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Abstract

We classify a smooth projective 3-fold X with κ(X) = −∞ of type (C−∞) admitting a
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§1. Introduction

This is the final part of a series of articles which provide proofs of results announced

in [5]. We work over the field C of complex numbers and use the same notation

as in our previous articles [5, 6, 8]. The main purpose of this paper is to study

the structure of a smooth projective 3-fold X with negative Kodaira dimension

which admits a nonisomorphic étale endomorphism. The following Theorem 1.1

announced in [5] is our main result.
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Theorem 1.1. Let X be a smooth projective 3-fold with the Kodaira dimension

κ(X) = −∞ admitting a nonisomorphic étale endomorphism. Then up to a finite

étale covering, X satisfies one of the following six conditions: (More precisely,

replacing f by its suitable power fk (k > 0), there exist a finite étale Galois

covering X̃ → X of X and a nonisomorphic étale endomorphism f̃ : X̃ → X̃

which is a lift of f : X → X. If we replace f : X → X by f̃ : X̃ → X̃, then X

satisfies one of the following.)

(1) X ≃ S × E for an elliptic curve E and a uniruled algebraic surface S.

(2) X is a P1-bundle over an abelian surface.

(3) X is obtained by a succession of blow-ups along elliptic curves from a P1-
bundle Y over the product S := C ×E, where C is a curve of genus g(C) ≥ 1

and E is an elliptic curve.

(4) X is a P2-bundle over an elliptic curve.

(5) X is a P1 × P1-bundle over an elliptic curve.

(6) By the Albanese map αX : X → C, X is an analytic fiber bundle over an

elliptic curve C whose fiber is birational to a Hirzebruch surface.

We note that these six classes are not necessarily mutually disjoint from each

other. For example, the product of the Hirzebruch surface F1 and an elliptic curve

satisfies both conditions (1) and (6). Compared with classification results in the

case of κ(X) ≥ 0 (cf. [4, 9]), our Theorem 1.1 is not so simple and not strong enough

for a complete classification of 3-folds with negative Kodaira dimension admitting

nonisomorphic étale endomorphisms. We mainly give a necessary condition for the

existence of such varieties and state a sufficient condition in some special cases.

Let us review the background briefly. By an étale sequence of constant Picard

number (ESP for short) W• = (vn : Wn →Wn+1)n∈Z of smooth projective k-folds

Wn, we mean that for any n ∈ Z,
� vn is a nonisomorphic finite étale covering, and

� the Picard number ρ(Wn) is constant.

In [5], we applied the minimal model program (MMP for short) to the constant

ESPX• = (X, f) induced from a nonisomorphic étale endomorphism f : X → X of

a smooth projective 3-fold X with κ(X) = −∞ and constructed an FESP Y• from

X• by a sequence of blow-downs of an ESP (cf. [5, Cor. 1.2]). Here, “FESP” means

that there exist extremal rays R• of fiber type on NE(Y•) (cf. [5, Def. 3.6(3)]).

Compared with the case of κ(X) ≥ 0 (cf. [4, 9]), one of the difficulties in the

case of κ(X) = −∞ is that there may exist infinitely many extremal rays of the

Mori cone NE(X). Here, by an extremal ray R, we always mean a KX-negative

extremal ray of NE(X). Furthermore, it is not clear that we can find an extremal
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ray R of NE(X) which is preserved by a suitable power fk (k > 0) of f . Hence the

MMP does not necessarily work compatibly with étale endomorphisms. Thus we

adapt a method to first study the rough structure of the original endomorphism

f : X → X through the FESP Y• constructed from X by a sequence of blow-downs

of an ESP (cf. [5, Def. 3.7]). In particular, we shall focus our attention on the

finiteness of extremal rays, which is equivalent to the finiteness of extremal rays of

divisorial type (cf. [5, Thm. 8.6]). Once we know the finiteness of the set of extremal

rays, then replacing f by its suitable power fk (k > 0), we can again run the MMP

compatibly with étale endomorphisms and obtain another constant FESP (Y, g)

induced from a nonisomorphic étale endomorphism g : Y → Y . Throughout our

articles, we have considered this problem in several stages. In [6] (resp. [8]), we

classified a 3-fold X admitting a nonisomorphic étale endomorphism in the case

where there exists an FESP (Y,R•) of type (C1), (C0) (resp. of type (D)). Here,

“type (C1)” (resp. “type (C0)”) means that there exists the set R• of extremal rays

of fiber type on NE (Y•) such that the contraction morphism ContR• : Y• → S• is

a conic bundle over an ESP S• of smooth algebraic surfaces of Kodaira dimension

1 (resp. 0) (cf. [5, Defs 3.6(2) and 7.6]). Furthermore, “type (D)” means that there

exists the set R• of extremal rays of fiber type on NE (Y•) such that the contraction

morphism ContR• : Y• → C• is a del Pezzo fibration over an ESP C• of elliptic

curves (cf. [5, Defs 3.6(2)]).

In this part IV article, we shall consider the only remaining case, i.e., we

shall classify such varieties X in the case where there exists an FESP (Y•, R•) of

type (C−∞) up to a finite étale covering (cf. [5, Defs 3.6(2) and 7.6]). Here, “type

(C−∞)” means that there exists the set R• of extremal rays of fiber type on NE (Y•)

such that the contraction morphism ContR• : Y• → S• is a conic bundle over S•,

where S• is an ESP of elliptic ruled surfaces. As a by-product of our classifications,

it will turn out that we can apply the MMP compatibly with étale endomorphisms

in almost all cases (cf. Theorem 6.1). The only exception corresponds to case (1)

in Theorem 1.1, where a suitable finite étale covering X̃ of X is isomorphic to the

product of a uniruled surface and an elliptic curve. Now we shall state the outline

of the proof of Theorem 1.1. The proof is done according to the strategies stated

in our previous article [5, Introduction].

(1) (Construction of an FESP): Using [5, Cor. 1.2], we shall first construct an

FESP Y• of a nonisomorphic étale endomorphism f : X → X by a sequence

of blow-downs of an ESP.

(2) (Classifications of an FESP): Using Theorems 2.11, 2.13, Corollary 2.14, Prop-

ositions 4.3, 5.1 and the theory of vector bundles on an elliptic curve due to

Atiyah (cf. [1]), we shall study the structure of the FESP Y• explicitly.
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(3) (Finiteness of extremal rays of NE (X)): Applying Theorems 2.11 and 4.7

to the FESP (Y•, R•), we can show the finiteness of extremal rays or can

find an fk-invariant extremal ray R of NE (X) for some k > 0 in all cases

except the case where a suitable finite étale covering X̃ is isomorphic to the

product of a rational surface and an elliptic curve (cf. Theorems 4.12, 4.20 and

Proposition 5.9).

(4) (Construction of a constant FESP): If (3) holds true, then we shall again run

the MMP compatibly with étale endomorphisms and obtain another constant

FESP (Z, v) induced from a nonisomorphic étale endomorphism v : Z → Z.

(5) (Study the structure of a constant FESP): We shall again study the structure

of the constant FESP (Z, v) (cf. Propositions 5.9 and 5.11).

(6) (Blow-ups of an FESP): Using [5, Lem. 3.3], we shall find a v-invariant ellip-

tic curve E on Z and perform equivariant blow-ups along E to recover the

original endomorphism f : X → X. The structure of X can be studied in

great detail. For example, we can show that the Albanese map of a suitable

finite étale covering X̃ of X is an analytic fiber bundle over an elliptic curve

(cf. Proposition 4.25, Theorems 4.27 and 5.14).

Now we state our results in more detail. Let f : X → X be a nonisomorphic

étale endomorphism of a smooth projective 3-fold X with κ(X) = −∞. Suppose

that there exists an FESP (Y ′
• , R

′
•) of type (C−∞) constructed from X• := (X, f)

by a sequence of blow-downs of an ESP (cf. [5, Defs 3.6, 3.7 and 7.6]). Then by [5,

Thm. 9.6], replacing X by a suitable finite étale covering X̃ of X, we are reduced

to the following situation: There exist Cartesian morphisms of ESPs

X• = (X, f)
π•−→ Y• = (gn : Yn → Yn+1)n

φ•−−→ S• = (un : Sn → Sn+1)n
α•−−→ C• = (C, h)

such that the following conditions are satisfied:

� Y• is an FESP constructed from X• by a sequence of blow-downs of an ESP,

i.e., π• = (πn)n is a sequence of blow-ups along elliptic curves.

� There exists an extremal ray R• := (Rn)n (⊂ NE(Y•)) of fiber type such that

φ• = (φn)n is the contraction morphism associated to R• and is a P1-bundle.
� α• = (αn)n is a P1-bundle over the Albanese elliptic curve C of X.

� h : C → C is a nonisomorphic group homomorphism of C.

� The composite map (αX)• := α•◦φ•◦π• : X → C coincides with the Albanese

map αX : X → C of X, where C• := (C, h).
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Hereafter, we say that Cartesian morphisms of ESPs

X•
π•−→ Y•

φ•−−→ S•
α•−−→ C•

satisfy Condition (P−∞) if all the above assumptions are satisfied; here, the letter

“P” (resp. “−∞”) means that φ• is a P1-bundle (resp. S• is an ESP of elliptic

ruled surfaces). Furthermore, when R• is not relevant, we shall drop it and not

mention it. Combined with [5, Prop. 5.10, Thm. 10.1] and taking a further finite

étale covering, the following are all the possibilities for the elliptic ruled surface

Sn over C:

(1) Any Sn is isomorphic to the Atiyah surface S := PC(F2) (cf. Definition 2.10).

(2) Any Sn is isomorphic to the elliptic ruled surface PC(OC⊕ℓn) for some torsion

line bundle ℓn on C.

The following is one of our main results.

Proposition 1.2. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Let Y ′
• be an FESP constructed from

X• := (X, f) by a sequence of blow-downs of an ESP. Suppose that there exists an

extremal ray R′
• of fiber type on NE(Y ′

•) such that (Y ′
• , R

′
•) is of type (C−∞) (cf. [5,

Defs 3.6(2) and 7.6]). Then, for a suitable multiplication mapping µk : C → C by a

positive integer k, if we replace X by a finite étale Galois covering X̃ := X×C,µk
C

of X and f by its lift f̃ : X̃ → X̃, there exist Cartesian morphisms of ESPs,

X•
π•−→ Y•

φ•−−→ S•
α•−−→ C•,

which satisfy Condition (P−∞).

Furthermore, either of the following two cases can occur:

(1) Any Sn is isomorphic to the Atiyah surface, i.e., S• ≃ S•
(2) Any Sn is isomorphic to the elliptic ruled surface PC(OC ⊕ ℓn) for a torsion

line bundle ℓn on C. In particular, ℓ0 ≃ OC and S0 ≃ C × P1 for n = 0.

Definition 1.3. Let

X•
π•−→ Y•

φ•−−→ S•
α•−−→ C•

be Cartesian morphisms of ESPs which satisfy the conclusion as in Proposition 1.2.

Furthermore, suppose that there exists an integer a > 1 such that each fiber of

Y• → C• is a Hirzebruch surface Fa. Then

� the FESP Y• is of Atiyah type if any Sn is isomorphic to the Atiyah surface

S, that is, S• ≃ S•.
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� The FESP Y• is of torsion type if any Sn is isomorphic to PC(OC ⊕ ℓn) for a

torsion line bundle ℓn on C, ℓ0 ≃ OC and S0 ≃ C × P1.

The following theorems show the structure of a nonisomorphic étale endomor-

phism f : X → X of a smooth projective 3-fold X with κ(X) = −∞ in the case

where there exists an FESP Y• satisfying Condition (P−∞).

Theorem 1.4. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

(Y ′
• , R

′
•) of type (C−∞) constructed from X• = (X, f) by a sequence of blow-downs

of an ESP (cf. [5, Def. 7.6]). Furthermore, suppose that there exist Cartesian mor-

phisms of ESPs,

X•
π′
•−→ Y ′

•
φ′

•−−→ S•
α•−−→ C•,

which satisfy Condition (P−∞) and are of Atiyah type (cf. Definition 1.3). Then

the following hold:

(a) There exist at most finitely many extremal rays of NE(X).

(b) The Albanese map αX : X → C is an analytic fiber bundle whose fiber is

birational to the Hirzebruch surface Fa.
(c) Replacing f by its suitable power fk (k > 0), we can obtain further Cartesian

morphisms of constant ESPs satisfying Condition (P−∞):

X•
π−→ (Y, g)

φ−→ (S, u) α−→ C•.

(d) There exists an exact sequence of vector bundles on the Atiyah surface S,

(1.1) 0 −→ OS(as∞) −→ E −→ OS −→ 0,

such that Y ≃ PS(E) for a positive integer a > 1.

Theorem 1.5. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

(Y ′
• , R

′
•) of type (C−∞) constructed from X• = (X, f) by a sequence of blow-downs

of an ESP (cf. [5, Def. 7.6]). Furthermore, suppose that there exist Cartesian mor-

phisms of ESPs,

X•
π′
•−→ Y ′

•
φ•−−→ S•

α•−−→ C•,

which satisfy Condition (P−∞) and are of torsion type (cf. Definition 1.3). Then

the following hold:

(a) There exists an exact sequence of vector bundles on S0 ≃ C × P1

(1.2) 0 −→ p∗2OP1(a) −→ E −→ OS0 −→ 0

such that Y0≃PS0
(E) for the second projection p2 : S0→P1 and an integer a>1.
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(b) The Albanese map αX : X → C is an analytic fiber bundle whose fiber is

birational to the Hirzebruch surface Fa.
(c) We set Γ := {t ∈ P1 : Yt ≃ S}, where Yt is the fiber of p2 ◦ φ0 : Y0 → P1 over

a point t ∈ P1:

(c-1) If the exact sequence (1.2) splits, then Γ = ∅ and X is isomorphic to the

product T × C, where T is birational to the Hirzebruch surface Fa.
(c-2) If the exact sequence (1.2) unsplits, then ∅ ̸= Γ ⊊ P1 is a Zariski open

subset such that

� replacing f by its suitable power fk (k > 0), we can obtain further

Cartesian morphisms of constant ESPs,

X• = (X, f)
π•−→ Y• = (Y, g)

φ•−−→ S• = (C × P1, v) α•−−→ C• = (C, h),

such that v = h× u for u ∈ Aut(P1);
� the composite map ψ := p2 ◦ φ ◦ π : X → P1 is a smooth morphism

which is not a fiber bundle and a jumping phenomenon occurs;

� there exist at most finitely many KX-negative extremal rays of

NE (X).

Organization of this article. In Section 2 we show that any FESP Y• of type

(C−∞) satisfying Condition (P−∞) is a P1- bundle associated to a vector bundle

of rank two on the Atiyah surface S or C × P1 (cf. Theorem 2.13). In Defini-

tion 1.3, the type of an FESP Y• is defined. Lemma 2.24 shows that an FESP

Y• can be described by an exact sequence of vector bundles on an elliptic ruled

surface which is called the fundamental exact sequence of bundles (FES for short)

(cf. Definition 2.25).

In Section 3 we review the theory of elementary transformations of vector

bundles due to Maruyama [17], which will be used in Sections 4 and 5 to show the

finiteness of extremal rays in certain cases.

In Section 4 we study a nonisomorphic étale endomorphism f : X → X admit-

ting an FESP Y• of Atiyah type (cf. Definition 1.3). Proposition 4.3 enables one to

describe the structure of an FESP Y• in terms of an FES on the Atiyah surface S.
In Definition 4.5, the FESP Y• of Atiyah type will be classified into two cases

according to whether the FES splits or unsplits. Then we shall apply the MMP

compatibly with étale endomorphisms and show the existence of a constant FESP

Y• of Atiyah type so as to apply Theorem 4.7(2) or Corollary 4.8(2). Theorems

4.12 and 4.20 show the finiteness of KX -negative extremal rays of NE(X). Theo-

rem 4.27 shows that in the case where the FESP Y• is of Atiyah type, the Albanese

map αX : X → C gives the analytic fiber bundle over the elliptic curve C. The

proof of Theorem 1.4 will be given.
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In Section 5 we study a nonisomorphic étale endomorphism f : X → X admit-

ting an FESP Y• of torsion type (cf. Definition 1.3). Proposition 5.1 enables one to

describe the structure of an FESP Y• in terms of an FES on C × P1. In this case,

Proposition 5.9 shows that the MMP works compatibly with étale endomorphisms

except for the case where a suitable finite étale covering X̃ of X is isomorphic

to the product of a rational surface and an elliptic curve. In Definition 5.5, the

FESP Y• will be classified into two cases in terms of an FES. Theorem 5.6 and

Proposition 5.11 describe the structure of the FESP Y• in terms of an FES on

C × P1. Theorem 5.14 describes the structure of X in great detail. Finally, the

proof of Theorem 1.5 will be given.

In Section 6 we prove Theorems 1.1 and 6.1, which are the main results of

our series of articles (cf. [5, 6, 8] and this paper) and describe the structure of

a smooth projective 3-fold X with κ(X) = −∞ admitting a nonisomorphic étale

endomorphism. As a by-product of our classifications, Theorem 6.1 shows that for a

nonisomorphic étale endomorphisms of 3-folds f : X → X, we can apply the MMP

compatibly with étale endomorphisms and obtain a constant FESP Y• = (Y, g)

except for the case where a suitable finite étale covering X̃ of X is isomorphic to

the product of a rational surface and an elliptic curve.

In Section 7, Theorem 7.1 shows the uniqueness of the type of an FESP Y•
(cf. Definitions 1.3 and 5.5). If the FESP Y• is of type (Torsion.A), then The-

orem 7.8 shows that any FESP Z• of X• is of type (Torsion.A). Furthermore,

Proposition 7.3 and Corollary 7.5 show the uniqueness of the fiber space structure

of X over P1 up to isomorphism and also the finiteness of KX -negative extremal

rays of NE (X).

In the appendix, Theorems A.1 and A.2 show the existence of certain 3-

folds whose nonisomorphic surjective endomorphisms are necessarily étale, which

is related to the endomorphisms of the Atiyah surface S. Proposition A.5 shows

the existence of a smooth projective 3-fold X with non-nef anti-canonical bundle

−KX which admits a nonisomorphic étale endomorphism.

Section dependency. The contents of each section are related in the following

diagram:

2

��

// 5

��

3 // 4 // 6 //

��

7

Appendix.
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§2. Set-up

Notation. Throughout this paper, we follow the notation in [5, Notation 2.1].

We first recall the following facts in [5] which play an important role in this

paper.

Lemma 2.1 (Cf. [5, Lem. 2.6]). Let λ : V → S and ν : W → T be fiber spaces

between normal varieties, i.e., λ and ν are proper surjective morphisms with con-

nected fibers. Furthermore, suppose that g : V → W and u : S → T are finite

surjective morphisms with the following commutative diagram:

V

λ
��

g
// W

ν

��

S
u
// T .

Suppose that g−1(B) = A for irreducible subvarieties A (⊂ V ) and B (⊂ W ). If

the above commutative diagram is Cartesian, then λ(A) = u−1(ν(B)).

Proposition 2.2 (Cf. [5, Prop. 3.1]). Let f : Y → X be a finite surjective mor-

phism between smooth projective n-folds with ρ(X) = ρ(Y ). Then the following

assertions hold:

(1) The push-forward map f∗ : N1(Y ) → N1(X) is an isomorphism and f∗ NE(Y )

= NE(X).

(2) Let f∗ : N
1(Y ) → N1(X) be the map induced from the push-forward map D 7→

f∗D of divisors D. Then the dual map f∗ : N1(X) → N1(Y ) (called the pullback

map) is an isomorphism and f∗ NE(X) = NE(Y ).

(3) If f is étale and the canonical divisor KX is not nef, then there is a one-to-one

correspondence between the set of extremal rays of X and the set of extremal

rays of Y under the isomorphisms f∗ and f∗.

(4) Under the same assumption as in (3), let ϕ : X → X ′ be the contraction

morphism ContR associated to an extremal ray R ⊂ NE(X) and let ψ : Y → Y ′

be the contraction morphism associated to the extremal ray f∗R. Then there

exists a finite surjective morphism f ′ : Y ′ → X ′ and the Cartesian diagram

below such that f−1(Exc(ϕ)) = Exc(ψ) and f ′−1(ϕ(Exc(ϕ))) = ψ(Exc(ψ)):

Y

ψ

��

f
// X

ϕ

��

Y ′ f ′
// X ′.
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Moreover, ϕ is a birational (resp. divisorial) contraction if and only if ψ is a

birational (resp. divisorial) contraction.

Proposition 2.3 (Cf. [5, Prop. 4.8]). Let g : S → S be a nonisomorphic étale

endomorphism of a relatively minimal elliptic ruled surface S. Suppose that S =

PC(OC ⊕L) for an invertible sheaf L on an elliptic curve C. Then L ∈ Pic(C) is

of finite order.

Proposition 2.4 (Cf. [5, Prop. 5.2]). Let π : S → C be the Atiyah surface. Then

the following hold:

(1) The canonical section s∞ (cf. Definition 2.10) is a unique irreducible curve

on S such that its self-intersection number is zero and is not contained in any

fiber of π.

(2) h0(S,OS(as∞)) = 1 for any positive integer a.

Proposition 2.5 (Cf. [5, Prop. 5.5]). Let π : S → C be the Atiyah surface. Then

every surjective endomorphism φ : S → S is a finite étale covering satisfying

φ∗(s∞) = s∞.

Proposition 2.6 (Cf. [5, Prop. 5.6]). There exist no surjective morphisms from

one to another among the following three P1-bundles Si over an elliptic curve Ci
(1 ≤ i ≤ 3):

(1) π1 : S1 = PC1(OC1 ⊕ ℓ) → C1 for a line bundle ℓ of degree zero on C1, where

ℓ ∈ Pic0(C1) is torsion.

(2) π2 : S2 = PC2
(OC2

⊕L) → C2 for a line bundle L of degree zero on C2, where

L ∈ Pic0(C2) is of infinite order.

(3) π3 : S3 = S→ C3 is the Atiyah surface.

Proposition 2.7 (Cf. [5, Prop. 5.10]). Suppose that there exists an ESP S• =

(gn : Sn → Sn+1)n of elliptic ruled surfaces Sn. Then, one of the following cases

occurs:

(1) There exists an integer k ≤ ∞ such that

(a) For any i ≤ k, Si ≃ PCi
(OCi

⊕ ℓi) for some torsion line bundle ℓi ∈
Pic0(Ci) on an elliptic curve Ci.

(b) For any i > k, Si ≃ PCi
(Ei), where Ei is a stable vector bundle of rank

two and degree one on an elliptic curve Ci.

(2) For any i, Si ≃ PCi(OCi ⊕Li) for some nontorsion line bundle Li of degree 0

on an elliptic curve Ci.

(3) Si is isomorphic to the Atiyah surface S for any i.



Étale Endomorphisms of 3-Folds. IV 163

Proposition 2.8 (Cf. [5, Cor. 7.9]). Let X• = (fn : Xn → Xn+1)n be an ESP

of smooth projective 3-folds Xn with κ(Xn) = −∞. Let (Y•, R•) be an FESP

constructed from X• by a sequence of blow-downs of an ESP and set Y• =

(gn : Yn → Yn+1)n. Let C
(i)
n be the elliptic curve which is the center of the blow-

up π
(i−1)
n : X

(i−1)
n → X

(i)
n . If we set X

(0)
n := Xn, X

(k)
n := Yn, then γ

(i)
n :=

π
(k−1)
n ◦· · ·◦π(i)

n (C
(i)
n ) is an elliptic curve on Yn such that γ

(i)
• = (gn : γ

(i)
n → γ

(i)
n+1)n

is an ESP of elliptic curves. Furthermore, the following hold:

(1) If (Y•, R•) is of type (D), then φn(γ
(i)
n ) = Cn.

(2) If (Y•, R•) is of type (C0) or (C1), then ∆
(i)
n := φn(γ

(i)
n ) is some fiber of

αn : Sn → Cn such that ∆• = (hn : ∆n → ∆n+1)n is an ESP of elliptic

curves.

(3) If (Y•, R•) is of type (C−∞), then ∆
(i)
n := φn(γ

(i)
n ) is an elliptic curve on

Sn with self-intersection number 0 and it dominates Cn. Furthermore, ∆• =

(hn : ∆n → ∆n+1)n is an ESP of elliptic curves.

Hereafter, we shall use the following terminology.

Definition 2.9 (Cf. [5, Defs 2.4 and 3.6]). Let X• = (fn : Xn → Xn+1)n be an

ESP of smooth projective varieties:

(1) If there exists a smooth projective variety X such that Xn = X for any n,

then we say that X• is a stable ESP.

(2) Furthermore, if Xn = X and fn = f for any n for a nonisomorphic étale

endomorphism f : X → X of a smooth projective variety X, then we say that

X• is a constant ESP induced by f : X → X and denote it by X• = (X, f).

(3) Let Y• = (gn : Yn → Yn+1)n be an ESP of smooth projective varieties with

negative Kodaira dimension. Then Y• is called an ESP of fiber type (FESP for

short) if there exists an extremal ray Rn of fiber type on any NE(Yn), that is,

the contraction morphism ContRn
: Yn →Wn associated to Rn is a Mori fiber

space, i.e., dimWn < dimYn for any n.

Definition 2.10. Let F2 be an indecomposable semistable locally free sheaf of

rank two and degree zero on an elliptic curve C (cf. [1]). Let π : S := PC(F2) → C

be the P1-bundle associated with F2 and s∞ the section of π corresponding to

a surjection F2 ↠ OC . Then we call S an Atiyah surface (over C) and s∞ the

canonical section of π.

The following torsion theorem proved in [5] will play a crucial role throughout

this article.
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Theorem 2.11 (Cf. [5, Thm. 10.1]). Let f : X → X be a nonisomorphic étale

endomorphism of a smooth projective 3-fold X with κ(X) = −∞. Let Y• =

(gn : Yn → Yn+1)n be an FESP and π• = (πn)n : X• := (X, f) → Y• a succes-

sion of Cartesian blow-ups along elliptic curves. Suppose that there exists an ESP

S• = (un : Sn → Sn+1)n of smooth algebraic surfaces Sn and a Cartesian mor-

phism φ• = (φn)n : Y• → S• such that the following hold:

(1) φn : Yn → Sn is a P1-bundle for any n.

