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An Analogue of the Dichotomy Conjecture on
Monoidally Distributive Posets

by

Ryo Kato

Abstract

Hovey [in: The Čech centennial (Boston, MA, 1993), 1995, 225–250] proposed the dichot-
omy conjecture on the stable homotopy category of spectra. Hovey and Palmieri [in:
Homotopy invariant algebraic structures (Baltimore, MD, 1998), 1999, 175–196] proved
many interesting facts around the dichotomy conjecture from the viewpoint of the Bous-
field lattice. The author, Shimomura and Tatehara [Publ. Res. Inst. Math. Sci. 50 (2014),
497–513] defined the notion of monoidally distributive posets as a generalization of the
Bousfield lattice. In this paper we consider an analogue of the dichotomy conjecture on
monoidally distributive posets, and prove several results around the analogue.
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§1. Introduction

Let p be a prime number and Sp the stable homotopy category of p-local spectra.

For a spectrum X ∈ Sp, a spectrum W is X-acyclic if X ∧W = 0, and a spectrum

V is X-local if any morphism W → V is trivial for any X-acyclic spectrum W .

A spectrum X has a finite acyclic (resp. a finite local) if there exists a finite and

X-acyclic (resp. X-local) spectrum. Hovey [1] proposed the following conjecture.

Conjecture 1.1 (Dichotomy conjecture [1, Conj. 3.10], [2, Conj. 7.5]). Every

spectrum has either a finite acyclic or a finite local.

For a spectrum X ∈ Sp, the Bousfield class ⟨X⟩ is defined to be the class

consisting of X-acyclic spectra. Ohkawa showed that the collection B of Bousfield
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classes is a set [4]. This set has a lattice structure given by ⟨X⟩ ≤ ⟨Y ⟩ ⇔ ⟨X⟩ ⊃
⟨Y ⟩. This lattice is called the Bousfield lattice (of Sp). The author, Shimomura

and Tatehara [3] defined monoidally distributive posets as a generalization of the

Bousfield lattice B (see Section 2). Our aim in this paper is to consider an analogue

of Conjecture 1.1 (and some related topics) on monoidally distributive posets.

Let B be a monoidally distributive poset. Then B is a lattice and also a

commutative monoid with 0. For any x ∈ B, we have an operation a : B → B

given by a(x) =
∨
{w ∈ B : wx = 0} (see (2.4)), and we define

BA = {x ∈ B : x ∨ a(x) = 1},
M = {x ∈ B : x is minimal},
M = M ∩BA.

Hereafter, we denote by ∨ and ∧ the join and the meet, respectively. The subset

M∨ is defined by

M∨ =
{∨

m∈S m : S is a finite subset of M
}
.

We remark that if S = ∅, then
∨

m∈S m = 0. A nonzero element d ∈ B is a

dichotomizer if

B = M∨ ∪ ↑ d,

where ↑ d = {x ∈ B : x ≥ d} (see Section 4).

Problem 1.2 (Dichotomy problem). What is a condition on B to which B has a

dichotomizer?

Remark 1.3. In Section 6, we consider the monoidally distributive poset B, the
Bousfield lattice of the stable homotopy category. From the viewpoint of this paper,

Hovey and Palmieri [2] claim that the Bousfield class ⟨I⟩ of the Brown–Comenetz

dual of the sphere spectrum is a candidate of a dichotomizer (Proposition 6.8). In

particular, we may consider that Problem 1.2 is an analogue of Conjecture 1.1 on

monoidally distributive posets. It is not difficult to see thatM∨∪a(M∨) is a proper

subset of B (see the proof of Theorem 6.9), where a(M∨) = {a(x) : x ∈ M∨}.
Furthermore, we know that ⟨I⟩ satisfies ⟨I⟩2 = 0 [2, Lem. 7.1(c)]. Besides, if

Conjecture 1.1 holds, then ⟨I⟩ is minimal [2, Lem. 7.8]. With this background,

Theorem 1.6 below supports Conjecture 1.1.

In this paper we prove the following results.

Theorem 1.4. If B has a dichotomizer, then BA = M∨ ∪ a(M∨). Furthermore,

if M is an infinite subset of B, then M∨ ∩ a(M∨) = ∅.

