor is not sensitive to growth conditions. In order to obtain a functor

which can distinguish such D-modules, it is therefore necessary to introduce vari-

ants of the de Rham functor that can “measure” the growth of the solutions to a

differential system. A technical difficulty in these constructions is the need to work

on real blow-up spaces, where functions with moderate growth and rapid decay

along the exceptional divisor are more easily studied. (Let us note that the use of

the real blow-up can, however, partly be avoided by working with ind-sheaves.)

In the one-dimensional case, a solution to the irregular Riemann–Hilbert prob-

lem was described earlier by introducing the notion of Stokes structure, which can

be formulated in several different ways, one of them being Stokes-filtered local sys-

tems (see [Mal91], and we refer to [Sab13] for an exposition on Stokes filtrations for

D-modules, and to [Boa21] for a history and comparison of different formulations

1In fact, one can restrict the target category further: The essential image is precisely the
category of C-constructible enhanced ind-sheaves, a notion introduced in [Ito20] (see also [Kuw21]
for an alternative approach). In this way, the functor DRE

X becomes an equivalence of categories,
but we will not use these notions here.
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of the Stokes phenomenon). Indeed, the Stokes filtration on the local system asso-

ciated to a holonomic D-module M is essentially given by the moderate growth

de Rham complexes of “exponentially twisted” versions of M.

The simple idea at the heart of this article is now the following: Since DRE
X is

fully faithful, all the information about a holonomic DX -module must be encoded

in its enhanced de Rham complex. In particular, there should be a functorial way

to obtain the moderate growth and rapid decay de Rham complexes of a holonomic

DX -module M from the (R-constructible) enhanced ind-sheaf DRE
X(M), without

leaving the topological setting. Our goal is to construct, for any holomorphic func-

tion f : X → C, functors (−)mod f and (−)rd f that make the following diagram

commutative:

(⋆)

Db
hol(DX) Eb

R-c(ICX)

Db
R-c(CX̃f

)

DRE
X

DRmod

X̃f
,DRrd

X̃f
(−)mod f ,(−)rd f

where X̃f denotes the real blow-up of X along f . In particular, in order to do

this, we will investigate two notions that do not seem to have been studied in the

context of enhanced ind-sheaves yet:

(1) We develop the notion of the enhanced de Rham complex on the real blow-up

along a holomorphic function f (in [DK16] and [KS16], only the real blow-up

along a normal crossing divisor has been studied).

(2) We study the notions of rapid decay functions and the rapid decay de Rham

complexes using enhanced ind-sheaves. (In [DK16] and [KS16], only the sheaf

Amod
X̃D

of holomorphic functions with moderate growth along a normal crossing

divisor has been studied).

In order to achieve results about rapid decay objects on these differing notions of

real blow-up, we will mimic constructions done in [DK16] in the case of moder-

ate growth along a normal crossing divisor, and additionally make a connection

between moderate growth and rapid decay in Section 7. This is accomplished using

a deep categorical duality of Kashiwara–Schapira between the related notions of

tempered distributions and Whitney functions (see [KS96, Thm. 6.1] for the orig-

inal duality statement; additionally, see Section 2.5.4 of the recent survey [KS16]

for a more expository treatment). In this way, we finally prove (in Corollary 7.10,

Lemma 7.11, and Proposition 7.12) the following duality conjectured by Claude

Sabbah (see Theorem 7.4).
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Theorem 1.2 (Cf. [Sab21, Conj. 4.13]). Let X be a complex manifold, M a holo-

nomic DX-module, and f : X → C a holomorphic function on X. Let X̃f denote

the real blow-up of X along f . Then there is a natural isomorphism in Db
R-c(CX̃f

),

DRrd
X̃f

(DXM)
∼−−→ DX̃f

DRmod
X̃f

(M),

where DX denotes the DX-module duality functor on Db
hol(DX), and DX̃f

denotes

the Verdier duality functor on Db(CX̃f
).

The key to its proof is the understanding of the case of a normal crossing

divisor, which we treat first (see Proposition 7.5 and Corollary 7.10) and which

makes use of Kashiwara–Schapira’s duality. The general case then follows using

resolution of singularities, once a canonical morphism has been constructed (see

Lemma 7.11 and Proposition 7.12).

In particular, this theorem will also make clear the connection between the

above-mentioned duality of Kashiwara–Schapira and the now classical dualities

coming from the period pairings of Bloch–Esnault [BE04] and Hien [Hie09], on

which we will elaborate at the end of Section 7.3.

The main result of this article, giving an answer to the question of diagram (⋆),

is summarized in the following theorem.

Theorem 1.3. To an object K ∈ Eb(IkX), we functorially associate the objects

of Db(kX̃f
),

Kmod f := shX̃f
(Ej̃f ∗Ej

−1K),

Krd f := shX̃f
(Ej̃f !!Ej

−1K),

where j : (X \ f−1(0))∞ ↪→ X and jf : (X \ f−1(0))∞ ↪→ X̃f are the inclusions of

the divisor’s complement (in the sense of bordered spaces).

The functors (•)mod f and (•)rd f preserve R-constructiblity, and if k = C and

K = DRE
X(M) for some M ∈ Db

hol(DX), then we have isomorphisms

Kmod f ≃ DRmod
X̃f

(M),

Krd f ≃ DRrd
X̃f

(M).

The constructibility result is immediate (see Lemma 5.7). On the other hand,

as mentioned above, the idea of proof for the rest of the remaining statements

goes as follows: We first consider the case of a normal crossing divisor. The result

about moderate growth is then rather directly deduced from constructions similar

to those in [DK16] (see Proposition 4.1), while the rapid decay case follows from
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the moderate growth case and Theorem 1.2 (see Proposition 7.5). In addition,

in both cases, some work is necessary to deduce the general case from that of a

normal crossing divisor (see Propositions 4.5 and 7.12).

Outline of the paper

Section 2 is a brief review of the languages of sheaves, ind-sheaves, enhanced ind-

sheaves, and D-modules, as well as the theory of real oriented blow-up spaces,

all of which we will use in this paper. We contextualize all of this background

language in Section 3, where we give an overview of how these objects interact in

dimension one via the Riemann–Hilbert correspondence. Afterward, we introduce

and motivate the duality results later proved in Section 6 with some concrete

computations on exponential D-modules.

In Section 4 we motivate our later definition of moderate growth and rapid

decay objects associated to enhanced ind-sheaves: First, we show how the moder-

ate growth de Rham complex of a holonomic DX -module M along a divisor can

be recovered in a functorial way from its enhanced de Rham complex DRE
X(M)

(Proposition 4.1). This is greatly inspired by the formulas developed in [DK23],

which are briefly reviewed at the beginning of the section. The proof in the higher-

dimensional case works in two steps: We prove the result in the case of a simple

normal crossing divisor, and then use results about resolution of singularities to

prove a statement in the general case. We then motivate a similar functorial con-

struction for the rapid decay de Rham complex of M, which will be proved in the

case of a normal crossing divisor in Section 7.

In Section 5 we define functors that associate to an enhanced ind-sheaf mod-

erate growth and rapid decay objects in the (classical) category of sheaves on the

real blow-up. These naturally lead to definitions for moderate growth and rapid

decay nearby cycles in the category of sheaves on the boundary of the real blow-up

space. These definitions will be motivated by the statements in the preceding sec-

tion, so that these objects will, in particular, recover moderate growth de Rham

complexes of holonomic D-modules. We also prove some elementary properties of

these objects, similar to those known from classical nearby cycles (see [KS90]) and

moderate growth and rapid decay objects associated to holonomic D-modules (cf.

[Sab21, Sect. 6]).

Restricting ourselves to R-constructible enhanced ind-sheaves, the above

objects with growth conditions are trivially seen to be related by Verdier dual-

ity. As a consequence, there is a natural duality pairing between such objects in

the derived category Db
R-c(CX̃f

) (see Section 6). This observation forms the basis

of our proof of Sabbah’s conjecture, Theorem 1.2.
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In Section 7, after reviewing a duality result of [KS96] and [KS16] between

tempered distributions and Whitney functions, we first prove Theorem 1.2 in the

case of a simple normal crossing divisor (Proposition 7.5, Corollary 7.10) and show

that duality interchanges the moderate growth de Rham complex with the rapid

decay de Rham complex for holonomic D-modules. Afterward, we are able to use

a standard dévissage argument via resolution of singularities to reduce the general

case to that of a simple normal crossing divisor.

This result has two interesting implications: First, it shows that the rapid

decay object defined in Section 5 does indeed recover the rapid decay de Rham

complex of a holonomic D-module (Corollary 7.14). Second, our result recovers the

natural pairing between rapid decay homology and algebraic de Rham cohomology

due to Bloch–Esnault [BE04] and Hien [Hie09] (see Proposition 7.15).

§2. Background and notation

§2.1. From sheaves to enhanced ind-sheaves

In this section we will recall some basic notation in the context of sheaf theory

and its generalizations. Let X be a topological space (all topological spaces will be

assumed to be good, i.e., Hausdorff, locally compact, second countable, and having

finite flabby dimension). Let k be a field.

Sheaves. We denote by Mod(kX) the category of sheaves of k-vector spaces on X,

and by Db(kX) its bounded derived category. One has the six Grothendieck oper-

ations RHom, ⊗, Rf∗, f
−1, Rf!, f

! (for f a morphism of good topological spaces)

on Db(kX). We denote the (Verdier) duality functor by DX = RHomkX
(•, ωX),

where ωX is the (Verdier) dualizing complex. Recall that ωX := a!Xk, where

aX : X → {pt} is the natural map. For a locally closed set Z ⊆ X, we will denote

by kZ ∈ Mod(kX) the constant sheaf with stalk k on Z, extended by zero out-

side Z. We refer to the standard literature, e.g., [KS90, Chaps 2 and 3], for details

on sheaf theory.

Ind-sheaves. We denote by I(kX) the category of ind-sheaves over k on X, which

was constructed in [KS01] as the category of ind-objects for the category of com-

pactly supported sheaves of k-vector spaces. The inductive limit in I(kX) will be

denoted by “ lim
−→

”. We denote by Db(IkX) the bounded derived category of I(kX).

One has the six Grothendieck operations RIhom, ⊗, Rf∗, f
−1, Rf!!, f

! on it.

Remark 2.1. Moreover, one has a fully faithful embedding ιX : Mod(kX) →
I(kX). It has a left adjoint αX , which itself has a fully faithful left adjoint βX .

Let us note that the three functors ιX , αX , and βX are exact. Let us also note
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that the natural inclusion ιX is mostly suppressed in the notation (starting with

[KS01]) and that the functor βX is also often suppressed in the more recent nota-

tional conventions of [DK16] and [KS16] (and works thereafter). We refer to [KS01]

for details on the theory of ind-sheaves.

Enhanced ind-sheaves. The category of enhanced ind-sheaves was constructed

in [DK16] in order to establish a Riemann–Hilbert correspondence for holonomic

D-modules.

To this end, the authors of [DK16] introduced the notion of a bordered space,

which is a pair (X, X̂) of good topological spaces such that X ⊆ X̂ is an open

subspace. A morphism of bordered spaces (X, X̂) → (Y, Ŷ ) is a continuous map

X → Y such that, denoting by Γ the closure of its graph in X̂ × Ŷ , the map

Γ → X̂ induced by the projection to the first factor is proper. (Note that this

condition is in particular satisfied if Ŷ is compact.) It follows that the category

of good topological spaces is naturally a subcategory of the category of bordered

spaces by considering a topological space X as the pair (X,X).

Let X = (X, X̂) be a bordered space, and consider also the bordered space

R∞ := (R,P), where P := P1(R) is the real projective line. One then defines the

quotient categories

Db(IkX×R∞) := Db(IkX̂×P)/D
b(Ik(X̂×P)\(X×R))

and

Eb(IkX ) := Db(IkX×R∞)/π−1Db(IkX ),

where π = πX : X×R∞ → X denotes the projection. We refer to [DK16] for details

on this construction and to [KS06] for an exposition on quotients of triangulated

categories. One calls Eb(IkX ) the category of enhanced ind-sheaves over k on X .

Throughout this paper, we will assume X is of the form (X,X) for some good

space X and just write X = X unless otherwise indicated.

It admits the six Grothendieck operations RIhom+,
+
⊗, Ef∗, Ef

−1, Ef!!, and

Ef ! for a morphism of bordered spaces f . Moreover, we denote by DE
X the duality

functor for enhanced ind-sheaves.

One of the most important objects in the category Eb(IkX) is the enhanced

constant sheaf

kEX := “ lim−→ ”
a→∞

k{t≥a},

where we abbreviate {t ≥ a} := {(x, t) ∈ X̂ × P; x ∈ X, t ∈ R, t ≥ a}.
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For a bordered space X = (X, X̂), there is a fully faithful embedding

eX : Db(kX) ↪−→ Eb(IkX ),

F 7−→ kEX ⊗ π−1F.

In [DK21], the authors introduced the sheafification functor shX : Eb(IkX) →
Db(kX) for enhanced ind-sheaves on X. In the case of (in particular for R-con-
structible, see below) enhanced ind-sheaves, it is given by

shX (K) := RHomE(kEX ,K) ∈ Db(kX).

(For a definition of the functor RHomE, we refer to [DK16, Def. 4.5.13], where it

was denoted by HomE. See also [DK21] for a detailed study of the sheafification

functor.) Additionally, there is a natural isomorphism shX ◦ eX ≃ idDb(kX), i.e.,

shX is a left quasi-inverse of eX .

Constructibility. In classical sheaf theory, different constructibility conditions

for sheaves of vector spaces have been studied (see, e.g., [KS90, Chap. 8]). In

particular, if X is a real analytic manifold (or more generally, a subanalytic space;

see, e.g., [KS90, Exer. 9.2]), there are thick subcategories ModR-c(kX) ⊂ Mod(kX)

of R-constructible sheaves and Db
R-c(kX) ⊂ Db(kX) of complexes with R-construct-

ible cohomologies.

