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Abstract

We investigate function-theoretic properties of holomorphic affine line bundles over com-
pact Kähler manifolds. We discuss existence of (strictly) plurisubharmonic functions on
the total space of such a bundle. Further, we give a precise restriction from below on the
growth of such functions. This gives refinements of some previous results due to one of
the present authors. In the proof, we construct a plurisubharmonic exhaustion function
satisfying the Monge–Ampère equation and look at the foliation induced by this function.
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§1. Introduction and the statement of results

Let X be a compact complex manifold and Y a complex hypersurface in X. The

complement X = X\Y sometimes exhibits function-theoretically interesting prop-

erties. It is known that there are examples of X that have the following properties

simultaneously: (i) X is Stein, hence it admits a wealth of holomorphic functions;

(ii) every non-constant holomorphic function on X has Y as essential singularity,

hence X is not affine algebraic. These properties can be derived from statements

about plurisubharmonic functions on X. Property (i) follows from the existence of

strictly plurisubharmonic exhaustion function on X, and property (ii) comes from

showing that any plurisubharmonic function on X increases rapidly near Y . (See

[8] and also the remark at the end of this section.)
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In the present paper we will examine the following concrete example: Let

π : X → M be a projective line bundle over a compact Kähler manifold M , that

has a global section Y whose normal bundle is topologically trivial and X is the

complement of Y . We will give a concrete form of (strictly) plurisubharmonic

functions and a refined form of restriction on the growth of plurisubharmonic

functions.

Let M be a compact complex manifold and π : X → M be an affine line

bundle over M , i.e., a holomorphic fiber bundle that has the complex line C as

typical fiber and affine automorphisms of C as structure group. Choosing an open

covering {Ui}i∈I of M we can describe the structure of X as follows:

(i) For each i, there is a trivialization

π−1(Ui) ∼= Ui × C

so that a point x ∈ π−1(Ui) can be identified with (p, wi) ∈ Ui × C, where
p = π(x) and wi is the fiber coordinate.

(ii) For i, j with Ui ∩ Uj ̸= ∅, fiber coordinates are transformed as

wi = aij(p)wj + bij(p)

on π−1(Ui ∩ Uj), where aij(p) is a non-vanishing holomorphic function on

Ui ∩ Uj and bij(p) is a holomorphic function on Ui ∩ Uj .

We can compactify each fiber π−1(p), p ∈ M by adding a point at infinity, and

we obtain a P1-bundle π : X → M with the infinity section Y so that X = X \ Y ,

i.e., π : X → M is the P1-bundle obtained by the fiberwise projectivization of the

rank-2 vector bundle over M defined by(
aij bij
0 1

)
,

which actually defines a rank-2 vector bundle since one can check the 1-cocycle

condition by using equations (1.1) and (1.2) below.

Now, since (aij) satisfies the cocycle condition

(1.1) aijajk = aik,

this defines an element in H1(M,O∗). We denote by EX the complex line bun-

dle defined by (aij). Further, we denote by c1(EX) the first Chern class of EX

and by c1,R(EX) the real first Chern class, i.e., the image of c1(EX) under the

homomorphism H2(M,Z) → H2(M,R). Now, since we have

(1.2) bij + aijbjk = bik,
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we can regard (bij) as a 1-cocycle of holomorphic sections of EX and hence an

element in H1(M,O(EX)).

Now we assume the following conditions:

(a) The first Chern class c1(EX) of EX is torsion, i.e., c1,R(EX) = 0 (note that

this condition implies that EX is topologically trivial when M is a compact

Riemann surface).

(b) The affine line bundle X is not isomorphic to the line bundle EX .

We note that condition (b) is equivalent to saying that (bij) ̸= 0 as an element

in H1(M,O(EX)), or that the affine line bundle X does not admit a holomorphic

section (see Abe [1]).

The following three theorems are the main results of the present paper.

Theorem 1.1. Let M be a compact Kähler manifold and π : X → M an affine

line bundle satisfying conditions (a) and (b). Then there exists a plurisubharmonic

exhaustion function Ψ(x) on X such that

Ψ(x) ∼ 1/ dist(x, Y ) as x → Y .

Here, dist(x, Y ) denotes the distance of x from the infinity section Y with respect

to a Riemannian metric on X.

Theorem 1.2. Let π : X → M be as in Theorem 1.1.

(1) If dimM = 1, i.e., if M is a compact Riemann surface, then there exists a

strictly plurisubharmonic exhaustion function Φ(x) on X such that

Φ(x) ∼ 1/ dist(x, Y ) as x → Y .