This is an analogue of [2, Cor. 7.11] on monoidally distributive posets.
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Remark 1.5. In general, M∨ ∩ a(M∨) ̸= ∅. For example, in the case for B =

{0, 1}, we have M = {1} and so M∨ = {0, 1}. Hence, by (2.5), we have a(M∨) =

{0, 1} = M∨.

We put S = {x ∈ B : x2 = 0}.

Theorem 1.6. Suppose that M∨ ∪ a(M∨) is a proper subset of B. If B has

a dichotomizer d, then M∨ ∩ ↑ d = ∅ and M ∩ S = {d}. In particular, if a

dichotomizer exists, then it is unique.

We prove Theorems 1.4 and 1.6 in Section 4.

As a typical example of monoidally distributive posets, we have β(Z/n) for

n ≥ 2 (see Section 5). In Section 5, we prove the following.

Theorem 1.7. Suppose that M∨ ∪ a(M∨) is a proper subset of β(Z/n). Then an

element d ∈ β(Z/n) is a dichotomizer if and only if M ∩S = {d}.

Conjecture 1.8. Suppose that M∨ ∪ a(M∨) is a proper subset of a monoidally

distributive poset B. Then an element d ∈ B is a dichotomizer if and only if

M ∩S = {d}.

§2. Monoidally distributive posets

First we recall the definition of monoidal posets.

Definition 2.1 ([3, Def. 2.4]). A monoidal poset B consists of the following data:

(1) (B,≤) is a poset.

(2) (B, ·, 1, 0) is a commutative monoid with 0.

(3) For any x and y in B, the following are equivalent:

� x ≤ y;

� wy = 0 for w ∈ B implies wx = 0.

Hereafter, we denote xy = x · y. We also denote by ∨ and ∧ the join and the

meet, respectively.

It is easy to see that 0 (resp. 1) is the minimum (resp. maximum) element.

Furthermore, we note that

(2.2) x ≤ y implies wx ≤ wy for any w ∈ B.

Indeed, for any c ∈ B, x ≤ y implies cwy = 0 ⇒ cwx = 0. In particular, for

any x and y, we have x ≥ xy and y ≥ xy, and so x ∧ y ≥ xy.
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Definition 2.3 ([3, Def. 3.6]). A monoidal poset B is a monoidally distributive

poset if the following hold:

(1) B is a complete lattice.

(2) For any x ∈ B and {yλ}λ ⊂ B, we have x(
∨

λ yλ) =
∨

λ(xyλ).

Hereafter, we assume that B is a monoidally distributive poset. We define

(2.4) a : B → B; x 7→
∨

{w ∈ B : wx = 0}.

It is easy to see that

(2.5) a(0) = 1, a(1) = 0.

We also have

(2.6) xa(x) = 0 for any x ∈ B.

Indeed, xa(x) = x(
∨
{w ∈ B : wx = 0}) =

∨
{wx : wx = 0} = 0.

Proposition 2.7 ([3, Prop. 3.8]). For any x and y in B, the following hold:

(1) x ≤ y implies a(x) ≥ a(y).

(2) xy = 0 if and only if x ≤ a(y).

(3) a2(x) = x.

Proof.

(1) We note that x ≤ y implies {w ∈ B : wx = 0} ⊃ {w ∈ B : wy = 0}. Therefore,
a(x) =

∨
{w ∈ B : wx = 0} ≥

∨
{w ∈ B : wy = 0} = a(y).

(2) If xy = 0, then x ∈ {w ∈ B : wy = 0}. Hence x ≤
∨
{w ∈ B : wy = 0} = a(y).

Conversely, if x ≤ a(y), then xy ≤ a(y)y = 0 by (2.2) and (2.6).

(3) By (2.6) and (2), we have x ≤ a2(x). From (1), we obtain a(x) ≥ a3(x).

On the other hand, a(x)a2(x) = 0 and (2) imply a(x) ≤ a3(x). Therefore,

a(x) = a3(x). Thus, we have

wx = 0 ⇔ w ≤ a(x) by (2)

⇔ w ≤ a3(x) = aa2(x)

⇔ wa2(x) = 0 by (2),

and therefore x = a2(x).

Lemma 2.8. For any x and y in B, we have a(x∧y) = a(x)∨a(y) and a(x∨y) =

a(x) ∧ a(y).
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Proof. First we show that a(x ∧ y) = a(x) ∨ a(y), that is, a(x ∧ y) is the least

upper bound of {a(x), a(y)}. By Proposition 2.7(1), a(x∧ y) is an upper bound of

{a(x), a(y)}. If z is an upper bound of {a(x), a(y)}, then z ≥ a(x) and z ≥ a(y).