(2) Any Sn is isomorphic to a P1-bundle PC(OC ⊕ ℓn) for a line bundle ℓn of

degree zero on the Albanese elliptic curve C of X.

Then ℓn ∈ Pic0(C) is of finite order for any n.

Essentially, Proposition 1.2 has already been proved in [5]. We shall give a

proof for convenience. We begin with an easy lemma.

Lemma 2.12 (Cf. [5, Prop. 4.4]). Let E be a stable vector bundle of rank two and

of odd degree on an elliptic curve C. We set S := PC(E). Let µ2 : C → C be a

multiplication mapping by 2 and consider the fiber product S̃ := S ×µ2,C C. Then

there exists an isomorphism S̃ ≃ C × P1 over C.

Proof. By [1], S is isomorphic over C to the symmetric product Sym2 C and the

Albanese map αS : S → C is induced by C × C → C, (x, y) 7→ x+ y for x, y ∈ C.

Let µ2 : C → C, x 7→ 2x be a multiplication mapping by 2. Let S̃ := S ×µ2,C C be

the fiber product. Then the diagonal map ∆: C → Sym2 C defined by x 7→ (x, x)

induces a section of S̃ → C. Hence S̃ ≃ C × P1.

Proof of Proposition 1.2. [5, Thm. 9.6] shows the existence of Cartesian morphisms

of ESPs,

X•
π•−→ Y•

φ•−−→ S•
α•−−→ C•,

which satisfies Condition (P−∞). Applying Proposition 2.7, Theorem 2.11, [5,

Cor. 10.6] and Lemma 2.12, we see immediately that either case (1) or case (2) can

occur. Suppose that we are in case (2). Then any Sn is isomorphic to an elliptic

ruled surface PC(OC ⊕ ℓ′n) for some torsion line bundle ℓ′n ∈ Pic0(C). If we set

d := ord(ℓ′0), then µ∗
dℓ

′
0 ≃ OC for a multiplication by d mapping µd : C → C.

If we consider the pullback X̃ := X ×C,µd
C, then there exists a nonisomorphic

étale covering f̃ : X̃ → X̃ which is a lift of f . Then we replace (X, f) by the pull-

back (X̃, f̃). Applying an MMP to X• := (X, f) again, there exists the following

Cartesian morphism of ESPs:

X• = (X, f)
π•−→ Y• = (gn : Yn → Yn+1)n
φ•−−→ S• = (un : Sn → Sn+1)n

α•−−→ C• = (C, h),
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such that any Sn is isomorphic to PC(OC ⊕ ℓn) for a torsion line bundle ℓn ∈
Pic0(C) and ℓ0 ≃ OC , S0 ≃ C × P1.

In the following, we show that each Yn is isomorphic over Sn to a P1-bundle
PSn

(En) associated to a locally free sheaf En of rank two on Sn.

Theorem 2.13. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Let X• = (X, f)
π•−→ Y• := (gn : Yn →

Yn+1)n
φ•−−→ S• := (un : Sn → Sn+1)n

α•−−→ C• = (C, h) be Cartesian morphisms of

ESPs satisfying Condition (P−∞) (cf. Section 1). Suppose that

� for a composite ψ• := α• ◦φ•, some fiber of ψn is isomorphic to a Hirzebruch

surface Fa (a > 0) and

� Y• is an FESP which contains no extremal rays of divisorial type.

Then we have a > 1 and the following hold:

� Any fiber of ψ• is isomorphic to Fa.
� For any n ∈ Z, there exists a section ∆n (⊂ Yn) of φn : Yn → Sn such that

∆n ∩ ψ−1
n (t) (t ∈ C) is a negative section of Fa (≃ ψ−1

n (t)) and forms a

sub-ESP ∆• := (gn|∆n
: ∆n → ∆n+1)n of Y•.

Corollary 2.14. Under the same assumption as in Theorem 2.13, there exist a

rank-two vector bundle En and an invertible sheaf ℓn on Sn such that for any n,

� there exists an isomorphism Yn ≃ P(En), and
� the section ∆n of φn : Yn → Sn corresponds to a surjection En ↠ ℓn.

Corollary 2.15. Let f : X → X be a nonisomorphic étale endomorphism of

a smooth projective 3-fold X with κ(X) = −∞. Let X• = (X, f)
π•−→ Y• :=

(gn : Yn → Yn+1)n
φ•−−→ S• := (un : Sn → Sn+1)n

α•−−→ C• = (C, h) be Cartesian

morphisms of ESPs satisfying Condition (P−∞). For a composite ψ• := α• ◦ φ•,

suppose that some fiber of ψn is isomorphic to P1×P1. Then Yn is a P1×P1-bundle
over C for any n.

Remark 2.16. The case where a = 0 which is stated in Corollary 2.15 and the

case where a = 1 (cf. Remark 5.16) have already been studied in our Part III

article [8]. In this Part IV article, we shall study the case where there exists an

integer a > 1 such that each fiber of Y• → C• is a Hirzebruch surface Fa.

For the proof, we prepare some lemmas.

Lemma 2.17. If some fiber of ψ0 is isomorphic to P1 × P1, then any fiber of ψ0

is isomorphic to P1 × P1.
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Proof. We take a point x ∈ C such that ψ−1
0 (x) ≃ P1×P1. Suppose to the contrary

that there exists some point p ∈ C such that ψ−1
0 (p) ≃ Fa for some a > 0. Since

H1(P1 × P1,Θ) = 0 for the tangent bundle Θ, we see that P1 × P1 is rigid. Hence

there exists a small open neighborhood U of x such that ψ−1
0 (y) ≃ P1 × P1 for

any y ∈ U . Let h : C → C be the endomorphism induced from f (cf. the notation

of Theorem 2.13). Note that C is an elliptic curve and hence any nonisomorphic

endomorphism of C is étale so that p cannot be h−1-periodic. Hence, if we set

T :=

∞⋃
n=0

(hn)−1 ◦ hn(p),

then T is a dense subset of C containing p. Hence T ∩ U ̸= ∅. For any q ∈ T ∩ U ,

we have ψ−1
0 (q) ≃ ψ−1

0 (p) ≃ Fa (a > 0). Thus a contradiction is derived, since

q ∈ T and ψ−1
0 (q) ≃ P1 × P1.

Lemma 2.18. Any fiber of ψ0 contains no (−1)-curves.

Proof. Suppose that ψ−1
0 (p) ≃ F1 for some p ∈ C. Then we first show that

ψ0 : Y0 → C is an F1-bundle. Suppose that there exists q ∈ C such that ψ−1
0 (q) ≃

Fa (a ̸= 1) and we shall derive a contradiction. If we set

Ω :=

∞⋃
n=0

(hn)−1 ◦ hn(q)

for the induced endomorphism h : C → C from f , then Ω is a dense subset of

C, since deg(h) > 1. By the “stability of (−1)-curves”, there exists a small open

neighborhood U of p such that ψ−1
0 (y) contains (−1)-curves for any y ∈ U . Here,

“stability of (−1)-curves” means that there exists a relative divisor D of X over U

such that Dy (⊂ Xy) is a (−1) curve for any y ∈ U (cf. [13, Def. 2 and Thm. 5] and

[18, Sect. 11. Deformation of extremal rays]). Then Ω∩U ̸= ∅. Thus a contradiction
is derived, since for any y ∈ Ω ∩ U ̸= ∅, ψ−1

0 (y) ≃ Fa (a ̸= 1) contains no (−1)-

curves. Hence ψ−1
0 (q) ≃ F1 for any q ∈ C and ψ0 is an F1-bundle.

For a fixed point o ∈ C, let ℓ ∈ Yo := ψ−1
0 (o) be a (−1)-curve on Yo. Hereafter,

we set Y := Y0. Then we have the following exact sequence:

0 −→ Nℓ/Yo
−→ Nℓ/Y −→ NYo/Y |ℓ −→ 0,

where Nℓ/Yo
∼= Oℓ(−1) and NYo/Y |ℓ ∼= Oℓ.

Since Ext1(OP1 ,OP1(−1)) = H1(P1,OP1(−1)) = 0, the above exact sequence

splits and Nℓ/Y ∼= OP1 ⊕ OP1(−1). Hence h0(ℓ,Nℓ/Y ) = 1 and h1(ℓ,Nℓ/Y ) =

0. Then, by the theory of Hilbert schemes, there exist a smooth curve B (⊂
Hilb(Y/C)) dominating C, a subspace M ⊂ Y ×C B and a proper flat morphism
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pB |M : M → B (where pB : Y ×C B → B is the second projection) such that

M ∩ p−1
B (o′) = ℓ for a point o′ ∈ B lying over o ∈ C under the natural projection

q : B → C. We put ℓt :=M ∩ p−1
B (t) for t ∈ B, where p−1

B (t) is naturally identified

with a fiber of φ : Y → C over q(t). Then we have (−KY , ℓt) = (−KY , ℓ) = 1.

Since −KY is φ-ample, ℓt is irreducible and reduced, and hence isomorphic to P1.
Since T[ℓt] Hilb(Y/C)

∼= H0(ℓt, Nℓt/Yt
) = 0, we have Ω1

B/C ⊗ C([ℓt]) = 0. Hence

Ω1
B/C = 0 around [ℓt] and the natural projection p : B → C is unramified. It is

also proper and flat by the stability of (−1)-curves. Hence p : B → C is a finite

étale covering. We note that ℓ is the unique (−1)-curve on Yo, since Yo ≃ F1. Thus
we have an isomorphism p : B ≃ C. Hence there exists an irreducible and reduced

divisor Z on Y such that Z ∩ψ−1
0 (o) consists of only one (−1)-curve ℓ on ψ−1

0 (o).

Next we show that R := R≥0[ℓ] is an extremal ray of type (E1) in the sense

of [18]. Since −KY + Z is ψ-nef and

NE(Y/C) ∩ (−KY + Z)⊥ = R,

R is an extremal ray. Since −KY is relatively semiample over C, −KY + Z is

semiample by the base-point-free theorem. Hence Φ|−KY +Z| gives a divisorial con-

traction which is an extremal contraction v := ContR : Y → Y ′ associated to

R. This derives a contradiction, since by construction, Y• is an FESP constructed

from X• by a sequence of blow-downs and there exist no extremal rays of divisorial

type on Y• (cf. [5, Cor. 1.2]).

Lemma 2.19. Under the same assumption as in Theorem 2.13, let En be a locally

free sheaf on Yn such that En ≃ g∗nEn+1 for any n. Let

ψ∗
nψn∗En −→ En

be a canonical homomorphism of an OYn
-module. For t ∈ C, let

ψn∗En ⊗C C(t) −→ H0(Yn,t, En|Yn,t
)

be an induced linear map. By τn : C → Z for n ∈ Z, we denote the Z-valued
function on C defined by

t 7−→ dimCH
0(Yn,t, En|Yn,t

).

Then τ0 is a constant function on C.

Proof. Suppose the contrary. Then by the upper semicontinuity of dimension of

cohomologies, for any n ∈ Z, τn is constant on a Zariski open subset Γn of C

and τn(xn) > τn(tn) for xn ∈ C \ Γn and any tn ∈ Γn so that ∅ ̸= Γn ⫋ C.

Since En ≃ g∗nEn+1 and by assumption both gn and h are étale, it follows that
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h−1(Γn+1) = Γn for any n. We choose a point x0 ∈ C \ Γ0 arbitrarily and define

a nonempty subset T of C by

T :=
⋃
n>0

(hn)−1hn(x0).

Since deg(h) > 1, T is a dense subset of C. Hence T ∩ Γ0 ̸= ∅. From now on, we

define τ0 as the infimum of the function τ0 by abuse of notation. Then for any

t′ ∈ T ∩ Γ0, we have τ0(t
′) = τ0(x0) > τ0, since x0 /∈ Γ0. On the other hand, we

have τ0(t
′) = τ0, since t

′ ∈ Γ0. Thus a contradiction is derived.

Lemma 2.20. For a positive integer n, let E := OP1⊕OP1(n) be a rank-two vector

bundle on T := P1. Let p : S := PT (E) → T := P1 be a P1-bundle associated to E.
Then we have h0(S,ΘS/T ) = n+ 2.

Proof. Let

0 −→ Ω1
S/T ⊗OS(1) −→ p∗E −→ OS(1) −→ 0

be the Euler sequence. After tensoring the dual of the above exact sequence with

OS(1), we have the following exact sequence of vector bundles on S:

0 −→ OS −→ p∗E∨ ⊗OS
OS(1) −→ ΘS/T −→ 0.

Since R1p∗OS = 0, taking direct images, we have the following exact sequence of

vector bundles on T :

(⋆) : 0 −→ OT −→ E∨ ⊗OT
E −→ p∗ΘS/T −→ 0.

Then the natural homomorphism E∨⊗OT
E −→ OT gives a splitting of (⋆). Hence

there exists an isomorphism

E∨ ⊗OT
E ≃ OT ⊕ p∗ΘS/T .

Since E := OP1⊕OP1(n), we have E∨⊗OT
E ≃ OP1⊕OP1(n)⊕OP1(−n)⊕OP1 . Hence

there exists an isomorphism p∗ΘS/T ≃ OP1⊕OP1(n)⊕OP1(−n) and h0(S,ΘS/T ) =
h0(T, p∗θS/T ) = n+ 2.

Lemma 2.21. For an integer a ≥ 2, let S denote the Hirzebruch surface Fa. Then

h0(S,OS(−KS)) =

{
9, a = 2,

a+ 6, a ≥ 3.
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Proof. Let F be the fiber of the ruling Fa → P1. Since KS ∼ −2s∞ − (a + 2)F

and OS(1) ∼ s∞ + aF , we have −KS ∼ OS(2)⊗OS((2− a)F ). Hence,

p∗OS(−KS) ≃ p∗OS(2)⊗OP1(2− a)

≃ Sym2 p∗OS(1)⊗OP1(2− a)

≃ Sym2(OP1 ⊕OP1(a))⊗OP1(2− a)

≃ (OP1 ⊕OP1(a)⊕OP1(2a))⊗OP1(2− a)

≃ OP1(2− a)⊕OP1(2)⊕OP1(a+ 2).

Since h0(S,OS(KS)) = h0(P1, p∗OS(−KS)), the claim follows immediately.

Lemma 2.22. For a ≥ 2, let S denote the Hirzebruch surface Fa and γ (resp. F )

its negative section (resp. the fiber of the ruling Fa → P1). Then

� for a ≥ 3, the linear system |−KS − γ| is very ample and Bs|−KS | = γ;

� for a = 2, the linear system |−KS | is semiample and (−KS , D) = 0 for an

irreducible curve D on S if and only if D = γ.

Proof. We have −KS ∼ 2γ + (a+ 2)F .

(1) First suppose that a ≥ 3. Since −γ2 = a < a+2, by [11, p. 379, Thm. 2.17], we

see that −KS−γ ∼ γ+(a+2)F is very ample. Furthermore, since (−KS , γ) =

2(γ, γ) + (a+ 2)(F, γ) = 2− a < 0, we have Bs|−KS | = γ.

(2) Next, suppose that a = 2. Then −KS ∼ 2γ + 4F is nef and (−KS , D) = 0

for an irreducible curve D on S if and only if D = γ. Since −KS is big,

−2KS = −KS −KS is nef and big. Hence |−KS | is semiample by the base-

point-free theorem.

Remark 2.23. If a ≥ 3, then the linear equivalence relation

−KFa/P1 ∼ (γ + aF ) + γ

gives the Zariski decomposition (cf. [20]) of −KFa/P1 , where γ + aF (resp. γ) is

the positive (resp. negative) part of −KFa/P1 .

Proof of Theorem 2.13. Since gn is étale, we see that g∗nΘYn+1/C ≃ ΘYn/C for

any n. Hence, applying Lemma 2.19 to En = ΘYn/C and combining Lemmas 2.17

and 2.20, we see immediately that any fiber of ψn : Yn → C is isomorphic to Fa
(a > 0). Thus ψn : Yn → C is an Fa-bundle for any n.

Lemma 2.18 shows that a ≥ 2. First, suppose that a ≥ 3. If we set

Gn := Coker(ψ∗
n(ψn)∗(−KYn/C) → −KYn/C),
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then g∗nGn+1 = Gn for any n. Furthermore, if we set ∆n := SuppGn for each n,

then Lemma 2.22 shows that ∆n is an effective divisor on Yn and the restriction

∆n|ψ−1
n (t) is the negative section of Fa for any t ∈ C. Hence ∆n is a section of

φn : Yn → Sn for any n. Since ∆n = g−1
n (∆n+1) for any n, ∆• := (gn|∆n : ∆n →

∆n+1)n is a sub-ESP of Y•.

Next we consider the case where a = 2. Since −KYn/C is ψn-nef and −KYn/C−
KYn/C = −2KYn/C is ψn-nef and ψn-big, |−KYn/C | is ψn-semiample by the

base-point-free theorem. Let Φn := Φ|−KYn/C | : Yn → Zn be the relative bira-

tional morphism over C and ∆n := Exc(Φn) be the Φn-exceptional divisor. Then

Lemma 2.22 shows that the restriction ∆n|ψ−1
n (t) is the negative section of F2 for

any t ∈ P1. Hence ∆n is a section of φn : Yn → Sn for any n. Since −KYn/C ∼
g∗n(−KYn+1/C) for any n, we have ∆n = g−1

n (∆n+1). Hence ∆• := (gn|∆n
: ∆n →

∆n+1)n is a sub-ESP of Y•.

From now till the end of this section, we follow the notation of Theorem 2.13.

Let En ↠ ℓn be a surjective homomorphism from En to an invertible sheaf ℓn on

Sn which corresponds to the section ∆n of φn : Yn → Sn as in Theorem 2.13. If we

replace En by En⊗ ℓ⊗−1
n , then the isomorphism class of Yn := PSn

(En) is invariant.
Hence we may assume from the beginning that ℓn ≃ OSn

. Thus there exists the

following exact sequence of locally free sheaves:

0 −→ Ln −→ En −→ OSn −→ 0,

such that for any n,

� Yn ≃ PSn
(En), and

� Ln is a line bundle on Sn which is of degree a (> 1) when restricted to a fiber

of αn : Sn → C.

The following lemma is derived from a simple fact concerning surjective mor-

phisms between Hirzebruch surfaces.

Lemma 2.24 (Cf. the notation in Theorem 2.13). The following properties hold:

(1) Let ∆n be the section of φn corresponding to a surjection En ↠ OSn . Then

g−1
n (∆n+1) = ∆n for all n.

(2) En ≃ u∗nEn+1 and Ln ≃ u∗nLn+1 for all n.

Proof. For each n, let ψn := αn ◦ φn : Yn → C be a composite map. Then for

any t ∈ C, the fiber Yn,t := ψ−1
n (t) is isomorphic to a Hirzebruch surface Fa with

Nn,t := ∆n∩Yn,t as its negative section. Since gn is finite étale, the restriction of gn
to each fiber of ψn gives an isomorphism gn(t) := gn|Yn,t

: Yn,t → Yn+1,h(t). Since
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gn(t)
−1(Nn+1,h(t)) is a negative curve of Yn,t, it coincides with the negative section

of Fa. Hence g−1
n (∆n+1) = ∆n for all n. Thus assertion (1) has been proved.

Since Yn ≃ Yn+1 ×Sn+1
Sn ≃ P(u∗nEn+1), there exists an isomorphism En ≃

u∗nEn+1 ⊗ φ∗
nWn for some Wn ∈ Pic(Sn). By construction, OYn(1)|∆n ≃ O∆n for

any n. Since OYn
(1) ≃ g∗nOYn+1

(1)⊗ φ∗
nWn, we have

OYn
(1)|∆n

≃ g∗nOYn+1
(1)|∆n+1

⊗Wn.

Hence Wn ≃ OSn
. Thus En ≃ u∗nEn+1 for any n. Assertion (2) is derived from the

following commutative diagram, where the second and the third vertical maps are

isomorphisms:

0 // u∗nLn+1

��

// u∗nEn+1
//

��

OSn
//

��

0

0 // Ln // En // OSn
// 0.

Definition 2.25. We call the exact sequence of vector bundles on Sn

(♦)n : 0 −→ Ln −→ En −→ OSn −→ 0,

satisfying the properties in Lemma 2.24, the fundamental exact sequence of vector

bundles (FES for short) associated to the FESP Y• of type (P−∞). We abbreviate

it as

(♦)• : 0 −→ L• −→ E• −→ OS• −→ 0.

Remark 2.26 (Cf. [20, p. 69, 5.18, Example]). In general, a jumping phenome-

non of ruled surfaces can occur, s the next example shows. OnP1, there exists the

following exact sequence of vector bundles:

0 −→ OP1(−2) −→ E −→ OP1 −→ 0,

with group of extensions Ext1P1(OP1 ,OP1(−2)) ≃ C. If the extension class is non-

trivial, then E ≃ OP1(−1)⊕OP1(−1). Hence there exists a family of ruled surfaces

π : X → P1 × C→ C such that

� Xt := π−1(t) is isomorphic to P1 × P1 for t ̸= 0;

� X0 ≃ F2.

In Theorem 2.13, if we regard X as a fiber space over an elliptic curve C, then such

a jumping phenomenon of ruled surfaces cannot occur because of the existence of

the nonisomorphic étale endomorphism f : X → X of X.
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§3. Elementary transformations

For a positive integer a, we consider the following exact sequence of locally free

sheaves on the Atiyah surface S:

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0.

Restricting the above exact sequence to the canonical section s∞ (⊂ S), we
obtain another exact sequence of sheaves:

(♢) : 0 −→ Os∞ −→ E|s∞ −→ Os∞ −→ 0.

Let D be a section of φ : Y := PS(E) → S corresponding to the surjection E ↠ OS,

T := φ−1(s∞) an elliptic ruled surface over s∞ and Γ := T ∩ D the complete

intersection curve. By construction, we infer that T ≃ Ps∞(E|∞). The following

lemma is useful to know the structure of T .

Lemma 3.1. The extension class of (♠) can be described as follows:

(1) dimExt1(OS,OS(as∞)) = 1.

(2) The exact sequence (♠) splits if and only if the exact sequence (♢) splits.

Proof. Since Ns∞/S ≃ Os∞ , for all k > 0, there exists the following exact sequence

of sheaves:

0 −→ OS((k − 1)s∞) −→ OS(ks∞) −→ Os∞ −→ 0.

Then we obtain the following exact sequence of cohomologies:

0 −→ H0(S,OS((k − 1)s∞)) −→ H0(S,OS(ks∞)) −→ H0(s∞,Os∞)

−→ H1(S,OS((k − 1)s∞)) −→ H1(S,OS(ks∞)) −→ H1(s∞,O∞)

−→ H2(S,OS((k − 1)s∞)).

By Proposition 2.4, we see that h0(S,OS(ks∞)) = 1 for all k > 0. Thus there

exists the following exact sequence:

0 −→ H0(S,Os∞) −→ H1(S,OS((k − 1)s∞)) −→ H1(S,OS(ks∞))

−→ H1(s∞,Os∞) −→ 0.

Noting that h0(S,OS(ks∞)) = 1 for all k > 0 by Proposition 2.4, the following

exact sequence is derived:

0 −→ H0(s∞,Os∞) −→ H1(S,OS((k − 1)s∞)) −→ H1(S,OS(ks∞))
res−−→ H1(s∞,Os∞) −→ 0.
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Since s2∞ = 0 and KS ∼ −2s∞, we infer that h1(S,OS(ks∞)) = 1 for all

k > 0 by the Riemann–Roch formula. Hence the restriction map res is an iso-

morphism. Since Ext1(OS,OS(as∞)) ≃ H1(S,OS(as∞)), assertion (1) is derived

and the restriction map res : H1(S,OS(ks∞)) → H1(s∞,O∞) is an isomorphism.

There exists the following commutative diagram:

Ext1(OS,OS(as∞))

��

res // Ext1(Os∞ ,Os∞)

��

H1(S,OS(as∞))
res // H1(s∞,O∞).

Since the two vertical maps are both isomorphisms, the horizontal maps are both

isomorphisms and assertion (2) is thus derived.

Now we recall the theory of elementary transformations of vector bundles

due to Maruyama [17]. Let S be a locally Noetherian scheme and T a subscheme

of S whose defining ideal IT is a Cartier divisor on S. For a vector bundle E of

rank N + 1 on S, assume that there is a surjective homomorphism δ : E ↠ F
to a vector bundle F on T with rank(F) < rank(E). We set X := P(E) and

Y := P(F). Then Y is a projective subbundle of P(E)|T and a subscheme of P(E).
Let π : X̃ := BlY X → X be the blow-up of X along Y . Set D := π−1(XT ), which

is the proper transform of XT := P(E|T ) and let G := Exc(π) be the π-exceptional

divisor. Our situation can be displayed in the following exact and commutative

diagram:

(3.1)

0 0

0 // F ′ //

OO

E|T
µ
//

OO

F // 0

0 // E ′ //

OO

E δ //

OO

F //

id

OO

0

E(−T ) id //

OO

E(−T )

OO

0

OO

0.

OO

The following fundamental theorem is due to Maruyama [17, Thms 1.1

and 1.3].
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Theorem 3.2. Under the assumption above, E ′ := Ker(δ) is a vector bundle. Let

p′ : X ′ := P(E ′) → S be the projective bundle associated with a vector bundle E ′ on

S. Then there exists a birational S-morphism g : X̃ → X ′ such that the following

conditions are satisfied:

(1) E ′ = p∗(IY ⊗ OX(1)), where p : X = P(E) → S is the projection, IY is the

defining ideal of Y in X and OX(1) is the tautological line bundle on X.