In particular, X is a Stein manifold.

(2) If dimM ≥ 2, then X does not admit a strictly plurisubharmonic function. In

particular, X is not a Stein manifold.

Theorem 1.3. Under the same situation as above, let V be an open set with

Y ⊂ V ⊂ X, and let φ(x) be a plurisubharmonic function on V \ Y . Suppose that

φ(x) = o(1/ dist(x, Y )) as x → Y .

Then there is an open set V0 with Y ⊂ V0 ⊂ V such that φ(x) is a constant on

V0 \ Y .

In the proof of Theorem 1.1 we give a concrete form of the function Ψ. We

note that Ohsawa [6, 7] introduced this function Ψ and showed that its square Ψ2

is plurisubharmonic.



142 T. Koike and T. Ueda

This function Ψ satisfies the Monge–Ampère equation (∂∂̄Ψ)2 = 0 and hence

it is nowhere strictly plurisubharmonic. In the case dimM = 1, we can produce a

strictly plurisubharmonic function by modifying Ψ (Theorem 1.2(1)). As for the

case dimM ≥ 2, we note that a more general result is obtained by Ohsawa [5].

The (1, 1) form ∂∂̄Ψ defines a foliation (Monge–Ampère foliation) F . The

function Ψ is pluriharmonic when restricted to each leaf of F . Whereas the leaves

of F are holomorphically immersed submanifolds, it is not a holomorphic foliation.

Theorem 1.3 is proved with the aid of this foliation.

Remark. Here we discuss the results of [8] as the background to the present

paper. Let C be a compact complex curve embedded in a 2-dimensional complex

manifold (not necessarily compact nor Kähler) with topologically trivial normal

bundle. The complex normal bundle NC of C is defined to be the restriction [C]|C
of the line bundle [C] to C. If NC is topologically trivial, NC can be given a

structure of unitary flat line bundle, and NC can be extended to a unitary flat

line bundle F over a neighborhood of the curve C. The type n (n = 1, 2, . . . , or

∞) of the embedded curve C is defined to be the order of coincidence of [C] and

F around C. In the case where C is of type n < ∞, the following facts are proved

in [8]:

(1) For any ε > 0, there exist an open set V containing C and a strictly plurisub-

harmonic function Φ(x) on V \C such that Φ(x) ∼ 1/ dist(x,C)n+ε as x → C.

(2) If V is an open set containing C and φ(x) is a plurisubharmonic function on

V \C such that φ(x) = o(1/ dist(x,C)n−ε), then there is an open set V0 with

C ⊂ V0 ⊂ V such that φ(x) is constant on V0.

In the situation of the present paper, the infinity section Y is embedded in

X with topologically trivial normal bundle by condition (a), and it is of type 1 by

condition (b). Therefore, our present results are considered to be refinements of

the results in [8] in concrete examples of ruled surfaces.

§2. Construction of a plurisubharmonic exhaustion function

Let π : X → M be an affine line bundle over a complex manifold and let {wi} be a

collection of fiber coordinates for an open covering {Ui}. We will say that {wi} is

a collection of admissible fiber coordinates if the following conditions are satisfied:

(i) aij are constants with |aij | = 1.

(ii) bij are constants.

(iii) There exist anti-holomorphic functions gi on Ui such that

gi = aijgj + bij on Ui ∩ Uj .
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Proposition 2.1. Let π : X → M be a holomorphic affine line bundle over a

compact Kähler manifold M . If the Chern class c1(EX) of the associated line

bundle EX is torsion, then there is a collection {wi} of admissible fiber coordinates

for an open covering {Ui} of M .

Proof. By [8, Prop. 1], the line bundle EX has the structure of flat line bundle,

Hence there are non-vanishing holomorphic functions ai on Ui such that aijaia
−1
j

are constants of modulus 1 on Ui ∩ Uj . By replacing wi with aiwi on π−1(Ui), we

may assume that condition (i) is satisfied.

Now EX is a flat line bundle and the notions of constant, holomorphic, anti-

holomorphic and pluriharmonic sections of EX are well defined. We denote by

O(EX) [resp. H(EX)] the sheaves of holomorphic [resp. pluriharmonic] sections

of EX .

Since {bij} satisfies the condition bij + aijbij = bik, it is regarded as an

element in H1(M,O(EX)). By [8, Prop. 2], the homomorphism H1(M,O(EX)) →
H1(M,H(EX)) is a zero map. Hence there are pluriharmonic functions hi on Ui

such that

hi = aijhj + bij .