IfX is a complex manifold, a stronger notion is that of a C-constructible sheaf,
and one has thick subcategories ModC-c(kX) ⊂ Mod(kX) and Db

C-c(kX) ⊂ Db(kX).

For enhanced ind-sheaves on a real analytic bordered space X = (X, X̂)

(meaning that X and X̂ are real analytic manifolds), there is an analogous thick

subcategory Eb
R-c(IkX ) ⊂ Eb(IkX ) of R-constructible enhanced ind-sheaves (see

[DK16, §4.9] for details).

A notion of C-constructibility has been studied in [Ito20] (see also [Kuw21]

and [Moc22a, Moc22b] for different approaches to describing the essential image

of the Riemann–Hilbert functor of [DK16]).

§2.2. D-modules

When X is a complex manifold, we will denote by DX the sheaf of linear partial

differential operators with holomorphic coefficients on X. We refer to the standard

literature, such as [Kas03, HTT08], for the theory of D-modules (on complex

manifolds as well as on smooth algebraic varieties). For a morphism of complex

manifolds f : X → Y , the direct and inverse image operations for D-modules will

be denoted by Df∗ and Df∗, respectively.
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Let X be a complex manifold. We denote by Modhol(DX) the category of

holonomic DX -modules and by Db
hol(DX) the subcategory of the derived category

of DX -modules consisting of complexes with holonomic cohomologies.

The (classical) de Rham functor is given by

DRX : Db
hol(DX) −→ Db(CX),

M 7−→ ΩX

L
⊗DX

M,

where ΩX := ΩdX

X is the invertible sheaf of top-degree holomorphic differential

forms on X, where dX := dimCX. Further, ΩX is also a right DX -module, and is

used to define the duality functor for holonomic left DX -modules M ∈ Db
hol(DX):

DXM := RHomDX
(M,DX)⊗OX

Ω⊗−1
X [dX ],

which is another holonomic left DX -module.

In [DK16], D’Agnolo–Kashiwara define the enhanced de Rham functor

DRE
X : Db

hol(DX) −→ Eb(ICX),

M 7−→ ΩE
X

L
⊗DX

M,

where ΩE
X := ΩX

L
⊗OX

OE
X , and OE

X is the enhanced ind-sheaf of tempered holo-

morphic functions.

Theorem 2.2 (Cf. [DK16, Thm. 9.5.3]). The functor DRE
X is fully faithful.

The functors eX and shX make a connection between the classical and the

enhanced de Rham functor: For a regular holonomic DX -module R ∈ Db
rh(DX),

one has

DRE
X(M) ≃ eXDRX(M).

On the other hand, for any holonomic DX -module M ∈ Db
hol(DX), one has

shXDRE
X(M) ≃ DRX(M).

§2.3. Real blow-up spaces

In the following, we will recall two (in general different) constructions of a real

oriented blow-up space (often simply called the real blow-up) associated to a com-

plex manifold and a divisor. We will also recall some important sheaves on these

blow-up spaces. For more details, we refer to [Sab21, Sect. 2], [Moc14, Sect. 4.1.5],

[DK16, Sect. 7.1], or [KS16, Sect. 4.2].
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Real blow-up along a function. Let X be a complex manifold and f : X → C a

holomorphic function. Then the real blow-up of X along f is denoted byϖf : X̃f →
X and defined as follows: Consider the map f/|f | : X\f−1(0) → S1. Then X̃f is the

closure of its graph in X×S1. The map ϖf : X̃f → X is induced by the projection

to the first factor. It is a homeomorphism on X∗ := X \ f−1(0) ≃ X̃f \ ∂X̃f .

Moreover, we have ∂X̃f ≃ f−1(0)× S1.

We denote by X∗
∞ the bordered space (X∗, X) ≃ (X∗, X̃f ), and we fix the

following notation for the morphisms (all of them inclusions except for ϖf ) that

will appear throughout the paper:

(2.1)
∂X̃f X̃f X∗

∞ X.
ĩf

ϖf

j̃f j

This construction is functorial in the following sense: Given two complex man-

ifolds X and Y with holomorphic functions f : X → C and g : Y → C, as well as

a morphism of complex manifolds τ : X → Y such that g ◦ τ = f , then there is an

induced morphism τ̃ : X̃f → Ỹg such that the following diagram commutes:

X̃f Ỹg

X Y.

ϖf

τ̃

ϖg

τ

In particular, forX = C and f(z) = z, this construction gives the real blow-up

space C̃0 = R≥0 × S1 with ϖ0 : C̃0 → C given by ϖ0(ρ, e
iθ) = ρeiθ.

For arbitrary X and holomorphic f : X → C, one can then alternatively

describe the construction of X̃f as the fiber product X̃f := X×C C̃0, i.e., the space

fitting into the Cartesian diagram

X̃f C̃0

X C.

ϖf □ ϖ0

f

Real blow-up along a simple normal crossing divisor. Let X be a complex

manifold and D ⊂ X a normal crossing divisor with smooth components. (Such

a normal crossing divisor is often said to be simple or strict, but we will always

mean such a divisor even when we just say “normal crossing divisor”.) Locally,

one can write D = {z1 · . . . · zr = 0} = D1 ∪ · · · ∪Dr for an appropriate coordinate
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system z1, . . . , zn and r ≤ n, where we write Dj := {zj = 0}. Then, setting

fj(z1, . . . , zn) = zj , we can define the real blow-up spaces ϖfj : X̃fj → X as

above. (This amounts to replacing the coordinates z1, . . . , zr by polar coordinates

ρ1, e
iθ1 , . . . , ρr, e

iθr , where we allow ρj = 0.) The real blow-up space of X along

(the components of) D is then denoted by ϖD : X̃D → X and defined as the fiber

product X̃f1 ×X · · · ×X X̃fr . This map is a homeomorphism on X∗ := X \ D ≃
X̃D \ ∂X̃D.

We fix the following notation for the morphisms (all of them inclusions except

for ϖD) that will appear throughout the paper:

(2.2)

∂X̃D X̃D (X \D)∞ X.
ĩD

ϖD

j̃D j

In the context of a normal crossing divisor, one can also define the total real

blow-up X̃tot
D (which amounts to allowing ρi ∈ R in the construction above). It

contains the real blow-up X̃D as a closed subset, but – contrary to the latter – is a

real analytic manifold, which will be useful in some situations. Note, however, that

it is not globally intrinsically defined (see [DK16, Rem. 7.1.1] and [KS16, Rem.

4.2.1]). We will require X̃tot
D later on in Section 7.2.

Comparison between the two constructions. While the second definition

requires the divisor to have normal crossings and smooth components, the first

definition works in a more general setting. In the case of a normal crossing divisor

given as the zero set of a holomorphic function, we therefore have two different

notions of real blow-up spaces: Let D be a normal crossing divisor given by D =

f−1(0) for some holomorphic function f : X → C. Then we can define the spaces

X̃D and X̃f , and there is a natural proper morphism ϖD,f : X̃D → X̃f and a

commutative diagram

X̃D X̃f

X.

ϖD,f

ϖD ϖf

It is easy to see that in the example X = C, with divisor D = {0} with

defining function f(z) = z, the two constructions of real blow-ups X̃f and X̃D

coincide. We explore this special case in more detail below in Section 3.1.
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Sheaves of holomorphic functions with moderate growth and rapid

decay. Let ϖ : X̃ → X denote any of the real blow-up spaces defined above.

Then one has the sheaves Amod
X̃

and Ard
X̃

of functions on X̃ which are holomorphic

in the interior X∗ and have moderate growth and rapid decay at the boundary

∂X̃, respectively.

For details on these notions, see, e.g., [Sab13, §8.3], [Moc14, §4.1], [KS01,

§7.2], [DK16, §5.1]. Note in particular that Amod
X̃

and Ard
X̃

are flat over ϖ−1OX

(see, e.g., [Moc14, Thms 4.1.1, 4.1.5]).

Remark 2.3. It is worth noting that the definitions of moderate (or polynomial)

growth are phrased slightly differently in different works such as [KS01], [Sab13],

and [Moc14]. However, they all lead to the same sheaf of holomorphic functions

with moderate growth at the boundary.

Our notation Amod
X̃

is closest to that in [Sab13] and [Moc14]. This sheaf is

denoted by AX̃ in [DK16]. However, it is not the same as the sheaf AX̃ in [Sab00],

and also should not be confused with the sheaf AX̃ in [Sab13] or the sheaf A in

[Mal91].

In fact, it is not completely obvious from the beginning that the sheaf Amod
X̃

,

as defined above, is the same as the sheaf AX̃ defined in [DK16, Notn. 7.2.1]: In

[DK16], it is defined as the sheaf of functions that are holomorphic in the interior

of X̃ and tempered at the boundary ∂X̃. This is a priori a stronger condition

than the one imposed above (and in [Sab13, Moc14], for example), since tem-

pered means that the function and all its derivatives are of moderate growth. For

holomorphic functions with moderate growth, this is, however, automatic due to

Cauchy’s integral formula for derivatives, as is shown in [Siu70, Lem. 3].

Since differentiation of holomorphic functions preserves the moderate growth

condition, the sheaf ϖ−1DX naturally acts on Amod
X̃

. This allows us to define a

sheaf of differential operators on real blow-up spaces, by setting

DA
X̃

:= ϖ−1DX ⊗ϖ−1OX
Amod

X̃
.

We similarly obtain an analogue of ΩX in the right DA
X̃
-module

ΩX̃
:= ϖ−1ΩX ⊗ϖ−1OX

Amod
X̃

.

De Rham complexes on real blow-ups. Let X be a complex manifold and let

a normal crossing divisor D ⊂ X or a holomorphic function f : X → C be given,

and denote by X̃ any of the real blow-ups X̃D or X̃f .
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Definition 2.4. The moderate growth de Rham complex of a holonomic DX -

module M is defined as (see, e.g., [Sab13]2)

DRmod
X̃

(M) := (ϖ−1ΩX ⊗ϖ−1OX
Amod

X̃
)

L
⊗ϖ−1DX

ϖ−1M

≃ ϖ−1ΩX

L
⊗ϖ−1DX

(Amod
X̃

⊗ϖ−1OX
ϖ−1M).

We set MA := Amod
X̃

⊗ϖ−1OX
ϖ−1M ≃ DA

X̃
⊗ϖ−1DX

ϖ−1M, so that MA is a left

DA
X̃
-module.

Similarly, the rapid decay de Rham complex is defined as

DRrd
X̃
(M) := (ϖ−1ΩX ⊗ϖ−1OX

Ard
X̃
)

L
⊗ϖ−1DX

ϖ−1M

≃ ϖ−1ΩX

L
⊗ϖ−1DX

(Ard
X̃

⊗ϖ−1OX
ϖ−1M).

Let N ∈ Db(DA
X̃
). We define the de Rham complex of N to be the object

DRX̃(N ) := ΩX̃

L
⊗DA

X̃

N .

§3. Solutions to the Riemann–Hilbert problem for holonomic

D-modules

In this section we will give some motivation for the constructions that are used

in this work, in particular in the context of the irregular Riemann–Hilbert corre-

spondence of D’Agnolo–Kashiwara. We do this by explaining mainly the case of an

exponential D-module on a complex curve. All of the results here are well known,

but might help the reader to better understand the background of the theory used

later in this article.

Let X be a complex manifold and D ⊂ X a divisor, and let g ∈ OX(∗D)

be a meromorphic function with poles contained in D. Then Eg
X\D|X is a natural

example of a holonomic DX -module with irregular singularities along D, called

an exponential DX-module (with exponent g). This is a rank-one OX(∗D)-module

with connection d− dg, and its image under the classical de Rham functor is the

shifted constant sheaf

DRX(Eg
X\D|X) ≃ CX\D[dimX].

That is, the classical de Rham functor “forgets” the exponent, and thus identifies

all exponential DX -modules with poles along D. However, the enhanced de Rham

2We remark that we follow here the convention of [Kas03]: The objects DRX , DRmod
X̃

etc.

here are those denoted by pDRX , pDRmod
X̃

in [Sab13], i.e., these objects are already shifted

appropriately such that, for instance, DRX(M) is a perverse sheaf.
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functor fixes this issue:

DRE
X(Eg

X\D|X) ≃ RIhom(CX\D,E
Re(g)
X\D|X)[dimX]

(see [DK16, Lem. 9.3.1]). The type of enhanced ind-sheaf thus obtained, called an

enhanced exponential ind-sheaf, is of fundamental importance to understanding

the irregular Riemann–Hilbert correspondence. We elaborate more below.

Let U ⊆ X be an open subset, and let h : U → R be continuous. To this data,

for any c ∈ R we associate the sheaf C{t+h≥c} on X × R, where

{t+ h ≥ c} :=
{
(x, t) ∈ X × R

∣∣ x ∈ U, t+ h(x) ≥ c
}
,

and take the ind-limit over c→ +∞, considered as an object in Eb(ICX):

Eh
U |X := “ lim−→ ”

c→+∞
C{t+h≥c}

≃ CE
X

+
⊗ C{t+h≥0}.

We call such an object an exponential enhanced ind-sheaf (with exponent h),

analogously to the D-module setting above. Loosely, one cares about such objects

for their ability to keep track of the asymptotic behavior of the exponent h.

§3.1. The dimension-one case

Revisiting the above example in the case where X = C, D = {z = 0}, and

g ∈ OX(∗0), we take U = X∗ := X \ {0}. Throughout this section, we also discuss

only the unramified case. Then the de Rham complex of the exponential DX -

module Eg
X∗|X is isomorphic to CX∗ [1]; the stalk of this local system at a non-zero

point is spanned by the function eg(z).

Whether or not this exponential function has moderate growth at 0 is deter-

mined by certain bounds on the growth of |eg(z)| = eRe(g(z)) as z → 0.