(2) The closed subscheme Y ′ defined by g∗(ID) (⊂ g∗(OX̃) ≃ OX′) is a projective

subbundle P(F ′) of P(E ′)|T , where ID is the defining ideal of D in X.

(3) g is the blow-up of X ′ along Y ′.

(4) g∗(OX′(1)) ≃ π∗(OX(1)) ⊗ OX̃(−G), where OX′(1) is the tautological line

bundle of E ′.

Definition 3.3. The birational map gπ−1 : X · · · → X ′ over S is called the ele-

mentary transformation along Y and denoted by X ′ = elmY (X).

Now we shall apply “elementary transformations” to two cases depending on

whether the short exact sequence (♠) splits or not.

Definition 3.4. We say that the short exact sequence (♠) defined at the begin-

ning of Section 3 is of type (A) (resp. of type (B)) if (♠) splits (resp. unsplits).

Case 1. First, we consider the case where the exact sequence (♠) is of type (A)

(cf. Definition 3.4). Then Lemma 3.1 shows that the extension class 0 ̸= η ∈
Ext1(OS,OS) is uniquely determined up to a constant.

Lemma 3.5. Let Y := PS(E) be the P1-bundle over S associated to the vector

bundle E of rank two on S. Then Y admits a nonisomorphic étale endomorphism.

Proof. Let µk : C → C be a multiplication mapping by an integer k > 1. Then [5,

Prop. 4.13] shows the existence of a nonisomorphic étale endomorphism φ : S→ S
such that αS ◦ φ = µk ◦ αS for the Albanese map αS : S→ C. Pulling back (♠) by

φ, we obtain the following exact sequence:

(♠′) : 0 −→ φ∗OS(as∞) −→ φ∗E −→ OS −→ 0.

Thanks to the projection formula and the finiteness of φ, we infer that

Ext1(OS, φ
∗OS(as∞)) ≃ H1(S, φ∗OS(as∞)) ≃ H1(S, φ∗φ

∗OS(as∞))

≃ H1(S,OS(as∞)⊗ φ∗OS).

On the other hand, the trace map TrS/S : φ∗OS → OS gives rise to a splitting of the

natural inclusion OS ↪→ φ∗OS. Hence OS(as∞) → OS(as∞)⊗φ∗OS likewise splits.
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Thus Ext1(OS,OS(as∞)) embeds as a direct summand of Ext1(OS, φ
∗OS(as∞)).

Hence the natural homomorphism φ∗: Ext1(OS,OS(as∞))→Ext1(OS, φ
∗OS(as∞))

is injective. On the other hand, Proposition 2.5 shows that φ∗OS(as∞)≃OS(as∞).

Hence, by Lemma 3.1, φ∗ is an isomorphism. Thus φ∗E ≃ E . If we set Ỹ := Y ×φ,SS,
then there exists an isomorphism Ỹ ≃ PS(φ∗E) ≃ PS(E) =: Y . Thus the natural

projection Ỹ → Y gives a nonisomorphic étale endomorphism g : Y → Y of Y .

Now we shall apply Theorem 3.2 to the P1-bundle Y := PS(E) over the Atiyah
surface S. We recall the following unsplit exact sequence of vector bundles on S:

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0.

Let D be a section of φ : Y := PS(E) → S corresponding to the surjection E ↠ OS.

Then Lemma 3.1 shows that T := φ−1(s∞) ≃ S and Γ := T ∩D is the canonical

section of D (≃ S). Let δ : E ↠ OΓ be the composite of E ↠ OS and the canonical

homomorphism OS ↠ OΓ. We set E ′ := Ker(δ). Then E ′ is a vector bundle of rank

two on S and we have the following exact and commutative diagram:

0 // OS(as∞) // E // OS // 0

0 // OS(as∞) //

id

OO

E ′ //

OO

OS(−s∞) //

OO

0.

We set Y ′ := PS(E ′). Then by Theorem 3.2, we see that Y ′ is obtained from

Y by performing elementary transformations along Γ, i.e., Y ′ = elmΓ(Y ). By

construction, there exists the following exact sequence of vector bundles on S:

(♠♠) : 0 −→ OS((a+ 1)s∞) −→ E ′ ⊗OS(s∞) −→ OS −→ 0,

such that Y ′ ≃ PS(E ′ ⊗OS(s∞)).

Lemma 3.6. The above exact sequence (♠♠) splits; in particular,

Y ′ ≃ PS(OS((a+ 1)s∞)⊕OS).

Proof. We shall give two proofs.

The first proof. We use the same notation as explained just after Definition 3.3.

Let π : Ỹ := BlΓ(Y ) → Y be the blow-up of Y along Γ := T ∩D (≃ C). Since Γ

is the intersection of two effective Cartier divisors, the normal bundle of Γ in Y

is trivial. Hence the π-exceptional divisor E is isomorphic to C × P1. Let T ′ ≃ S
be the strict transform of T in X̃. Then Y ′ is obtained from Ỹ by blow-down of

T ′ to an elliptic curve. If we set φ′ : Y ′ → S, then the image of E in Y ′ is the

elliptic ruled surface φ′−1(s∞) over s∞ (⊂ S) and is isomorphic to C × P1. Then
Lemma 3.1(2) shows that (♠♠) splits.
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The second proof. By the same argument as in the proof of Lemma 3.1, there

exists the following exact sequence of cohomologies:

0 −→ H0(S,OS(as∞)) −→ H0(S,OS((a+ 1)s∞)) −→ H0(s∞,Os∞)

c−−→ H1(S,OS(as∞))
i−−→ H1(S,OS((a+ 1)s∞)) −→ H1(s∞,Os∞)

−→ H2(S,OS(as∞)) = 0.

Since h0(S,OS(as∞)) = h1(S,OS(as∞)) = 1 for any a > 0 by Lemma 3.1, c is an

isomorphism and i is a zero map. Since Ext1(OS,OS(as∞)) ≃ H1(S,OS(as∞)),

Ext1(OS,OS(as∞)) → Ext1(OS,OS((a + 1)s∞)) is a zero map. Thus the exact

sequence (♠♠) splits.

With the same notation as above, we have the following lemma.

Lemma 3.7. dim|D + aT | = 0, dim|D + (a+ 1)T | = 1.

Proof. Since D|D ∼ −aγ and T |D = γ, we have D + aT |D ∼ OD. Hence there

exists the following exact sequence of vector bundles on Y :

0 −→ OY (aT ) −→ OY (D + aT ) −→ OD −→ 0.

Then we have the following exact sequence:

0 −→ H0(Y,OY (aT )) −→ H0(Y,OY (D + aT )) −→ H0(D,OD) −→ · · · .

Since H0(Y,OY (aT )) ≃ H0(S,OS(as∞)) ≃ C and H0(D,OD) ≃ C, we have

1 ≤ h0(Y,OY (D + aT )) ≤ 2. Suppose that h0(Y,OY (D + aT )) = 2. Then there

exists an effective divisor ∆ ∈ |D+aT | which is a section of Y → S and is disjoint

from D. This contradicts the assumption that (♠) is an unsplit exact sequence.

Hence h0(Y,OY (D + aT )) = 1.

We have OY (1) ∼ D+aT . There exists the following exact sequence of sheaves

on S:

0 // OS((a+ 1)s∞) // E ⊗ OS(s∞) // OS(s∞) // 0

0 // OS((a+ 1)s∞) //

id

OO

E ′ ⊗OS(s∞) //

OO

OS //

OO

0.

where the exact sequence on the top row is obtained from (♠) by tensoring

with OS(s∞). Since h0(S,OS((a + 1)s∞)) = 1, we have h0(S, E ⊗ OS(s∞)) ≤ 2

from the exact sequence on the top row. Furthermore, since the exact sequence

on the second row splits by Lemma 3.6, we have h0(S, E ′) = 2. Then we have
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h0(S, E ⊗ OS(s∞)) ≥ h0(S, E ′) = 2. Thus we have h0(S, E ⊗ OS(s∞)) = 2. Since

D + (a+ 1)T ∼ OY (1)⊗ φ∗OS(s∞), the projection formula shows that

h0(Y,O(D+(a+1)T )) = h0(S, φ∗OY (1)⊗OS(s∞)) = h0(S, E ⊗OS(s∞)) = 2.

Lemma 3.8. Let f : X → X be a nonisomorphic étale endomorphism. Let L be

the complete linear system on X defined by L := |D + (a + 1)T |. Then for any

member Λ ∈ L, we have f∗Λ ∈ L, i.e., L is preserved by f .

Proof. Since f∗D ∼ D and f∗T ∼ T , we have f∗Λ ∈ L for any Λ ∈ L.

Case 2. Next we consider the case where the exact sequence (♠) is of type (B)

(cf. Definition 3.4), that is, Y ≃ PS(OS(as∞)⊕OS).

Lemma 3.9. The variety Y admits a nonisomorphic étale endomorphism.

Proof. Let µk : C → C be a multiplication mapping by an integer k > 1. Then [5,

Prop. 4.13] shows the existence of a nonisomorphic étale endomorphism ν : S→ S
such that αS ◦ ν = µk ◦ αS for the Albanese map αS : S → C. Then applying

Proposition 2.5 to E := OS(as∞) ⊕ OS, we see that ν∗E ≃ E . Hence there exists

an isomorphism Ỹ := Y ×ν,S S ≃ PS(ν∗E) ≃ PS(E) =: Y and the first projection

Ỹ → Y gives a nonisomorphic étale endomorphism of Y .

For E := OS(as∞) ⊕ OS, let D∞ (resp. D0) be the section of φ : Y → S
corresponding to a surjection E ↠ OS (resp. E ↠ OS(as∞)). If we set T :=

φ−1(s∞), then T ≃ C × P1. We set Γ∞ := T ∩ D∞, Γ0 := T ∩ D0. Let q : T →
P1 be the second projection such that Γ∞ = q−1(∞) and Γ0 = q−1(0). We set

Γt := q−1(t) for t ∈ P1. The following lemma will play a key role in the proof of

Theorem 4.12.

Lemma 3.10. If t ̸= 0,∞, then the normal bundle NΓt/Y of Γt in Y is isomorphic

to F2.

Proof. First we consider the case where a = 1. For a 3-fold Y1 := PS(OS(s∞)⊕OS),

the assertion follows immediately from [8, Lem. 6.20]. Here we assume that a > 1.

Let i : Y1 := PS(OS(s∞) ⊕ OS) ↪→ PS(Syma(OS(s∞) ⊕ OS)) be the a-th Veronese

embedding. Then the a-th symmetric product Syma(OS(s∞)⊕OS) contains E as a

direct summand. Let p : PS(Syma(OS(s∞)⊕OS)) · · · → Y := PS(E) be the induced
projection. Then the composite p ◦ i : Y1 → Y is a finite covering of degree a

ramified over Γ0 and Γ∞ and is unramified over Y \ (Γ0 ∪Γ∞). Thus the assertion

follows immediately.

With the same notation as above, we have the following lemma.
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Lemma 3.11. The dimension of the complete linear system |D0| is as follows:

(1) dimC|D∞ + (a− 1)T | = 0.

(2) dimC|D∞ + aT | = 1 and D0 ∈ |D∞ + aT |.

Proof. Since D∞|D∞ ∼ −aΓ∞ and T |D∞ = Γ∞, we have (D∞ + (a− 1)T )|D∞ ∼
−Γ∞. HenceD∞ is contained in the base locus of |D∞+(a−1)T |. Hence dim|D∞+

(a−1)T | = dim|(a−1)T | = 0. Since D0 and D∞ are disjoint sections of φ : Y → S,
we have D0 −D∞ ∼ φ∗∆ for some divisor ∆ on S. Since (D0 −D∞)|D∞ ∼ aΓ∞,

we have as∞ ∼ ∆ on S. Hence D0 ∈ |D∞ + aT |. Since (D∞ + aT )|D∞ ∼ 0, we

have the following exact sequences of vector bundles:

0 −→ OY (aT ) −→ OY (D∞ + aT ) −→ OD∞ −→ 0.

Then, taking the long exact sequence of cohomologies, we have

h0(Y,OY (D∞ + aT )) ≤ h0(Y,OY (aT )) + h0(D∞,OD∞) = 2.

Since D0 ∈ |D∞ + aT |, we have dim|D∞ + aT | = 1.

Lemma 3.12. Let Y ′ (resp. Y ′′) be a 3-fold obtained from Y by performing

elementary transformations along an elliptic curve Γ∞ (resp. Γ0), i.e., Y ′ :=

elmΓ∞(Y ) (resp. Y ′′ := elmΓ0
(Y )). Then Y ′ ≃ PS(OS((a+1)s∞)⊕OS) (resp. Y

′′ ≃
PS(OS((a− 1)s∞)⊕OS)).

Proof. Let π : Ŷ → Y (resp. π′ : Ŷ ′ → Y ) be the blow-up of Y along Γ∞ (resp. Γ0).

Since NΓ∞/Y (resp. NΓ0/Y ) ≃ OC ⊕ OC , the π (resp. π′)-exceptional divisor E

(resp. E′) is isomorphic to C × P1. Let g : Ŷ → Y ′ (resp. g′ : Ŷ ′ → Y ′′) be the

blow-down of the proper transform T (resp. T ′) of T by π (resp. π′). Then the

birational map g ◦π−1 : Y · · · −→ Y ′ (resp. g′ ◦π′−1
: Y · · · −→ Y ′′) coincides with

the elementary transformation elmΓ∞ : Y · · · −→ Y ′ (resp. elmΓ0 : Y · · · −→ Y ′′)

along Γ∞ (resp. Γ0). The proper transforms ofD∞ andD0 on Y
′ (resp. Y ′′) are two

disjoint sections of the P1-bundle φ′ : Y ′ → S (resp. φ′′ : Y ′′ → S) and Y ′ (resp. Y ′′)

is an Fa+1 (resp. Fa−1)-bundle over C. Furthermore, φ′−1(s∞) (resp. φ′′−1(s∞))

is the proper transform E′ (resp. E′′) of E on Y ′ (resp. Y ′′) and is isomorphic

to C × P1. By Lemma 3.1, we see that the short exact sequence (♠) splits if and

only if their restriction to s∞ splits. Hence there exists an isomorphism Y ′ ≃
PS(OS((a+ 1)s∞)⊕OS) (resp. Y

′′ ≃ PS(OS((a− 1)s∞)⊕OS)).

Lemma 3.13. Let Z be a 3-fold obtained from Y by performing elementary trans-

formations along an elliptic curve Γt (t ̸= 0,∞) as in Lemma 3.10, i.e., Z =

elmΓt(Y ). Then Z is independent of the choice of t and there exists an isomor-

phism Z ≃ PS(E), where E is a vector bundle of rank two on S satisfying the
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following unsplit exact sequence of sheaves:

(∗) : 0 −→ OS((a− 1)s∞) −→ E −→ OS −→ 0.

Proof. Let π : Ŷ → Y be the blow-up of Y along Γt (t ̸= 0,∞). Since NΓt/Y ≃ F2

by Lemma 3.10, the π-exceptional divisor E is isomorphic to S. Let g : Ŷ → Z be

the blow-down of the proper transform T of T by π. Then g ◦ π−1 : Y · · · −→ Z

coincides with the elementary transformations elmΓt
: Y · · · −→ Z. We set φ′ : Z →

S. Then φ′−1(s∞) is the proper transform of E on Z and is isomorphic to S.
Furthermore, Z is an Fa−1-bundle over C and the proper transform D∞ of D∞ on

Z is a section of φ′ which is the negative section of Fa−1 when restricted to each

fiber of Z → C. Hence there exists an exact sequence (∗) of vector bundles on S
such that

� Z ≃ P(E);
� the section D∞ of φ′ corresponds to a surjection E ↠ OS.

By construction, φ′−1(s∞) is the proper transform of E on Z and is isomorphic

to S. Hence Lemma 3.1 shows that the exact sequence (∗) does not split and Z is

independent of t.

Remark 3.14. Since D0 ∼ D∞ + aT , we have π∗D0 ∼ π∗D∞ + aT + aE. Hence

the push-forward g∗ gives the relation D′
0 ∼ D′

∞ + aE′, where D′
0 (resp. D′

∞ and

E′) is the proper transform of D0 (resp. D∞ and E) on Z. Lemmas 3.7 and 3.13

show that dim|D′
∞ + aE′| = 1 and D′

0 ∈ |D′
∞ + aE′|.

§4. Atiyah case

Let f : X → X be a nonisomorphic étale endomorphism of a smooth projective

3-fold X with κ(X) = −∞. Let

X•
π•−→ Y•

φ•−−→ S•
α•−−→ C•

be Cartesian morphisms of ESPs which satisfy Condition (P−∞). In this section,

we consider the case where the FESP Y• is of Atiyah type, i.e., S• ≃ S•, in other

words, Sn ≃ S for any n (cf. Definition 1.3). Then using Proposition 4.3, we show

that the FES associated to the FESP Y•
φ•−−→ S• (cf. Definition 2.25) can be reduced

to the following simple form:

(♦)• : 0 −→ OS,•(as∞) −→ E• −→ OS• −→ 0.

In Definition 4.4, the FESP of Atiyah type will be classified into two cases accord-

ing to whether the above ESP (♦)• splits or unsplits. We can apply the MMP
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compatibly with étale endomorphisms and show the existence of a constant FESP

of Atiyah type so as to apply Theorem 4.7(2) or Corollary 4.7(2). Our main results

in the section are Theorems 4.12 and 4.20 which show the finiteness of extremal

rays. Another main result is Theorem 4.27 which shows that the Albanese map

αX : X → C of X is an analytic fiber bundle over an elliptic curve C. Combining

these results, the proof of Theorem 1.4 will be given.

Now we recall the notion of the shift of an ESP.

Definition 4.1 ([8, Def. 3.13]). Let f : X → X be a nonisomorphic étale endo-

morphism of a smooth projective variety X and X• = (X, f) the induced constant

ESP. Let D• ↪→ X• be a sub-ESP. Then for any m ∈ Z, we define a new sub-ESP

D•[m] ↪→ X• by Dk[m] := Dk+m for any k ∈ Z and D•[m] := (f |Dk+m
: Dk+m →

Dk+m+1)k. We call D•[m] the shift of D• by m.

Proposition 4.2 (Cf. [5, Prop. 7.10], [8, Prop. 6.10]). Let X• = (fn : Xn →
Xn+1)n be an ESP of smooth projective 3-folds Xn with κ(Xn) = −∞. Suppose

that there exists an FESP (Y•, R
′
•) of type (C) (cf. [5, Def. 3.6]) constructed from

X• by a sequence of blow-downs of an ESP π• : X• → Y•. Suppose that π• is not

an isomorphism. Suppose furthermore that for Y• = (gn : Yn → Yn+1)n, the con-

traction morphism φ• := ContR′
•
: Y• → S• := (un : Sn → Sn+1)n is a P1-bundle.

Let ∆n be the discriminant locus of ψn := φn ◦ πn : Xn → Sn. Then the following

hold:

� ψn is an equidimensional P1-fiber space, that is, each fiber of ψn is connected

and general fiber of ψn is isomorphic to P1.
� ∆n is nonsingular and any of its irreducible component ∆n,i is an elliptic

curve disjoint with each other.

� For any i, ψ−1
n (∆n,i) is a simple normal crossing divisor and any of its

irreducible components is a P1-bundle over an elliptic curve associated to a

semistable vector bundle of rank two.

Using Propositions 2.6 and 4.2, we can show that anyMn ∈ Pic(C) is a torsion

line bundle whose order is uniformly bounded above by a constant depending only

on an endomorphism f : X → X.

Proposition 4.3. For any n, Mn ∈ Pic(C) is of finite order and its order

ordMn is bounded above by a constant which is determined by an endomorphism

f : X → X and is independent of n.

Proof. We first show that any Mn is of finite order. Lemma 2.24 shows that

Ln ∼ u∗nLn+1. Since u
∗
ns∞,n+1 ∼ s∞,n by Proposition 2.5, we have u∗nMn+1 ∼ Mn
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for any n. Hence, by taking a truncated sequence, it is sufficient to show that

M0 ∈ Pic(C) is of finite order without loss of generality. Let s∞,n denote the

canonical section of Sn ≃ S and we set Tn := φ−1
n (s∞,n). By Proposition 2.5,

u−1
n (s∞,n+1) = s∞,n for any n and s∞,• := (un|s∞,n : s∞,n → s∞,n+1)n forms a

sub-ESP of S•. Since φ• : Y• → S• is a Cartesian morphism of ESPs, we see that

g−1
n (Tn+1) = Tn for any n. Thus there is induced an ESP T• = (gn|Tn : Tn →
Tn+1)n of elliptic ruled surfaces such that the inclusion morphism T• ↪→ Y• is

Cartesian. Since Tn = Ps∞(En|s∞), the vector bundle En|s∞ over s∞ is semistable

by [5, Prop. 4.1]. By construction, Ln|s∞ ≃ Mn and there exists the following

exact sequence of sheaves:

0 −→ Mn −→ En|s∞ −→ Os∞ −→ 0.

Hence degMn ≤ 0 for all n. Since Ln ≃ u∗nLn+1, we see that Mn ≃ h∗Mn+1

and M0 ≃ (hn)∗Mn for all n. Suppose to the contrary that degM0 ̸= 0. Then

0 < |degMn| = (deg h)−n|degM0| < 1 for a sufficiently positive integer n. This

contradicts the fact that degMn ∈ Z. Hence degM0 = 0. Now we show that

M0 ∈ Pic0 C is of finite order. The proof is by contradiction. Suppose that M0 ∈
Pic0 C is of infinite order. Let Tn be the proper transform of Tn by the blow-

up πn : X → Yn for n ∈ Z. We note that by [5, Cor. 7.9], π• is a succession of

blow-ups along elliptic curves contained in π−1
• (s∞,•) and hence is an isomorphism

outside π−1
• (s∞,•). Then Proposition 4.2 shows the existence of an isomorphism

Tn ≃ Tn ≃ PC(OC ⊕Mn), where Mn ∈ Pic0(C) is of infinite order. Then T • :=

(f |Tn
: Tn → Tn+1)n is a sub-ESP of X•. For any k ∈ Z, let T •[k] be the shift

of T • (cf. Definition 4.1). Then there exist the following Cartesian morphisms of

ESPs:

T •[k]
i•[k]

// X•

π•

��

Y•

φ•

��

S•.

By Proposition 2.6, there exists no surjective morphism from Tn onto the Atiyah

surface S. Hence, by Lemma 2.1 and Proposition 4.11(4), we see that φ•◦π•(T •[k])

is a sub-ESP of elliptic curves on S and equals s∞,• for the canonical section s∞
(⊂ S). Thus any Tk is contained in (φ ◦ π0)−1(s∞), which has a finite number

of irreducible components. Hence Tp = Tq for some integers p < q. Then the

restriction of fq−p : X → X to the surface Tp induces a nonisomorphic finite étale
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endomorphism of Tp. Hence Proposition 2.3 shows that Mn ∈ Pic(C) is of finite

order. Thus a contradiction is derived.

Next we show that ordMn (< ∞) is independent of n. If we set ψ0 :=

φ0 ◦π0 : X → S, then Proposition 4.2 shows that all the irreducible components of

ψ−1
0 (s∞) are elliptic ruled surfaces crossing normally with each other. Suppose that

some Mn ∈ Pic0(C) is not trivial but torsion, then there exists an isomorphism

Tn ≃ PC(OC⊕Mn). By Proposition 2.6, there exist no surjective morphisms from

Tn to S. Hence, by the same method as above, we see that for any k ≥ 0, f±k(Tn) is

contained ψ−1
0 (s∞). Let Ω denote the finite set of all the irreducible components of

ψ−1
0 (s∞) and p > 0 its cardinality. Then both f and f−1 induce a permutation of Ω.

Hence there exists some positive integer r (≤ p!) such that (fr)−1(Tn) = Tn for any

Tn ≃ PC(OC ⊕Mn). Thus there is induced a nonisomorphic étale endomorphism

fr|Tn
: Tn → Tn. Then [5, Cor. 4.9] shows that ordMn is bounded above by a

constant which is determined by f : X → X and is independent of n.

With the aid of Proposition 4.3, we see that there exists an integer k > 0 such

that µ∗
kMn ≃ OC for any n, where µk : C → C denotes the multiplication mapping

by k > 0. Hence, replacing X (resp. Yn and Sn) by the pullback X̃ := X ×C,µk
C

(resp. Ỹn := Yn×C,µk
C and S̃n := Sn×C,µk

C), there exists a nonisomorphic étale

endomorphism f̃ : X̃ → X̃ (resp. nonisomorphic finite étale coverings g̃n : Ỹn →
Ỹn+1 and ũn : S̃n → S̃n+1) which is a lift of f (resp. gn and un). Therefore, we

may assume from the beginning that Yn = PS(En) and Ln ≃ OS(as∞) with a > 1,

for any n. Furthermore, [5, Prop. 1.1 and Cor. 1.2] show that each πn : X →
Yn is a succession of blow-ups along elliptic curves and thus π• : X• → Y• is a

Cartesian morphism of ESPs. Furthermore, the FES associated to the FESP Y•
(cf. Definition 2.25) can be reduced to the following form:

(♦)• : 0 −→ OS,•(as∞) −→ E• −→ OS• −→ 0.

Lemma 4.4. The FESP Y• enjoys the following properties:

(1) The FESP Y• is a stable FESP (cf. Definition 2.9).

(2) The FES (♦)• splits (resp. does not split) if and only if T• ≃ C• × P1

(resp. T• ≃ S•).

Proof. Since s∞,• ↪→ S• is a sub-ESP, T• := φ−1
• (s•) is a sub-ESP of Y•. Restriction

of (♦)• to s∞,• gives the following exact sequence for any n:

(♦)n|s∞ : 0 −→ OS −→ En|s∞ −→ OS −→ 0.

Since Tn ≃ P(En|s∞), we have Tn ≃ S (resp. Tn ≃ C × P1) if and only if the exact

sequence (♦)n|s∞ unsplits (resp. splits). Furthermore, Proposition 2.6 shows that
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there exist no surjective morphisms between S and C × P1. Hence assertion (2)

follows. Assertion (1) is a direct consequence of (2).