We write hi = fi + gi with holomorphic fi and anti-holomorphic gi on Ui. Then

bij − (aijfj − fi) = aijgj − gi on Ui ∩ Uj .

Both sides are holomorphic and anti-holomorphic at the same time, hence a con-

stant, which we will denote by b̂ij . We define new fiber coordinates ŵi on π−1(Ui)

by

ŵi = wi − fi(p).

Then we have

ŵi = aijŵj + b̂ij .

Further, ŵi = gi(p) defines a global anti-holomorphic section over M , since

aijgj(p)− gi(p) = b̂ij . Thus the proposition is proved.

Remark. The section σ is unique if E is not analytically trivial. Additionally, it

is non-constant if we assume the condition (b).

Proof of Theorem 1.1. In what follows we assume that {wi} is a collection of

admissible fiber coordinates.

We define the function Ψ(x) as the distance of x from the anti-holomorphic

section σ(M) on each fiber, namely,

Ψ(x) := |wi − gi(p)| on π−1(Ui) ∼= Ui × C.
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This function Ψ(x) is well defined on X, since

wi − gi(p) = aij(wi − gi(p)) on π−1(Ui ∩ Uj)

with |aij | = 1. It is clear that Ψ(x) is an exhaustion function on X and that it is

real analytic on X \ σ(M).

Now we show that the function Ψ(x) is plurisubharmonic but nowhere strictly

plurisubharmonic on X.

In the following calculations, we will work on π−1(Ui) and suppress the suf-

fix i. The anti-holomorphic section σ is expressed as w = g(p), where g(p) is a

holomorphic function on Ui. We write

u := w − g(p).

Then

Ψ(x) = (uū)1/2

and

∂∂̄Ψ =
1

4
(uū)−3/2

{
2uū ∂∂̄(uū)− ∂(uū) ∧ ∂̄(uū)

}
=

1

4
(uū)−3/2

{
2uū(∂u ∧ ∂̄ū+ ∂ū ∧ ∂̄u)− (ū ∂u+ u ∂ū) ∧ (u ∂̄ū+ ū ∂̄u)

}
=

1

4
(uū)−3/2(ū ∂u− u ∂ū) ∧ (u ∂̄ū− ū ∂̄u)

=
1

4
Ψ(x)−3(ū dw + u dg) ∧ (ū dw + u dg).

The Levi form LΨ of Ψ is the quadratic form associated to the (1, 1) form
√
−1∂∂̄Ψ,

and it is expressed, with respect to the coordinates (z, w) = (z1, z2, . . . , zn, w), as

LΨ(x; dz1, . . . , dzn, dw) =
1

4
Ψ(x)−3|u dg(z) + ū dw|2.

This is semipositive and degenerates on the subspace of the tangent space at x

which is given by the condition u dg+ ū dw = 0 for any point x in π−1(Ui)\σ(Ui).

This shows that Ψ is plurisubharmonic on X \σ(M). Obviously, Ψ is plurisub-

harmonic also at the points on σ(M).

Remark. It has been shown in Ohsawa [6, 7] that Ψ2 is a plurisubharmonic

exhaustion function on X.

§3. Existence of strictly plurisubharmonic exhaustion functions

In this section we will give a proof of Theorem 1.2.
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First we consider the case dimM = 1. We begin with constructing an exhaus-

tion function that is strictly plurisubharmonic almost everywhere on X by modi-

fying the function Ψ which we constructed in the previous section. We define

Φ(x) := (1 + Ψ(x)2)1/2.

We calculate ∂∂̄Φ on π−1(Ui), with the same notation as in the calculation of Ψ.

We have Φ(x) = (1 + uū)1/2 and

∂∂̄Φ =
1

4
(1 + uū)−3/2

{
2(1 + uū)∂∂̄(uū)− ∂(uū) ∧ ∂̄(uū)

}
=

1

4
(1 + uū)−3/2

{
2∂∂̄(uū) + (ū ∂u− u ∂ū) ∧ (u ∂̄ū− ū ∂ū)

}
=

1

4
Φ−3

{
2(dw ∧ dw + dg ∧ dḡ) + (ū dw + u dg) ∧ (ū dw + u dg)

}
.

Hence the Levi form of Φ is given by

LΦ(x; dz, dw) =
1

4
Φ−3

{
2(|dw|2 + |dg(z)|2) + |ū dw + u dg(z)|2

}
,

where z denotes a coordinate on Ui.