Let j : X∗ ↪→ X be the open embedding, W ⊆ X be open, and let u be a

section of j∗j
−1OX on W ; in particular u(z) determines a C-valued holomorphic

function on W \ {0}. We say that u has moderate growth at 0 if there exists a

sufficiently small neighborhood U of 0 such that there exist constants C > 0 and

N ∈ N such that the bound

|u(z)| ≤ C|z|−N

holds for all z ∈ (U ∩W ) \ {0}.
We say u has moderate growth at angle θ ∈ S1 if u(z) has moderate growth

on some angular neighborhood W ⊆ X∗ of θ. That is, there exist r > 0 and

0 < ε≪ 1 such that u(z) has moderate growth on the subset {z ∈ X | 0 < |z| < r,

arg(z) ∈ (θ − ε, θ + ε)}.
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Generally, this bound is not satisfied for exponential functions of the form

u(z) = eg(z) at every angle θ ∈ S1 (e.g., this occurs if and only if the exponent

g is bounded near 0). Instead, if g has a pole at 0, eg(z) has moderate growth

only at those angles θ having an angular neighborhood on which Re(g(z)) < 0.

To separate out such angles (which we can without loss of generality picture as

half-lines originating at 0), we pass to the space of polar coordinates of X at 0,

called the real blow-up of X at 0:

X̃0 := R≥0 × S1 ϖ−−→ C,
(r, eiθ) 7−→ reiθ.

Extending Eg
X∗|X = (OX(∗0), d − dg) to a D-module on X̃0 requires a bit

of care, as R≥0 × S1 is not a complex manifold (it is a smooth manifold with

boundary), so we must define an analogue of the sheaf OX for X̃0. We recall the

morphisms of Section 2.3:

(3.1)
∂X̃0 X̃0 X∗ Xĩ

ϖ

j̃ j

One approach is to use a certain subsheaf of j̃∗OX∗ ≃ j̃∗j
−1OX of smooth

functions on X̃0 that are holomorphic on the interior X̃0 \ ∂X̃0 = X∗ and have

moderate growth along the boundary ∂X̃0 := ϖ−1(0) ≃ S1, denoted Amod
X̃0

(for

the exact definition of this sheaf, see, e.g., [Sab13, Sect. 8.3] or [Moc14, Sect. 4]).

Using the sheaf of moderate growth functions, we define the moderate growth de

Rham complex of M ∈ Db
hol(DX) as an object of Db(CX̃0

) which, loosely, is the

complex whose stalk at a point z ∈ X̃0 consists of local flat sections of M that

have moderate growth at the point z. Precisely, we set

DRmod
X̃0

(M) := ϖ−1ΩX

L
⊗ϖ−1DX

(Amod
X̃0

⊗ϖ−1OX
ϖ−1M).

This is easy to compute for our exponential DX -module above: If g has an

effective pole at 0, we have

DRmod
X̃0

(Eg
X∗|X) ≃ CIg⊔X∗ [1],

where

Ig := ∂X̃0 \
{
z ∈ X∗

∣∣ Re(g(z)) ≥ 0
}
,

with the closure taken inside X̃0. This interval Ig ⊂ S1 consists of those angles

θ having an open neighborhood in X̃0 on which eg has moderate growth. If g ∈
OX(∗0)/OX ≃ z−1C{z−1} has pole order m > 0, then Ig is a disjoint union of

m open (equally spaced) intervals on S1 (cf. [DK21, Exa. 3.11]). When g = 0 (or,

more generally, g ∈ OX), we set I0 := S1.
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§3.2. Stokes filtrations

Noticing that the complex DRmod
X̃0

(Eg
X∗|X) only tells us “new” information about

Eg
X∗|X along the boundary of X̃0, it is often useful to consider just its restriction

to this subset. For general M ∈ Db
hol(DX), we define the object

Ψ≤0
0 (M) := ĩ−1DRmod

X̃0
(M)[−1],

called the moderate growth nearby cycles of M at 0. On exponentials, this is easy

to compute:

Ψ≤0
0 (Eg

X∗|X) ≃ CIg .

The superscript “≤ 0” in the functor Ψ≤0
0 refers to a filtration by R-construct-

ible objects of Db(CS1) called the Stokes filtration. The failure of the classical

de Rham functor to identify the exponent g in the isomorphism DRX(Eg
X∗|X) ≃

CX∗ [1] was originally remedied with the use of the Stokes filtration (cf., e.g.,

[Mal91]), and we will quickly sketch this argument (following [Sab13]; see also

[Sab19]).

Denote by Lg := ĩ−1j̃∗j
−1DRX(Eg

X∗|X)[−1] ≃ CS1 the constant sheaf on S1

with stalk C, and for any meromorphic function h on X with poles contained in 0,

define the following R-constructible subsheaf of Lg:

F≤hLg := Ψ≤h
0 (Eg

X∗|X) := Ψ≤0
0 (Eg

X∗|X
D
⊗ E−h

X∗|X)

≃ Ψ≤0
0 (Eg−h

X∗|X)

≃ CIg−h
.

Notice that whenever the function eh−h′
has moderate growth at some angle θ,

there is a monomorphism

F≤hLg ↪−→ F≤h′Lg

on some open neighborhood of θ on S1. The collection of subsheaves F≤hLg is

a filtration of Lg indexed by meromorphic functions. (Recall that we consider

the non-ramified case here for simplicity; in general, one considers multi-valued

meromorphic functions h and considers only open angular sectors about the origin

on which the Puiseux expansion of h converges. To simplify the exposition we

do not do this; see, e.g., [Sab13] for a more complete treatment.) We claim the

data of this filtration allows us to recover our original exponent g (up to possibly

adding a holomorphic function). Suppose that, for some other exponent g′, the

local systems F≤hLg and F≤hLg′ are equal for all h. Consequently, it must be the

case that for h = g,

F≤gLg′ = F≤gLg ≃ Ψ≤0
0 ((OX , d)) ≃ CS1 ,
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i.e., eg−g′
has moderate growth at all angles θ ∈ S1, which can only happen if

g − g′ ∈ OX is bounded in a neighborhood of 0 as mentioned above. Therefore,

the Stokes filtration {F≤hLg}h on the local system Lg is uniquely determined by

g ∈ OX(∗0)/OX . Since Eg
X∗|X ≃ Eg+g0

X∗|X for any g0 ∈ OX , we are done.

In general, this procedure can be extended to give an equivalence between the

category of meromorphic connections on X with poles contained in {0} and the

category of Stokes-filtered local systems on X̃0:

M 7−→ (LM,F≤hLM),

where LM := H0(̃i−1Rj̃∗j
−1DRX(M)[−1]), and

F≤hLM := Ψ≤0
0 (M

D
⊗ E−h

X∗|X).

The advantage of this approach to the irregular Riemann–Hilbert correspon-

dence is that it produces topological objects (Stokes-filtered local systems) that

are very concrete – they are collections of classical R-constructible sheaves. The

issue is that it is very difficult to generalize to higher-dimensional manifolds X

and meromorphic connections with poles contained in a normal crossing divisor

D ⊂ X, let alone arbitrary objects of the derived category Db
hol(DX). Moreover,

it is difficult to understand the behavior of the Stokes filtration under the usual

type of six-functor formalism we would like. This is in stark contrast with the

irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara, which works

in all dimensions and for all of Db
hol(DX) and has a robust functorial framework,

but the objects of Eb(ICX) are themselves much harder to understand. Stokes

phenomena in higher dimensions have been previously studied by various people

(see, e.g., [Maj84] and [Sab00], and [Moc11a] for a survey) from the D-module

perspective and recently in [Moc22a, Moc22b] with enhanced ind-sheaves.

As a consequence, it is then natural to want to further develop the “dic-

tionary” that allows us to move between these versions of the Riemann–Hilbert

correspondence. In this article, our aim is to express the moderate growth de Rham

complex of M entirely in terms of the enhanced ind-sheaf DRE
X(M), and similarly

express the Stokes-filtered local system associated to M in terms of DRE
X(M) in

the case where M is a meromorphic connection on X with poles contained in D.

This will give better intuition for both correspondences, and we believe will lend a

greater understanding of the topological data contained in the relatively recently

defined category of (constructible) enhanced ind-sheaves.

In dimension one, this has already been accomplished by D’Agnolo–Kashiwara

[DK23]; given a holonomic DX -module M on X = C with poles contained in the
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divisor D = {0},

(3.2)
DRmod

X̃0
(M) ≃ shX̃0

(Ej̃∗Ej
!DRE

X(M)),

Ψ≤0
0 (M) ≃ ĩ−1shX̃0

(Ej̃∗Ej
!DRE

X(M))[−1],

where the graded piece of the Stokes filtration on M in degree 0 is given by

Ψ0
0(M) ≃ sh∂X̃0

(Eĩ−1Ej̃∗Ej
!DRE

X(M))[−1].

Likewise, for a meromorphic function h at 0, the enhanced-ind sheaf analogue of

the exponentially twisted D-module M(h) := M
D
⊗ E−h

X∗|X is given by

DRE
X(M(h)) ≃ RIhom+(ERe(h)

X∗|X ,DRE
X(M)).

Therefore,

Ψ≤h
0 (M) ≃ Ψ≤0

0 (M(h)).

D’Agnolo–Kashiwara also obtain and study an analogue of Amod
X̃0

on X̃0 using ind-

sheaves and the theory of tempered distributions, called the ind-sheaf of tempered

holomorphic functions Ot
X̃0

on X̃0. This object satisfies the relationships αOt
X̃0

≃
Amod

X̃0
in Db(ϖ−1DX), and Ot

X̃0
≃ ϖ!Ot

X(∗D) in Db(Iϖ−1DX). This approach

works in all dimensions and for any normal crossing divisor D on the real blow-

up X̃D, but some work must be done in the case of the blow-up along arbitrary

functions f on X (see Lemma-Definition 4.4).

§3.3. Duality observations on the real blow-up

With exponential functions, we immediately notice an interesting relationship

between the angles of moderate growth of eg and of e−g when g has an effec-

tive pole at 0, arising as flat sections of the D-module Eg
X∗|X and its dual E−g

X∗|X ≃
(DXEg

X∗|X)(∗0). That is, if eg has moderate growth at angle θ ∈ S1 (so that

Re(g(z)) < 0 on an angular neighborhood of θ), then e−g will not have moderate

growth at θ; additionally, if θ is not an angle corresponding to a half tangent to the

curve Re(g(z)) = 0 at 0 (called the Stokes line of eg), then exactly one of eg and

e−g will have moderate growth at θ. We wish to explore this observation by com-

paring their moderate growth nearby cycles at 0. By our previous computation,

these sheaves are isomorphic to CIg and CI−g
, respectively.

Since the DX -modules are exchanged by duality Eg
X∗|X ≃ (DXE−g

X∗|X)(∗0), it
is natural to ask whether the corresponding nearby cycles are similarly exchanged

by Verdier duality on Db(CS1); however, this is not the case:

Ψ≤0
0 (Eg

X∗|X) ≃ CIg ≇ DS1(CI−g
) ≃ DS1Ψ≤0

0 (E−g
X∗|X).
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Instead, the correct duality statement for arbitrary holonomic objects M ∈
Db

hol(DX) is

(3.3) Ψ≤0
0 (DXM) ≃ DS1Ψ≥0

0 (M)[1],

where, loosely, Ψ≥0
0 records local flat sections ofM that have greater than moderate

growth along various angles of S1. Like Ψ≤0
0 (M), Ψ≥0

0 (M) can be obtained from

the restriction of a certain de Rham complex with growth conditions on X̃0, called

the rapid decay de Rham complex, denoted DRrd
X̃0

(M). We then have a natural

isomorphism

Ψ≥0
0 (M) ≃ ĩ!DRrd

X̃0
(M).

§3.4. Rapid decay de Rham complexes

Similar to moderate growth, the rapid decay condition is a growth condition on

functions. Precisely, a section u ∈ j∗j
−1OX on an open setW ⊆ X has rapid decay

at 0 if there exists a neighborhood U ⊆ X of 0 such that for every N ∈ N, there
exists a constant CN such that the estimate

|u(z)| ≤ CN |z|N

holds for all z ∈ (U ∩W ) \ {0}. As with moderate growth, we say u has rapid

decay at angle θ ∈ S1 if it has rapid decay on some angular neighborhood of θ in

X∗. The sheaf of holomorphic functions on X̃0 having rapid decay along ∂X̃0 is

denoted Ard
X̃0

, and we remark there are natural inclusions of sheaves on X̃0:

Ard
X̃0

⊂ Amod
X̃0

⊂ j̃∗j
−1OX .

The rapid decay de Rham complex of a holonomic DX -module M,

(3.4) DRrd
X̃0

(M) = ϖ−1ΩX

L
⊗ϖ−1DX

(Ard
X̃0

⊗ϖ−1OX
ϖ−1M),

and the rapid decay nearby cycles of M at 0 are analogously defined as the restric-

tion

(3.5) Ψ<0
0 (M) := ĩ−1DRrd

X̃0
(M)[−1].

The superscript “< 0” is again related to the Stokes filtration. Consider LM =

ĩ−1j̃∗j
−1DRX(M)[−1], and define F<0LM := Ψ<0

0 (M). The Stokes filtration

yields the following short exact sequence of sheaves, for any meromorphic con-

nection M on X with poles contained in 0:

0 −→ F<0LM −→ LM −→ Ψ≥0
0 (M) −→ 0,
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where we sometimes write F≥0LM := Ψ≥0
0 (M). Likewise, for such connections

there is an inclusion of sheaves F<0LM ⊆ F≤0LM which fit into the short exact

sequence

0 −→ F<0LM −→ F≤0LM −→ GrF0LM −→ 0.

Here, GrF0LM ≃ Ψ0
0(M) is the graded piece of the Stokes filtration on LM in

degree 0. We will further study this topic later in Sections 4.3 and 5 from the

perspective of enhanced ind-sheaves.