By (1) and (3) of Proposition 2.7, we have a(z) ≤ a2(x) = x and a(z) ≤ a2(y) = y,

and so a(z) ≤ x∧ y. Thus z = a2(z) ≥ a(x∧ y), and we see a(x∧ y) = a(x)∨ a(y).

The second claim is given by a(x∨ y) = a(a2(x)∨ a2(y)) = a2(a(x)∧ a(y)) =

a(x) ∧ a(y).

§3. The subset M∨

We consider a subset

BA =
{
x ∈ B : x ∨ a(x) = 1

}
.

By (2.5), the elements 0 and 1 are in BA. We also note that

(3.1) x ∈ BA ⇔ a(x) ∈ BA.

Lemma 3.2. If x is in BA, then x2 = x.

Proof. By (2.6), we have x2 = x2 ∨ xa(x) = x(x ∨ a(x)) = x · 1 = x.

Lemma 3.3. The following are equivalent:

(1) BA is a proper subset of B.

(2) There exists a nonzero element y such that y2 = 0.

Proof. If there exists x ∈ B \ BA, then x ∨ a(x) ̸= 1. Thus, we have a nonzero

element y such that y(x ∨ a(x)) = 0. This implies yx = 0 and ya(x) = 0. Hence

y ≤ a(x) and y ≤ x by Proposition 2.7. We then have y2 = yy ≤ xa(x) = 0 by

(2.2). Conversely, if y ̸= 0 and y2 = 0, then y ̸∈ BA by Lemma 3.2.

Lemma 3.4 (Cf. [2, (e) and (f) of Lem. 4.3]). If x and y are in BA, then xy and

x ∨ y are in BA.

Proof. Assume that x, y ∈ BA. We then have

xy ∨ a(xy) ≥ xy ∨ a(x ∧ y) by (2.2) and Proposition 2.7(1)

= xy ∨ a(x) ∨ a(y) by Lemma 2.8

≥ xy ∨ a(x)y ∨ a(y) by (2.2)

= (x ∨ a(x))y ∨ a(y) = y ∨ a(y) = 1
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and

x ∨ y ∨ a(x ∨ y) = x ∨ y ∨ (a(x) ∧ a(y)) by Lemma 2.8

≥ x ∨ a(x)y ∨ a(x)a(y) by (2.2)

= x ∨ a(x)(y ∨ a(y)) = x ∨ a(x) = 1.

Therefore, xy and x ∨ y are in BA.

We define

(3.5) M = {x ∈ B : x is minimal}, M = M ∩BA

and

(3.6) M∨ =
{∨

m∈S m : S is a finite subset of M
}
.

We remark that S = ∅ implies
∨

m∈S m = 0. We also define a(M∨) = {a(x) : x ∈
M∨}. From (3.1) and Lemma 3.4, we obtain the following corollary.

Corollary 3.7. M∨ ∪ a(M∨) ⊂ BA.

Lemma 3.8. For any m ∈ M and x ∈ B, the product mx is either 0 or m.

Proof. By (2.2), mx ≤ m. Since m is minimal, mx = 0 or mx = m.

Lemma 3.9. For any m and m′ in M ,

mm′ =

{
0, m ̸= m′,

m (= m′), m = m′.

Proof. We take m and m′ in M = M∩BA. First we consider the case for m ̸= m′.

Note that mm′ ≤ m and mm′ ≤ m′. Since m and m′ are minimal, if mm′ ̸= 0,

then m = mm′ = m′, which is a contradiction. Therefore mm′ = 0. In the case for

m = m′, since m ∈ BA, we have mm′ = m2 = m by Lemma 3.2.

Corollary 3.10. If m is minimal and c is nilpotent, then mc = 0.

Proof. By Lemma 3.8, we have mc = 0 or m. We note that cn = 0 for some n ≥ 1.

If mc = m, then m = mc = (mc)c = · · · = mcn = 0, which is a contradiction.

For a subset T of B, we define

↓ T = {x ∈ B : x ≤ t for some t ∈ T},
↑ T = {x ∈ B : x ≥ t for some t ∈ T}

and, for x ∈ B,

↓ x = ↓ {x} and ↑ x = ↑ {x}.
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Lemma 3.11. If x ∈ BA ∩ ↑ y, then xy = y.