Now we set

Z :=
⋃
i

{
p ∈ Ui

∣∣ dgi(p) = 0
}
.

Since gi are non-constant, the set Z consists of a finite number of points. The

calculation above shows that LΦ(x; dz, dw) is positive definite except at the points

on π−1(Z).

We will modify Φ on a neighborhood of π−1(p) for each p ∈ Z to obtain a

strictly plurisubharmonic function on all of X.

Let p0 ∈ Z and choose a coordinate neighborhood ∆ ∼= {z ∈ C | |z| < 1} with

center p0. We assume that ∆ is sufficiently small so that ∆̄ ∩ Z = {p0}.
We take a real-valued C∞ function ρ(z) on ∆ with compact support such that

ρ(z) = |z|2 on ∆1/2 = {|z| < 1/2},

and set

η(x) := Φ(x)−3ρ(z),

where x ∈ π−1(∆) and z = π(x).

Lemma 3.1. We have the following estimates of the Levi form of η:

(1) There exists a number A such that

|Lη(x; dz, dw)| ≤ AΦ−3(|dz|2 + |dw|2)

when x ∈ π−1(∆).
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(2) There exists a number r with 0 < r < 1/2 such that

Lη(x; dz, dw) ≥
1

2
Φ−3(|dz|2 − |dw|2)

when x ∈ π−1(∆r), where ∆r = {|z| < r}.

Proof. On π−1(∆) we have

∂∂̄η = Φ−3 ∂∂̄ρ+ ∂Φ−3 ∧ ∂̄ρ+ ∂ρ ∧ ∂̄Φ−3 + ρ ∂∂̄Φ−3

and assertion (1) follows easily.

Now, on π−1(∆1/2), we have

∂∂̄η = Φ−3dz ∧ dz̄ + α,

where we have set

α := z ∂Φ−3 ∧ dz̄ + z̄ dz ∧ ∂̄Φ−3 + |z|2 ∂∂̄Φ−3.

If we denote by Q(x; dz, dw) the quadratic form associated to the (1,1) form
√
−1α,

we have

|Q(x; dz, dw)| ≤ B|z|Φ−3(|dz|2 + |dw|2)
for some constant B. We choose r so that 0 < r < min{ 1

2 ,
1
2B }. Then

|Q(x; dz, dw)| ≤ 1

2
Φ−3(|dz|2 + |dw|2)

on π−1(∆r).

Thus we have

Lη(x; dz, dw) = Φ−3|dz|2 +Q(x; dz, dw)

≥ 1

2
Φ−3(|dz|2 − |dw|2)

on π−1(∆r). Thus Lemma 3.1 is proved.

Now we return to the proof of Theorem 1.1 and consider the function

Φε(x) = Φ(x) + εη(x).

In what follows, we let r be a positive number which satisfies the condition in

Lemma 3.1(2). On π−1(∆r) we have

LΦε
(x; dz, dw) = LΦ(x; dz, dw) + εLη(x; dz, dw)

≥ 1

2Φ3
(|dw|2 + ε(|dz|2 − |dw|2))

=
1

2Φ3
(ε|dz|2 + (1− ε)|dw|2).
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This shows that LΦε
is strictly positive at every point in π−1(∆r) whenever 0 <

ε < 1.

On π−1(∆ \∆r), we have

LΦ(x; dz, dw) ≥
1

2
Φ−3(δ|dz|2 + |dw|2),

where

δ = min
{
|g′(z)|

∣∣ z ∈ ∆ \∆r

}
> 0.

Hence

LΦε
(x; dz, dw) ≥ 1

2
Φ−3(δ|dz|2 + |dw|2)− εAΦ−3(|dz|2 + |dw|2),

which is positive definite when ε is sufficiently small.

Thus Φε(x) is strictly plurisubharmonic at any point in π−1(∆) when ε is

sufficiently small. By performing the same procedure for every point in Z, we

obtain a strictly plurisubharmonic function on X with the desired properties. This

completes the proof of Theorem 1.2(1).

Now we deal with the case dimM ≥ 2. Suppose that φ(x) is a plurisubhar-

monic function on X. Let r be a non-negative number and put

Σr =
{
x ∈ X

∣∣ Ψ(x) = r
}
.