§3.5. Duality revisited

With this in hand, the duality isomorphism (3.3) stated above can be rephrased

as a perfect pairing

(3.6) ĩ−1DRmod
X̃0

(M)[−1]⊗ ĩ!DRrd
X̃0

(DXM) −→ ωS1

in Db(CS1), where ωS1 ≃ CS1 [1] is the Verdier dualizing complex on S1. This

suggests the more general duality for M ∈ Db
hol(DX), which we write again as a

pairing:

(3.7) DRmod
X̃0

(M)⊗DRrd
X̃0

(DXM) −→ ωX̃0
.

This duality was first proven in the curve case by Bloch–Esnault [BE04], where it

was phrased cohomologically as a perfect pairing between the algebraic de Rham

cohomology of a flat algebraic connection (E,∇) onX∗ and the rapid decay homol-

ogy of the dual connection (E∨,∇∨) on a good compactification X of X∗. The

higher-dimensional case was proven by Hien [Hie09] for arbitrary flat algebraic

connections (E,∇) on smooth quasi-projective algebraic varieties U over C, where
one must carefully choose a good compactification of U with respect to (E,∇) –

i.e., X \U = D is a normal crossing divisor along which the flat meromorphic con-

nection (E(∗D),∇) has good formal structure. Then Hien’s pairing is described

both at the level of sheaves as in (3.7), and on global sections as a perfect pairing

of finite-dimensional C-vector spaces

(3.8) Hm
dR(U ; (E,∇))⊗Hrd

m(U ; (E∨,∇∨)) −→ C,

where HdR denotes algebraic de Rham cohomology, and Hrd
m denotes rapid decay

homology. We will revisit the pairing (3.8) in Section 7.3.

§4. De Rham complexes with growth conditions and enhanced

ind-sheaves

In this section we recall and put together some notions and constructions from

previous works on enhanced ind-sheaves. The main aim is to motivate the formu-
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las for our definitions in the following sections, by making the connection to the

moderate growth and rapid decay de Rham functors.

§4.1. Moderate growth de Rham complexes in higher dimensions:

Normal crossing divisors

We will now show how the ideas of [DK23] naturally extend to the higher-dimen-

sional case for DX -modules on a complex manifold X with a (simple) normal

crossing divisor D.

Consider the real oriented blow-up X̃D along the components of D and recall

the notation for morphisms from (2.2).

As the next proposition shows, a formula similar to (3.2) recovers the moderate

growth de Rham complex from the enhanced de Rham complex of a holonomic

DX -module in the normal crossing case. Its proof is probably not new to experts

and relies heavily on results already established in [DK16], but we give it here

since it does not seem to appear in other works. In particular, it gives a direct

proof for the fact that the object (3.2) recovers the moderate growth part of the

Stokes filtration in the one-dimensional case.

Proposition 4.1. Let M ∈ Db
hol(DX) and D ⊂ X be a simple normal crossing

divisor. Then there is an isomorphism in Db(CX̃D
),

shX̃D
(Ej̃D∗Ej

−1DRE
X(M)) ≃ DRmod

X̃D
(M).

In particular, if dimCX = 1, we have

Ψ≤0
a (DRE

X(M)) ≃ F≤0LM,

where the right-hand side denotes the “≤ 0” part of the Stokes filtration on the

local system LM := i−1
D Rj̃D∗j

−1DRX(M).

In the proof of this proposition, we will make use of the following lemma. It

is the analogue for the de Rham functor on the real blow-up of [DK16, Lem. 9.7.1]

(which shows that shXDRE
X(M) ≃ DRX(M), although the sheafification functor

was not denoted like this in [DK16]). We will use the constructions and notation

for objects on the real blow-up along a normal crossing divisor from [DK16, §7,

§9.2].

Lemma 4.2. Let N ∈ Db(DA
X̃D

). There is an isomorphism in Db(CX̃D
),

shX̃D
DRE

X̃D
(N ) ≃ DRX̃D

(N ).
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Proof. First, one has isomorphisms

shX̃D
DRE

X̃D
(N ) ≃ RHomE(CE

X̃D
,DRE

X̃D
(N ))

≃ RHomE(CE
X̃D

,ΩE
X̃D

L
⊗DA

X̃D

N )

≃ RHomE(CE
X̃D

,ΩE
X̃D

)
L
⊗DA

X̃D

N ,

where the last isomorphism follows with [KS01, Thm. 5.6.1(ii)]. Therefore, it suf-

fices to show that

RHomE(CE
X̃D

,ΩE
X̃D

) ≃ ϖ−1
D ΩX ⊗ϖ−1

D OX
Amod

X̃D
.

For this, we observe that

RHomE(CE
X̃D

,OE
X̃D

) ≃ RHomE(CE
X̃D

,RIhom(ϖ̃−1
D π−1CX\D,Eϖ

!
DOE

X))

≃ RHomE(ϖ̃−1
D π−1CX\D ⊗ CE

X̃D
,Eϖ!

DOE
X)

≃ RHomE(Eϖ−1
D (π−1CX\D ⊗ CE

X),Eϖ!
DOE

X)

≃ RHomE(Eϖ−1
D SolEX(OX(∗D)),Eϖ!

DOE
X)

≃ RHomE(SolE
X̃D

(OX(∗D)A),OE
X̃D

)

≃ OX(∗D)A ≃ Amod
X̃D

.

Here, the first isomorphism follows from [DK16, eq. (9.6.7)], the second-to-

last line follows from the computations in [DK16, p. 192], and the last line follows

from [DK16, eq. (9.6.8)].

Consequently, we can conclude

RHomE(CE
X̃D

,ΩE
X̃D

) ≃ RHomE(CE
X̃D

, π−1ϖ−1
D ΩX ⊗π−1ϖ−1

D OX
OE

X̃D
)

≃ ϖ−1
D ΩX ⊗ϖ−1

D OX
RHomE(CE

X̃D
,OE

X̃D
)

≃ ϖ−1
D ΩX ⊗ϖ−1

D OX
Amod

X̃D
,

where the second isomorphism is due to [DK16, Lem. 4.10.3].

Proof of Proposition 4.1. For the left-hand side, one has

shX̃D
(Ej̃D∗Ej

−1DRE
X(M)) ≃ shX̃(Ej̃D∗Ej

!DRE
X(M))

≃ shX̃D
(Ej̃D∗Ej̃

!
DEϖ!

DDRE
X(M))

≃ shX̃D
RIhom(ϖ̃D

−1
π−1CX\D,Eϖ

!
DDRE

X(M))

≃ shX̃D
Eϖ!

DRIhom(π−1CX\D,DRE
X(M))

≃ shX̃D
DRE

X̃D
(MA).
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In the third isomorphism, we have used [DK19, Lem. 2.7.6] and the last isomor-

phism follows from [DK16, §9] (cf. also [IT20, p. 13]).

Since, by definition, we have DRmod
X̃D

(M) = DRX̃D
(MA), we can now conclude

with Lemma 4.2.

One can deduce a similar result for the moderate growth de Rham functor on

the real blow-up X̃f along the function f defining a normal crossing divisor.

Corollary 4.3. Let f : X → C be a holomorphic function such that D = f−1(0) ⊂
X is a simple normal crossing divisor. Let M ∈ Db

hol(DX). Then there is an

isomorphism in Db(CX̃f
),

shX̃f
(Ej̃f ∗Ej

−1DRE
X(M)) ≃ DRmod

X̃f
(M).

Proof. There is a natural morphism ϖD,f : X̃D → X̃f and one has j̃f = ϖD,f ◦ j̃D.

Consequently,

shX̃f
(Ej̃f ∗Ej

−1DRE
X(M)) ≃ RϖD,f ∗shX̃D

(Ej̃D∗Ej
−1DRE

X(M))

≃ RϖD,f ∗DRmod
X̃D

(M) ≃ DRmod
X̃f

(M).

Here, the first isomorphism follows from [DK21, Lem. 3.9] since ϖD,f is proper.

The last isomorphism is proved in [Moc14, Prop. 4.7.4].

§4.2. Moderate growth de Rham complexes along a function

In the previous section we studied the moderate growth de Rham complex on real

blow-ups X̃D and X̃f in the case of a normal crossing divisor. To do this, we could

directly apply the constructions performed in [DK16].

If X is a complex manifold and f : X → C is a holomorphic function, the

divisor f−1(0) does not need to have normal crossings. The blow-up space X̃f can

still be defined, but Corollary 4.3 does not apply to this case. In this subsection

we define a version of the enhanced de Rham functor on X̃f in order to prove an

analogous statement without the normal crossing assumption. This works along

the same lines as the version for X̃D in [DK16] (simply denoted by X̃ in [DK16]),

but uses some interesting facts about resolutions of singularities.

Throughout this subsection, X will be a complex manifold and f : X → C a

holomorphic function. We write X∗ := X \f−1(0). We denote by X̃f the real blow-

up of X along f . Recall the notation for morphisms from (2.1). We set DA
X̃f

:=

Amod
X̃f

⊗ϖ−1
f OX

ϖ−1
f DX . Let X denote the complex manifold conjugate to X.

The first step is to define an ind-sheaf of tempered holomorphic functions on

X̃f , by analogy with [DK16, §7.2].
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Lemma-Definition 4.4. We define the objects

Dbt
X̃f

:= ϖ!
fRIhom(CX∗ ,DbtX)

and

Ot
X̃f

:= RHomϖ−1
f DX

(ϖ−1
f OX ,Db

t
X̃f

),

and the latter is an object in Db(βDA
X̃f

).

Proof. It is clear a priori that Dbt
X̃f

thus defined is an object over I(ϖ−1
f DX ⊗

ϖ−1
f DX), and hence that Ot

X̃f
is a module over ϖ−1

f DX . It thus remains to show

that it is an Amod
X̃f

-module.

(a) Set D := f−1(0). Assume that we can find a modification τ : Y → X (i.e., a

proper morphism such that E := τ−1(D) has simple normal crossings and induces

an isomorphism Y \E ≃ X \D) and set g := f ◦ τ . Let us write X∗ := X \D and

Y ∗ := Y \ E. Let ϖE,g : ỸE → Ỹg denote the natural proper morphism between

the two real blow-ups on Y associated to E = g−1(0), denote by τ̃ : Ỹg → X̃f the

map induced by τ , and let τ̃g = τ̃ ◦ϖE,g : ỸE → X̃f denote the composition. We

have the following commutative diagram, where the square is Cartesian:

(4.1)

ỸE Ỹg X̃f

Y X.

ϖE,g

τ̃g

ϖE

τ̃

ϖg □ ϖf

τ

Since E is a normal crossing divisor, we know from [DK16, Notn. 7.2.4 and Thm.

7.2.7] that

Ot
ỸE

≃ ϖ!
ERIhom(CY ∗ ,Ot

Y )

is an Amod
ỸE

-module.

Moreover, we have isomorphisms

Rτ̃g∗O
t
ỸE

≃ Rτ̃∗RϖE,g∗RIhom(CY ∗ , ϖ!
EOt

Y )

≃ Rτ̃∗RϖE,g∗RIhom(CY ∗ , ϖ!
E,gϖ

!
gOt

Y )

≃ Rτ̃∗RIhom(RϖE,g∗CY ∗ , ϖ!
gOt

Y )
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≃ Rτ̃∗RIhom(CY ∗ , ϖ!
gOt

Y )

≃ RIhom(CX∗ ,Rτ̃∗ϖ
!
gOt

Y )

≃ RIhom(CX∗ ,Rϖ!
fτ∗Ot

Y )

≃ ϖ!
fRIhom(CX∗ ,Rτ∗Ot

Y )

≃ ϖ!
fRIhom(CX∗ ,Ot

X) ≃ Ot
X̃f
.

Here, we repeatedly use adjunction isomorphisms like [KS01, Prop. 5.3.8, Cor.

5.3.5] (together with the fact that all the morphisms in (4.1) are isomorphisms

outside the given divisors). The sixth isomorphism uses [KS01, Thm. 5.3.10], rely-

ing on the fact that the square in (4.1) is Cartesian. The last line follows from the

tempered Grauert theorem [KS16, Thm. 3.1.5].

Consequently, Ot
X̃f

is a module (or, in general, a complex of modules) over

τ̃g∗A
mod
ỸE

≃ Rτ̃g∗A
mod
ỸE

≃ Amod
X̃f

. This isomorphism follows from [Moc14, Thm.

4.1.5]. (Let us be very precise here, emphasizing the functor β that is usually

suppressed in the notation: Taking the direct image, it becomes a module over

τ̃g∗βA
mod
ỸE

, and this induces a βτ̃g∗A
mod
ỸE

-module structure by the natural mor-

phism βτ̃g∗ → τ̃g∗β, cf. [KS01, Prop. 4.3.17], noting that τ̃g is proper.)

(b) Let us show that the action of Amod
X̃f

on Ot
X̃f

constructed in (a) is canonical

and does not depend on the choice of the modification τ : Y → X.

First, we note that, similarly to the computation in (a), one obtains

τ̃ !gDbtX̃f
= τ̃ !gϖ

!
fRIhom(CX∗ ,DbtX)

≃ ϖ!
Eτ

!RIhom(CX∗ ,DbtX)

≃ ϖ!
ERIhom(CY ∗ ,DbtY )

≃ Dbt
ỸE
.

The second-to-last isomorphism is due to [KS16, Lem. 2.5.7], and the last iso-

morphism follows from [DK16, Thm. 7.2.7] (since E is a normal crossing divisor).

Consequently, one has an isomorphism Dbt
ỸE

≃ τ̃ !gRτ̃g∗Db
t
ỸE

.