By Lemma 4.4, the possibilities for the FESP Y• of Atiyah type are divided

into the following two cases.

Definition 4.5. Let F• be an FESP of Atiyah type. Then

� F• is of type (Atiyah.A) if the exact sequence (♠) defined at the beginning of

Section 3 does not split, equivalently, T• ≃ S•;
� F• is of type (Atiyah.B) if the exact sequence (♠) defined at the beginning of

Section 3 splits, equivalently, T• ≃ C• × P1.

Proposition 4.6. Suppose that there exists the following unsplit exact sequence

of sheaves on S:
0 −→ OS(as∞) −→ E −→ OS −→ 0,

where a > 1. If we set Y := PS(E) and Z := PS(OS ⊕OS([as∞])), then there exists

no surjective morphism from Y to Z, and vice versa from Z to Y .

Proof. The proof is by contradiction. Let πY : Y → S and πZ : Z → S be the

projections.

(1) Suppose that there exists a surjective morphism φ : Z ↠ Y . Assume that some

fiber of the projection T := π−1
Z (s∞) ≃ C × P1 → C is mapped onto a curve on S

by the morphism πY ◦ φ : Z → S. Then by the rigidity lemma (cf. [14, Lem. 1.6]),

any fiber of πZ is mapped onto a curve on S by πY ◦φ. Hence, by φ, there is induced

a surjective morphism T ≃ C ×P1 φ−→ S, which contradicts Proposition 2.6. Hence

any fiber of πZ is mapped to a point by the morphism πZ ◦ φ : Z → Y and

there exists a surjective morphism g : S → S with πY ◦ φ = g ◦ πZ . On the other

hand, Proposition 2.5 shows that g−1(s∞) = s∞. Hence, by φ, there is induced a

surjective morphism π−1
Z (s∞) ≃ C × P1 ↠ π−1

Y (s∞) ≃ S, which again contradicts

Proposition 2.6.

(2) Suppose that there exists a surjective morphism ψ : Y ↠ Z. Assume that

some fiber of πY : π−1
Y (s∞) ≃ S→ C is mapped to a point on S by the morphism

πZ ◦ ψ : Y → S. Then by the rigidity lemma (cf. [14, Lem. 1.6]), there exists a

surjective morphism u : S↠ S with πZ◦ψ = u◦πY . With the aid of Proposition 2.5,

we infer that u−1(s∞) = s∞. Thus, by ψ, there is induced a surjective morphism

π−1
Y (s∞) ≃ S ↠ π−1

Z (s∞) = s∞ × P1. Since the restriction αS|s∞ : s∞ → C of

the Albanese map αS : S→ C is an isomorphism, this contradicts Proposition 2.6.

Hence, by the rigidity lemma (cf. [14, Lem. 1.6]), any fiber of πY is mapped to a

curve on S by the morphism πZ ◦ ψ : Y → S. Let αZ : Z → C (resp. αY : Y → C)
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be the Albanese map of Z (resp. Y ). Then, by the universality of the Albanese

map, there exists a finite morphism h : C → C such that αZ ◦ ψ = h ◦ αY . Hence

there is induced a finite morphism α−1
Y (o) ≃ Fa

ψ−→ α−1
Z (h(o)) ≃ Fa. The pullback

map ψ∗ induces an isomorphism of the Kleiman–Mori cone NE(Fa), which is a

2-dimensional closed polyhedral cone generated by the numerical equivalence class

[F ] and [∆], where F is the fiber of the ruling which is contracted by πY or πZ and

∆ is a negative section. Thus there is a one-to-one correspondence between the

extremal rays of NE(Fa) of the source variety and that of the target variety. By the

above remark, we see that ψ∗∆ ≡ αF for some α ∈ R. Taking the self-intersection

number of both sides, we infer that degψ = 0, which derives a contradiction.

We recall the following fact which will be essentially used to show the finiteness

of extremal rays.

Theorem 4.7 (Cf. [8, Thm. 3.9]). Let X• = (fn : Xn → Xn+1)n be an ESP of

smooth projective 3-fold Xn’s with κ(Xn) = −∞. Let Y• = (gn : Yn → Yn+1)n
and Y ′

• = (g′n : Y
′
n → Yn+1)n be two FESPs constructed from X• by a sequence of

blow-downs of an ESP (cf. [5, Def. 3.7]). Suppose that there exists an extremal ray

R• (resp. R′
•) of fiber type on NE(Y•) (resp. NE(Y ′

•)) such that both (Y•, R•) and

(Y ′
• , R

′
•) are of type (C−∞) and satisfy the following conditions:

� There exist Cartesian morphisms π• = (πn)n : X• → Y•, φ• = (φn)n : Y• →
S• = (un : Sn → Sn+1)n, and α• = (αn)n : S• → C• := (hn : Cn → Cn+1)n,

where π• is a sequence of blow-downs of an ESP, C• is an ESP of elliptic

curves, any Sn is isomorphic to the Atiyah surface S over Cn, and φn : Yn →
Sn is a P1-bundle over S.

� There exist further Cartesian morphisms π′
• = (π′

n)n : X• → Y ′
• , φ

′
• =

(φ′
n)n : Y

′
• → T• = (Tn → Tn+1)n and α′

• = (α′
n)n : T• → C•, where π

′
• is

a sequence of blow-downs of an ESP and φ′
n : Y

′
n → Tn is a P1-bundle over an

elliptic ruled surface Tn := PC(OC ⊕ ℓn). Here, any ℓn is a torsion line bundle

on Cn and ℓ0 ≃ OC for n = 0.

Then the following hold:

(1) The natural morphism X0 → S0 ×C T0 induced by (φ0 ◦ π0, φ′
0 ◦ π′

0) : X0 →
S0 × T0 is birational and a succession of blow-ups along elliptic curves.

(2) The number of extremal rays of divisorial type on NE(Xn) is finite for any n.

Corollary 4.8 (Cf. [8, Cor. 3.12]).Under the same assumption as in Theorem 4.7,

in addition, suppose that X• is a constant ESP (X, f) induced from a noniso-

morphic étale endomorphism f : X → X of a smooth projective 3-fold X with

κ(X) = −∞. Then the following hold:
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(1) The natural morphism X → S×CT ≃ S×P1 which is induced by the morphism

(φ ◦ π, φ′ ◦ π′) : X → S × T is birational and a succession of blow-ups along

elliptic curves.

(2) The number of extremal rays on NE(X) is finite.

(3) Replacing f by its suitable power fk (k > 0), there exist two Cartesian mor-

phisms of constant ESPs below:

� (X, f)
π−→ (Y, g)

φ−→ (S, u);

� (X, f)
π′

−→ (Y ′, g′)
φ′

−→ (T, v).

Theorem 4.9 (Cf. [8, Thm. 1.4]). Let X be a smooth projective 3-fold X which

admits a nonisomorphic étale endomorphism. Let R be an arbitrary extremal ray

of divisorial type on NE(X) and φ := ContR : X → X ′ the contraction morphism

associated to R. Then the following hold:

(1) The target X ′ is nonsingular and φ is (the inverse of) the blow-up of X ′ along

an elliptic curve C.

(2) The exceptional divisor D := Exc(φ) of φ is isomorphic to either the Atiyah

surface S or PC(OC ⊕ ℓ) for a torsion line bundle ℓ on an elliptic curve C.

Theorem 4.10 (Cf. [8, Thm. 7.3]). Let f : X → X be a nonisomorphic étale

endomorphism of a smooth projective 3-fold. Let Y• be an arbitrary FESP con-

structed from the constant ESP X• := (X, f) by a sequence of blow-downs of an

ESP,

X0 := X
π(0)
n−−→ · · · −→ X(i)

n

π(i)
n−−→ X(i+1)

n −→ · · · −→ Yn := X(k)
n .

For any n and 0 ≤ i ≤ k − 1, let E
(i)
n be the π

(i)
n -exceptional divisor. Then a

suitable finite étale covering of E
(i)
n is isomorphic to either the Atiyah surface S

or the product of P1 and an elliptic curve.

Proposition 4.11 (Cf. [5, Prop. 6.9]). Let S• = (gn : Sn → Sn+1)n be an ESP of

smooth algebraic surfaces Sn. Suppose that there exists an ESP γ• = (gn|γn : γn →
γn+1)n of irreducible curves γn on Sn. Then every γn is an elliptic curve satisfying

(γn)
2 = 0 and the following hold:

(1) If κ(Sn) = 1 for any n, then φn(γn) is a point for the Iitaka fibration φn : Sn →
Cn of Sn.

(2) If any Sn is an abelian surface, then there exists an elliptic fiber bundle struc-

ture φn : Sn → Cn over an elliptic curve Cn such that

� φn(γn) is a point on Cn, and

� φn+1 ◦ gn = un ◦ φn for an isomorphism un : Cn ∼= Cn+1.
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(3) If Sn is a hyperelliptic surface, then one of the following cases holds:

(3.1) The Albanese map αn : Sn → Cn is an elliptic fiber bundle such that

� αn(γn) is a point, and

� αn+1 ◦ gn = un ◦ αn for an isomorphism un : Cn ∼= Cn+1.

(3.2) Aut0(Sn) is an elliptic curve and the natural projection pn : Sn → Γn :=

Sn/Aut0(Sn) ∼= P1 is a Seifert elliptic surface such that

� there exists a finite morphism vn : Γn → Γn+1 such that pn+1 ◦gn =

vn ◦ pn and pn(γn) is a point, and

� vn is an isomorphism or pn(γn) is a ramification point of vn.

(3.3) � The Albanese map αn : Sn → Cn is an elliptic fiber bundle such that

αn(γn) is a point,

� pn+1 : Sn+1 → Γn+1 ≃ P1 is a Seifert elliptic surface such that

αn+1(γn+1) is a point, and

� there exists a finite morphism wn : Cn → Γn+1 such that pn+1◦gn =

wn ◦ αn.

(4) If κ(Sn) = −∞ for any n, then the Albanese map αn : Sn → Cn is a P1-bundle
over an elliptic curve Cn associated to a semistable vector bundle En of rank

two such that

� αn(γn) = Cn and

� there exists a Cartesian morphism α• : γ• → C• = (hn : Cn → Cn+1)n.

Furthermore, one of the following hold.

(4.1) For any n, Sn ≃ PCn(En) for a stable vector bundle En on Cn and γn is

a multi-section of αn.

(4.2) For any n, Sn ≃ S and γn is the canonical section of αn.

(4.3) For any n,

� there exists an isomorphism Sn ≃ PCn
(OCn

⊕Ln) for a line bundle

Ln ∈ Pic0(Cn) of infinite order, and

� the elliptic curve γn coincides with either of the two sections of αn
corresponding to the first projection OCn

⊕Ln ↠ OCn
or the second

projection OCn
⊕ Ln ↠ Ln.

(4.4) For any n, there exists an isomorphism Sn ≃ PCn(OCn ⊕Ln) for a line

bundle Ln ∈ Pic0(Cn) which is of finite order.
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§4.1. Subcase (Atiyah.B)

Now we consider the case where there exists an FESP Y• of type (Atiyah.B), i.e.,

En ≃ OS(as∞) ⊕ OS for a > 1 and Yn ≃ PS(En) for any n (cf. Theorem 2.13

and Definition 4.5). Let D∞,n (resp. D0,n) be the section of φn corresponding

to a surjection En ↠ OS (resp. E ↠ OS(as∞)). If we set Tn := φ−1
n (s∞) for all

n, then Tn ≃ C × P1. Since the canonical section s∞ (⊂ S) forms a sub-ESP

s∞,• (⊂ S•), the Tn also form a sub-ESP T• := (gn|Tn
: Tn → Tn+1)n of Y•. Let

Γ∞,n := Tn ∩ D∞,n (resp. Γ0 := T ∩ D0), the complete intersection curve on Yn
(resp. Y0).

Theorem 4.12. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of type (Atiyah.B). Then there exist at most finitely many extremal rays of

NE(X).

Proof. The proof is done by using the theory of elementary transformations (cf.

Section 3) and applying Theorem 4.7.

Step 1. With the aid of [5, Rem. 8.7(1)], it is sufficient to show the finiteness of

extremal rays of divisorial type on NE (X). Hereafter, by R (⊂ NE (X)) (resp. ER),

we always denote an extremal ray of divisorial type (resp. the exceptional divisor of

the contraction morphism ContR : X → X ′ associated to R). We set Rn := (fn)∗R

for n ≥ 0, Rn := (f−n)∗R for n < 0 and R• := {Rn}n. If we set En := ERn , then

ER• = (f |En
: En → En+1)n is a sub-ESP of X• = (X, f) by Proposition 2.2. Since

ψ• := φ• ◦ π• : X• → S• is a Cartesian morphism of ESPs, the image ψ•(ER•) is

also a sub-ESP of S• by Lemma 2.1.

Suppose that ψ•(ER•) is an ESP of elliptic curves. Then for any k ∈ Z, its
shift ψ•(ER•)[k] = ψ•(ER• [k]) is also an ESP of elliptic curves and equals s∞,• by

Proposition 4.11(4.2). Hence any Ek is contained in ψ−1
0 (s∞), which has a finite

number of irreducible components. Hence, by [7, Thm. 1.1], we see that the number

of such extremal rays R(⊂ NE(X)) is finite.

Suppose that there exists no extremal ray R of divisorial type such that ER
dominates S. Then the finiteness of extremal rays R follows from the argument

above. Hence, to show the finiteness of extremal rays of NE (X), it is sufficient

to assume from the beginning that there exists some extremal ray R (⊂ NE (X))

of divisorial type such that ψ•(ER•) = S•. Then by Propositions 2.5, 2.6 and

Theorem 4.9, Ek ≃ S for any k and ψk|Ek
: Ek → S is a finite étale covering.

Then ψ : E → S for ψ := ψ0|E and E := E0 = ER induces a surjective morphism

u : Alb(E) → C of Albanese elliptic curves. We take some positive integer k so that

u is factored by a multiplication mapping µk : C → C by k. We set X̃ := X×C,µk
C.
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We note that deg h = deg f > 1, since f is étale and the general fiber of the

Albanese map αX : X → C is simply connected and hence the fiber degree of αX
has to be 1. Since C is an elliptic curve, we see that h : C → C has a fixed point

o ∈ C by using the Lefschetz fixed point theorem. Hence, if we endow C with a

group structure so that o ∈ C is the zero element, then we may assume that h is

a group homomorphism of C. Since h ◦ µk = µk ◦ h, there exists a nonisomorphic

étale endomorphism f̃ : X̃ → X̃ which is a lift of f : X → X. Let ρ : X̃ → X be the

natural projection. Then the Galois group Gal(X̃/X) acts on the normalization

of E ×C,µk
E and hence ρ−1(E) is divided into a disjoint union ρ−1(E) = ⨿iẼ(i)

of sections of X̃ → S which is a copy of S and one of its connected component is

induced from the diagonal section ∆ (⊂ E×C,µk
E) with ∆ ≃ S. For each i, there

exists an extremal ray R̃i of NE(X̃) such that ER̃i
= Ẽ(i) and ρ∗(R̃i) = R. Hence,

replacing f : X → X by its lift f̃ : X̃ → X̃, we may assume from the beginning

that ER is a section of the P1-fiber space φ0 ◦ π0 : X → S0. Thus DR := π0(ER) is

also a section of φ0 : Y0 → S0.

Step 2. By construction, we have the following Cartesian morphisms of ESPs:

T•

��

i• // Y•

φ•

��

s∞,• // S•.

Furthermore, we have further Cartesian morphisms of ESPs:

ER,•
i• // X•

π•

��

Y•

φ•

��

S•.

By Lemma 2.1, we see that ∆R,• := π•(ER,•) is a sub-ESP of Y•. By assump-

tion, the composite φ• ◦ π• ◦ i• : ER,• → S• is an isomorphism of ESPs consisting

of Atiyah surfaces. Hence Γ• := ∆R,• ∩ T• ↪→ Y• is a sub-ESP of elliptic curves.

Thus there exist the following Cartesian morphisms of ESPs:

Γ•

��

// Y•

φ•

��

s∞,• // S•.
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Since the inclusion morphism Γ• ↪→ T• ≃ (C × P1)• is Cartesian, we see that Γ•

is a fiber of the second projection T• ≃ (C × P1)• → P1 by Proposition 4.11(4).

By construction, there exist two sub-ESPs ∆R,• ↪→ Y• and D∞,• ↪→ Y•.

Lemma 4.13. We have ∆R,• ̸= D∞,•.

Proof. Suppose that ∆R,• = D∞,•. Let F be a general fiber of αX : X → C. Then

(∆R,n|π(F ))
2 = −a < −1. Since ER,• is the strict transform of D∞,• on X•, we

have (ER,n|F )2 ≤ (∆R,n|π(F ))
2 = −a < −1. On the other hand, (ER,n|F )2 = −1,

since R is of type (E1) in the sense of [18] (cf. Theorem 4.9). Thus a contradiction

is derived.

We set Γ∞,• = D∞,• ∩ T•. The following lemma is crucial.

Lemma 4.14. We have either ∆R,• ∩ D∞,• = Γ• = Γ∞,•, or ∆R,• ∩ D∞,• = ∅
and Γn = D0,n ∩ Tn for any n.

Proof. If ∆R,• ∩D∞,• ̸= ∅, then ∆R,• ∩D∞,• ↪→ D∞,• is a sub-ESP of D∞,• ≃ S•
and equals the canonical section s∞,•. Hence ∆R,• ∩D∞,• = Γ∞,•.

Since Γ• is a sub-ESP of T• which is isomorphic to a stable ESP (C × P1)•,
Γ• equals some fiber of the second projection p : Γ• ≃ (C × P1)• → P1. We

set Γt := p−1(t) for t ∈ P1 such that Γ0 = p−1(0) and Γ∞ = p−1(∞). Then

Lemma 3.10 shows that for any t ̸= 0,∞, we have NΓt/Y ≃ F2. Suppose that

Γ = Γt for some t ̸= 0,∞. Since NΓ/Y ≃ OC⊕OC is decomposable, this contradicts

the fact that F2 is indecomposable. Hence either Γn = Γ0,n ∩ Tn for any n or

Γ• = Γ∞,•. Thus the proof has been done.

Step 3. First we consider the case where ∆R,• ∩D∞,• = ∅ and Γn = D0,n ∩Tn for

any n. We have the following lemma.

Lemma 4.15. If we set ∆R := ∆R,0, D∞ := D∞,0, D0 := D0,0 and T := T0, then

we have ∆R ∼ D∞ + aT and ∆R ∼ D0.

Proof. We have ∆R − D∞ ∼ φ∗
0(ps∞ + α∗

0W) for some p ∈ Z and a divisor W
on C. Restriction to the surface T gives the relation ∆R|T −D∞|T ∼ φ∗

0α
∗
0W|T .

Since ∆R|T ∼ D∞|T ∼ Γ0, we see that W ∼ 0. Restriction to the surface D∞

shows that p = a, since ∆R ∩D∞ = ∅ and D∞|D∞ ∼ −aΓ∞.

Step 3-1. Since ∆R,• ∩D∞,• = ∅ and Y• ≃ PS(OS(as∞) ⊕ OS)•, there exist

isomorphismsX•×S∆R,• ≃ X• and Y•×S∆R,• ≃ Y• ≃ PS(OS(as∞)⊕OS)•. Hence,

replacing X• (resp. Y•) by X• ×S ∆R,• (resp. Y• ×S ∆R,•), we may assume from

the beginning that ∆0,n = D0,n for any n. Thus ∆R,• = D0,• and Γ0,• := D0,•∩T•
form a sub-ESP of Y•. Then Lemma 4.15 shows that (∆2

R, F ) = a ≥ 2 for a general
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fiber F of α ◦ φ0 : Y0 → C, and hence π• : X• → Y• is not an isomorphism, since

it should be of type (E1) in the sense of [18]. Let

X• := X
(0)
• −→ · · · −→ X

(k−2)
•

π
(k−2)
•−−−−→ X

(k−1)
•

π
(k−1)
•−−−−→ Y• := X

(k)
•

be a sequence of blow-ups of an ESP along elliptic curves. Let γ
(i)
n be the center

of the blow-up π
(i−1)
n : X

(i−1)
n → X

(i)
n and let γn := γ

(k)
n (⊂ Yn) be the center of

the first blow-up π
(k−1)
n from the bottom. Then γ

(i)
• = (γ

(i)
n )n is a sub-ESP of X

(i)
•

and there exist the following Cartesian morphisms of ESPs:

γ
(i)
• // X

(i)
•

π
(k−1)
• ◦···◦π(i)

•
��

Y•

φ•

��

S•.

Step 3-2. We begin with a remark.

Remark 4.16. In this Step 3-2, the following argument works under the assump-

tion that a > 0. The assumption that a > 1 is only used in Lemma 4.13 to show

that ∆R,• ̸= D∞,•. In the case where a = 1 (i.e., Y• ≃ PS(OS(s∞) ⊕ OS)) we

may assume that ∆R,• ̸= D∞,• to show the finiteness of extremal rays of NE (X)

(cf. [8, Thm. 8.27 and Rem. 8.33]).

In this step, we use the assumption that a > 0. By Lemma 2.1, Proposi-

tion 4.11 and Corollary 2.8, we see that φ• ◦ π(k−1)
• ◦ · · · ◦ π(i)

• (γ
(i)
• ) is a sub-ESP

of S• and equals s∞,•. Hence G
(i)
• := π

(k−1)
• ◦ · · · ◦ π(i)

• (γ
(i)
• ) is a sub-ESP of the

ESP T• = φ−1
• (s∞,•) ≃ (C × P1)• and thus is contained in a fiber of the second

projection p2 : T
(k)
• → P1. Hence we have either G

(i)
• = Γ0,• or G

(i)
• ∩ Γ0,• = ∅

(cf. Lemma 4.14). Suppose that G
(i)
• ∩ Γ0,• = ∅ for any 0 ≤ i ≤ k − 1. Since ER,•

is the proper transform of ∆R,• by π•, we have an isomorphism ER,• ≃ D0,• and

thus (E2
R, V ) = (D0

2, V ) = a > 0 for a general fiber V of α0 ◦φ0 ◦π0 : X → C. On

the other hand, since the extremal ray R is of type (E1) in the sense of [18], we

have (E2
R, V ) = −1. Thus a contradiction is derived. Hence G

(i)
• = Γ0,• for some

0 ≤ i ≤ k − 1 and at any rate, we have to blow up along the elliptic curve Γ0,•

and π• : X• → Y• factors through the blow-up BlΓ0,• Y• of Y• along Γ0,•. Thus,

if we change the ordering of a sequence of blow-ups of an ESP if necessary, then

we may assume that the center of the first blow-up π
(k−1)
• : X

(k−1)
• → X

(k)
• =

Y• from the bottom coincides with Γ0,•. Then we can perform an elementary
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transformation to Y• along Γ0,• (cf. Definition 3.3). LetD
(k−1)
0,• ≃ S• (resp. T (k−1)

• ≃
S•) be the proper transform ofD0,• (resp. T•) inX

(k−1)
• and E

(k−1)
• := Exc(π

(k−1)
• )

(≃ (C × P1)•) be the exceptional divisor of π
(k−1)
n : X

(k−1)
n → Y . There exists a

birational morphism ν
(k−1)
n : X

(k−1)
n → Z

(k)
n which contracts the divisor T

(k−1)
n ≃

C × P1 to an elliptic curve. Since E
(k−1)
n ≃ C × P1, there exists an isomorphism

Z
(k)
n ≃ PS(OS((a − 1)s∞) ⊕ OS) by Lemma 3.12 and E

(k)
n := ν

(k−1)
n (E

(k−1)
n ) is

isomorphic to P1 × C. Since Γ0,• and T
(k−1)
• are sub-ESPs of Y•, Z

(k)
n (n ∈ Z)

forms an ESP Z
(k)
• (cf. [5, Prop. 3.1 and Lem. 3.3]). Thus we have obtained further

Cartesian morphisms of ESPs,

X• = (X, f)
µ•−→ X

(k−1)
•

ν
(k−1)
•−−−−→ Z

(k)
• = (g′n : Z

(k)
n → Z

(k)
n+1)n,

such that the following conditions are satisfied:

� ν
(k−1)
• ◦ µ• is a sequence of blow-ups of an ESP along elliptic curves.

� Z
(k)
• is another FESP of X• obtained from Y• by performing elementary trans-

formations elmΓ0,• along Γ0,• and is isomorphic to the stable ESP PS(OS((a−
1)s∞)⊕OS)•.

� The sub-ESP E
(k)
• := (g′n|E(k)

n
: E

(k)
n → E

(k)
n+1)n of Z

(k)
• is isomorphic to a

stable ESP (P1 × C)•.

� The sub-ESP D
′(k)
0,• := ν

(k−1)
• (D

(k−1)
0,• ) is a section of Z

(k)
• → S• which corre-

sponds to a surjection OS((a− 1)s∞)⊕OS → OS((a− 1)s∞).

Step 3-3. If we take a self-intersection number within a general fiber of Z
(k)
0 →

C, then we have (D′(k)
0 )2

Z
(k)
0 →C

= a − 1 ≥ 0. In the case where a = 1, we stop

here. From now on, we shall use the assumption that a > 1, Then (D′(k)
0 )2

Z
(k)
0 →C

=

a− 1 > 0. Hence, applying the same argument as before, we see that the blow-up

of an ESP ν
(k−1)
• ◦ π(k−2)

• ◦ · · · ◦ π(0)
• : X• → Z

(k)
• factors through the blow-up of

Z
(k)
• along E

(k)
• ∩D′(k)

0,•. Hence we can apply elementary transformations to Z
(k−1)
•

along E
(k)
• ∩D′(k)

0,•. By changing the order of a sequence of blow-ups of an ESP, we

obtain the following Cartesian morphisms of ESPs:

X• −→ Z
(k−1)
• −→ S•,

where

� X• → Z
(k−1)
• is a blow-up sequence of an ESP, and

� Z
(k−1)
• ≃ PS(OS((a−2)s∞)⊕OS)• is a stable FESP of X• (cf. Definition 2.9).