Proof. Since x ∈ BA ∩ ↑ y, we have x ∨ a(x) = 1 and ya(x) = 0 by Proposi-

tion 2.7(2). Hence y = y(x ∨ a(x)) = xy ∨ ya(x) = xy.

Remark 3.12. Lemma 3.2 is a corollary of Lemma 3.11. Indeed, if x ∈ BA, then

x ∈ BA ∩ ↑ x. This and Lemma 3.11 imply x2 = xx = x.

For the sake of simplicity, we denote∨
T =

∨
t∈T

t.

Lemma 3.13. We have ↓ M∨ = M∨ and ↑ a(M∨) = a(M∨).

Proof. First we prove that ↓ M∨ = M∨. It is easy to see that ↓ M∨ ⊃ M∨. If

x ∈ ↓ M∨, then x ≤
∨
S for a finite subset S of M . Then we have

x = x
(∨

S ∨ a
(∨

S
))

by Corollary 3.7

= x
(∨

S
)
∨ xa

(∨
S
)
= x

(∨
S
)

by Proposition 2.7(2)

=
∨
m∈S

xm =
∨

xm=m∈S

m by Lemma 3.8,

and so x ∈ M∨. Therefore ↓ M∨ ⊂ M∨.

Next turn to ↑ a(M∨) = a(M∨). It suffices to show that ↑ a(M∨) ⊂ a(M∨).

If x ∈ ↑ a(M∨), then x ≥ a(z) for some z ∈ M∨. By Proposition 2.7, we have

a(x) ≤ z, and so a(x) ∈ ↓ M∨. Since ↓ M∨ = M∨, we have a(x) ∈ M∨, which

implies x ∈ a(M∨). Therefore ↑ a(M∨) ⊂ a(M∨).

Lemma 3.14. If two subsets S and T of M satisfy
∨
S ≤

∨
T , then S ⊂ T .

Proof. If S ̸⊂ T , then there exists m0 such that m0 ∈ S and m0 ̸∈ T . By

Lemma 3.9, we havem0(
∨
S)=

∨
m∈S m0m = m0 ̸= 0 andm0(

∨
T )=

∨
m∈T m0m

= 0. Therefore
∨
S ̸≤

∨
T .

Proposition 3.15. If M is an infinite subset of B, then M∨ ∩ a(M∨) = ∅.

Proof. Assume that M∨∩a(M∨) ̸= ∅. Then we have an element x ∈ M∨∩a(M∨),

that is,
∨
S = x = a(

∨
T ) for some finite subsets S and T of M . If m ∈ M \ S,

then m(
∨
S) = 0 by Lemma 3.9. We then have m (=

∨
{m}) ≤ a(

∨
S) =

∨
T

by Proposition 2.7. This implies m ∈ T by Lemma 3.14, and therefore we have

M \S ⊂ T . However, since M \S is an infinite subset and T is a finite subset, this

is a contradiction.
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§4. Dichotomizer

First we define the notion of dichotomizer.

Definition 4.1. A nonzero element d ∈ B is a dichotomizer if

B = M∨ ∪ ↑ d.

Remark 4.2. If B = M∨, then any nonzero element is a dichotomizer.

We consider a subset

S = {x ∈ B : x2 = 0}.

Lemma 4.3. If d is a dichotomizer, then d belongs to S ∪ a(M∨).

Proof. Assume that d is a dichotomizer and d ̸∈ S. Then we have d2 ̸= 0, and so

d ̸≤ a(d) by Proposition 2.7(2). Hence a(d) ̸∈ ↑ d. Since B = M∨ ∪ ↑ d, we have

a(d) ∈ M∨. Therefore, d ∈ a(M∨).

Lemma 4.4. If M∨ ∪ a(M∨) is a proper subset of B, then any e ∈ a(M∨) is not

a dichotomizer.

Proof. For any e ∈ a(M∨), we have ↑ e ⊂ ↑ a(M∨) = a(M∨) by Lemma 3.13.

This implies M∨∪ ↑ e ⊂ M∨ ∪ a(M∨). Since M∨ ∪ a(M∨) is a proper subset of

B, we have M∨∪ ↑ e ̸= B, and therefore e is not a dichotomizer.

From Lemmas 4.3 and 4.4, we obtain the following.

Corollary 4.5. If d is a dichotomizer and M∨ ∪ a(M∨) is a proper subset of B,

then d2 = 0.