Now observe that

Ot
X̃f

≃ Rτ̃g∗O
t
ỸE

≃ Rτ̃g∗RHomϖ−1
E DY

(ϖ−1
E OY ,Db

t
ỸE

)

≃ Rτ̃g∗RHomϖ−1
E DY

(ϖ−1
E OY , τ̃

!
gRτ̃g∗Db

t
ỸE

)

≃ RHomτ̃g∗ϖ
−1
E DY

(Rτ̃g∗ϖ
−1
E OY ,Rτ̃g∗Db

t
ỸE

),

showing that theAmod
X̃f

-action onOt
X̃f

is induced by theAmod
X̃f

-action on Rτ̃g∗Db
t
ỸE

,

which in turn is induced by theAmod
ỸE

-action onDbt
ỸE

. We remark that Rτ̃g∗Db
t
ỸE

=
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τ̃g∗Db
t
ỸE

since tempered distributions form a quasi-injective object (cf. [Kas84,

Thm. 3.18], [KS01, §7.2]).

In fact, the action of Amod
X̃f

≃ τ̃g∗A
mod
ỸE

on τ̃g∗Db
t
ỸE

does not depend on the

choice of the projective morphism τ above: Let U ⊂ X̃f be a subanalytic subset. A

local section of Amod
X̃f

on U is a holomorphic function, say φ, on U∩X∗ = τ−1(U)∩
Y ∗ that has tempered growth along U ∩ ∂X̃f (or along τ−1(U) ∩ ∂ỸE , which is

equivalent, since τ̃g∗A
mod
ỸE

≃ Amod
X̃f

). On the other hand, we have (τ̃g∗Db
t
ỸE

)(U) =

Dbt
ỸE

(τ̃−1
g (U)), so an element δ thereof is by definition a (tempered) distribution on

τ̃−1
g (U)∩Y ∗ = U ∩X∗. The action of φ on δ is given by the natural multiplication

of a distribution by a function, all defined outside the divisors. Hence, the induced

action is independent of the choice of τ .

(c) In general, a modification similar to that in (a) exists by now well-known

results on desingularization of analytic spaces (see, e.g., [AHV18]). However, E

might not have smooth components, but we know that, locally around each point

x ∈ X, we can find such a modification. Therefore, (a) shows that Ot
X̃f

has locally

an action of Amod
X̃f

. Since the local actions are canonical (and hence compatible)

by (b), they give a global action of Amod
X̃f

on Ot
X̃f

.

We can now define (using notation similar to that in [DK16, §9.2])

OE
X̃f

:= ĩ!RHomDP(Eτ
C|P,O

t
X̃f×P)[2],

ΩE
X̃f

:= π−1

X̃f
ϖ−1

f ΩX ⊗L
π−1

X̃f
ϖ−1

f OX
OE

X̃f
,

and one sets

DRE
X̃f

(L) := ΩE
X̃f

⊗L
DA

X̃f

L for L ∈ Db(DA
X̃f

).

As in [DK16] we then get

DRE
X̃f

(MAf ) ≃ Eϖ!
fDRE

X(M(∗D))

for any M ∈ Db
hol(DX) (setting MAf := Amod

X̃f
⊗ϖ−1

f OX
ϖ−1

f M).

Then we can reproduce the proof of Lemma 4.2 and Proposition 4.1 along the

exact same lines and obtain the following.

Proposition 4.5. Let X be a complex manifold, f : X → C a holomorphic func-

tion, and M ∈ Db
hol(DX). Then there is an isomorphism in Db(CX̃f

),

shX̃f
(Ej̃f ∗Ej

−1DRE
X(M)) ≃ DRmod

X̃f
(M).

Proof. The main steps of this proof are the isomorphisms

OE
X̃f

≃ RIhom(ϖ̃−1
f π−1CX∗ ,Eϖ!

fOE
X)



28 B. Hepler and A. Hohl

and

Eϖ−1
f SolEX(OX(∗D)) ≃ SolE

X̃f
(OX(∗D)Af ),

both of which we derive from Lemma-Definition 4.4 as in the case of X̃D in [DK16],

and the isomorphism

αX̃f
Ot

X̃f
≃ Amod

X̃f
,

and this again follows from a local consideration as in part (a) of the above proof

since αX̃f
is compatible with direct images (see [KS01, Prop. 4.3.6]) and we know

such a statement for the blow-up ỸE along a normal crossing divisor (see [DK16,

Prop. 7.2.10]).

§4.3. Rapid decay de Rham complexes: A motivation in dimension one

So far we have studied moderate growth de Rham complexes. The aim is now

to find a functorial way to extract the rapid decay de Rham complex from the

enhanced de Rham complex. Rapid decay functions do not seem to have been

studied in the context of enhances ind-sheaves.

Studying the one-dimensional case again, it is quite straightforward to find

an expression similar to the one for the moderate growth de Rham complex. Let

X be a complex manifold. Recall the notation from Section 3.

Lemma 4.6. For an object K ∈ Eb(ICX), one has a distinguished triangle in

Eb(ICX̃),

Ej̃!!Ej
−1K −→ Ej̃∗Ej

−1K −→ Eĩ!!Eĩ
−1Ej̃∗Ej

−1K
+1−−→ .

Proof. By [DK19, Lem. 2.7.6], we know that there are isomorphisms

Ej̃!!Ej̃
−1H ≃ π−1CX\D ⊗H,

Eĩ!!Eĩ
−1H ≃ π−1C∂X̃ ⊗H,

for any H ∈ Eb(ICX̃).

From the natural short exact sequence (cf. [KS90, Prop. 2.3.6(v)])

0 −→ CX\D −→ CX̃ −→ C∂X̃ −→ 0

in Db(CX̃), we therefore obtain (applying the functor π−1(•) ⊗ Ej̃∗Ej
−1K) a

distinguished triangle

Ej̃!!Ej̃
−1Ej̃∗Ej

−1K −→ Ej̃∗Ej
−1K −→ Eĩ!!Eĩ

−1Ej̃∗Ej
−1K

+1−−→,

and this is the desired triangle, noting that Ej−1Ej∗ ≃ Ej!Ej∗ ≃ id.
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When K additionally is a perverse enhanced ind-sheaf (that is, an element

of the essential image of Modhol(DX) under the enhanced de Rham functor; see

[DK23, §4] for more detail on this notion – we will not need it elsewhere in this

paper), we can make the following, more specific, claim.

Proposition 4.7. Let K ∈ Eb(ICX) be a perverse enhanced ind-sheaf. Then there

is a short exact sequence

0 −→ ĩ−1shX̃(Ej̃!!Ej
−1K)[−1] −→ Ψ≤0

a (K) −→ Ψ0
a(K) −→ 0.

Proof. We apply the functor ĩ−1shX̃(•) to the distinguished triangle from Lemma

4.6. Then the middle object becomes Ψ≤0
a (K). Moreover, the third object becomes

Ψ0
a(K), noting that shX̃ ◦Eĩ!! ≃ ĩ!◦sh∂X̃ since ĩ is proper (see [DK21, Lem. 3.9(ii)])

and ĩ−1ĩ! ≃ id.

The distinguished triangle thus obtained is indeed a short exact sequence since

we already know that the second and third objects are concentrated in degree zero

and the morphism between them is an epimorphism (see [DK23, Lem. 4.3]), which

implies that also the first object must be concentrated in degree 0.

Now let M be a meromorphic connection with a pole at 0, and let K =

DRE
X(M) and LM = ĩ−1j̃∗j

−1DRX(M)[−1]. Then the objects in the short exact

sequence of Proposition 4.7 are related to the Stokes filtration by

Ψ≤0
a (K) ≃ F≤0LM,

Ψ0
a(K) ≃ GrF0LM = F≤0LM/F<0LM.

Therefore, this implies that there is an isomorphism

F<0LM ≃ ĩ−1shX̃(Ej̃!!Ej
−1K)[−1].

Since the “< 0” part of the Stokes filtration is nothing but the rapid decay de

Rham complex, restricted to ∂X̃, this implies that it is reasonable to expect an

isomorphism

(4.2) DRrd
X̃
(M) ≃ shX̃(Ej̃!!Ej

−1DRE
X(M)),

a formula similar to the ones proved for moderate growth de Rham complexes

above.

Remark 4.8. Note that the functor shX̃ ◦Ej̃!! ̸≃ j̃! ◦ shX∗
∞
, and in particular this

functor is not an “extension by zero” as known from the theory of classical sheaves.

A proof of this formula (4.2) in the case that f defines a normal crossing

divisor (in any dimension) will be given in Section 7 (see Corollary 7.14), using

deep results on duality of certain sheaves of functions.
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§5. Moderate growth and rapid decay objects

associated to enhanced ind-sheaves

In Section 4 we studied functorial ways to extract the moderate growth and rapid

decay de Rham complexes from the enhanced de Rham complex. Inspired by these

considerations, we define here moderate growth and rapid decay objects (more

precisely, sheaves on the real blow-up space) to any enhanced ind-sheaf on X and

establish some of their basic properties.

Throughout this section, let X be a complex manifold and let f : X → C be

a holomorphic function. Since we will only work on the blow-up X̃f from here on,

we will simplify the notation for the morphisms from diagram (2.1) by suppressing

the index f as follows:

∂X̃f X̃f X∗
∞ X.ĩ

ϖ

j̃ j

We will also work over an arbitrary field k here.

Definition 5.1. For an enhanced ind-sheaf K ∈ Eb(IkX), we define the objects

of Db(kX̃f
),

Kmod f := shX̃f
(Ej̃∗Ej

−1K),(5.1)

Krd f := shX̃f
(Ej̃!!Ej

−1K).(5.2)

Remark 5.2. Let us note here that we could also perform the same construction

on the real blow-up X̃D along a normal crossing divisor and in this way define

objectsKmodD andKrdD. We will, however, focus on the blow-up along a function

from here on, although the constructions and results we prove in the present and

the following section work analogously on X̃D. We will use this fact in the proofs

of Propositions 7.5 and 7.15 below.

The first easy observation is the following.

Lemma 5.3. There are isomorphisms for any K ∈ Eb(IkX),

Kmod f ≃ (π−1kX∗ ⊗K)mod f ≃ RIhom(π−1kX∗ ,K)mod f ,

Krd f ≃ (π−1kX∗ ⊗K)rd f ≃ RIhom(π−1kX∗ ,K)rd f .

Proof. It follows from [DK19, Lem. 2.7.6] that we have

π−1kX∗ ⊗K ≃ Ej!!Ej
−1K,

RIhom(π−1kX∗ ,K) ≃ Ej∗Ej
−1K.
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(For the second isomorphism, note that j is an open embedding and hence j! =

j−1.) Then the statement of the lemma is clear from the definition because Ej−1Ej∗
= id = Ej−1Ej!!.

Remark 5.4. In the context of enhanced de Rham functors (in particular, k = C
here), the previous lemma tells us that the functors from Definition 5.1 are not

sensitive to localization of the DX -module: If D = f−1(0) and M ∈ Db
hol(DX),

then by [DK16, Thm. 9.1.2], we know that

DRE
X(M(∗D)) ≃ RIhom(π−1CX∗ ,DRE

X(M)),

DRE
X(M(!D)) ≃ π−1CX∗ ⊗DRE

X(M),

and hence the lemma means nothing but

(DRE
X(M))mod f ≃

(
DRE

X(M(∗D))
)mod f ≃

(
DRE

X(M(!D))
)mod f

,

(DRE
X(M))rd f ≃

(
DRE

X(M(∗D))
)rd f ≃

(
DRE

X(M(!D))
)rd f

.

By restricting the objects from Definition 5.1 to the boundary of the real

blow-up, we can define objects that will be called enhanced nearby cycles; they

are higher-dimensional analogues of the constructions in [DK23], as well as ana-

logues in the world of enhanced ind-sheaves of the constructions performed for

DX -modules in [Sab21].

Definition 5.5. Let K ∈ Eb(IkX). Then we set

ψ≤0
f K := ĩ−1Kmod f = ĩ−1shX̃f

(Ej̃∗Ej
−1K)[−1],

ψ<0
f K := ĩ−1Krd f = ĩ−1shX̃f

(Ej̃!!Ej
−1K)[−1],

ψ>0
f K := ĩ!Kmod f = ĩ!shX̃f

(Ej̃∗Ej
−1K),

ψ≥0
f K := ĩ!Krd f = ĩ!shX̃f

(Ej̃!!Ej
−1K).

Moreover, set

ψ∗
fK := ĩ−1Rj̃∗j

−1shXK[−1].

All of them are objects in Db(k∂X̃f
).

Remark 5.6. One can express these objects differently in the case where K is

the enhanced de Rham or solution object of a meromorphic connection (and in

particular k = C).



32 B. Hepler and A. Hohl

For example, let M be a meromorphic connection with poles along the normal

crossing divisor D = f−1(0). Then

ψ≤0
f DRE

X(M) ∼= ĩ−1shX̃f
(Ej̃∗Ej

−1DRE
X(M))[−1]

∼= ĩ−1shX̃f
(Eϖ!Ej∗Ej

−1DRE
X(M))[−1]

∼= ĩ−1shX̃f
(Eϖ!DRE

X(M))[−1].

Similarly, one can show ψ>0
f DRE

X(M) ≃ ĩ!shX̃f
(Eϖ!DRE

X(M)), which is the

analogue of the complex pψ>mod
f M in [Sab21].

Along the same lines, we get ψ<0
f SolEX(M) ≃ ĩ−1shX̃f

(Eϖ−1SolEX(M))[−1]

and ψ≥0
f SolEX(M) ≃ ĩ!shX̃f

(Eϖ−1SolEX(M)).

The following lemma is clear by construction.

Lemma 5.7. For K ∈ Eb
R-c(IkX) (in particular for K = DRE

X(M) for a holo-

nomic DX-module in the case k = C), the objects defined in Definition 5.5 are

R-constructible.

Proof. It suffices to note that the functors Ej̃f ∗, Ej̃f !!, Ej
−1, and shX̃f

involved in

the construction of Kmod f and Krd f all preserve R-constructibility (see [DK19,

Prop. 3.3.3] and [KS16, Thm. 6.6.4]).

Proposition 5.8. We have the following natural distinguished triangles in the

category Db(k∂X̃f
):

ψ≤0
f K

v−−→ ψ∗
fK −→ ψ>0

f K
+1−−→,

ψ<0
f K −→ ψ∗

fK
c−−→ ψ≥0

f K
+1−−→ .