We shall continue these procedures and apply successions of elementary transfor-

mations along an elliptic curve a times (cf. Definition 3.3). Changing the ordering
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of a sequence of blow-ups of an ESP, we decrease a one by one and finally reach

a = 0. Thus we eventually obtain the following morphisms of ESPs:

X• −→ Z
(k−a+1)
• −→ S•,

where

� X• → Z
(k−a+1)
• is a blow-up sequence of an ESP, and

� Z
(k−a+1)
• ≃ S× P1 is another stable FESP (cf. Definition 2.9) of X•.

� (D
(k−a+1)
0 , D

(k−a+1)
0 , F (k−a+1)) = 0 for the proper transform D

(k−a+1)
0 of D0

on Z(k−a+1) and the general fiber F (k−a+1) of Z(k−a+1) → C.

Then [8, Prop. 8.10] shows the existence of the P1-bundle Z• → (C × P1)•
which is a Cartesian morphism of stable ESPs. Thus there exist the following

Cartesian morphisms of ESPs:

X•

π•

��

X•

��

Y•

φ•

��

Z
(k−a+1)
•

��

S• (C × P1)•.

Hence, by Theorem 4.7, there exist only finitely many extremal rays of divisorial

type on X.

Step 4. Next we consider the case where ∆R,• ∩D∞,• = Γ• = Γ∞,•.

Lemma 4.17. Suppose that there exists another section D ( ̸= D∞) of φ0 : Y0 →
S0 such that D ∩ D∞ = Γ and D ∩ T = Γ. Set D|D∞ ∼ mΓ for m > 0. Then

D ∼ D∞ + (m+ a)T .

Proof. We see that D −D∞ ∼ φ∗
0(ps∞ + α∗

0W) for some p ∈ Z and a divisor W
of C. Restriction to the surface T gives a relation D|T − D∞|T ∼ φ∗

0(α
∗
0W)|T .

Since D|T ∼ D∞|T ∼ Γ, we see that W ∼ 0. Hence D − D∞ ∼ pT . Restricting

to the surface D∞, we infer that D|D∞ − D∞|D∞ ∼ pΓ. Since D|D∞ ∼ mΓ and

D∞|D∞ ∼ −aΓ, we infer that p = m+ a.

Since a > 1, we see easily that ∆R,• ̸= D∞,• by the same method as in the

proof of Lemma 4.13. Setting ∆R|D∞ ∼ mΓ∞ (m > 0) and applying Lemma 4.17,

we infer that ∆R ∼ D∞ + (a +m)T . Since (∆2
R, F ) = 2m + a > 2 for a general

fiber F of α ◦ φ0 : Y0 → C (cf. Lemma 4.17), π• : X• → Y• is not an isomorphism.
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Let

X• := X
(0)
• −→ · · · −→ X

(k−2)
•

π
(k−2)
•−−−−→ X

(k−1)
•

π
(k−1)
•−−−−→ Y• := X

(k)
•

be a sequence of blow-ups of an ESP along elliptic curves. Let γ
(i)
• be the center

of the blow-up π
(i−1)
• : X

(i−1)
• → X

(i)
• and let γ• := γ

(k)
• (⊂ Y•) be the center of

the first blow-up π
(k−1)
• from the bottom. Then γ

(i)
• = (γ

(i)
n )n is a sub-ESP of X

(i)
•

and there exist the following Cartesian morphisms of ESPs:

γ
(i)
• // X

(i)
•

π
(k−1)
• ◦···◦π(i)

•
��

Y•.

Then by Lemma 2.1, Proposition 2.8 and the same argument as in Step 3, we

may assume that π
(k−1)
• ◦ · · ·◦π(i)

• (γ
(i)
• ) is a sub-ESP of Y• and equals Γ∞,•. Hence

X
(k−1)
• is isomorphic to BlΓ∞,•(Y•), which is the blow-up of Y• along the elliptic

curve Γ∞,•. Now we shall perform elementary transformations of an ESP to Y•
along elliptic curves Γ∞,• (cf. Definition 3.3). Let D

(k−1)
∞,• ≃ S• (resp. ∆

(k−1)
R,• ≃ S•

and T
(k−1)
• ≃ (C × P1)•) be the proper transform of D∞,• (resp. ∆R,• and T•)

in X
(k−1)
• and E

(k−1)
• := Exc(π

(k−1)
• ) (≃ (C × P1)•) be the exceptional divisor

of the first blow-up π
(k−1)
• : X

(k−1)
• → Y•. There exists a birational morphism

νn : X
(k−1)
n → W

(k)
n which contracts the divisor T

(k−1)
n ≃ C × P1 to an elliptic

curve. Since E′(k)
n := νn(E

(k−1)
n ) is isomorphic to C × P1, there exists an isomor-

phism W
(k−1)
n ≃ PS(OS((a+1)s∞)⊕OS) by Lemma 3.12. Thus we have obtained

further Cartesian morphisms of ESPs,

X• = (X, f)
µ•−→ X

(k−1)
•

ν•−→W
(k)
• = (gn : Z

(k)
n → Z

(k)
n+1)n,

such that the following conditions are satisfied:

� ν• ◦ µ• is a sequence of blow-ups of an ESP along elliptic curves.

� W
(k)
• is another FESP of X• obtained from Y• by performing elementary

transformations elmΓ∞,• along Γ∞,• and is isomorphic to the stable ESP

PS(OS((a+ 1)s∞)⊕OS)•.

� E′(k)
• := (gn|E′(k)

n
: E′(k)

n → E′(k)
n+1)n is a sub-ESP of Z

(k)
• and is isomorphic to

a stable ESP (P1 × C)•.

� The sub-ESP D
′(k)
∞,• := ν•(D

(k−1)
∞,• ) is a section of Z

(k)
• → S• which corresponds

to a surjection OS((a+ 1)s∞)⊕OS ↠ OS.

Then we have (∆
(k−1)
R ,∆

(k−1)
R , F (k−1)) = 2m+ a− 1 and (∆

(k−1)
R , D

(k−1)
∞ , F (k−1))

= m − 1 for a general fiber F (k−1) of X(k−1) → C. If m = 1, then we have
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∆
(k−1)
R ∩D(k−1)

∞ = ∅ and thus we are reduced to the case as in Step 3. If m > 1,

then by the same method as in Step 3, we can apply successions of elementary

transformations along an elliptic curve m times and changing the ordering of a

sequence of blow-ups of an ESP, we eventually obtain the following morphisms of

ESPs:

X• −→W
(k−m)
• −→ S•,

where

� X• →W
(k−m)
• is a blow-up sequence of an ESP, and

� W
(k−m)
• ≃ P(OS((a +m)s∞) ⊕ OS)• is a stable FESP (cf. Definition 2.9) of

X•.

� ∆
(k−m)
R,• , which is the proper transform of ∆R,• on W

(k−m)
• , is disjoint from

the section D
′(k−m)
∞,• corresponding to a surjection OS((a+m)s∞)⊕OS ↠ OS.

Thus we are reduced to the situation in Step 3. Then the finiteness of extremal

rays of NE(X) follows from Step 3.

Remark 4.18. The same conclusion as in Theorem 4.12 also holds true in the

case of a = 1 (cf. [8, Thm. 8.27]). In Steps 2 and 3 of the proof of Theorem 4.12,

the case where ∆R,• = D∞,• can occur, which means that ER,• = D∞,•. To

show the finiteness of extremal rays, we may assume that ∆R,• ̸= D∞,•. Then

completely the same proof as above works (cf. Remark 4.16). Furthermore, in the

case of a = 1, there exists an extremal ray of divisorial type in the FESP Y•. Using

this, in [8, Prop. 8.34] we studied the structure of a certain nonisomorphic étale

endomorphism f : X → X admitting an FESP Y• of type (D) (cf. [5, Def. 3.6]).

§4.2. Subcase (Atiyah.A)

Let f : X → X be a nonisomorphic étale endomorphism of a smooth projective

3-fold X with κ(X) = −∞. We consider the case where there exists an FESP Y•
of type (Atiyah.A) (cf. Definition 4.5). Let

X•
π
(0)
•−−→ · · · −→ X

(k−2)
•

π
(k−2)
•−−−−→ X

(k−1)
•

π
(k−1)
•−−−−→ X

(k)
• =: Y•

be a sequence of blow-ups of an ESP along an elliptic curve γ
(j)
• on X

(j)
• such that

π• = π
(k−1)
• ◦ · · · ◦ π(0)

• (cf. [5, Cor. 1.2, Fig. 1, Def. 3.7]). First, we show that the

center γ
(k)
• of the first blow-up π

(k−1)
• from the bottom is uniquely determined.

Lemma 4.19. We have γ
(k)
• = Γ•, where Γ is the intersection of T ≃ S (cf. the

explanations just before Lemma 3.1) and D which is the section of φ : Y → S
corresponding to the surjection E ↠ OS.
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Proof. By construction, there exists a Cartesian morphism of ESPs φ• : Y• → S•.
Furthermore, the center γ

(k)
• of the first blow-up of π• : X• → Y• from the bottom

is a sub-ESP of Y• and the inclusion γ
(k)
• ↪→ Y• is Cartesian. Applying Lemma 2.1

and Proposition 2.8, we see that φ•(γ
(k)
• ) is a sub-ESP of S• and equals s∞,•.

There is induced an ESP T• = (gn|Tn
: Tn → Tn+1)n of Atiyah surfaces Tn :=

φ−1
n (s∞) ≃ S and the inclusion γ

(k)
• ↪→ T• is Cartesian. Then Proposition 4.11

shows that γ
(k)
• = D• ∩ T• ≃ s∞,• and γ

(k)
0 = Γ.

Now we are ready to prove the following fundamental theorem.

Theorem 4.20. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of type (Atiyah.A) (cf. Definition 4.5). Then there exist at most finitely many

extremal rays of NE(X).

Proof. We shall use almost the same notation as in the proof of Theorem 4.12,

except that D• denotes the ESP of only one canonical section with respect to the

surjection E ↠ OS.

Step 1. By the same argument as in the proof of Theorem 4.12, we may assume

the existence of an extremal ray R (⊂ NE(X)) of divisorial type such that the

composite

ER,• ↪→ X•
π•−→ Y•

φ•−−→ S•
is an isomorphism.

Step 2. Applying the same argument as in the proof of Lemma 4.13, we easily see

that ∆R,• ̸= D•. Furthermore, ∆R,•∩D• ̸= ∅, since the exact sequence (♠) stated

at the beginning of Section 3 does not split. We set Tn := φ−1
n (s∞). Let Γ := T0∩D

be the complete intersection curve of T0 and D. Then Γ is the canonical section

of T0 ≃ S and D ≃ S.
By construction, we have the following Cartesian morphisms of ESPs:

ER,•
i• // X•

π•

��

Y•

φ•

��

S•.

By Lemma 2.1, we see that ∆R,• := π•(ER,•) is a sub-ESP of Y•. Now we show

that ∆R ∩ D = Γ. By assumption, the composite φ• ◦ π• ◦ i• : ER,• → S• is an
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isomorphism of ESPs consisting of Atiyah surfaces. By Lemma 2.24, the section of

φ• : Y• → S• forms another ESP D• of Atiyah surfaces. Hence ∆R,• ∩D• is a sub-

ESP of elliptic curves and thus equals an ESP Γ• := T• ∩D• which is isomorphic

to the ESP s∞,• of canonical sections (cf. Proposition 4.11).

We have ∆R|T ∼ Γ, since ∆R := π0(E0) is a section of φ. Setting ∆R|D ∼ mΓ

(m > 0) and applying Lemma 4.17, we infer that ∆R ∼ D + (a +m)T . Since we

have (∆2
R, F ) = 2m + a ≥ 2 for a general fiber F of α ◦ φ0 : Y0 → C, we see that

π• : X• → Y• is not an isomorphism. Let

X• := X
(0)
• −→ · · · −→ X

(k−2)
•

π
(k−2)
•−−−−→ X

(k−1)
•

π
(k−1)
•−−−−→ Y• := X

(k)
•

be a sequence of blow-ups of an ESP along elliptic curves. Let γ
(i)
n be the center

of the blow-up π
(i−1)
n : X

(i−1)
n → X

(i)
n and γn := γ

(k)
n (⊂ Yn) the center of the first

blow-up π
(k−1)
n from the bottom. Then γ

(i)
• = (γ

(i)
n )n is a sub-ESP of X

(i)
• and

there exist the following Cartesian morphisms of ESPs:

γ
(i)
• // X

(i)
•

π
(k−1)
• ◦···◦π(i)

•
��

Y•.

Then by Lemma 2.1 and Proposition 2.8, we see that π
(k−1)
• ◦ · · · ◦π(i)

• (γ
(i)
• ) is

a sub-ESP of Y• and equals Γ•. In particular, by Lemma 4.19, we see that X
(k−1)
•

is isomorphic to BlΓ•(Y•) which is the blow-up of Y• along the elliptic curve Γ• and

X
(k−1)
• = (f

(k−1)
n : X

(k−1)
n → X

(k−1)
n+1 )n is a stable ESP isomorphic to BlΓ•(Y•).

Now we shall perform elementary transformations on Y• along elliptic curves Γ•

(cf. Definition 3.3). Let D
(k−1)
n ≃ S (resp. ∆

(k−1)
R,n ≃ S and T

(k−1)
n ≃ S) be the

proper transform of Dn (resp. ∆R,n and Tn) in X
(k−1)
n and E

(k−1)
n := Exc(π

(k−1)
n )

(≃ C×P1) be the exceptional divisor of the first blow-up π(k−1)
n : X

(k−1)
n → Y from

the bottom of π• : X• → Y•. Then, by construction, all of them form sub-ESPs of

X
(k−1)
• . We set

D
(k−1)
• := (f (k−1)

n : D(k−1)
n −→ D

(k−1)
n+1 )n,

∆
(k−1)
• := (f (k−1)

n : ∆(k−1)
n −→ ∆

(k−1)
n+1 )n,

T
(k−1)
• := (f (k−1)

n : T (k−1)
n −→ T

(k−1)
n+1 )n,

E
(k−1)
• := (f (k−1)

n |
E

(k−1)
n

: E(k−1)
n −→ E

(k−1)
n+1 )n.

There exists a birational morphism νn : X
(k−1)
n → Z

(k)
n which contracts the

divisor T
(k−1)
n ≃ S to an elliptic curve. Since E′(k)

n := νn(E
(k−1)
n ) ≃ C × P1, there
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exists an isomorphism Z
(k−1)
n ≃ PS(OS((a+ 1)s∞)⊕OS) by Lemma 3.1. Thus we

have obtained further Cartesian morphisms of ESPs,

X• = (X, f)
µ•−→ X

(k−1)
•

ν•−→ Z
(k)
• = (gn : Z

(k)
n → Z

(k)
n+1)n,

such that the following conditions are satisfied:

� µ• = (µn)n is a sequence of blow-ups of an ESP along elliptic curves.

� Z
(k)
• is another FESP of X•.

� Z
(k)
• is a stable ESP and is isomorphic to a P1-bundle PS(OS((a+1)s∞)⊕OS)•

over S•.
� E′(k)

• := (gn|E′(k)
n

: E′(k)
n → E′(k)

n+1)n is a sub-ESP of Z
(k)
• and is isomorphic to

a stable ESP (P1 × C)•.

� The sub-ESP D
′(k)
• := ν•(D

(k−1)
• ) is a section of Z

(k)
• → S• which corresponds

to a surjection OS((a+ 1)s∞)⊕OS → OS.

Hence, by Theorem 4.12, there exist at most finitely many extremal rays of NE (X).

Remark 4.21. In the proofs of Theorems 4.12 and 4.20, the existence of an

extremal ray R (⊂ NE (X)) of divisorial type such that ER := Exc(ContR) domi-

nates S is not established. To show the finiteness of extremal rays R (⊂ NE (X)),

it is sufficient to show the finiteness of an extremal ray R of divisorial type such

that ER dominates S (cf. Step 1 in the proof of Theorems 4.12 and 4.20). Thus

only the finiteness of such extremal rays is established. The proofs are done by

changing the blow-down process of ESPs with the aid of elementary transforma-

tions to obtain another FESP π′
• : X• → (C × P1)•, so as to apply Theorem 4.7.

Thus it is not so easy to show the existence of an extremal ray R (⊂ NE (X)) such

that ER dominates S. On the other hand, in our previous article [8, Thm. 8.13],

the finiteness of extremal rays is proved without using elementary transformations

and the existence of such an extremal ray R of divisorial type so that ER domi-

nates S is also shown in certain cases (cf. [8, Thm. 10.2]). We shall briefly describe

its outline.

Let f : X → X be a nonisomorphic étale endomorphism such that there exists

an FESP Y• ≃ S ×C S for the Albanese map αS : S → C. In other words, there

exists an unsplit exact sequence of vector bundles on S,

0 −→ OS −→ E −→ OS −→ 0,

such that Y ≃ PS(E). Let
X•

π•−→ Y•
pi,•−−→ S•
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be the Cartesian morphisms of ESPs, where π• is a succession of blow-downs to

an FESP and pi,• (i = 1, 2) is a P1-bundle. Let ∆ (⊂ Y := S ×C S) be the

diagonal divisor of Y . Then we have ∆ ≃ S,dim|∆| = 1 and the base locus Bs|∆|
of |∆| equals the complete intersection curve p−1

1 (s∞) ∩ p−1
2 (s∞) for p−1

i (s∞) ≃
S. Furthermore, all the members of |∆| can be separated after twice blowing

up π′ : X(2) → Y . Suppose that there exists an extremal ray R (⊂ NE (X)) of

divisorial type such that the exceptional divisor ER := Exc(ContR) is mapped onto

S isomorphically by the morphism X
π−→ Y

pi−→ S (i = 1, 2). Then π• : X• → Y•
is a succession of blow-ups along elliptic curves and the centers of the first and

the second blow-up from the bottom are uniquely determined. If we set GR,• :=

π•(ER,•), then GR,• is a sub-ESP of Y• and the natural projection GR,• → Si
(i = 1, 2) is an isomorphism and GR is a member of |∆|. We note that ER is the

strict transform of GR by π : X → Y . Since (G2
R, general fiber of αY : Y → C) = 2

and (E2
R, general fiber of αX : X → C) = −1, π• : X• → Y• factors through the

blow-ups π1,• ◦ π2,• : X(2)
• → Y• such that π′ = π1 ◦ π2. Thus the indeterminacy of

the rational mapping Φ|∆| : Y · · · → P1 is eliminated after twice blowing up Y• to

have a morphism Φ′ : X(2) → P1. Hence there exists another blow-down of an ESP

X• → Y ′
• = (S× P1)• → (C × P1)•. Then applying Theorem 4.7, the finiteness of

extremal rays of NE (X) is derived.

Conversely, let φ : S → S be a nonisomorphic étale endomorphism of the

Atiyah surface S. If we set g := φ ×C φ : Y → Y , then g is a nonisomorphic

étale endomorphism of Y such that g−1(∆) = ∆ for the diagonal divisor ∆

(⊂ S ×C S). Furthermore, there exists a lift g(2) : X(2) → X(2) of g : Y → Y . Let

∆(2) (⊂ X(2)) be the proper transform of ∆. Then (∆(2), g(2)|∆(2)) is a sub-ESP

of (X(2), g(2)) and (g(2))−1(s∞) = s∞ for the canonical section s∞ (⊂ ∆(2) ≃ S).
Let π(3) : X(3) := Bls∞(X(2)) be the blow-up of X(2) along s∞ (⊂ ∆(2)) and E3

the π(3)-exceptional divisor. Then there exists an extremal ray R (⊂ NE (X(3)))

such that

� ER = E3 and

� ER is a section of X(3) → Y
pi−→ S for i = 1, 2.

4.2.1. Blow-up process in the Atiyah case. We summarize all the infor-

mation we have obtained about the construction of an FESP in the Atiyah case

(cf. Definition 1.3). With the aid of Theorems 4.12, 4.20 and [5, Prop. 3.8], the

MMP works compatibly with étale endomorphisms. Replacing f : X → X by its

suitable power fk (k > 0), we obtain Cartesian morphisms of constant ESPs

X• = (X, f)
π−→ Y• = (Y, g)

φ−→ S• = (S, u) α−→ C• = (C, h)

which satisfy the following:
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� Y• is a constant FESP (cf. Definition 2.9) constructed from X• by a sequence

of equivariant blow-downs π•.

� There exists the exact sequence of vector bundles called “FES” (cf. Defini-

tion 2.25)

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0 (a > 1)

on the Atiyah surface S so that φ : Y ≃ PS(E) → S is a P1-bundle associated

to E .
� The composite map α ◦ φ : Y → C is an Fa-bundle over the Albanese elliptic

curve C of X.

We begin with an easy lemma.

Lemma 4.22. Suppose that we are in the case (Atiyah.A), that is, the above exact

sequence (♠) does not split (cf. Definition 4.5). For η ∈ C, let Tη : C ≃ C be an

automorphism of C defined by ζ 7→ ζ+η under the group law of C. Let αY : Y → C

be the Albanese map of Y . Then for any η ∈ C, there exists an automorphism

uη : Y ≃ Y such that αY ◦ uη = Tη ◦ αY .

Proof. It follows by [15, 16] that there exists an automorphism vη ∈ Aut0(S) such
that αS ◦ vη = Tη ◦ αS for the Albanese map αS : S → C. Pulling back (♠) by vη,

we obtain the following exact sequence:

(♠′) : 0 −→ v∗ηOS(as∞) −→ v∗ηE −→ OS −→ 0.

Since v∗ηOS(s∞) ≃ OS(s∞) by Proposition 2.4, we infer that

Ext1(OS, v
∗
ηOS(as∞)) ≃ H1(S, v∗ηOS(as∞)) ≃ H1(S,OS(as∞))

≃ Ext1(OS,OS(as∞)).

Thus v∗η : Ext1(OS,OS(as∞)) → Ext1(OS,OS(as∞)) is an isomorphism and v∗ηE ≃
E . If we set Ỹ := Y ×vη,S S, then there exists an isomorphism Ỹ ≃ PS(v∗ηE) ≃
PS(E) =: Y . Thus the composite map Y ≃ Ỹ → Y gives an automorphism uη : Y ≃
Y such that αY ◦ uη = Tη ◦ αY .

Lemma 4.23. Let V• ↪→ Y• be any sub-ESP of elliptic curves. Then V• = Γ•,

where Γ• := D• ∩ T• (cf. the notation of Lemma 4.19). In particular, V• is a

constant sub-ESP of Y•,
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Proof. Applying Lemma 2.1 to the Cartesian morphisms of ESPs

V•
i• // Y•

φ•

��

S•,

it follows that φ•(V•) is an ESP of elliptic curves such that the inclusion φ•(V•) ↪→
S• is Cartesian. Hence Proposition 4.11(4) shows that φ•(V•) = s∞,•. Thus Vn is

contained in T := φ−1(s∞) ≃ S. Hence, again by Proposition 4.11(4), we see that

Vn = Γn for any n.

Now we recall a structure theorem of the automorphism groups of compact

Kähler manifolds due to Fujiki [3].

Theorem 4.24 ([3, p. 251, Thm. 5.5]). Let X be a compact Kähler manifold.

Then we have the following:

(1) G := Aut0(X) has a natural structure of a meromorphic group which acts

biregularly and meromorphically on X.

(2) There exists an exact sequence of complex Lie groups

1 −→ L(G) −→ G
α−→ T (G) −→ 1,

where T (G) is the Albanese torus of the compactification G∗ of G, α : G →
T (G) is the Albanese homomorphism of G and the kernel L(G) of α (which is

called the linear part of G) is meromorphically isomorphic to a linear algebraic

group.

(3) Let T (X) = Alb(Aut0(X)) be the Albanese torus of Aut0(X) and ϕ : X →
Alb(X) the Albanese map of X. Then the natural homomorphism ϕ∗ : G →
A(X) := Aut0(Alb(X)) is meromorphic and factors through the Albanese

homomorphism α, i.e., there exists a unique homomorphism h∗ : T (X) →
A(X) such that ϕ∗ = h∗ ◦ α. Furthermore, the kernel of h∗ is a finite group.

Using Proposition 4.25 which is an application of Theorem 4.24, we shall prove

that the Albanese map αX : X → C is an analytic fiber bundle in the case where

there exists an FESP Y• of Atiyah type (cf. Definition 1.3).

Proposition 4.25 ([8, Prop. 8.19]). Let αX : X → A := Alb(X) be the Albanese

map of a smooth projective variety X and set G := Aut0(X). Suppose the following

conditions:

� αX is a fiber space.
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� The induced group homomorphism (αX)∗ : G→ Aut0(A) ≃ A is surjective.

Then αX is an analytic fiber bundle. Furthermore, let D be a G-stable subvariety

(which may be singular) of X admitting a surjective morphism p : D → V with

connected fibers onto a lower-dimensional manifold V with b1(V ) = 0 and dimV >

0. If Γ is a smooth irreducible fiber of p, then the following hold:

(1) αX(Γ) = A.

(2) Let π : Z := BlΓ(X) → X be the blow-up of X along Γ. Then the alge-

braic group homomorphism (αZ)∗ : Aut0(Z) → Aut0(A) ≃ A induced by the

Albanese map αZ : Z → A of Z is also surjective. In particular, αZ is an

analytic fiber bundle.

Now we recall the following result concerning automorphism groups of the

Atiyah surface S.

Lemma 4.26 (Cf. [16]). Let S be the Atiyah surface and s∞ its canonical section.

We set G := Aut0(S). Then we have the following:

� There exists an unsplit exact sequence of algebraic groups,

1 −→ Ga −→ G
φ−→ C −→ 1,

where φ : G→ Aut0(C) ≃ C is a group homomorphism induced by the univer-

sality of the Albanese map of S (cf. Theorem 4.24). That is, G is a nontrivial

extension of an elliptic curve C by the additive group Ga ≃ C. Moreover, G

is commutative.