Proposition 4.6. If M∨∪a(M∨) is a proper subset of B, then every dichotomizer

is minimal.

Proof. Assume that d is a dichotomizer and x < d. This implies x ̸∈ ↑ d. Since

B = M∨ ∪ ↑ d, we have x ∈ M∨, and so x =
∨

S for a finite subset S of M . If

S ̸= ∅, then there exists m ∈ S. Hence m ≤
∨

S = x < d. On the other hand, we

have m2 = m ̸= 0 by Lemma 3.2, and md = 0 by Corollaries 3.10 and 4.5. This

contradicts m < d. Hence S = ∅, and so x =
∨

S =
∨

∅ = 0.

Proof of Theorem 1.4. Assume that d is a dichotomizer, that is, B = M∨ ∪ ↑ d.

By Corollary 3.7, it suffices to show that BA ⊂ M∨ ∪ a(M∨). Take an element

x ∈ BA. If x ̸∈ M∨, then x ∈ ↑ d. Hence dx = d ̸= 0 by Lemma 3.11. This implies

a(x) ̸∈ ↑ d by Proposition 2.7(2), and so a(x) ∈ M∨ (⇔ x ∈ a(M∨)). Therefore,

BA ⊂ M∨ ∪ a(M∨). The second claim is Proposition 3.15.
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Proof of Theorem 1.6. First we prove that M∨ ∩ ↑ d = ∅. If there exists x ∈
M∨ ∩ ↑ d, then d ≤ x =

∨
S for a finite subset S of M . Since x ∈ BA by

Corollary 3.7, we have

d = dx by Lemma 3.11

= d
(∨

S
)
=

∨
m∈S

dm = 0 by Corollaries 3.10 and 4.5,

which is a contradiction. Therefore, M∨ ∩ ↑ d = ∅.

Next we turn to the assertion that M ∩ S = {d}. From Corollary 4.5 and

Proposition 4.6, we obtain d ∈ M∩S. If there exists an element e ∈ M∩S other

than d, then e ̸∈ ↑ d. (Indeed, if e ≥ d(̸= 0), then e = d since e is minimal.)

Therefore, e ∈ M∨. This implies that e ∈ BA by Corollary 3.7, and we have

e2 = e ̸= 0 by Lemma 3.2. However, this contradicts e ∈ S. Therefore, M ∩S =

{d}.

§5. The case for B = β(Z/n)

Let R be a commutative monoid with 0. From R we obtain a typical example β(R)

of monoidal posets as follows (see [3, §2]): For x ∈ R, we define

⟨x⟩ = {c ∈ R : xc = 0}.

We denote by β(R) the set

β(R) = {⟨x⟩ : x ∈ R}.

Then β(R) is a monoidal poset, whose structure is given by

� ⟨x⟩⟨y⟩ = ⟨xy⟩,
� ⟨x⟩ ≤ ⟨y⟩ ⇔ ⟨x⟩ ⊃ ⟨y⟩.

Let P be a principal ideal domain, and (q) a nontrivial ideal of P . In [3, §4], the

authors consider the monoidal poset β(P/(q)). By [3, Cor. 4.3], we see that

β(P/(q)) = β(Z/n) for some n ≥ 2.

In this section we consider Problem 1.2 on β(Z/n) for n ≥ 2.

We denote by [x] ∈ Z/n the class represented by an integer x. For [x] ∈ Z/n,
we denote

⟨x⟩ = ⟨[x]⟩ ∈ β(Z/n).
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Proposition 5.1 (Cf. [3, Thm. 4.1]). Let n be an integer ≥ 2.

(1) β(Z/n) = {⟨x⟩ : x | n} as sets. In particular, ⟨n⟩ = ⟨0⟩.
(2) ⟨x⟩ ≥ ⟨y⟩ in β(Z/n) if and only if x | y.