Then φ(x) takes its maximum on the compact set Σr at a point x∗ ∈ Σr. We

suppose x∗ ∈ π−1(Ui). Identifying π−1(Ui) with its trivialization Ui×C, we denote
x∗ = (p∗, w∗

i ). Let

Z =
{
x = (p, wi) ∈ π−1(Ui)

∣∣ gi(p) = gi(p
∗), wi = w∗

i

}
.

Then Z is an analytic subset of positive dimension in π−1(Ui), containing x∗.

Further, Z is contained in Σr, since

Ψ(x) = |wi − gi(p)| = |w∗
i − gi(p∗)| = Ψ(x∗).

Then φ(x) is constant on the set Z by the maximum principle. This shows that

φ(x) is not strictly plurisubharmonic and Theorem 1.2(2) is proved.

§4. Growth condition on plurisubharmonic functions

We set X0 = X \ σ(M). As we noticed in the proof of Theorem 1.1, the plurisub-

harmonic function Ψ(x) is real-analytic on X0 and its Levi form LΨ degenerates on

the subspace of the tangent space at x ∈ X0 given by the condition ū ∂u−u ∂ū = 0,



148 T. Koike and T. Ueda

where u = w− g(p). In other words, the tangent bundle TF ⊂ TX0
of the Monge–

Ampère foliation F on X0 of ∂∂̄Ψ satisfies

(TF )x =
{
v ∈ (TX0

)x
∣∣ ⟨ū ∂u− u ∂ū, v⟩ = 0

}
for each x ∈ X0, where TX0 is the holomorphic part T 1,0X0 of the decomposition

TCX0 = T 1,0X0 ⊕ T 0,1X0 of the complexified bundle TCX0 of the tangent bundle

of the C∞ manifold X0. Here, the Monge–Ampère foliation induced by ∂∂̄Ψ is the

foliation such that the tangent vectors of leaves are eigenvectors of LΨ belonging

to the eigenvalue 0. Generally, it is known that such a foliation exists when Ψ is

plurisubharmonic and the dimension of the 0-eigenspace of its complex Hessian is

constant, and that each leaf of it is a holomorphically immersed submanifold (see

[2] and [4, §3.2.2] for example).

First let us give an explicit description of the leaves of F . Since complex

conjugation of the equation above gives ū ∂̄u−u ∂̄ū = 0, this condition is equivalent

to

ū du− u dū = 0

or

d log(u/ū) = 0.

Hence the integral manifolds of this equation are given by

arg(w − g(p)) = θ,

where θ ∈ R are arbitrary constants. Setting λ = eiθ, this equation can be put in

the form

λ̄(w − g(p)) = λ(w − g(p)),

or

λ̄w + λg(p) = λw + λ̄g(p).

From this we know that, for any real number r, the Levi form LΨ degenerates on

the complex curve defined by

λ̄w + λg(p) = r.

Thus we have that leaves of the foliation F are locally given by the equations

above.

To prove Theorem 1.3, let us describe this foliation F and its leaves more

closely. For that purpose, we define a family of holomorphic sections γ[λ,r] of X

over Ui by

wi = λr − λ2gi(p),
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or

λ̄wi + λgi(p) = r

with |λ| = 1 and r ∈ (2Re(λgi(p)),∞) ⊂ R.

Lemma 4.1. We have the following for the family of holomorphic sections γ[λ,r]:

(1) For any point x = (p, w) ∈ π−1(Ui), there exists a unique section γ[λ,r] passing

though x, which is given by q 7→ (q, λr − λ2g(q)) with

(λ, r) =

(
w − g(p)

|w − g(p)|
,
|w|2 − |g(p)|2

|w − g(p)|

)
.

(2) The sections γ[λ,r] satisfy the differential equation

(w − g(p)) dw − (w − g(p)) dg = 0.

Proof. (1) This follows from λ̄w + λg = r and its conjugate λw + λ̄ḡ = r.

(2) By differentiating λ̄w + λg = r one has λ̄ dw + λ dg = 0. Since λ = (w −
g(p))/|w − g(p)|, the assertion holds.

Lemma 4.2. The restriction of Ψ to a leaf of the foliation F is a non-constant

pluriharmonic function.

Proof. This is clear since the differential equation above defines in the tangent

space the direction on which the Levi form degenerates. We can also directly

verify this: We have

Ψ ◦ γλ,r(p) = |λr − λ2g(p)− g(p)|

= |r − λg(p)− λg(p)|
= |r − 2Re(λg(p))|
= r − 2Re(λg(p)),

which is harmonic except at the points where Ψ vanishes.