� G preserves s∞ and acts transitively on its complement S0 := S \ s∞. In

particular, S is an almost homogeneous variety.

Theorem 4.27. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Let (Y•, R•) be an FESP of type

(C−∞) constructed from X• = (X, f) by a sequence of blow-downs of an ESP.

Suppose that Y• is of Atiyah type (cf. Definition 1.3). Then the Albanese map

αX : X → C is an analytic fiber bundle over the Albanese elliptic curve C whose

fiber is a blow-up of the Hirzebruch surface Fa.

Proof. Hereafter, we shall give a proof in the case where there exists an FESP Y•
of type (Atiyah.A) (cf. Definition 4.5).

Step 1 (Some reduction). By Theorem 4.20, we can construct a constant FESP

Y• = (Y, g) of X•. There exists a sequence of blow-downs of an ESP

X• = (X, f) −→ · · · −→ X
(i−1)
•

π(i−1)

−−−−→ X
(i)
• −→ · · · −→ Y•,
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such that the following conditions are satisfied for each i:

� X
(i)
• = (X(i), f (i)) is a constant ESP induced from a nonisomorphic étale

endomorphism f (i) : X(i) → X(i).

� π(i−1) : X
(i−1)
• → X

(i)
• is the blow-up along an elliptic curve C(i) on X(i),

where we set X(0) := X and X(k) := Y .

� f (i)
−1

(C(i)) = C(i).

Then applying Lemma 2.1 to the Cartesian morphism

C
(i)
• ↪→ X

(i)
•

π
(k−1)
• ◦···◦π(i)

•−−−−−−−−−→ X
(k)
• =: Y•,

we see that the image γ
(i)
• of C

(i)
• in Y• is an ESP of elliptic curves such that

the inclusion γ
(i)
• ↪→ Y• is Cartesian. Hence Lemma 4.23 shows that γ

(i)
• = Γ•

and any C(i) dominates Γ ≃ C. The exceptional divisor E(i−1) := Exc(π(i−1)) of

π(i−1) is isomorphic to either S or PCi
(O⊕ℓ(i)), where ℓ(i) ∈ Pic0(C(i)) is a torsion

line bundle by Theorems 4.9 and 4.10. Let α(i) : X(i) → C be the Albanese map of

X(i). Then by the universality of the Albanese map, there exists an endomorphism

h : C → C such that αX ◦ f = h ◦ αX . By the same reason as in the proof

of Theorem 4.12(Step 1), we have deg h = deg f > 1 and h has a fixed point

o ∈ C. Hence, if C is endowed with the group structure so that o ∈ C is the

zero element, then we may assume that h is a group homomorphism. We can

choose a multiplication map µn : C → C by an integer n > 0 such that µn is

factored through α(i) : X(i) → C for any i. Then µn ◦ h = µn ◦ h. Hence, if we

set X̃ := X ×C,h C, then f : X → X can be lifted to a nonisomorphic étale

endomorphism f̃ : X̃ → X̃. Since the property that “the Albanese map αX gives

an analytic fiber bundle structure” is preserved by étale base change, without loss

of generality we may assume the following as in the proof of Theorem 4.12:

(1) Each elliptic curve C(i) is a section of the Albanese map α(i) := αY ◦ π(k−1) ◦
· · · ◦ π(i) : X(i) → C.

(2) Each E(i) := Exc(π(i)) is isomorphic to either S or C × P1.

Step 2. Let (α(i))∗ : Aut0(X(i)) → Aut0(C) ≃ C be the induced algebraic group

homomorphism. Note that the elliptic curve C acts on itself transitively by trans-

lations. Now we recall the following lemma which gives a sufficient condition for a

fiber space to be an analytic fiber bundle whose proof is done with the aid of [2].

Lemma 4.28 (Cf. [8, Lem. 4.8]). Let φ : X → Y be a fiber space of smooth projec-

tive varieties X and Y with 0 < dimY < dimX. Suppose that Y is a homogeneous

variety and the induced algebraic group homomorphism φ∗ : Aut0(X) → Aut0(Y )

is surjective. Then φ is an analytic fiber bundle.
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Hence, applying Lemma 4.28, it is sufficient to show the surjectivity of the

group homomorphism (αX)∗ : Aut0(X) → Aut0(C) ≃ C. This follows immedi-

ately from the following assertions for the case of i = 0.

Lemma 4.29. For the induced algebraic group homomorphism (α(i))∗ : Aut0(X(i))

→ C, we have the following: (Surj)i : (α
(i))∗ is surjective.

Proof. The proof of the assertion is by a descending induction on i. For the case

of i = k, the assertion is trivial by Lemma 4.22. Next suppose that the assertion

holds true for i and set ui := π(k−1) ◦ · · · ◦ π(i) : X(i) → Y . Note that by the

construction of FESP, the following hold (cf. Proposition 4.2 and Theorem 4.9):

� The exceptional locus Exc(ui) is a simple normal crossing divisor.

� Any irreducible component of Exc(ui) is isomorphic to either S or C×P1 and

is Aut0(X(i))-stable.

� The blow-up center C(i) of π(i−1) is contained in some irreducible component

∆i of Exc(ui) for i < k, and C(k), which is the first blow-up center from the

bottom, equals Γ (:= T ∩D) (cf. Lemma 4.19).

If ∆i ≃ S, then C(i) = s∞. Applying Proposition 2.5, we infer that C(i) is

Aut0(X(i))-invariant. Hence, by [8, Prop. 4.7], the induced injective algebraic group

homomorphism π
(i−1)
∗ : Aut0(X(i−1)) → Aut0(X(i)) is an isomorphism. Thus the

composite map (α(i−1))∗ = (α(i))∗ ◦ π(i−1)
∗ : Aut0(X(i−1)) → C is also surjective

and the assertion holds for i− 1.

Suppose that ∆i ≃ C × P1. Then C(i) is some fiber of the second projec-

tion p2 : C × P1 → P1. Then by Proposition 4.25, the induced algebraic group

homomorphism α
(i−1)
∗ is also surjective and the assertion holds for i− 1.

The proof in the case where Y• is of type (Atiyah.B) (cf. Definition 4.5) is

completely the same, so we omit it.

Remark 4.30. We note that the linear part L(G) of G := Aut0(Y ) is nontrivial.

The morphism φ : Y → S induces a group homomorphism ψ∗ : G → Aut0(S).
Since s∞ (⊂ S) is stabilized by ψ∗(G), ψ∗ induces an automorphism group of

T := ψ−1(s∞) ≃ S. Suppose that L(G) is trivial. Then by Theorem 4.24, we see

that G is an elliptic curve. Thus there is induced a nontrivial group homomorphism

ψ∗ : G→ Aut0(T ) ≃ Aut0(S), which contradicts Lemma 4.26.

Proof of Theorem 1.4. It follows immediately from [5, Prop. 3.8], Proposition 4.3

and Theorems 4.12, 4.20 and 4.27.
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§5. Torsion case

Let f : X → X be a nonisomorphic étale endomorphism of a smooth projective

3-fold X with κ(X) = −∞. Suppose that there exists an FESP F• of torsion type

(cf. Definition 1.3). There exist the following Cartesian morphisms of ESPs:

X• = (X, f)
π•−→ Y• = (gn : Yn → Yn+1)n
φ•−−→ S• = (un : Sn → Sn+1)n

α•−−→ C• = (C, h)

such that any Sn is isomorphic to PC(OC ⊕ ℓn) for a torsion line bundle ℓn ∈
Pic0(C) and S0 ≃ C × P1. Let p1 : S0 → C (resp. p2 : S0 → P1) be the first (resp.

the second) projection and s a general fiber of p2. Then there exist a divisor D on

C and the following exact sequence of sheaves on S0:

(♢) : 0 −→ p∗2OP1(a)⊗ p∗1OC(D) −→ E0 −→ OS0
−→ 0

such that Y0 = PS0
(E0) for a rank-two vector bundle E0 on S0 (cf. Theorem 2.13).

The following proposition is crucial.

Proposition 5.1. The line bundle [D] ∈ Pic(C) is of finite order.

Proof. Note that by Proposition 2.8, the fibration p2 ◦φ0 ◦ π0 : X → P1 is smooth

over a nonempty Zariski open subset T of P1 and its smooth fiber Xt over a point

t ∈ T is isomorphic to a P1-bundle P(E0|{t}×C) over C.
Suppose to the contrary that [D] ∈ Pic(C) is of infinite order. Then Xt ≃

PC(OC(D) ⊕ OC) for t ∈ T . If deg(D) = 0 and [D] is of infinite order, then by

Proposition 2.6, the surface Xt is mapped to an irreducible curve on S0 by the

morphism φ0 ◦ π0 ◦ f : X → S0. If deg(D) ̸= 0, then there exists no surjective

morphism from PC(OC(D) ⊕ OC) to S0 by considering the induced Mori cone

isomorphism similar to the argument in the proof (2) of Proposition 4.6. Thus,

applying the rigidity lemma (cf. [14, Lem. 1.6]), we see that any fiber of φ0 ◦
π0 : X → S0 is mapped to a point by the morphism φ0◦π0◦f : X → S0. Hence there

exists a surjective endomorphism v : S0 → S0 so that the following commutative

diagram holds:

X

φ0◦π0

��

f
// X

φ0◦π0

��

S0
v //

p1

��

S0

p1

��

C
h
// C.
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Then we have deg f = deg v (resp. deg f = deg h), since f is étale and each fiber of

φ0 ◦π0 (resp. p1 ◦φ0 ◦π0) is simply connected and hence has fiber degree one. Thus

deg v = deg h and v has degree one when restricted to a fiber of p1 so that v|p−1
1 (t) is

an isomorphism for any t ∈ C. Since C is complete and Aut(P1) is affine, the mor-

phism Φ: C → Aut(P1), t 7→ v|p−1
1 (t) is a constant map. Thus v = h×u for a unique

automorphism u : P1 ≃ P1. Hence, for a point t ∈ T , the restriction of f : X → X

to Xt induces a nonisomorphic finite étale covering f |Xt
: Xt → Xu(t). Since there

exists another isomorphism Xt ≃ Xu(t) ≃ PC(OC(D) ⊕ OC), we can regard f |Xt

as a nonisomorphic étale endomorphism of Xt. Thus, by Proposition 2.3, we see

that [D] ∈ Pic(C) is of finite order, which contradicts the assumption.

Then Proposition 5.1 shows that e := ord([D]) < ∞ and let µe : C → C be a

multiplication mapping by a positive integer e. Further replacing X by its finite

étale Galois covering X̃ := X ×C,µe
C of X and f : X → X by its lift f̃ : X̃ → X̃,

we may assume from the beginning that D = 0. Hence the exact sequence (♢) just

before Proposition 5.1 can be reduced to the following exact sequence of sheaves

on S0 ≃ C × P1:

(⋆) : 0 −→ p∗2OP1(a) −→ E0 −→ OS0 −→ 0.

Hereafter, for simplicity, we set Y := Y0 and S := S0. By the composite map

ψ : Y
φ0−→ S

p2−→ P1, we regard Y = PS(E0) as a fiber space over P1. For each

t ∈ P1, let Yt be the fiber of ψ over t. Then by [5, Prop. 7.8] and Proposition 2.8,

we see that X is constructed from Y by a succession of blow-ups along an elliptic

curve which belongs to Yt for some t ∈ P1 and dominates C. Hence there exists a

Zariski open subset (P1)0 of P1 such that π0|Xt : Xt ≃ Yt is an isomorphism for all

t ∈ (P1)0.

Lemma 5.2. For any t ∈ P1, Yt is isomorphic to either an Atiyah surface S or

the product C × P1.

Proof. The restriction of (⋆) to (p2)
−1(t) gives the following exact sequence of

sheaves:

0 −→ OC −→ E0|(p2)−1(t) −→ OC −→ 0

such that Yt ≃ P(E0|(p2)−1(t)). Hence, if the above exact sequence unsplits (resp.

splits), then Yt ≃ S (resp. Yt ≃ C × P1).

By Ω (⊂ P1), we denote the set of points t ∈ P1 such that Yt is isomorphic to

the Atiyah surface S. By construction, if t ∈ P1 \ Ω, then Yt ≃ C × P1. Applying

the same method as in the proof of [6, Lem. 2.3], we can show the following.

Lemma 5.3. The set Ω is a Zariski open subset of P1.
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Proposition 5.4. Under the assumption in (⋆), suppose that Ω ̸= ∅. Then Sn ≃
C × P1 for any n, that is, S• is a stable ESP.

Proof. For any t ∈ (P1)0, there exists an isomorphism π|Xt
: Xt ≃ Yt ≃ S. Since

Sn ≃ PC(OC ⊕ ℓn) for ℓn ∈ Pic0(C), Proposition 2.6 shows that the image of

Xt by the composite map φn ◦ πn : X → Sn is a curve on Sn. Hence some fiber

of Xt → C is mapped to a point by φn ◦ πn : X → Sn. Applying the “rigidity

lemma” (cf. [14, Lem. 1.6]) to the equidimensional morphism φ0 ◦ π0 : X → S, we

see that any fiber of φ0 ◦ π0 is mapped to a point by φn ◦ πn : X → Sn. Hence

there exists a surjective morphism vn : S0 → Sn such that vn ◦ φ0 ◦ π0 = φn ◦ πn.
Since ρ(S0) = ρ(Sn) = 2, vn is a finite morphism. Furthermore, since both fibers of

φ0◦π0 and φn◦πn are connected, we have deg(vn) = 1. Thus vn is an isomorphism

by Zariski’s main theorem. Hence Sn ≃ C × P1 for any n.

Hence our situation is divided into two cases.

� Case (Torsion.A): If Ω ̸= ∅, then Y → P1 is a smooth morphism whose general

fiber Yt is isomorphic to S. We can show that Ω ⫋ P1 (cf. Proposition 5.11).

� Case (Torsion.B): If Ω = ∅, then Y → P1 is a fiber bundle whose fiber is

isomorphic to C × P1.

Definition 5.5. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of torsion type (cf. Definition 1.3). We set Y := Y0 and let Yt be a fiber of a

smooth morphism Y → P1 over a point t ∈ P1. Let Ω denote the set of points

t ∈ P1 such that Yt is isomorphic to the Atiyah surface S. Then we say that

� Y• is of type (Torsion.A) if Ω ̸= ∅.
� Y• is of type (Torsion.B) if Ω = ∅.

§5.1. Classifications in the case (Torsion.B)

In this section, we shall give the structure theorem of a nonisomorphic étale endo-

morphism f : X → X which has an FESP Y• of type (Torsion.B).

Theorem 5.6. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Let Y• be an FESP constructed

from X• = (X, f) by a sequence of blow-downs of an ESP. Suppose that Y• =

(gn : Yn → Yn+1)n is of type (Torsion.B) (cf. Definition 5.5). Then the following

hold:

(1) Y0 is isomorphic to the product T ×C of an elliptic curve C and a Hirzebruch

surface T ≃ Fa (a ≥ 0).
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(2) There exists an isomorphism X ≃ W × C, where W → T is a birational

morphism.

(3) f = u × h for an automorphism u : W ≃ W and an isomorphic étale endo-

morphism h : C → C.

Theorem 5.6 can be proved by a similar method to the proof of [6, Prop. 3.1]

and [8, Thm. 6.8], though it needs slight modifications. It requires new arguments

to seek the candidate for the blow-up centers of π• : X• → Y•. The trouble is that

in the proof of Theorem 5.6, it is not at all clear whether ord ℓn (∈ Pic(C)) is

bounded above by a positive constant which is independent of n.

Lemma 5.7. Let f : X → X be a nonisomorphic étale endomorphism of a smooth

projective 3-fold X with κ(X) = −∞. Let Y• = (gn : Yn → Yn+1)n be an FESP

constructed from X• := (X, f) by a sequence of blow-downs of an ESP. Suppose

that Y• is of type (Torsion.B). Then there exists an isomorphism Y0 ≃ T × C of

an elliptic curve C and a Hirzebruch surface T ≃ Fa.

Proof. We set Y := Y0. Since all the fibers Yt of ψ over t ∈ P1 are isomorphic

to C × P1, ψ : Y → P1 is a holomorphic fiber bundle over P1 by the theorem

of Fischer–Grauert [2]. Since the relative anti-canonical bundle −KY/P1 is ψ-free,

there is induced an elliptic fibration

α : Y ↠ T ⊂ PP1(ψ∗(−KY/P1))

over a P1-bundle q : T → P1 so that ψ = q◦α. This elliptic fibration α is an elliptic

fiber bundle, since for all t ∈ P1, α|Yt : Yt → P1 is a trivial elliptic bundle over P1.
For the composite map φ′ : Y

φ−→ S = C × P1 p1−→ C, let us consider the canonical

morphism Ψ := α× φ′ : Y → T × C. Then by construction, Ψ is an isomorphism,

since Ψ is of degree one when restricted to each fiber of ψ. Furthermore, since the

composite map Y
Ψ−→ T ×C

p2−→ C is the Albanese map of Y , we see that T ≃ Fa.
Thus the proof is finished.

Proof of Theorem 5.6. In the case where a = 0 (that is, Y ≃ P1 × P1 × C), the

assertion has been proved in our previous article [8, Thm. 8.11]. Hence, hereafter we

assume that a > 1. By construction, there exists the following Cartesian morphism

of ESPs:

X• = (X, f)
π•−→ Y• = (gn : Yn → Yn+1)n

φ•−−→ S• = (un : Sn → Sn+1)n
α•−−→ C• = (C, h)

such that the following conditions are satisfied:

� π• is a sequence of blow-ups along elliptic curves.
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� Any Sn is isomorphic to PC(OC ⊕ ℓn) for a torsion line bundle ℓn ∈ Pic0(C)

and S0 ≃ C × P1.

We shall describe the centers of a sequence of blow-ups π•. There exist an

ESP Y
(j)
• = (g

(j)
n : Y

(j)
n → Y

(j)
n+1)n for 0 ≤ j ≤ k, Cartesian morphisms ν

(j)
• =

(ν
(j)
n )n : Y

(j−1)
• → Y

(j)
• for 1 ≤ j ≤ k and the Cartesian diagram of ESPs,

X•
ν
(1)
• // Y

(1)
• // · · ·Y (j−1)

•
ν
(j)
• // Y

(j)
• · · · // Y•

E
(0)
• //

OO

E
(1)
• //

OO

· · ·E(j−1)
• //

OO

E
(j)
• · · · //

OO

E
(k)
• ,

OO

such that the following conditions are satisfied:

� (g
(j)
n )−1(E

(j)
n+1) = E

(j)
n , where g

(k)
n := g, g

(0)
n = f , that is, E

(j)
• =(g

(j)
n |

E
(j)
n

: E
(j)
n

→ E
(j)
n+1)n is a sub-ESP of elliptic curves on Y

(j)
• .

� ν
(j)
• : Y

(j−1)
• → Y

(j)
• is (the inverse of) the blow-up along E

(j)
• on Y

(j)
• , where

Y
(0)
• := X• and Y

(k)
• := Y•.

In what follows, for simplicity, we omit the subscript “0” and set Y (i) :=

Y
(i)
0 , ν(i) := ν

(i)
0 , S(i) := S

(i)
0 and E(i) := E

(i)
0 . We shall prove the following asser-

tions.

Assertions. For any 0 ≤ i ≤ k,

(1)i: Y
(i) is isomorphic to the direct product T (i) ×C over T (i), where T (i) → Fa

is a birational morphism;

(2)i: for any sub-ESP ∆
(i)
• (↪→ Y

(i)
• ) of elliptic curves, ∆(i) := ∆

(i)
0 is some fiber

of the first projection pi : Y
(i) → T (i);

(2)′i: the blow-up center E(i) of ν(i) : Y (i−1) → Y (i) is some fiber of the first

projection pi : Y
(i) → T (i).

Proof. We note that (2)′i follows from (2)i, since E
(i)
• is an ESP of elliptic curves.

The proof is done by a descending induction on i. For i = k, (1)k follows immedi-

ately from Lemma 5.7. Next we shall prove the (2)k. Applying Lemma 2.1 to the

Cartesian morphisms of ESPs,

∆
(k)
•

i• // Y•

φ•
��

S
(k)
• ,
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it follows that φ•(∆
(k)
• ) is an ESP of elliptic curves such that the inclusion

φ•(∆
(k)
• ) ↪→ S

(k)
• is Cartesian. Applying Proposition 4.11, we see that for any

n, φn(∆
(k)
n ) is an elliptic curve on S

(k)
n whose self-intersection number equals zero.

Since S
(k)
0 ≃ C × P1, φ0(∆

(k)
0 ) is some fiber of the second projection p2 : S

(k)
0 ≃

C × P1 → P1. Hence the proof of Lemma 5.7 shows assertion (2)k.

Next suppose that the assertions hold true for i + 1. Assertion (1)i follows

immediately from (1)i+1 and (2)′i+1. Applying Lemma 2.1 to the Cartesian mor-

phisms of ESPs

∆
(i)
• ↪→ Y

(i)
•

ν
(i+1)
•−−−−→ Y

(i+1)
• ,

we see that ν
(i+1)
• (∆

(i)
• ) is an ESP of elliptic curves such that the inclusion

ν
(i+1)
• (∆

(i)
• ) ↪→ Y

(i+1)
• is Cartesian. Hence, by (2)i+1, ν

(i+1)
0 (∆

(i)
0 ) is some fiber

of the first projection pi+1 : Y
(i+1)
0 → T

(j+1)
0 . By (2)′i+1, we have either of the

following two cases:

(a) ν(i+1)(∆(i)) ∩ E(i+1) = ∅, or
(b) ν(i+1)(∆(i)) = E(i+1).

In case (a), (2)i is clear by construction. In case (b), ∆
(i)
• is a sub-ESP of D

(i)
• :=

Exc(ν
(i+1)
• ) which is an ESP of elliptic ruled surfaces. Since D(i) := D

(i)
0 ≃ C×P1

and the self-intersection number (∆(i))2 in D(i) equals 0 (cf. [5, Prop. 6.9]), ∆(i)

is contained in some fiber of the second projection D(i) → P1. Thus assertion (2)i
has been proved.

Theorem 5.6 follows immediately from assertion (1)0.

Remark 5.8. Let u : S → P1 be a relatively minimal rational elliptic surface with

a section whose Mordell–Weil rank is positive. Then S contains infinitely many

(−1)-curves. If we consider S as an elliptic curve over the function field C(P1) of
P1, then there exists a relative automorphism g over P1 with infinite order which

is induced by a holomorphic section of u with infinite order. If we set X := S ×C

for an elliptic curve C, then there exist infinitely many KX -negative extremal

rays. Since S is obtained from P2 by blow-up 9-points, S is an 8-points blow-up

of F2. Let µn : C → C be a multiplication mapping by a positive integer n > 1

and f := g × µn a nonisomorphic étale endomorphism of X. Hence, if we set

Y0 := C × F2 → C × P1, then there is induced an FESP Y• of X• := (X, f) which

is of type (Torsion.B).

§5.2. Classifications in the case (Torsion.A)

Let f : X → X be a nonisomorphic étale endomorphism of a smooth projective

3-fold X with κ(X) = −∞. Here we shall study the structure of X in the case
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where there exists an FESP Y• of type (Torsion.A) (cf. Definition 5.5). In this case,

we can show that the MMP works compatibly with étale endomorphisms and we

can obtain a constant FESP (cf. Definition 2.9) of X• = (X, f).

Proposition 5.9. Suppose that π0 : X → Y0 is not an isomorphism. Let Xs be a

fiber of p2 ◦ φ ◦ π0 : X → P1 over a point s ∈ P1. Suppose that Xs ≃ S for some

s ∈ (P1)0. Then there exists an extremal ray R (⊂ NE(X)) of divisorial type such

that (fk)∗R = R for some integer k > 0. Furthermore, replacing f by a suitable

power fk (k > 0), there exist Cartesian morphisms of constant ESPs

X• = (X, f)
π−→ Y• = (Y, g)

φ−→ S• = (S, v)

such that the following hold:

� Y• is a constant FESP (cf. Definition 2.9) and X• is constructed from Y• by

a sequence of equivariant blow-ups π• = π : X → Y along elliptic curves.

� v = h× u for some automorphism u of P1 and a nonisomorphic group homo-

morphism h : C → C of an elliptic curve C.

Proof. By Proposition 2.6, we see that φ0 ◦π0 ◦ f(Xs) is a curve on S0. Hence, by

the rigidity lemma (cf. [14, Lem. 1.6]), some fiber of φ0 ◦ π0 : Xs → C is mapped

to a point on S0 by the morphism φ0 ◦ π0 ◦ f : Xs → C. Since φ0 ◦ π0 : X → S0

is equidimensional, again by the rigidity lemma (cf. [14, Lem. 1.6]), any fiber of

φ0 ◦π0 is mapped to a point by φ0 ◦π0 ◦f : X → S0. Hence there exists a surjective

endomorphism v : S0 → S0 such that φ0 ◦ π0 ◦ f = v ◦ φ0 ◦ π0. Thus we have the

following commutative diagram:

X

φ0◦π0

��

f
// X

φ0◦π0

��

S0
v //

p1

��

S0

p1

��

C
h
// C.

Then, since f is étale, we have deg f = deg v = deg h and v can be expressed

as v = h× u for some automorphism u of P1 as in the proof of Proposition 5.1.

By construction, the P1-fiber space φ0 : π0 : X → S0 is smooth over S0 outside

B := p−1
2 (P1 \ (P1)0) consisting of finitely many fibers of the second projection

p2 : S0 → P1 and the blow-up centers of π lie over B (cf. Proposition 2.8(3)). Then

an étale endomorphism f : X → X induces a permutation between the finite set

M consisting of all the irreducible components of (φ0 ◦π0)−1(B). Hence, replacing



Étale Endomorphisms of 3-Folds. IV 211

f by a suitable power fk (k > 0), we may assume that f−1(σ) = σ for all σ ∈M .