Proof. We start with the natural distinguished triangle

shX̃f
(Ej̃∗Ej

−1K) −→ Rj̃∗j̃
−1shX̃f

(Ej̃∗Ej
−1K)

−→ ĩ!ĩ
!shX̃f

(Ej̃∗Ej
−1K)[1]

+1−−→(5.3)

(cf., e.g., [KS90, Prop. 2.4.6]). Applying ĩ−1[−1] and noting that we have natural

isomorphisms (recall the compatibility of the sheafification functor with pullbacks

along open embeddings from [DK21, Lem. 3.9]),

ĩ−1Rj̃∗j̃
−1shX̃f

(Ej̃∗Ej
−1K) ≃ ĩ−1Rj̃∗shX∗

∞
(Ej̃−1Ej̃∗Ej

−1K)

≃ ĩ−1Rj̃∗shX∗
∞
(Ej−1K)

≃ ĩ−1Rj̃∗j
−1shX(K),
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we obtain the first distinguished triangle.

The second triangle is found analogously, replacing Ej̃∗ by Ej̃!! in (5.3).

Proposition 5.9. There is a natural distinguished triangle in Db(k∂X̃f
),

ψ<0
f K −→ ψ≤0

f K −→ ψ0
fK

+1−−→,

where ψ0
fK := sh∂X̃f

(Eĩ−1Ej̃∗Ej
−1K).

Proof. This follows directly from Lemma 4.6.

Let p : X → Y be a proper holomorphic map, g : Y → C any holomorphic

map, and set f := g ◦ p. Then p lifts to a morphism between the real blow-up

spaces p̃ : X̃f = X ×Y Ỹg → Ỹg, and we obtain a natural commutative diagram

where all the squares are Cartesian:

(5.4)

∂X̃f X̃f X X∗

∂Ỹg Ỹg Y Y ∗

if

p̃0 □

ϖf

p̃ □ p □

jf

j̃f

p|X∗

ig ϖg jg

j̃g

We have the following statement, which is the analogue of [Sab21, Prop. 6.6].

Proposition 5.10. Let X, Y , f , g, and p be as above, and let K ∈ Eb(IkX).

Then there is an isomorphism of distinguished triangles in Db
R-c(k∂Ỹg

):

Rp̃0∗ψ
≤0
f K Rp̃0∗ψ

∗
fK Rp̃0∗ψ

>0
f K

ψ≤0
g Ep∗K ψ∗

gEp∗K ψ>0
g Ep∗K .

≃ ≃

+1

≃

+1

Similarly, there is an isomorphism

Rp̃0∗ψ
<0
f K Rp̃0∗ψ

∗
fK Rp̃0∗ψ

≥0
f K

ψ<0
g Ep∗K ψ∗

gEp∗K ψ≥0
g Ep∗K .

≃ ≃

+1

≃

+1
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Proof. Since all the isomorphisms work along the same lines, let us only prove the

first one (on the left of the first isomorphism of triangles):

Rp̃0∗ψ
≤0
f K ≃ Rp̃0!ĩ

−1
f shX̃f

(Ej̃f ∗Ej
−1
f K)[−1]

≃ ĩ−1
g Rp̃!shX̃f

(Ej̃f ∗Ej
−1
f K)[−1]

≃ ĩ−1
g shX̃f

(Ep̃!!Ej̃f ∗Ej
−1
f K)[−1]

≃ ĩ−1
g shX̃f

(Ej̃g∗E(p|X∗)!!Ej
−1
f K)[−1]

≃ ĩ−1
g shX̃f

(Ej̃g∗Ej
−1
g Ep!!K)[−1] ≃ ψ≤0

g Ep∗K.

Here, we repeatedly used the facts that the squares in (5.4) are Cartesian (see

[DK16, Prop. 4.5.11] for a base change formula for operations on enhanced ind-

sheaves) and that p is proper and hence Ep∗ = Ep!! (and similarly for p̃).

The isomorphisms of objects thus obtained induce isomorphisms of distin-

guished triangles since the morphisms in the triangles of Proposition 5.8 are all

canonical and the isomorphism constructed above is natural.

§6. Local and global duality on the real blow-up

§6.1. A short review on duality and pairings in derived categories

Let k be a field and let M be a good topological space. We recall the following

notion of a perfect pairing in the derived category Db(kM ). A good reference is

[KS90], as well as [FSY23, Appx. C].

Let F,G ∈ Db(kM ), and let ωM denote the Verdier dualizing complex. If

aM : M → {pt} is the canonical map to the one-point space, then we have ωM =

a!Mk. The Verdier dual of F ∈ Db(kM ) is the object DMF := RHom(F, ωM ).

Definition 6.1. Recall that, for F,G ∈ Db
R-c(kX), a pairing η : F ⊗kM

G → ωM

is equivalent to the datum of a morphism F → DMG in Db(kM ) (or, equivalently,

a morphism G→ DMF ).

We say that a pairing η : F⊗kM
G→ ωM is perfect if the associated morphism

F → DMG (or G→ DMF ) is an isomorphism.

Now suppose η : F⊗kM
G→ ωM is such a perfect pairing with an isomorphism

G ≃ DMF . Taking derived global sections, we find

RΓ(M ; DMF ) ≃ RHom(F, ωM )

≃ RHom(RΓc(M ;F ), k)

=: RΓc(M ;F )∨.
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In particular, the hypercohomology of this object satisfies, for all ℓ ∈ Z,

Hℓ(M ; DMF ) ≃ H0RΓ(M ; (DMF )[ℓ]) ≃ H0 RHom(RΓc(M ;F ), k)[ℓ]

≃ H0 RHom(RΓc(X;F )[−ℓ], k)
≃ H−ℓ

c (M ;F )∨.

By [KS90, eq. (2.6.23)], there is a natural morphism

RΓ(M ; DMF )⊗k RΓc(M ;F ) −→ RΓc(M ;F ⊗kM
DMF ).

Taking hypercohomology and composing with the morphism induced by η on

global sections, we obtain pairings for all ℓ ∈ Z:

(6.1) Hℓ(M ; DMF )⊗k H−ℓ
c (M ;F ) −→ H0

c(M ;ωM ) ≃ k.

Proposition 6.2 ([FSY23, Cor. C.6]). Let F,G ∈ Db(kM ). If the pairing

η : F ⊗kM
G −→ ωM

is perfect, then so are the pairings

ηℓ : Hℓ(M ;F )⊗k H−ℓ
c (M ;G) −→ k

for all ℓ ∈ Z.

We will refer to the pairings (6.1) as the global duality pairings of F (on

hypercohomology). Similarly, we will refer to η : F ⊗kM
DMF → ωM as the local

duality pairing of F .

§6.2. Local duality statements for enhanced nearby cycles

With our definition of the moderate growth and rapid decay objects, it is easy

to see that for R-constructible enhanced ind-sheaves the associated moderate and

rapid decay objects are related by duality.

Let X be a complex manifold and f : X → C a holomorphic function.

Proposition 6.3 (Local duality pairing on X̃f ). Let K ∈ Eb
R-c(IkX). Then there

is a canonical isomorphism

DX̃f
Kmod f ≃ (DE

XK)rd f .

That is, there exists a perfect pairing

Kmod f ⊗k
X̃f

(DE
XK)rd f −→ ωX̃f

,

where ωX̃f
is the Verdier dualizing complex in Db(kX̃f

).
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Proof. There is the chain of isomorphisms

DX̃f
shX̃f

(Ej̃f ∗Ej
−1K) ≃ shX̃f

(DE
X̃f

Ej̃f ∗Ej̃
!
fEϖ

!K)

≃ shX̃f
(DE

X̃f
RIhom(π−1kX∗ ,Eϖ!K))

≃ shX̃f
(π−1kX∗ ⊗DE

X̃f
Eϖ!K)

≃ shX̃f
(Ejf!!Ej

f−1
Eϖ−1DE

XK),

where the first isomorphism follows from the commutation of sheafification with

duality (see [DK21, Lem. 3.13]), the third isomorphism follows from [DK16, Lem.

4.3.2, Prop. 4.9.13], and in the last isomorphism we have used the fact that duality

interchanges inverse image and exceptional inverse image (see [DK19, Prop. 3.3.3]).

Moreover, in the second and fourth isomorphisms we have applied [DK19, Lem.

2.7.6].

Note that, except for the second line, all the isomorphisms require R-con-
structibility, so it is essential here that K is R-constructible and that direct and

inverse images preserve this R-constructibility (see [DK19, Prop. 3.3.3]).

By restricting the moderate growth and rapid decay functors to the boundary

of the real blow-up, we immediately obtain as a consequence a duality between the

functors ψ≤0
f and ψ≥0

f (see Definition 5.5), up to a shift in the derived category

Db
R-c(k∂X̃f

).

Corollary 6.4 (Local duality pairing on ∂X̃f ). For K ∈ Eb
R-c(IkX), there is a

canonical isomorphism

D∂X̃f
(ψ≤0

f K) ≃ ψ≥0
f (DE

XK)[1],

so that the associated pairing

ψ≤0
f (K)⊗k

X̃f
ψ≥0
f (DE

XK)[1] −→ ω∂X̃f

is perfect.

Proof. This is a similarly straightforward computation, using in addition the fact

that Verdier dualizing interchanges i−1 and i!.

§6.3. The global duality pairings

Applying (derived) global sections to the objects in Proposition 6.3 yields further

duality statements that we can explore.

Let K ∈ Eb
R-c(IkX) be an R-constructible enhanced ind-sheaf.
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Specifically, the isomorphism Kmod f ≃ DX̃f
(DE

XK)rd f implies the isomor-

phism

RΓ(X̃f ;K
mod f )

∼−→ RHom
(
RΓc(X̃f ; (D

E
XK)rd f ), k

)
=: RΓc(X̃f ; (D

E
XK)rd f )∨(6.2)

of bounded complexes of finite-dimensional k-vector spaces. Likewise,

DX̃f
(Kmod f ) ≃ (DE

XK)rd f

implies

RΓ(X̃f ; (D
E
XK)rd f )

∼−−→ RΓc(X̃f ;K
mod f )∨.

Either of these isomorphisms yields the following result.

Corollary 6.5. The pairing

Hℓ(X̃f ;K
mod f )⊗k H−ℓ

c (X̃f ; (D
E
XK)rd f ) −→ k

is perfect for all K ∈ Eb
R-c(IkX) and ℓ ∈ Z.

Proof. This follows directly from Proposition 6.2 and the above local duality,

Proposition 6.3.

Likewise, Proposition 6.2 and Corollary 6.4 imply the following result.

Corollary 6.6. The pairing

Hℓ(∂X̃f ;ψ
≤0
f K)⊗k H−ℓ+1

c (∂X̃f ;ψ
≥0
f DE

XK) −→ k

is perfect for all K ∈ Eb
R-c(IkX) and ℓ ∈ Z.

§7. Duality between de Rham functors with growth conditions

§7.1. A duality of Kashiwara–Schapira

In this section we briefly recall a duality statement between tempered and Whitney

holomorphic functions proved by Kashiwara–Schapira [KS96, KS16].

It is well known that the space of distributions is the topological dual of the

space of compactly supported smooth functions (often called test functions). It is

important to note that these spaces are infinite-dimensional complex vector spaces

and this duality is really a duality of topological vector spaces, and not a duality

in the category of complex vector spaces. The authors of [KS96] use the language

of Fréchet nuclear spaces (vector spaces of type FN) and duals of Fréchet nuclear

spaces (vector spaces of type DFN) to formulate their results (see [Gro55] for these
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notions, as well as [RR74] and the references therein). Our proof strategy is similar

in character to the classical isomorphism between de Rham and solution complexes

for holonomic D-modules (see [HTT08, Props 4.6.4 and 4.7.9], where the authors

use the duality between Frechét–Schwartz (FS) and duals of Frechét–Schwartz

(DFS) topological vector spaces).

The notions of tempered distributions and Whitney functions were studied in

[KS96] and they are closely related to the notions of moderate growth and rapid

decay (cf., e.g., [DK16, Prop. 7.2.10, Lem. 5.1.4]). On a real analytic manifold X,

recall the functor •
w
⊗ C∞

X : ModR-c(CX) → Mod(DX) from [KS96], as well as the

ind-sheaf of tempered distributions DbtX from [KS01]. The ind-sheaf Dbt∨X is the

ind-sheaf of tempered distribution densities on X (see, e.g., [KS16]). In [KS96],

the authors proved the following duality result for these spaces (formulated here

in the more modern notation of [KS01] and [KS16]).

Proposition 7.1 ([KS96, Prop. 2.2]). Let X be a real analytic manifold and F ∈
ModR-c(CX). Then there exist natural topologies of type FN on Γ(X;F

w
⊗C∞

X ) and

of type DFN on Γc(X;αXRIhom(F,Dbt∨X )) and they are dual to each other.

This result is then used to deduce the following duality in the context of

holomorphic solutions of a coherent DX -module on a complex manifold. We note

that the transition from C∞
X (resp. Dbt∨X ) to OX (resp. ΩX) amounts to taking

Dolbeault complexes with coefficients in those objects (see [KS96, §5]).

Theorem 7.2 ([KS96, Thm. 6.1]). Let X be a complex manifold of dimension

dX , M∈Db
coh(DX), and F,G∈Db

R-c(CX). Then the spaces RΓ(X; RHomDX
(M⊗

G,F
w
⊗ OX)) and RΓc(X;αXRIhom(F,Ωt

X)[dX ]
L
⊗DX

(M ⊗ G)) are objects of

Db(FN) and Db(DFN), respectively, and are dual to each other, functorially in

M, F , and G.

Later, in [KS16], this global result was extended to the following local state-

ment in the category of R-constructible sheaves.

Theorem 7.3 (See [KS16, Thm. 2.5.13]). Let X be a complex manifold of dimen-

sion dX , M∈Db
hol(DX) and F,G ∈ Db

R-c(CX). Then the two objects RHomDX
(M,

F
w
⊗OX) and αXRIhom(F,Ωt

X)[dX ]
L
⊗DX

M are dual to each other in the category

Db
R-c(CX).