Remark. Suppose that Ui ∩ Uj ̸= ∅. Consider a section given by

λ̄wi + λgi = r.

Then we have

λ̄(aijwj − bij) + λ(aijgj − bij) = r.

Thus in the fiber coordinate wj ,

λ′wj + λ′gj = r′
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holds for λ′ = λaij and r′ = r + 2Re(λ̄bij), from which one can concretely check

that sections γ[λ,r] glue together to give a global foliation (note that this fact itself

is nothing but a simple conclusion from Lemma 4.1(2) and the definition of the

foliation F).

Lemma 4.3. Let V be an open set such that Y ⊂ V ⊂ X \ σ(M) and let L be

a connected leaf of the restriction of the foliation F to V . Then the restriction of

the function Ψ(x) to L is unbounded from above.

Proof. Suppose that Ψ|L is bounded from above and put B = supx∈L Ψ(x). We

choose a sequence {xn} of points in L such that Ψ(xn) → B (n → ∞). By

shifting to a subsequence we assume that {xn} converges to a point x0 in X. Then

x0 ∈ V \ Y and Ψ(x0) = B. We choose Ui such that x0 ∈ π−1(Ui). For sufficiently

large n, we have xn ∈ π−1(Ui). We denote by γn the connected component of

L∩π−1(Ui) that passes through xn. Then γn is expressed by wi = λnrn−λ2gi(p).

Since Ψ(x) ≤ B on γn, we have Ψ(x) ≤ B on γ0. The restriction of Ψ(x) to γ0
is pluriharmonic and takes the value B at x0. Hence, by the maximum principle

Ψ(x) is constant on γ0, which contradicts Lemma 4.2.

We set

XR =
{
x ∈ X

∣∣ Ψ(x) > R
}

and

ΣR =
{
x ∈ X

∣∣ Ψ(x) = R
}

for R ≥ 0.

Lemma 4.4. Any bounded plurisubharmonic function on XR (R ≥ 0) is constant.

Proof. By a theorem of Grauert and Remmert [3], any plurisubharmonic function

φ on XR is extended to a plurisubharmonic function on XR ∪Y , which we denote

by the same letter φ. We will prove that φ is constant on XR′ for any R′ > R.

The function φ takes its maximum B on XR′ at a point x0 ∈ ΣR′ . Since Ψ(x0) =

|w0 − g(p0)| = R′, we can write

w0 − g(p0) = R′λ,

where λ is a complex number with |λ| = 1. We define a holomorphic section

s : ∆ → π−1(∆) by s(p) = (p, h(p)), where

h(p) = w0 + λ2(g(p)− g(p0)).
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Then

Ψ(p, h(p)) = |w0 + λ2(g(p)− g(p0))− g(p)|

= |R′λ+ g(p0) + λ2(g(p)− g(p0))− g(p)|
=
∣∣R′ + 2i Im

(
λ(g(p)− g(p0))

)∣∣
≥ R′.

This shows that s(∆) ⊂ XR′ . The function φ(s(p)) is subharmonic and attains its

maximum B at p0, and so φ(s(p)) = B identically on ∆. Further, since g(p) is

non-constant by the assumption, s(∆) contains an interior point of XR′ . Thus φ

takes its maximum at an interior point of XR′ and hence is constant on XR′ .

Proof of Theorem 1.3. Suppose that φ(x) is a plurisubharmonic function on V \Y .

Take a sufficiently large real number R such that XR is relatively compact in V .

We set V0 = XR ∪ Y .

By Lemma 4.4, it is sufficient to lead to the contradiction by assuming that φ

is unbounded from above. We can assume that φ(x) < 0 on the boundary of ∂V0

by subtracting a constant. If φ(x) = o(1/ dist(x, Y )), we have

lim
x→Y

φ(x)

Ψ(x)
= 0.

If φ(x) is unbounded above, it takes a positive value at some point in V0. Hence
φ(x)
Ψ(x) attains its maximum B > 0 at some interior point x0 of V0. Hence we have

φ(x)−BΨ(x) ≤ 0 (x ∈ V0)

and

φ(x0)−BΨ(x0) = 0.

Let L0 be the leaf of the foliation F that passes through x0. The restriction of

φ(x)−BΨ(x) to L0 is subharmonic and attains its maximum at x0. By the maxi-

mum principle, we have φ(x)−BΨ(x) = 0 on L0. This contradicts the assumption

that φ(x) = o(Ψ(x)) (x → Y ). Theorem 1.3 is thereby proved.
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