Let R (⊂ NE(X)) be an extremal ray of divisorial type such that φ0 ◦π0(Exc(πR))
is contained in B. Since Exc(πR) ∈ M , we have f∗R = R. Then applying the

same argument as in the proof of [5, Prop. 3.8], the MMP works compatibly with

étale endomorphisms and we obtain Cartesian morphisms of constant ESPs which

satisfies the desired property.

Remark 5.10. In Corollary 7.5, using Proposition 5.9, we can strengthen our

statement: “There exist only finitely many extremal rays R (⊂ NE(X)) of divisorial

type. In particular, there exists some positive integer k such that (fk)∗R = R for

any extremal ray R.” (Cf. Remark 7.7.)

Next we shall describe the structure of the constant FESP Y• in terms of FES

(cf. Definition 2.25).

Proposition 5.11. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y ′
• of type (Torsion.A) (cf. Definition 5.5). Let

X• = (X, f)
π−→ Y• = (Y, g)

φ−→ S• = (S, v)

be Cartesian morphisms of constant ESPs obtained after replacing f by its suitable

power fk (k > 0) as in Proposition 5.9. Let p2 : S = C × P1 → P1 be the second

projection. Then there exist an integer a > 1 and an unsplit exact sequence of

vector bundles called “FES” (cf. Definition 2.25) on S,

(5.1) 0 −→ p∗2OP1(a) −→ E q−→ OS −→ 0

which satisfies the following properties:

(i) The surjection q corresponds to the section D of φ.

(ii) There exists an isomorphism Y ≃ PS(E) over S = C × P1.
(iii) v∗E ≃ E and the extension class η ∈ Ext1(OS , p

∗
2OP1(a)) of (5.1) is preserved

by v : S → S up to a scalar.

(iv) p2◦φ : Y → P1 is a smooth morphism but is not a fiber bundle, and a jumping

phenomenon occurs: There exists a nonempty Zariski open subset M (⫋ P1)
of P1 such that

Yt ≃

{
S, t ∈M,

C × P1, t /∈M,

where Yt := (p2 ◦ φ)−1(t) is a fiber over a point t ∈ P1.
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Proof. First we note that deg h = deg f > 1, since f is étale and each fiber of

p1 ◦ φ ◦ π : X → C is simply connected so that the fiber degree of f equals one.

Since C is an elliptic curve, h has a fixed point o ∈ C. If C is endowed with a group

structure so that o ∈ C is the zero element, then we may assume that h : C → C

is a group homomorphism. Since u is a nonisomorphic étale endomorphism of

S = C × P1, we have u = h× u for some u ∈ AutP1.
By assumption, assertions (i) and (ii) hold and Proposition 5.1 shows the

existence of the above exact sequence (5.1). If we set St := p−1
2 (t) for t ∈ C, then

the restriction of (5.1) to St ≃ C gives the following exact sequence:

(5.2) 0 −→ OC −→ E|St −→ OC −→ 0.

Since Yt ≃ PC(E|St
), we see that

E|St ≃

{
F2 if (5.2) unsplits,

OC ⊕OC if (5.2) splits.

If (5.1) splits, then Yt ≃ P1 × C for any t ∈ P1, which contradicts our assump-

tion. Hence (5.1) unsplits. Let M (⊂ P1) be a nonempty Zariski open subset such

that St is isomorphic to the Atiyah surface S for any t ∈M . Then s∞,t := St ∩D
(⊂ D ≃ S) is the canonical section of S. By Proposition 2.5, we see that

g−1(s∞,u(t)) = s∞,t for any t ∈M . Hence we have g−1(D) = D, since
⋃
t∈M s∞,t =

D. The former assertion in (iii) follows immediately from this fact.

By the Künneth formula, there exist isomorphisms

(5.3) Ext1OS
(OS , p

∗
2OP1(a)) ≃ H1(S, p∗2OP1(a)) ≃ H0(P1,OP1(a))⊗H1(C,OC),

since H1(P1,OP1(a)) = 0 for a > 1. Hence Ext1OS
(OS , p

∗
2OP1(a)) ̸= 0 and let

0 ̸= η ∈ Ext1OS
(OS , p

∗
2OP1(a)) be the nonzero extension class of (5.1). Then we

have η = η1⊗η2 for some nonzero η1 ∈ H0(P1,OP1(a)) and η2 ∈ H1(C,OC). Note

that the group homomorphism h : C → C acts on the vector space H1(C,OC) as a

multiplication by a nonzero constant µ2 ∈ C×. Hence u∗η2 = µ2η2. Furthermore,

since the extension class η is preserved by v = h × u (u ∈ Aut(P1)), we have

h∗η1 = µ1η1 for some nonzero constant µ1. Thus the latter assertion in (iii) has

been proved.

Let Λ (̸= ∅) be the finite set of P1 on which η1 vanishes and set M := P1 \Λ.
Then

Yt ≃

{
S, t ∈M,

C × P1, t /∈M.

Thus assertion (iv) has been proved and we are done.

The automorphism group Aut0(Y ) is not linear, as the next lemma shows.
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Lemma 5.12. We pose the same assumption as in Proposition 5.11. For η ∈ C,

let Tη : C ≃ C be an automorphism of C defined by ζ 7→ ζ + η under the group law

of C. Let αY : Y → C be the Albanese map of Y . Then for any η ∈ C, there exists

an automorphism uη : Y ≃ Y such that αY ◦ uη = Tη ◦ αY .

Proof. The proof is done by a similar method to the proof of [6, Cor. 4.3]. Pulling

back the exact sequence (4) by vη := Tη × idP1 , we obtain the following exact

sequence:

0 −→ p∗2OP(a) −→ v∗ηE −→ OS −→ 0.

Let 0 ̸= µ ∈ Ext1OS
(OS , p

∗
2OP1(a)) be the nonzero extension class of (5.1). Since

there exist isomorphisms

(5.4) Ext1OS
(OS , p

∗
2OP1(a)) ≃ H1(S, p∗2OP1(a)) ≃ H0(P1,OP1(a))⊗H1(C,OC),

we have µ = µ1 ⊗ µ2 for some nonzero µ1 ∈ H0(P1,OP1(a)) and µ2 ∈ H1(C,OC).

Note that the translation Tη : C → C acts trivially on the vector space H1(C,OC).

Hence v∗ηµ = µ. Hence v∗ηE ≃ E . If we set Ỹ := Y ×vη,S S, then there exists an

isomorphism Ỹ ≃ PS(v∗ηE) ≃ PS(E) =: Y . Thus the composite map Y ≃ Ỹ → Y

gives an automorphism uη : Y ≃ Y such that αY ◦ uη = Tη ◦ αY .

The next lemma describes the blow-up centers of π• : X• → Y•.

Lemma 5.13. Let V• ↪→ Y• be any sub-ESP of elliptic curves. Then any Vn is

contained in Yt for some t ∈ P1 and dominates C isomorphically.

Proof. Applying Lemma 2.1 to the Cartesian morphisms of ESPs,

V•
i• // Y•

φ•

��

(C × P1)•,

it follows that φ•(V•) is an ESP of elliptic curves such that the inclusion φ•(V•) ↪→
(C × P1)• is Cartesian. Hence Proposition 4.11 shows that φ•(V•) is a fiber of the

second projection p2 : (C × P1)• → P1. Thus Vn is contained in Yt, where Yt is

a fiber of Y → P1 over t ∈ P1. Furthermore, Proposition 5.11 shows that any Yt
is isomorphic to either S or P1 × C. Hence, applying Proposition 4.11, if Yt ≃ S
(resp. Yt ≃ P1 × C), then Vn is isomorphic to the canonical section s∞ and Vn =

D∞ ∩ Yt (resp. Vn is a fiber of the projection Yt → P1). In both cases, any Vn
dominates C isomorphically.

Now we shall state one of our main results.



214 Y. Fujimoto

Theorem 5.14. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Let Y ′
• be an FESP constructed

from X• = (X, f) by a sequence of blow-downs of an ESP. Suppose that Y ′
• is of

type (Torsion.A). Then replacing f : X → X by its suitable power fk (k > 0), we

obtain further Cartesian morphisms of constant ESPs:

X•
π−→ Y• = (Y, g)

φ−→ S• = (S, v)
p1−→ C• = (C, h)

which satisfy the following:

(1) Y• is a constant FESP (cf. Definition 2.9) constructed from X• by a sequence

of equivariant blow-downs π.

(2) S ≃ C × P1 and v = h× u for an automorphism u of P1.
(3) There exists an unsplit exact sequence of vector bundles on S,

0 −→ p∗2OP1(a) −→ E −→ OS −→ 0,

for an integer a > 1 such that Y = PS(E).
(4) p2 ◦φ : Y → P1 is a smooth morphism but is not a fiber bundle, and a jumping

phenomenon occurs: There exists a nonempty Zariski open subset M (⫋ P1)
of P1 such that

Yt ≃

{
S, t ∈M,

C × P1, t /∈M,

where Yt := (p2 ◦ φ)−1(t) is a fiber over a point t ∈ P1.
(5) By the Albanese map αX = p1 ◦ φ ◦ π : X → C, X is a fiber bundle over C

whose fiber is birational to the Hirzebruch surface Fa.

Proof. Assertions (1), (2), (3) and (4) follow immediately from Propositions 5.9

and 5.11. Applying Lemmas 5.12, 5.13 and a similar argument to Step 2 in the

proof of Theorem 4.27, we see that the group homomorphism (αX)∗ : Aut0(X) →
Aut0(C) ≃ C induced by the Albanese map αX : X → C is surjective. Hence

Lemma 4.28 shows that αX : X → C is an analytic fiber bundle. Thus assertion

(5) is derived.

Applying elementary transformations (cf. Definition 3.3) to S × P1 → P1

successively, we can construct an example stated as in Theorem 5.14(3).

Remark 5.15. Now we shall apply Theorem 3.2 to the P1-bundle over S :=

C × P1. We take the following unsplit exact sequence of vector bundles on S:

(Ea) : 0 −→ p∗2OP1(a) −→ Ea −→ OS −→ 0,
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where a ≥ 0. Let Da be a section of φa : Ya := PS(Ea) → S corresponding to the

surjection Ea ↠ OS . Let µn : C → C be a multiplication mapping by an integer

n > 1. Then ρ := µn × idP1 is a nonisomorphic étale endomorphism of S. Since

ρ∗Ea ≃ Ea, there exists a nonisomorphic étale endomorphism ga : Ya → Ya. We

choose a general point t ∈ P1 such that (Ya)t ≃ S and let (Γa)t := (Ya)t ∩ Da

be the canonical section of (Ya)t ≃ S. Let δa : Ea ↠ O(Γa)t be the composite of

Ea ↠ OS and the canonical homomorphism OS ↠ O(Γa)t . We set E ′
a := Ker(δa).

Then E ′
a is a vector bundle of rank two on S and we have the following exact and

commutative diagram:

0 // p∗2OP1(a) // Ea // OS
// 0

0 // p∗2OP1(a) //

id

OO

E ′
a

//

OO

OS(−(Γa)t) //

OO

0.

We set Ya+1 := PS(E ′
a). Then by Theorem 3.2, we see that Ya+1 is obtained from Ya

by performing elementary transformations along (Γa)t, i.e., Ya+1 = elm(Γa)t(Ya).

Since g−1
a ((Γa)t) = (Γa)t, there is induced a nonisomorphic étale endomorphism

ga+1 : Ya+1 → Ya+1. If we set Ea+1 := E ′
a ⊗ OS((Γa)t), then there exists the

following unsplit exact sequence of vector bundles on S:

(Ea+1) : 0 −→ p∗2OP1(a+ 1) −→ Ea+1 −→ OS −→ 0,

such that Ya+1 ≃ PS(Ea+1). First, if we start from a = 0, then there exists the

unsplit exact sequence of vector bundles on S

(E0) : 0 −→ p∗2OP1 −→ E0 −→ OS −→ 0,

such that Y0 := P(E0) ≃ S× P1 and (Y0)t ≃ S for any t ∈ P1. Now, for an integer

k > 0, we choose distinct k points ti ∈ P1 (1 ≤ i ≤ k) arbitrarily and perform

elementary transformations successively on Y0 along the canonical section (s∞)i
(⊂ (Y0)ti) as explained above. Then we obtain the following unsplit exact sequence

of vector bundles on S:

(Ek) : 0 −→ p∗2OP1(k) −→ Ek −→ OS −→ 0.

If we set Yk := PS(Ek), then the composite φk : Yk → S ≃ C×P1 → P1 is a smooth

morphism but not a fiber bundle. By construction, we have

(Yk)t ≃

{
S, t /∈ P1 \ {t1, . . . , tk},
C × P1, t = ti,

for (Yk)t := φ−1
k (t), t ∈ P1. The case where k = 1 was considered in [5, Rem. 8.3].
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Remark 5.16. In our previous article (cf. [8, Thms 1.2 and 1.3]), we classified

a smooth projective 3-fold X admitting a nonisomorphic étale endomorphism

f : X → X in the case where there exists an FESP of type (D) (cf. [5, Def. 3.6(2)]).

In this case, after taking a finite étale covering and performing divisorial contrac-

tions, we can reduce to the case where an FESP Y• is a P2-bundle or P1×P1-bundle
over an elliptic curve C. Hereafter we assume that π• : X• → Y• is not an isomor-

phism and take a sequence of blow-downs to an FESP Y•:

X• := (X, f) = X
(0)
•

π0,•−−→ X
(1)
• −→ · · · −→ X

(k−1)
•

πk−1,•−−−−→ X
(k)
• := Y•.

(1) In the case where Y• → C• is a P2-bundle, then the FESP Y• can be classified

into three types:

� If Y ≃ C × P1 × P1, then X is isomorphic to the product of a rational surface

and an elliptic curve C.

� If Y• → C• is a P2-bundle such that Y• ≃ PC(F2 ⊕ OC), or Y• ≃ PC(F3),

then by the first blow-up from the bottom πk−1,• : X
(k−1)
• → Y•, X

(k−1)
• is

a P1-bundle over the ESP of Atiyah surfaces S• or (C × P1)•. Furthermore,

X
(k−1)
• can be described by a rank-two vector bundle on S (i.e., of Atiyah type)

or C × P1 (i.e., of torsion type).

– If Y• is of Atiyah type, then there exists the following exact sequence of

vector bundles on the Atiyah surface S:

0 −→ OS(s∞) −→ E −→ OS −→ 0

such that X(k−1) ≃ PS(E). This corresponds to the case with a = 1 in

the exact sequence (♠) defined at the beginning of Section 3.

– If Y• is of torsion type, then there exists the following exact sequence of

vector bundles on C × P1:

0 −→ p∗2OP1(1) −→ E ′ −→ OC×P1 −→ 0

such that X(k−1) ≃ PS(E). This corresponds to the case with a = 1 in

the exact sequence (3) defined in Proposition 5.14.

(2) If Y• → C• is a P1 × P1-bundle, then after taking a finite étale covering, we

can reduce to the case where Y is isomorphic to one of the following: C ×P1 ×P1,
S× C or S×C S.

� If Y ≃ C × P1 × P1, then X is isomorphic to the direct product of a rational

surface and an elliptic curve C.
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� If Y ≃ S ×C S, then Y can be described by rank-two vector bundles on S.
There exists the following unsplit exact sequence of sheaves:

0 −→ OS −→ E ′′ −→ OS −→ 0

such that Y ≃ PS(E ′′). This corresponds to the case with a = 0 in the exact

sequence (♠) defined at the beginning of Section 3.

� If Y ≃ S×P1, then Y can be described by rank-two vector bundles on C×P1.
There exists the following exact unsplit sequence of sheaves:

0 −→ p∗2OP1 −→ E ′′′ −→ OC×P1 −→ 0

such that Y ≃ PS(E ′′′). This corresponds to the case with a = 0 in the exact

sequence (3) defined in Proposition 5.14.

In this article, the classifications of a smooth projective 3-fold X admitting a

nonisomorphic étale endomorphism and whose FESP is of type (C−∞) are done

under the assumption that a > 1

� in the exact sequence (♠) defined at the beginning of Section 3, and

� in the exact sequence (3) defined in Proposition 5.14.

Proof of Theorem 1.5. This follows immediately from Theorems 5.6, 5.14 and

Corollary 7.5.

§6. Main theorems

In this section, combining all the preceding results, we shall prove Theorem 1.1.

Proof of Theorem 1.1. Let f : X → X be a nonisomorphic étale endomorphism

of a smooth projective 3-fold X with κ(X) = −∞. Since KX is not nef, there

exists an extremal ray. Suppose that there exists some extremal ray of divisorial

type. Then applying [5, Cor. 1.2], we can construct an FESP Y• from the constant

ESP X• = (X, f) by a sequence of blow-downs of an ESP π• : X• → Y•. Take an

extremal ray R• of fiber type on NE(Y•) arbitrarily. We shall prove Theorem 1.1

according to each type of the FESP (Y•, R•). Theorem 1.1 has been proved in

the case where (Y•, R•) is of type (C0) or of type (C1) (resp. of type (D)) in our

previous article [6] (resp. [8]). Hence, hereafter we may assume that the FESP

(Y•, R•) is of type (C−∞). Then, using [5, Thm. 9.6 and Cor. 10.6] and replacing

X by its suitable finite étale covering, we may assume the following for the FESP

Y• = (gn : Yn → Yn+1)n:

� There exists an ESP S• = (hn : Sn → Sn+1)n of elliptic ruled surfaces Sn.

Furthermore, there exists either of the following two cases:
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– Case (A): Any Sn is isomorphic to the Atiyah surface S.
– Case (T): For any n, we have PC(OC ⊕ ℓn) for a torsion line bundle

ℓn ∈ Pic(C) and in particular, S0 ≃ C × P1.

� φ• : Y• → S• is a Cartesian morphism of ESPs such that each Yn is a P1-
bundle over Sn. Furthermore, there exists a vector bundle E of rank two on

S0 satisfying the exact sequences below such that Y0 ≃ PS0
(E).

– In Case (A),

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0,

for a nonnegative integer a, and

– in Case (T),

(⋆) : 0 −→ p∗2OP1(a) −→ E −→ OS0
−→ 0,

for the second projection p2 : S0 → P1 and a nonnegative integer a.

First suppose that a = 0 (cf. Remark 5.16). In Case (A), we have Yn ≃ S×C S
(resp. Y0 ≃ S × P1) if the above exact sequence (♠) unsplits (resp. splits). In all

these cases, the classifications of such varieties have been done in our previous

article [8, Thms 1.1, 1.2 and 1.3]. Similarly, if a = 0, then in Case (B) we have

Y0 ≃ S × P1 (resp. C × P1 × P1) if the above exact sequence (⋆) unsplits (resp.

splits). In all these cases, classifications of such varieties also have been done in

our previous article [8, Thms 1.1, 1.2 and 1.3].

Hence we next consider the case where a > 0. Then by Proposition 1.2,

Theorems 1.4 and 1.5, we see that X satisfies condition (1) or (6) in Theorem 1.1.

Finally, we consider the case where there exists an extremal ray R which is not

of divisorial type. Then (X,R) itself is already an FESP and we may only consider

the case where (X,R) is of type (C−∞). By [5, Thm. 3.10] and [10], (fk)∗R = R

for some k > 0. Hence, by replacing f by fk, we may assume from the beginning

that f∗R = R. Let φ := ContR : X → W be the contraction morphism associated

to R. Then by [5, Props 7.3 and 7.5], we see that φ is a conic bundle over a

smooth surface W which is a P1-bundle over an elliptic curve. Furthermore, there

is induced a nonisomorphic étale endomorphism g : W →W such that φ◦f = g◦φ.
Suppose that φ is not smooth. Then we can apply the same argument as in the

case where the extremal ray R is of divisorial type. After a finite étale base and

divisorial contractions, we can reduce to the case where φ : X →W is a P1-bundle.
Consequently, a suitable finite étale covering X̃ of X is of type (1), (5) or (6) in

Theorem 1.1. Thus we have finished the proof of Theorem 1.1.
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As a by-product of our series of articles (cf. [5, 6, 8] and this article) concern-

ing classifications of 3-folds with nonisomorphic étale endomorphisms, we have

obtained the following.

Theorem 6.1. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Then applying the MMP working

compatibly with étale endomorphisms, there exists a constant FESP Y• = (Y, g)

constructed from X• = (X, f) by equivariant blow-downs except the case where a

suitable finite étale covering X̃ of X is isomorphic to the product of a rational

surface and an elliptic curve.

Proof. Let (Y•, R•) be an FESP obtained from X• := (X, f) by a sequence of

blow-downs of an ESP. If (Y•, R•) is of type (C1) or (C0) (resp. of type (D)),

then the assertion has been proved in [6] (resp. [8]). If (Y•, R•) is of type (C−∞),

then the assertion follows immediately from [5, Prop. 3.8], Theorems 4.12, 4.20,

Proposition 5.9 and Corollary 7.5.

§7. Uniqueness of FESPs

In this section we shall show the uniqueness of an FESP in certain cases.

Theorem 7.1. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Then the case where there exist

both an FESP of type (Torsion.A) and another FESP of type (Atiyah) does not

occur (cf. Definitions 1.3 and 5.5).

Proof. We note that Theorems 1.4 and 1.5 show the existence of constant ESPs.

Case 1. First, suppose to the contrary that there exist both an FESP Y• of type

(Torsion.A) and another FESP Y ′
• of type (Atiyah.A) and we shall derive a con-

tradiction.

Let

X•
π−→ Y• = (Y, g)

φ−→ S• = (S, v)
p1−→ C• = (C, h)

be Cartesian morphisms of constant ESPs such that

� Y• is a constant FESP (cf. Definition 2.9) of type (Torsion.A), and

� S ≃ C × P1 and v = h× u for some u ∈ Aut(P1).

We set ψ := p2 ◦ φ ◦ π : X → P1 and Xt = ψ−1(t) for t ∈ P1. By construction,

Xt ≃ S for a general point t ∈ P1. Let Xt,n := Xun(t) for n ∈ Z. Then there is

induced a sub-ESP Xt,• := (f |Xt,n
: Xt,n → Xt,n+1)n of X• which is isomorphic
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to an ESP S• of Atiyah surfaces S. Furthermore, let

X•
π′

−→ Y ′
• = (Y ′, g′)

φ′

−→ S• = (S, u) α−→ C• = (C, h)

be Cartesian morphisms of constant ESPs such that Y ′
• is a constant FESP (cf. Def-

inition 2.9) of type (Atiyah.A). Then we have the following Cartesian morphisms

of ESPs:

Xt,•
i• // X•

π′

��

Y ′
•

φ′

��

S•.

Then Lemma 2.1 shows that φ′ ◦ π′ ◦ i•(Xt,•) is a sub-ESP of S•. Suppose
that φ′ ◦ π′ ◦ i•(Xt,•) is a sub-ESP of elliptic curves. Then, since the P1-fiber
space (i.e., a fiber space whose general fiber is isomorphic to P1) φ ◦ π : X → S

is equidimensional, any fiber of φ ◦ π is mapped to a point by φ′ ◦ π′ : X → S by

the rigidity lemma (cf. [14, Lem. 1.6]). Thus there exists a surjective morphism

w : S ≃ C×P1 → S such that w◦φ◦π = φ′ ◦π′, which contradicts Proposition 2.6.

Hence φ′◦π′◦i•(Xt,•) = S•. By Proposition 2.5, the morphism φ′◦π′◦i• : Xt,• → S•
is finite étale, and hence an isomorphism, since p1 ◦ φ ◦ π|Xt : Xt → C is an

isomorphism and the composite map Xt
φ′◦π′

−−−→ S α−−→ C is the restriction of the

Albanese map αX : X → C toXt and equals p1◦φ◦π|Xt . HenceDt,• := π′◦i•(Xt,•)

is a sub-ESP of Y ′
• consisting of Atiyah surfaces S and φ′|Dt,• : Dt,• → S• is an

isomorphism of ESPs.

Since φ′ ◦ π′ : X• → S• is a Cartesian morphism of ESPs and the canonical

section s∞,• (⊂ S•) forms a sub-ESP of S•, T• := (φ′)−1(s∞,•) is a sub-ESP of Y ′
•

and an ESP of Atiyah surfaces. Let D• := (D, g′|D) be a sub-ESP of Y ′
• consisting

of canonical sections of φ′ : Y ′
• → S•. Then the complete intersection γ• := D•∩T•

is also an ESP of elliptic curves and the image γ• ↪→ D• ≃ S• (resp. γ• ↪→ T• ≃ S•)
equals the canonical section of S•. Then we have Dt,•∩D• ̸= ∅, since Y ′

• is of type

(Atiyah.A) so that E ′ does not split and hence there do not exist two disjoint

sections of φ′. Hence, for general t ∈ P1, Dt,• ∩D• ↪→ D• is a sub-ESP of elliptic

curves and equals γ•. Furthermore, since Dt,• ∩ T• ↪→ T• ≃ S• is a sub-ESP

of elliptic curves, we see that Dt,• ∩ T• = γ•. We set (Dt, D) = mγ (m > 0).

Since (Dt, T ) = γ, we have the following linear equivalence relation of divisors:

Dt ∼ D+(a+m)T by Lemma 4.15. Let L be the linear pencil generated by {Dt}t
and Φ := Φ|L| : Y · · · → P1 the rational map associated to |L|. Lemma 4.19 shows
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that π′ : X → Y ′ is an equivariant blow-up along elliptic curves and the center of

the first blow-up of Y ′ equals γ. Let F be the general fiber of α◦φ′ : Y ′ → C. Then

by Lemma 4.17 we see that (Dt, Dt)F = a+2m. As in the proofs of Theorems 4.12

and 4.20, by performing equivariant blow-up along elliptic curves (a+ 2m) times

on Y ′ successively, all the general members of Dt (t ∈ P1) can be separated and

the strict transform of Dt,• on X equals Xt. Thus we have recovered the original

fiber space ψ : X → P1. On the other hand, the proofs of Theorems 4.12 and 4.20

show that Y ≃ S × P1. Hence any fiber of the Albanese map αY : Y → C of

Y is isomorphic to P1 × P1. This contradicts the assumption that Y• is of type

(Torsion.A) so that any fiber of αY is isomorphic to Fa (a > 1). Thus the proof is

finished.