Let us remark that the key in deriving this result was the proof of the R-
constructibility of these two objects, which was derived from the constructiblity

of enhanced solutions established in [DK16]. In particular, this allows the authors
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of [KS16] to forget the topology, so this duality is really a duality of sheaves of

complex vector spaces.

§7.2. A conjecture of Sabbah’s

In this subsection we will prove the following theorem, which is Sabbah’s conjec-

ture, as discussed in Section 1 (Theorem 1.2).

Theorem 7.4 (cf. [Sab21, Conj. 4.13]). Let X be a complex manifold, f : X → C
a holomorphic function, and M a holonomic DX-module. Then there is a natural

isomorphism

DX̃f
DRmod

X̃f
(M) ≃ DRrd

X̃f
(DXM)

in Db
R-c(CX̃f

).

In the rest of this subsection we will first give a proof of this conjecture in

the case of a normal crossing divisor, using arguments very similar to those of

Kashiwara–Schapira [KS96], before proving the general version.

We first show the following variant on the real blow-up of X along a normal

crossing divisor.

Proposition 7.5. Let D ⊂ X be a simple normal crossing divisor. Let M be a

holonomic DX-module. Then there is an isomorphism in Db(CX̃D
),

DX̃D
DRmod

X̃D
(M) ≃ DRrd

X̃D
(DXM).

Let us first rewrite the objects in the statement of Proposition 7.5 in terms of

(holomorphic) tempered distributions andWhitney functions, as studied in [KS96],

for example.

In the following, we will just write X̃, ϖ for X̃D, ϖD. Let X̃tot
D be the total

real blow-up of X along a normal crossing divisor, and let X̃ ⊂ X̃tot
D be the real

blow-up (see Section 2.3 for these constructions).

For the sheaf of moderate growth holomorphic functions, we have

Amod
X̃

≃ αX̃Ot
X̃

≃ αX̃ϖ
!RIhom(CX∗ ,Ot

X),

and hence the moderate growth de Rham complex of a holonomic DX -module M
is

DRmod
X̃

(M) ≃ (ϖ−1ΩX ⊗ϖ−1OX
Amod

X̃
)

L
⊗ϖ−1DX

ϖ−1M

≃ αX̃ϖ
!RIhom(CX∗ ,Ωt

X)
L
⊗ϖ−1DX

ϖ−1M

≃ αX̃Ωt
X̃

L
⊗ϖ−1DX

ϖ−1M.(7.1)
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On the other hand, the sheaf of smooth functions on X̃ with rapid decay at

∂X̃ is

C∞,rd

X̃
:= (CX∗

w
⊗ C∞

X̃tot
D

)
∣∣
X̃
,

and the sheaf of holomorphic function with rapid decay at the boundary is then

Ard
X̃

:= RHomϖ−1DX
(ϖ−1OX ,C

∞,rd

X̃
),

and the rapid decay de Rham complex of the dual of M is

DRrd
X̃
(DXM) ≃ (ϖ−1ΩX ⊗ϖ−1OX

Ard
X̃
)

L
⊗ϖ−1DX

ϖ−1DXM

≃ RHomϖ−1DX
(ϖ−1M,Ard

X̃
)[dX ].(7.2)

In order to prove Proposition 7.5, the aim is to get a duality between (7.1) and

(7.2), and this reminds us of the duality in [KS16, eq. (2.5.12), Thm. 2.5.13].

However, our statement is a duality on the real blow-up and it does not follow

directly from [KS16], but our proof will proceed along the same lines.

We will first construct a pairing between the two objects (7.1) and (7.2).

A pairing on X̃tot
D . Since X̃tot

D is a real analytic manifold, we get from [KS16,

eq. (2.5.11)] a pairing

(7.3) (CX∗
w
⊗ C∞

X̃tot
D

)⊗ αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

) −→ ωX̃tot
D
.

The induced pairing on X̃. Equation (7.3) is equivalent to a morphism

αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

) −→ DX̃tot
D

(CX∗
w
⊗ C∞

X̃tot
D

).

Applying the exceptional inverse image along the (closed) embedding itot : X̃ ↪→
X̃tot

D , we obtain

(7.4) (itot)!αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

) −→ DX̃(itot)−1(CX∗
w
⊗ C∞

X̃tot
D

).

Now observe that the left-hand side can be manipulated as follows:

(itot)!αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

)

≃ (itot)−1RHom(CX̃ , αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

))

≃ (itot)−1RHom(βX̃tot
D

CX̃ ,RIhom(CX∗ ,Dbt∨
X̃tot

D

))

≃ (itot)−1αX̃tot
D

RIhom(βX̃tot
D

CX̃ ⊗ ιX̃tot
D

CX∗ ,Dbt∨
X̃tot

D

)

≃ αX̃(itot)−1RIhom(CX∗ ,Dbt∨
X̃tot

D

).(7.5)
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Here, the second isomorphism follows from [KS01, Prop. 5.1.10], and the last one

from the fact that βX̃tot
D

CX̃ ⊗ ιX̃tot
D

CX∗ ≃ ιX̃tot
D

CX∗ (see [KS01] and also [Ho22,

Proof of Lem. 3.2]).

Next, let us prove the following result similar to [KS16, Lem. 2.5.7].

Lemma 7.6. Set Y := (ϖtot)−1(X∗). Then there is an isomorphism

(7.6) RIhom(CY ,Dbt∨X̃tot
D

) ≃ (ϖtot)!RIhom(CX∗ ,Dbt∨X ).

Proof. Note that, locally, Y is the disjoint union of 2r connected components (r

being the number of smooth components of the normal crossing divisor D), each

homeomorphically mapped to X∗ via ϖtot. Let us write Y =
⊔

ν∈{+,−}r X∗×{ν}.
(Recall that X∗ × {+, . . . ,+} is the component canonically identified with X∗ in

X̃ ⊂ X̃tot
D .) Then we have

(ϖtot)!RIhom(CX∗ ,Dbt∨X ) ≃ RIhom((ϖtot)−1CX∗ , (ϖtot)!Dbt∨X )

≃
⊕

ν∈{+,−}r

RIhom(CX∗×{ν}, (ϖ
tot)!Dbt∨X ).

Now, by [KS16, Thm. 2.5.6], one has (ϖtot)!Dbt∨X ≃ Dbt∨
X̃tot

D

L
⊗D

X̃tot
D

DX̃tot
D →X , and

since DX̃tot
D

→ DX̃tot
D →X is an isomorphism on each X∗×{ν}, we obtain the desired

result.

Applying the functor (itot)! to the isomorphism (7.6), the left-hand side is the

following:

(itot)!RIhom(CY ,Dbt∨X̃tot
D

) ≃ (itot)−1RIhom(CX̃ ,RIhom(CY ,Dbt∨X̃tot
D

))

≃ (itot)−1RIhom(CX̃ ⊗ CY ,Dbt∨X̃tot
D

)

≃ (itot)−1RIhom(CX∗ ,Dbt∨
X̃tot

D

).

Hence, taking the isomorphism (7.6) together with our computation (7.5), we

obtain

(itot)!αX̃tot
D

RIhom(CX∗ ,Dbt∨
X̃tot

D

) ≃ αX̃(itot)!(ϖtot)!RIhom(CX∗ ,Dbt∨X )

≃ αX̃ϖ
!RIhom(CX∗ ,Dbt∨X ),(7.7)

and hence the morphism (7.4) yields a pairing

(7.8) (itot)−1(CX∗
w
⊗ C∞

X̃tot
D

)⊗ αX̃ϖ
!RIhom(CX∗ ,Dbt∨X ) −→ ωX̃ .
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The pairing between de Rham functors. Making the transition to Dolbeault

complexes (i.e., going to the holomorphic setting) and adding a D-module, the

above pairing will induce a pairing

(7.9) DRrd
X̃
(DXM)⊗DRmod

X̃
(M) −→ ωX̃

(just as eq. (2.5.11) induces eq. (2.5.12) in [KS16]).

Perfectness of the pairing. We first prove an analogue (indeed, a corollary) of

[KS96, Prop. 2.2], which will be the key to the proof of the perfectness.

Proposition 7.7. There exist natural topologies of type FN on Γ(X̃; (itot)−1

(CX∗
w
⊗ C∞

X̃
)) and of type DFN on Γc(X̃; (itot)−1RHom(CX∗ ,Dbt∨

X̃tot
D

)), and the

two spaces are dual to each other with respect to these topologies.

Proof. Since X̃tot
D is a real analytic manifold, [KS96, Prop. 2.2] gives us a (topo-

logical) duality between the FN space Γ(X̃tot
D ;CX∗

w
⊗ C∞

X̃tot
D

) and the DFN space

Γc(X̃
tot
D ; RIhom(CX∗ ,Dbt∨

X̃tot
D

)). To conclude, we observe that both CX∗
w
⊗ C∞

X̃tot
D

and RIhom(CX∗ ,Dbt∨
X̃tot

D

) are supported on the closed subspace X̃ ⊂ X̃tot
D , and

hence

Γ(X̃; (itot)−1(CX∗
w
⊗ C∞

X̃tot
D

)) ≃ Γ(X̃tot
D ;CX∗

w
⊗ C∞

X̃tot
D

)

and

Γc(X̃; (itot)−1RHom(CX∗ ,Dbt∨
X̃tot

D

)) ≃ Γc(X̃
tot
D ; RIhom(CX∗ ,Dbt∨

X̃tot
D

)).

This implies (going to the holomorphic setting similarly to [KS96, Prop. 5.2])

a duality between the objects

RΓ(X̃;Ard
X̃
) ∈ Db(FN)

and

RΓc(X̃;αX̃Ωt
X̃
[dX ]) ∈ Db(DFN).

We can then use the technique of [KS96, Thm. 6.1 and Appx] to prove the

following.

Proposition 7.8. Let M ∈ Db
hol(DX) and let G ∈ Db

R-c(CX̃). Then we can define

RΓ(X̃; RHomϖ−1DX
(ϖ−1M⊗G,Ard

X̃
)) ≃ RHom(G,DRrd

X̃
(DXM)) ∈ Db(FN)

and

RΓc(X̃; DRmod
X̃

(M)⊗G) ∈ Db(DFN)

and these are dual to each other.
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Proof. By the methods developed in [KS96] (whose details we will not elaborate

on here; see the proof of [KS96, Thm. 6.1]), the proof can be reduced to the case

M = (DX)U for some relatively compact open U ⊂ X and G = CV for some

relatively compact open subanalytic V ⊂ X̃, and this reduces the statement to

Proposition 7.7 and its holomorphic analogue.

The final step in proving Proposition 7.5 is now the following lemma, which

is analogous to the idea of [KS16, Lem. 2.5.12].

Lemma 7.9. If one of the objects DRrd
X̃
(DXM) or DRmod

X̃
(M) is R-constructible,

then the pairing (7.9) is perfect and the objects DRrd
X̃
(DXM) and DRmod

X̃
(M) are

dual to each other in the category Db
R-c(CX̃). In particular, the other object is also

R-constructible.

Proof. Assume that DRmod
X̃

(M) is R-constructible. Apply the functor RΓc(U ; •)
for any relatively compact open subanalytic U ⊂ X̃ to the morphism

DRmod
X̃

(M) −→ DX̃DRrd
X̃
(DXM)

coming from the pairing (7.9) to obtain

RΓ(U ; DRrd
X̃
(DXM)) −→ RΓc(U ; DRmod

X̃
(M))∗.

Since DRmod
X̃

(M) was assumed to be R-constructible, we know (see [KS90, Cor.

8.4.11]) that RΓc(U ; DRmod
X̃

(M)) is a perfect complex and therefore has, in par-

ticular, finite-dimensional cohomologies, and hence the topological dual and the

usual dual as a vector space coincide. This morphism is an isomorphism by Propo-

sition 7.8, which concludes the proof.

The case where DRrd
X̃
(M) is R-constructible is similar.

We can now finally prove the above duality statement in the case of a normal

crossing divisor.

Proof of Proposition 7.5. By Lemma 7.9, we are reduced to proving that the com-

plex DRmod
X̃

(M) is R-constructible. This is, however, clear by (a version on X̃D of)

Lemma 5.7 since we have already proved DRmod
X̃D

(M) ≃ shX̃D
(Ej̃D∗Ej

−1DRE
X(M))

(see Proposition 4.1) and we know that DRE
X(M) is R-constructible (see [DK16,

Thm. 9.3.2]). This concludes the proof.

The assertion of Theorem 7.4 in the case where f−1(0) is a simple normal

crossing divisor now follows as an easy corollary.
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Corollary 7.10. Let f : X → C be a holomorphic function such that D := f−1(0)

is a simple normal crossing divisor. Let M be a holonomic DX-module. Then there

is an isomorphism in Db(CX̃f
)

DX̃f
DRmod

X̃f
(M) ≃ DRrd

X̃f
(DXM).

Proof. This follows directly from Proposition 7.5 by applying the direct image

functor along the natural morphismϖD,f : X̃D → X̃f . We note that this morphism

is proper and hence self-dual, and that this direct image turns the moderate growth

(resp. rapid decay) de Rham complex on X̃D into the moderate growth (resp. rapid

decay) de Rham complex on X̃f (see [Moc14, Prop. 4.7.4]).

Let us now consider the case of a complex manifold X and a holomorphic

function f : X → C, where f−1(0) does not necessarily define a simple normal

crossing divisor. The techniques of resolution of singularities allow us to reduce

the general case to the one proved above, once we have the following lemma.

Lemma 7.11. For any complex manifold X, any holomorphic function f : X →
C, and any object M ∈ Db

hol(DX), there exists a natural morphism

(7.10) DRrd
X̃f

(DXM) −→ DX̃f
DRmod

X̃f
(M),

functorial in M.