Case 2. Next we show that the case where there exist both an FESP of type

(Torsion.A) and another FESP of type (Atiyah.B) does not occur. Since the argu-

ment in Case 1 also works with minor changes, we mainly state some modifications.

We shall use the same notation as in Case 1. Let

X•
π−→ Y• = (Y, g)

φ−→ S•
p1−→ C• = (C, h)

be Cartesian morphisms of constant ESPs such that

� Y• is a constant FESP (cf. Definition 2.9) of type (Torsion.A), and

� S ≃ C × P1 and v = h× u for some u ∈ Aut(P1).

Furthermore, let

X•
π′

−→ Y ′
• = (Y ′, g′)

φ′

−→ S• = (S, u) α−→ C• = (C, h)

be Cartesian morphisms of constant ESPs such that Y ′
• is a constant FESP (cf. Def-

inition 2.9) of type (Atiyah.B). Then by the same argument as in Case 1, Dt,• :=

π′ ◦ i•(Xt,•) is a sub-ESP of Y ′
• consisting of Atiyah surfaces S and φ′|Dt,• : Dt,• →

S• is an isomorphism of ESPs. Now we use the same notation as in the proof of

Theorem 4.12. If we set Γ∞,• := D∞ ∩ T•, then by the same argument as in the

proof of Lemma 4.14, either of the following two cases can occur:

Case 2-1. Dt,• ∩D∞,• = Dt,• ∩ T• = Γ∞,•.

Case 2-2. Dt,• ∩D∞,• = ∅ and Γt,n = D0,n ∩ Tn for all n.

Let L be the linear pencil generated by {Dt}t and Φ := Φ|L| : Y · · · → P1

the rational map associated to |L|. Then as explained in Case 1, all the members

of L can be separated by performing equivariant blow-ups along elliptic curves

(a+2m) times (resp. a times) on Y ′ in Case 2-1 (resp. Case 2-2) (cf. Lemmas 4.15

and 4.17). Then the rest of the arguments are the same as in Case 1 and thus a

contradiction is derived.
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Remark 7.2. There exists a nonisomorphic étale endomorphism f : X → X of

a smooth projective 3-fold X with κ(X) = −∞ admitting both an FESP of type

(Atiyah.A) and an FESP of type (Atiyah.B). We shall give such an example. Let

Y be a 3-fold admitting a nonisomorphic étale endomorphism g : Y → Y stated as

in Lemma 3.5. Then for an integer a > 1, there exists an unsplit exact sequence

of vector bundles

0 −→ OS(as∞) −→ E −→ OS −→ 0

such that Y = PS(E). Let D denote the section of φ corresponding to the surjection

E → OS and set γ := φ−1(s∞)∩D for φ : Y → S. Let X := Blγ(Y ) be the blow-up

of Y along γ. Since g−1(γ) = γ, there exists a nonisomorphic étale endomorphism

f : X → X which is a lift of g : Y → Y . Let Y ′ := elmγ(Y ) be a 3-fold obtained

from Y by performing an elementary transformation along γ. Then f descends

to a nonisomorphic étale endomorphism g′ : Y ′ → Y ′. There exists a Cartesian

morphism of a constant ESP π : (X, f) → (Y, g) such that (Y, g) is an FESP of type

(Atiyah.A). Furthermore, there exists another Cartesian morphism of a constant

ESP π′ : (X, f) → (Y ′, g′) such that (Y ′, g′) is an FESP of type (Atiyah.B), since

Y ≃ PS(OS((a+1)s∞)⊕OS) is a splitting projective bundle over S by Lemma 3.6.

The following proposition shows that in the case of (Torsion.A), the fiber

space structure of X over P1 is unique up to isomorphism.

Proposition 7.3. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of type (Torsion.A). Let

X• := (X, f)
π−→ Y• := (Y, g)

φ−→ S• := (S, v)
p1−→ C• := (C, h)

be a Cartesian morphism of constant ESPs as in Theorem 5.14. We set ψ :=

p2 ◦φ ◦ π : X → P1 for the second projection p2 : S → P1. Then for any fiber space

ψ′ : X → P1 (that is, any fiber of ψ′ is connected), there exists an isomorphism

w : P1 ≃ P1 such that ψ′ = w ◦ ψ:

X

ψ
��

X

ψ′

��

P1 w // P1.

For the proof, we begin with the following easy lemma.

Lemma 7.4. Let g : S ↠ P1 be a surjective morphism. Then there exists a finite

surjective morphism τ : C ↠ P1 such that g = τ ◦ αS.
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Proof. Set Ψ := (αS, g) : S → C × P1. Then Proposition 2.6 shows that ψ is not

surjective and Γ := Ψ(S) is an irreducible curve on C × P1. Let S Ψ′

−→ Γ′ u−→ Γ be

the Stein factorization of Ψ: S ↠ Γ. Then we have the following composite map:

Γ′ u−→ Γ ↪→ C × P1 P1−→ C. Since Γ dominates C and q(S) = 1, Γ′ is an elliptic

curve. Then by the universality of the Albanese map, we see that the composite

map Γ′ u−→ Γ → C is an isomorphism. Hence Γ′ ≃ Γ ≃ C. Let τ : C → P1 be

the composite map C ≃ Γ ↪→ C × P1 p2−→ P1. Then by construction, we have

g = τ ◦ αS.

Proof of Proposition 7.3. We use the same notation as in Proposition 5.11 and

Theorem 5.14. Suppose that ψ′(Xt) is not a point for some t ∈M , whereM denotes

the set of points t ∈ P1 such that Yt is isomorphic to the Atiyah surface S. Since ψ0

is equidimensional, the rigidity lemma (cf. [14, Lem. 1.6]) shows that ψ′(Xt) = P1

for any t ∈ M . Applying Lemma 7.4, we see that ψ′
t := ψ′|Xt

: Xt(≃ S) → P1

factors through the Albanese map αt : Xt ≃ S→ Alb(Xt) ≃ C. Let φ : X → C×P1

be the projection. SinceXt := φ−1(C×{t}), ψ′ maps each fiber of φt : Xt → C×{t}
to a point on P1. Applying the rigidity lemma again (cf. [14, Lem. 1.6]) to the

equidimensional morphism φ : X → C × P1, we see that there exists a surjective

morphism v : C × P1 → P1 such that ψ′ = v ◦ φ. Hence, for each s ∈ C, if

we denote by vs the restriction of v to p−1
1 (s) ∼= P1, we obtain a holomorphic

map ρ : C → End(P1) defined by ρ(s) := vs. Here, the set End(P1) consisting of

all endomorphisms of P1 has a natural complex space structure. Then we show

that vs is surjective for any s ∈ C. Suppose the contrary. Then some fiber of

p1 : C×P1 → C is contracted to a point by v. Then the rigidity lemma shows that

v : C × P1 → P1 factors through C → P1. Hence ψ′ : X → P1 also factors through

C → P1. Since deg(C/P1) > 1, this contradicts the assumption that any fiber of

ψ′ is connected. Since ρ(C) is a compact subvariety of Endsurj(P1) consisting of

all the surjective endomorphisms of P1, it follows from [12, Thm. 3.1] that ρ(C)

is contained in a left Aut(P1)-orbit of v0, where 0 ∈ C is the zero element. Hence,

for each s ∈ C, there exists a unique automorphism hs ∈ Aut(P1) such that

vs = hs ◦ v0. Thus we obtain a holomorphic map H : C → Aut(P1) defined by

H(s) := hs, s ∈ C. Since Aut(P1) is a linear algebraic group and C is compact, H

is a constant map. Since h0 = idP1 , we have hs ≡ idP1 and vs ≡ v0 for all s ∈ C.

If we set w := v0 : P1 → P1, then the composite

C × P1 pr2−−→ P1 w−→ P1

equals v. Hence ψ′ maps any Xt = φ−1(C × {t}) to a point w(t) on P1, which
derives a contradiction. Hence ψ′(Xt) is a point on P1 for any t ∈ M . Since ψ is

equidimensional, the rigidity lemma (cf. [14, Lem. 1.6]) shows the existence of a
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surjective endomorphism w : P1 → P1 such that ψ′ = w ◦ ψ. In summary, we have

the following commutative diagram:

X

φ◦π
��

X

ψ′

��

C × P1 v //

pr2
��

P1

id
��

P1 w // P1.

Since each fiber of ψ′ is connected, w is of degree one and hence an isomorphism.

Using Proposition 7.3, we can show the finiteness of extremal rays in the case

where there exists an FESP of type (Torsion.A).

Corollary 7.5. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of type (Torsion.A) obtained from X• = (X, f) by a sequence of blow-downs

of an ESP. Then there exist at most finitely many KX-negative extremal rays of

NE (X).

Proof. Let

X• := (X, f)
π−→ Y• := (Y, g)

φ−→ S• := (S, v)
p1−→ C• := (C, h)

be Cartesian morphism of constant ESPs as in Theorem 5.14. With the aid of [5,

Rem. 8.7(1)], it is sufficient to show the finiteness of extremal rays of divisorial type

of NE (X). We take an arbitrary extremal ray R of divisorial type on NE (X) and

construct an FESP Z• from X• = (X, f) by a sequence of blow-downs of an ESP.

We note that the finiteness of the set of KX -negative extremal rays of NE (X) is

invariant by taking a finite étale covering of X (cf. [5, Lem. 3.12]). Suppose that Z•

is of type (C1) or (C0) (cf. [5, Def. 3.6]). Then by [5, Cor. 8.1] and [6, Thms 3.2, 4.7

and 5.1], we see that by taking a finite étale covering, Z• is a constant FESP and

is isomorphic to a P1-bundle over an abelian surface or the product of a smooth

curve of genus ≥ 2 and an elliptic curve. Hence we have q(X) = q(Z) ≥ 2, which

contradicts q(X) = 1. Hence Z• is of type (D) or type (C−∞). Suppose that Z• is

of type (D) (cf. [5, Def. 3.6]). Then Z• is a P2-bundle over C. Theorem 5.14 shows

that the Albanese αX : X → C is an analytic fiber bundle over C whose fiber is

birational to the Hirzebruch surface Fa (a ≥ 2). Hence, the birational contraction

X → Z is not an isomorphism. Thus, applying the results of [8, Sects 6.3, 6.4 and
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6.5], we can choose an FESP Z• of type (C−∞). Then Theorem 7.1 shows that by

a suitable base change, we may assume that Z• is of type (Torsion). Let

X•
π′

−→ Z•
ψ−→ T•

p1−→ C• = (C, h)

be Cartesian morphisms of constant ESPs such that T := T0 ≃ C × P1. Let ER
(⊂ X) be the exceptional divisor of the contraction morphism ContR associated to

R. Then the image of the sub-ESP ER,• (⊂ X•) by ψ• ◦π′
• : X• → T• is a sub-ESP

of T• consisting of elliptic curves. Hence ER is contracted by ψ ◦ π′ to an elliptic

curve on T ≃ C × P1 which is a fiber of the second projection p2 : T → P1. Then
ER is contained in a fiber of p2 ◦ ψ ◦ π′ : X → P1 (cf. Proposition 4.11). Applying

Proposition 7.3, we see that there exists an automorphism w : P1 ≃ P1 such that

the following commutative diagram is satisfied:

X

p2◦φ◦π
��

idX // X

p2◦ψ◦π′

��

P1 w // P1.

Thus ER is also contained in a fiber of ψ := p2 ◦φ ◦ π : X → P1. Let M (⊂ P1) be
a nonempty Zariski open subset over which ψ is smooth. Then ER is contained in

ψ−1(P1 \M), which has a finite number of irreducible components. Then applying

[7, Thm. 1.1], the proof is finished.

Corollary 7.6. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Then the case where there exist both

an FESP of type (Torsion.A) and another FESP of type (Torsion.B) does not

occur (cf. Definitions 5.5).

Proof. Suppose to the contrary that there exist both an FESP Y• of type

(Torsion.A) and another FESP Y ′
• of type (Torsion.B) and we shall derive a con-

tradiction. Since Y• is of type (Torsion.A), X is a fiber space over P1 whose general

fiber is the Atiyah surface S. On the other hand, since Y ′
• is of type (Torsion.B),

Theorem 5.6 shows thatX is isomorphic to the product T×C of an elliptic curve C

and a smooth surface T birational to a Hirzebruch surface Fa. Hence, by the com-

posite X → T → P1, X is a fiber space over P1 whose general fiber is isomorphic

to P1 × C. This contradicts Proposition 7.3.

Remark 7.7. In Propositions 5.9 and 5.11, to show the existence of constant

FESPs, it is sufficient to show the existence of a KX -negative extremal ray R

(⊂ NE(X)) such that (fk)∗R = R for some k > 0. Based on this, the struc-

ture of X is analyzed in Theorem 5.14 in the case where there exists an FESP of
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type (Torsion.A). The finiteness of KX-negative extremal rays follows from The-

orem 5.14 and Proposition 7.3.

Theorem 7.8. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP

Y• of type (Torsion.A) obtained from X• = (X, f) by a sequence of blow-downs of

an ESP:

X•
π•−→ Y•

φ•−−→ S•
p1,•−−→ C•.

Then any FESP Z• of X• which is of type (C−∞) is of type (Torsion.A). Further-

more, after replacing f by a suitable power fk (k > 0) and taking a finite étale

base change of C, we have the commutative diagram

X

π

��

idX // X

π′

��

Y · · · τ //

φ

��

Z

ψ

��

S
ρ

//

p2

��

T

p2

��

P1 w // P1,

such that

(1) π and π′ are successions of equivariant blow-ups along elliptic curves,

(2) τ is a birational map which is an isomorphism over a nonempty Zariski open

subset of P1,
(3) w is an automorphism of P1, and
(4) ρ = (idC , w) : S → T ≃ C × P1 is an isomorphism.

Proof. Replacing X by its suitable finite étale covering, we may assume that there

exist both an FESP Y• of type (Torsion.A) and an FESP Z• of type (C−∞). Then

Theorem 7.1 and Corollary 7.6 show that Z• is of type (Torsion.A). Thus, applying

Proposition 7.3, the theorem follows immediately.

Remark 7.9. In Remark 5.15, using elementary transformations, we constructed

an example of a nonisomorphic étale endomorphism f : X → X with two

nonisomorphic constant FESPs of type (Torsion.A). There exists the following
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commutative diagram:

X

π

��

idX // X

π′

��

Y · · ·
φ

��

elmγt // Y ′

φ′

��

S
idS // S.

Then both Y and Y ′ are constant FESPs (cf. Definition 2.9) of type (Torsion.A)

which are not isomorphic over S.

Appendix. On 3-folds with negative Kodaira dimension whose

surjective endomorphisms are necessarily étale

In our classifications of 3-folds admitting a nonisomorphic étale endomorphism,

Propositions 2.4, 2.5 and 2.7 play an important role. In Theorems A.1 and A.2, we

shall construct certain 3-folds whose nonisomorphic surjective endomorphisms are

necessarily étale, which is related to the endomorphisms of the Atiyah surface S.
Proposition A.5 shows the existence of a smooth projective 3-fold X with non-nef

anti-canonical bundle −KX which admits a nonisomorphic étale endomorphism.

Theorem A.1. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists a constant

FESP Y• := (Y, g) (cf. Definition 2.9) obtained from X• := (X, f) by a sequence of

equivariant blow-downs such that Y is isomorphic to S×C S for the Atiyah surface

S over an elliptic curve C. Then any nonisomorphic surjective endomorphism

F : X → X of X is an étale endomorphism.

Proof. Let αX : X → C be the Albanese map of X. Then by [8, Thm. 8.13(2)],

αX is an analytic fiber bundle over the elliptic curve C. By the universality of

the Albanese map, there is induced a surjective morphism u : C → C such that

αX ◦ F = u ◦ αX . Let S be a typical fiber of αX which is birational to P1 × P1. If
we set Xp := α−1

X (p) for p ∈ C, then Xp ≃ S for any p ∈ C.

First, we show that for any p ∈ C, the induced morphism Fp := F |Xp : Xp →
Xu(p) is an isomorphism. Suppose that Fp is nonisomorphic for some p ∈ C and

we shall derive a contradiction. Let Ta : C → C be a translation mapping for some

a ∈ C such that Ta ◦ u(p) = p. By [8, Thm. 8.13(2)] and its proof, the natural

algebraic group homomorphism (αX)∗ : Aut0(X) → Aut0(C) is surjective. Hence

there exists T̃a ∈ Aut0(X) such that αX ◦T̃a = Ta◦αX . Thus, replacing F (resp. u)

by the composite T̃a ◦ F (resp. Ta ◦ u), we may assume from the beginning that
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u(p) = p. Then Fp : Xp → Xp is a nonisomorphic endomorphism of Xp ≃ S. By

[8, Thm. 8.13(1)], there exist at most finitely many extremal rays of NE (X). Let

(X = X(0), f)
π0−→ (X(1), f(1))

π1−−→ · · · −→ (X(i−1), f(i−1))
πi−1−−−→ (X(i), f(i))

−→ · · · −→ (Y = X(k), f(k))

be a sequence of equivariant blow-downs, where πi−1 is (the inverse of) the blow-up

of Xi along an elliptic curve Ei of Xi such that f−1
(i) (Ei) = Ei. Then for any i, the

natural morphism ψi : X(i) → C gives the Albanese map of X(i) and ψi(Ei) = C.

We take a sufficiently large positive integer q such that the multiplication by q

mapping µq : C → C is factored through ψi|Ei
: Ei → C for any i. Replacing X by

X̃ = X ×C,µq C and f by its lift f̃ : X̃ → X̃, we may assume that ψi|Ei : Ei → C

is an isomorphism for any i. Let ∆i (⊂ Xi) be the exceptional divisor of πi. Then

γ0 := ∆0 ∩ Xp (⊂ Xp ≃ S) is a (−1)-curve on S and spans an extremal ray

R0 of NE (X). Let M be the set consisting of negative curves on S. Then by

[19, Prop. 11], M is a finite set. Hence, by replacing F by its suitable power fk

(k > 0), we may assume that F induces an identity permutation of M . Since

γ0 ∈M , F (γ0) = γ0, which shows that F∗R0 = R0. Hence there exists a surjective

endomorphism F1 : X(1) → X(1) such that π0 ◦ F = F1 ◦ π0 for π0 = ContR0
. By

repeating the same argument as above, there exists a surjective endomorphism

Fk : Y → Y such that π ◦ F = Fk ◦ π, where π := πk−1 ◦ · · · ◦ π0 : X → Y is

the composite map. Then by [8, Prop. 8.8], Fk is an étale endomorphism of Y .

Since f−1
(i) (Ei) = Ei for any i, F : X → X is an étale endomorphism. Since S is

birational to P1 × P1 and is simply connected, an étale endomorphism Fp : S → S

is an isomorphism, which derives a contradiction. Thus, for any p ∈ C, Fp is an

isomorphism.

Hence F : X → X is an endomorphism of deg(F ) = deg(u) > 1. By construc-

tion, we have the following commutative diagram:

X

αX

��

F // X

αX

��

C
u // C.

Then F : X → X is factored through a finite étale covering X ×C,u C → X of

degree deg(u). Hence the natural morphism X → X ×C,u C is an isomorphism

by Zariski’s main theorem and the fact that the above commutative diagram is

Cartesian. Thus F : X → X is a nonisomorphic étale endomorphism of X.

We have the following similar result.



Étale Endomorphisms of 3-Folds. IV 229

Theorem A.2. Let f : X → X be a nonisomorphic étale endomorphism of a

smooth projective 3-fold X with κ(X) = −∞. Suppose that there exists a constant

FESP (cf. Definition 2.9) Y• = (Y,G) which is of type (Atiyah.A). Then any non-

isomorphic surjective endomorphism F : X → X of X is an étale endomorphism.

We insert the following lemma.

Lemma A.3. Any surjective endomorphism G : Y → Y of Y is étale.

Proof. Let

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0.

be the exact sequence of locally free sheaves on the Atiyah surface S defined at

the beginning of Section 3. Then by Definition 4.5, we consider the case where (♠)

unsplits and Y ≃ PS(E). By the universality of the Albanese map αY : Y → C,

there is induced a surjective morphism u : C → C such that αY ◦G = u◦αY . Then
any fiber Yt := α−1

Y (t) (t ∈ C) of αY is isomorphic to a Hirzebruch surface Fa. Let
D be the unique section of φ : Y → S corresponding to the surjection E ↠ OS. If we

set Nt := Yt ∩D, then Nt is a negative section of Fa. Then we have G−1(D) = D,

since Nt is a unique negative curve on Yt and its numerical class [Nt] spans the

extremal ray of NE(Yt) which is a 2-dimensional closed convex cone. Hence we

have G∗D ∼ kD for an integer k > 0. Furthermore, if we set T := φ−1(s∞) for the

canonical section s∞ (⊂ S), then T ≃ S (cf. Lemma 3.1) and we see that G∗T = T ,

since u∗s∞ = s∞ by Proposition 2.5. Restricting this relation to T , we have

(G|T )∗γ ∼ kγ for γ := D∩T in T ≃ S. Then Proposition 2.5 shows that G|T is étale

and k = 1. Thus G∗D = D. Since KY ∼ −2D − (a+ 2)T and KY ∼ G∗KY +RG
for the ramification divisor RG ≥ 0 of G, we have RG ∼ 2(G∗D −D) = 0. Hence

G is étale.

Remark A.4. The conclusion of Theorem A.1 does not necessarily hold true if we

do not assume the existence of an FESP of type (Atiyah.A). If we set Y := S×P1,
then Y admits a nonisomorphic surjective endomorphism which is not étale. Such

an example can be easily constructed: We consider Y as a trivial S-bundle over

P1 and let Yt ≃ S be a fiber over t ∈ P1. For an integer n ≥ 2, let u : P1 → P1,
z 7→ zn be a nonisomorphic endomorphism of P1. Then F := idS × u : Y → Y is a

nonisomorphic surjective endomorphism of Y of degree n which ramifies along Y0
and Y∞ with ramification index n.

Let αS : S→ C be the Albanese map of S and φ := αS×idP1 : Y → S := C×P1

the P1-bundle. Let p2 : Y → P1 be the second projection. Then γ0 := s∞ × P1 ∩
p−1
2 (0) (resp. γ∞ := s∞×P1∩p−1

2 (∞)) is an elliptic curve on Y with F−1(γ0) = γ0
(resp. F−1(γ∞) = γ∞). Now we shall perform elementary transformations along
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γ0 and γ∞ (cf. Definition 3.3). We set Z := elmγ0 ◦ elmγ∞(Y ). Then φ′ : Z → S is a

P1-bundle over S which is isomorphic to PS(E), where E is a vector bundle of rank

two on S which satisfies the following unsplit exact sequence (cf. Theorem 5.14):

0 −→ p∗2OP1(2) −→ E −→ OS −→ 0.

By the composite map ψ : Z
φ′

−→ C ×P1 p2−→ P1, Z is a smooth fiber space over P1.
The general fiber of ψ is isomorphic to S and its two special fibers Z0 := ψ−1(0)

and Z∞ := ψ−1(∞) are both isomorphic to C×P1. In other words, Z is an FESP of

type (Torsion.A) and admits a nonisomorphic étale endomorphism. Furthermore,

a nonisomorphic endomorphism F of Y induces a nonisomorphic endomorphism

G : Z → Z of degree n which ramifies only along Z0 and Z∞ with ramification

index n.

Proof of Theorem A.2. Theorem 4.20 shows the existence of equivariant blow-

downs π : (X, f) → (Y, g) such that (Y, g) is an FESP of type (Atiyah.A). Fur-

thermore, by Theorem 4.27, the Albanese map αX : X → C is an analytic fiber

bundle over an elliptic curve C. Hence, combining with Lemma A.3, we can apply

completely the same method as in the proof of Theorem A.1.

We pose the following question:

Question. Let X be a smooth projective 3-fold with κ(X) = −∞ admitting a

nonisomorphic étale endomorphism. Then is it true that the anti-canonical divisor

−KX is nef?

We shall give a negative answer to this question.

Proposition A.5. There exists a smooth projective 3-fold X with the following

properties:

� X admits a nonisomorphic étale endomorphism.

� The anti-canonical divisor −KX is not nef.

Proof. For an integer a > 2, we take the following unsplit exact sequence of vector

bundles on the Atiyah surface S:

(♠) : 0 −→ OS(as∞) −→ E −→ OS −→ 0.

If we set φ : Y := PS(E) → S, then Lemma 3.5 shows the existence of a nonisomor-

phic étale endomorphism g : Y → Y . Set T := φ−1(s∞) and let D be the section of

φ corresponding to a surjection E ↠ OS. Then both T and D are isomorphic to S
which are preserved by g : Y → Y . The Albanese map αY : Y → C is an Fa-bundle
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over C. If we set ζ := α−1
Y (0)∩D for a point 0 ∈ C, then ζ is the negative section

of α−1
Y (0) ≃ Fa. We have the following relations:

−KY ∼ 2D + (a+ 2)T, (D, ζ) = −a, (T, ζ) = 1.

Hence we have (−KY , ζ) = 2− a < 0 and thus −KY is not nef.

We set γ := D ∩ T and let π : X := Blγ(Y ) → Y be the blow-up of Y

along γ. Since g−1(γ) = γ, there exists a nonisomorphic étale endomorphism

f : X → X which is a lift of g : Y → Y . If we let E := Exc(π) be the π-exceptional

divisor, then E ≃ C × P1. Let ζ ′ be the proper transform of ζ by π. Since ζ

intersects T transversally at one point, we have (E, ζ ′) = 1. Since KX ∼ π∗KY +E

and (π∗(−KY ), ζ
′) = (−KY , ζ) < 0, we have (−KX , ζ

′) = (π∗(−KY ) − E, ζ ′) =

(−KY , ζ)− 1 < 0. Thus −KX is not nef.
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