Proof. First, note that we have an isomorphism

(7.11) DRrd
X̃f

(DXM) ≃ RHomϖ−1
f DX

(ϖ−1
f M,Ard

X̃f
)[dX ]

for any coherent DX -module M. (This is proved by standard arguments, similarly

to [Moc14, Lem. 5.5.1], for instance.) Here, dX denotes the (complex) dimension

of X.

Note moreover that we have a natural (ϖ−1
f DX -linear) morphism

(7.12) Amod
X̃f

⊗ϖ−1
f OX

Ard
X̃f

−→ Ard
X̃f

given by multiplication of functions. (Recall that Amod
X̃f

and Ard
X̃f

are flat over

ϖ−1
f OX .)

With this in hand, we construct the desired morphism as follows:

DRrd
X̃f

(DXM)

(7.11)
≃ RHomϖ−1

f DX
(ϖ−1

f M,Ard
X̃f

)[dX ]

−→ RHomC
X̃f

(DRmod
X̃f

(M), ϖ−1
f ΩX

L
⊗ϖ−1

f DX
(Amod

X̃f
⊗ϖ−1

f OX
Ard

X̃f
))[dX ]
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(7.12)−−−−→ RHomC
X̃f

(DRmod
X̃f

(M), ϖ−1
f ΩX

L
⊗ϖ−1

f DX
Ard

X̃f
)[dX ]

≃ RHomC
X̃f

(DRmod
X̃f

(M),DRrd
X̃f

(OX))[dX ]

≃ RHomC
X̃f

(DRmod
X̃f

(M), j̃!CX∗ [dX ])[dX ]

−→ RHomC
X̃f

(DRmod
X̃f

(M), ωX̃f
) = DX̃f

DRmod
X̃f

(M).

The morphism in the second line follows by applying the functor

(ϖ−1
f ΩX ⊗ϖ−1

f OX
Amod

X̃f
)

L
⊗ϖ−1

f DX
(•)

to both components.

The isomorphism in the fifth line follows since

DRrd
X̃f

(OX) ≃ j̃!CX∗ [dX ],

where j̃ : X∗ ↪→ X̃f is the embedding (see, for example, [Sab21, Exa. 4.12]).

The last isomorphism follows from the natural morphism j̃!CX∗ [2dX ] → ωX̃f
,

which comes as the adjoint to the identity CX∗ [2d] ≃ ωX∗ ≃ j̃!ωX̃f
.

We will now show that this morphism is in fact an isomorphism, yielding the

following statement.

Proposition 7.12. For any complex manifold X, any holomorphic function f :

X → C and any M ∈ Db
hol(DX), the morphism (7.10) is an isomorphism.

In particular, we obtain an isomorphism

DRrd
X̃f

(M) ≃ shX̃f
(Ej̃f !!Ej

−1DRE
X(M)).

Proof. First, note that if M′ → M → M′′ +1−−→ is a distinguished triangle in

Db
hol(DX), then this induces a morphism of distinguished triangles

DRrd
X̃f

(DXM′) DRrd
X̃f

(DXM) DRrd
X̃f

(DXM′′)

DX̃f
DRmod

X̃f
(M′) DX̃f

DRmod
X̃f

(M) DX̃f
DRmod

X̃f
(M′′)

+1

+1

and, by the axioms of a triangulated category, if two of the vertical arrows are

isomorphisms, so is the third. Hence, by a standard induction argument on the

amplitude of M (see, e.g., [DK16, Proof of Lem. 7.3.7]), we can reduce to the case

when M is concentrated in degree 0.
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Moreover, if U ⊂ X is open, then f defines a holomorphic function on U , and

we denote by Ũf ⊂ X̃f the corresponding real blow-up space. One has

DRrd
Ũf

(DUM|U ) ≃ DRrd
X̃f

(DXM)|Ũf

and

DŨf
DRmod

Ũf
(M|U ) ≃ (DX̃DRmod

X̃f
(M))|Ũf

.

Therefore, (7.10) is an isomorphism for M if it is one for all M|Ui
on a covering

X =
⋃

i∈I Ui; in other words, the statement is local. We can therefore assume that

there exist a complex manifold Y and a projective morphism τ : Y → X such that,

if we set g := f ◦ τ , E := g−1(0) = τ−1(f−1(0)) ⊂ Y is a simple normal crossing

divisor.

We know from Corollary 7.10 that

DRrd
Ỹg
(DY Dτ

∗M) −→ DỸg
DRmod

Ỹg
(Dτ∗M)

is an isomorphism. Applying the functor Dτ∗ to this isomorphism, we obtain (by

[Moc14, Cor. 4.7.3] and the well-known fact that direct images for constructible

sheaves and holonomic D-modules along proper maps commute with duality)

DRrd
X̃f

(DXDτ∗Dτ
∗M)

∼−−→ DX̃f
DRrd

X̃f
(Dτ∗Dτ

∗M).

Now it remains to note that M is a direct summand of Dτ∗Dτ
∗M and since

the morphism (7.10) is functorial (in particular, compatible with direct sums), we

deduce the isomorphism

DRrd
X̃f

(DXM)
∼−−→ DX̃f

DRmod
X̃f

(M),

as desired.

The second part of the proposition follows easily (as in Corollary 7.14).

Remark 7.13. Note that the proof just given might appear similar to the method

given in [DK16, Lem. 7.3.7], where the authors show how to reduce a proof of a

statement involving a complex manifold and a holonomic D-module to the case

of a D-module with normal form on a manifold with a normal crossing divisor,

using the classification results due to Sabbah [Sab00], Kedlaya [Ked10, Ked11],

and Mochizuki [Moc09, Moc11b]. However, here we do not use any reduction on

the form of our D-module (such as a normal form or a good filtration). Indeed, the

reduction we perform is only to the case where the divisor has normal crossings

(and the D-module is still arbitrary holonomic).

We have thus completed the proof of Theorem 7.4.
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With this result in hand, we can now derive the statement about the expres-

sion for the moderate de Rham complex in terms of the enhanced de Rham

complex, which was motivated in (4.2), showing that the expression we were

expecting for the rapid decay de Rham complex in terms of the enhanced de

Rham complex is indeed true.

Corollary 7.14. If D ⊂ X is a simple normal crossing divisor, we have an iso-

morphism

DRrd
X̃D

(M) ≃ shX̃D
(Ej̃D !!Ej

−1DRE
X(M)).

If f : X → C is a holomorphic function, we have an isomorphism

DRrd
X̃f

(M) ≃ shX̃f
(Ej̃f !!Ej

−1DRE
X(M)).

Proof. The proofs of the two statements are identical, so let us give just the argu-

ment for X̃f .

Recall (from Proposition 4.5) that

DRmod
X̃f

(M) ≃ shX̃f
(Ej̃f ∗Ej

−1DRE
X(M)).

Then the assertion of the corollary is just the dual of this isomorphism: The left-

hand sides are dual to each other by Theorem 7.4 just proved. For the right-hand

sides, we see that

shX̃f
(Ej̃f ∗Ej

−1DRE
X(DXM)) ≃ shX̃f

(Ej̃f ∗Ej
−1DE

XDRE
X(M))

≃ shX̃f
(DE

X̃f
Ej̃f !!Ej

!DRE
X(M))

≃ DX̃f
shX̃f

(Ej̃f !!Ej
−1DRE

X(M))

since duality commutes with the enhanced de Rham functor (see [DK16, Thm.

9.4.8]) and the sheafification functor (see [DK21, Prop. 3.13]), and duality inter-

changes Ej̃f ∗ with Ej̃f !! and Ej−1 with Ej! (see [DK19, Prop. 3.3.3]). Note that

Ej−1 ≃ Ej! since j is an open embedding. Because all the objects involved are R-
constructible (and hence duality is an involution on these objects), this concludes

the proof.

§7.3. Duality pairings for algebraic connections

A well-known result of Bloch–Esnault (in dimension one, see [BE04]) and Hien

(for dimensions greater than one; see [Hie09] and also [Hie07]) shows that, for

a flat algebraic connection (E,∇) on a smooth quasi-projective variety U , there

is a perfect pairing between algebraic de Rham cohomology with coefficients in

(E,∇) and rapid decay homology cycles, inducing a duality between the respective

(co-)homology spaces (see (7.14) for the precise statement). Concretely, the pairing
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can be realized as an integration, or period, pairing of differential forms α⊗e with
coefficients in E and of chains γ ⊗ ε∨ with coefficients in E∨ having rapid decay

along the boundary:

(7.13) (α⊗ e, γ ⊗ ε∨) 7−→
∫
γ

⟨e, ε∨⟩α,

where ⟨e, ε∨⟩ denotes the natural contraction E ⊗OU
E∨ → OU .

Proposition 7.15. Let (E,∇) be a flat (algebraic) connection on a smooth quasi-

projective variety U over C, and let (E∨,∇∨) be the dual connection on U . Then

there is a perfect pairing of finite-dimensional C-vector spaces

(7.14) Hℓ
dR(U ; (E,∇))⊗Hrd

ℓ (U ; (E∨,∇∨)) −→ C,

where HdR denotes algebraic de Rham cohomology, and Hrd denotes rapid decay

homology (see [BE04, Hie09]).

Proof. Recall from [Hie09] that we can describe these de Rham cohomology groups

and rapid decay homology groups as the hypercohomology groups of complexes of

sheaves on the real blow-up space: We have

Hℓ
dR(U ; (E,∇)) ≃ Hℓ(X̃D; DRmod

X̃D
(M))

(see [Sab00]) and

Hrd
ℓ (U ; (E∨,∇∨)) ≃ H−ℓ(X̃D; DRrd

X̃D
(M∨)).

Here, (X,D) is a good compactification of U , i.e., D = X \U has normal crossings

and (E,∇) admits a good formal structure with respect to (X,D). (The existence

of such a good compactification was conjectured and proved in certain cases in

[Sab00], and shown in general in [Ked10, Ked11] and [Moc09, Moc11b].) Further-

more, M is the (analytic) meromorphic connection associated to the algebraic

connection (E,∇). In other words, if E is the algebraic DU -module defined by the

connection (E,∇) and j : U ↪→ X is the inclusion, then M = (j∗E)an is the associ-

ated analytic DX -module and satisfies M(∗D) ≃ M. Moreover, M∨ denotes the

dual meromorphic connection, which is the meromorphic connection associated to

(E∨,∇∨) (or, equivalently, M∨ = (DXM)(∗D)).

With these identifications, the claim follows after noting

DRmod
X̃

(M) ≃ (DRE
X(M))modD

and

DRrd
X̃D

(M∨) ≃ (DRE
X(M∨))rdD ≃ (DRE

X(DXM))rdD ≃ (DE
X(DRE

X(M)))rdD,
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and then applying (a version on X̃D of) Proposition 6.5. (Note that X̃D is com-

pact.)
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de Stokes en dimension 2, Astérisque 263 (2000), viii+190 pp. Zbl 0947.32005
MR 1741802

[Sab13] C. Sabbah, Introduction to Stokes structures, Lecture Notes in Mathematics 2060,
Springer, Heidelberg, 2013. Zbl 1260.34002 MR 2978128

[Sab19] C. Sabbah, What are irregular perverse sheaves?, Lecture notes, https://perso.pages.
math.cnrs.fr/users/claude.sabbah/exposes/sabbah varsovie190927.pdf, visited on 4
November 2024.

[Sab21] C. Sabbah, Moderate and rapid-decay nearby cycles for holonomicD-modules, https://
perso.pages.math.cnrs.fr/users/claude.sabbah/articles/sabbah nearby-stokes.pdf, vis-
ited on 4 November 2024.

[Siu70] Y.-T. Siu, Holomorphic functions of polynomial growth on bounded domains, Duke
Math. J. 37 (1970), 77–84. Zbl 0195.36801 MR 0251244

https://doi.org/10.24033/ast.898
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1245.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2919903
https://doi.org/10.24033/msmf.448
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1327.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=3306892
https://doi.org/10.24033/asens.2503
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1516.14041&format=complete
http://www.ams.org/mathscinet-getitem?mr=4553653
https://doi.org/10.24033/asens.2504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07594369&format=complete
http://www.ams.org/mathscinet-getitem?mr=4553654
https://doi.org/10.1007/BF01435691
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0304.32007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0352522
https://doi.org/10.24033/ast.483
https://doi.org/10.24033/ast.483
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0947.32005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1741802
https://doi.org/10.1007/978-3-642-31695-1
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1260.34002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2978128
https://perso.pages.math.cnrs.fr/users/claude.sabbah/exposes/sabbah_varsovie190927.pdf
https://perso.pages.math.cnrs.fr/users/claude.sabbah/exposes/sabbah_varsovie190927.pdf
https://perso.pages.math.cnrs.fr/users/claude.sabbah/articles/sabbah_nearby-stokes.pdf
https://perso.pages.math.cnrs.fr/users/claude.sabbah/articles/sabbah_nearby-stokes.pdf
https://doi.org/10.1215/s0012-7094-70-03711-7
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0195.36801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0251244

	Introduction
	Background and notation
	From sheaves to enhanced ind-sheaves
	D-modules
	Real blow-up spaces

	Solutions to the Riemann–Hilbert problem for holonomic D-modules
	The dimension-one case
	Stokes filtrations
	Duality observations on the real blow-up
	Rapid decay de Rham complexes
	Duality revisited

	De Rham complexes with growth conditions and enhanced ind-sheaves
	Moderate growth de Rham complexes in higher dimensions: Normal crossing divisors
	Moderate growth de Rham complexes along a function
	Rapid decay de Rham complexes: A motivation in dimension one

	Moderate growth and rapid decay objects associated to enhanced ind-sheaves
	Local and global duality on the real blow-up
	A short review on duality and pairings in derived categories
	Local duality statements for enhanced nearby cycles
	The global duality pairings

	Duality between de Rham functors with growth conditions
	A duality of Kashiwara–Schapira
	A conjecture of Sabbah's
	Duality pairings for algebraic connections

	References