Proof. First we prove (1). If a nonzero integer x is prime to n, then ax + bn = 1

for some a, b ∈ Z. In particular, [ax] = [1] ∈ Z/n. Take [y] ∈ ⟨x⟩. Then [x][y] =

[0] ∈ Z/n, and so [y] = [ax][y] = [a][x][y] = [0]. Hence ⟨x⟩ = {[0]} = ⟨1⟩. We put

(5.2) n = pe11 pe22 · · · pekk ,

where the pi are different prime numbers and ei > 0 for every i. In the case that

x is not prime to n, we put

x = pf11 · · · pfkk p
fk+1

k+1 · · · pfll ,

where the pi are different prime numbers, fi ≥ 0 for 1 ≤ i ≤ k and fi ≥ 1 for

k < i ≤ l. Here, the pi for 1 ≤ i ≤ k are in (5.2). We remark that p
fk+1

k+1 · · · pfll is

prime to n. We put mi = min{ei, fi} for 1 ≤ i ≤ k; then

⟨x⟩ = ⟨pf11 · · · pfkk p
fk+1

k+1 · · · pfll ⟩

= ⟨pf11 · · · pfkk ⟩⟨pfk+1

k+1 · · · pfll ⟩ = ⟨pf11 · · · pfkk ⟩ = ⟨pm1
1 · · · pmk

k ⟩,

and pm1
1 · · · pmk

k divides n. Therefore, we have β(Z/n) = {⟨x⟩ : x | n}.

Next turn to (2). By (1) and (5.2), for any ⟨x⟩ and ⟨y⟩ in β(Z/n), we may

consider

x = px1
1 px2

2 · · · pxk

k and y = py1

1 py2

2 · · · pyk

k ,

where 0 ≤ xi ≤ ei and 0 ≤ yi ≤ ei for any i. We assume that x | y; then xi ≤ yi
for any i. If [z] ∈ ⟨x⟩, then pe1−x1

1 · · · pek−xk

k | z, and so pe1−y1

1 · · · pek−yk

k | z. This
implies [z] ∈ ⟨y⟩. Hence ⟨x⟩ ≥ ⟨y⟩. Conversely, we assume that ⟨x⟩ ≥ ⟨y⟩. Then
[xz] = [0] implies [yz] = [0]. Thus pe1−x1

1 · · · pek−xk

k | z implies pe1−y1

1 · · · pek−yk

k | z.
Hence xi ≤ yi for any i, and so x | y.

Proposition 5.3 (Cf. [3, Cor. 4.4]). The set β(Z/n) is a monoidally distributive

poset.

Proof. We use the notation in (5.2). By Proposition 5.1, any element of β(Z/n) is
of the form ⟨pf11 pf22 · · · pfkk ⟩, where 0 ≤ fi ≤ ei for 1 ≤ i ≤ k. It is easy to see that

(5.4) ⟨pf11 pf22 · · · pfkk ⟩ ∨ ⟨pg11 pg22 · · · pgkk ⟩ = ⟨pl11 p
l2
2 · · · plkk ⟩,

where li = min{fi, gi}. Then we immediately see that β(Z/n) is monoidally dis-

tributive.
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By the above argument, for β(Z/n), it is easy to see that

(5.5) M = {⟨n/pi⟩ : 1 ≤ i ≤ k}

under the notation of (5.2).

Lemma 5.6. If n = p1p2 · · · pk, where the pi are different prime numbers and

k ≥ 2, then β(Z/n) = M∨ ∪ a(M∨).

Proof. By Proposition 5.1, we have β(Z/n) = {⟨pε11 pε22 · · · pεkk ⟩ : εi ∈ {0, 1} for

1 ≤ i ≤ k}. Note that M = {⟨n/pi⟩ : 1 ≤ i ≤ k} by (5.5). From (5.4), we obtain

⟨n/pi⟩ ∨ a(⟨n/pi⟩) = ⟨n/pi⟩ ∨ ⟨pi⟩ = ⟨1⟩ for 1 ≤ i ≤ k.

Hence we have M = M ∩BA = M. This and (5.4) imply that

⟨pε11 pε22 · · · pεkk ⟩ =
∨
εi=0

⟨n/pi⟩ ∈ M∨

for any ⟨pε11 pε22 · · · pεkk ⟩ ∈ β(Z/n), and therefore we have β(Z/n) = M∨. This

implies β(Z/n) = M∨ ∪ a(M∨).

Lemma 5.7. If n = pe1p2 · · · pk, where the pi are different prime numbers and

e ≥ 2, then β(Z/n) has a dichotomizer ⟨pe−1
1 p2 · · · pk⟩.

Proof. By Proposition 5.1 we have

β(Z/n) =
{
⟨pe11 pε22 · · · pεkk ⟩ : 0 ≤ e1 ≤ e and εi ∈ {0, 1} for 2 ≤ i ≤ k

}
.

Note that M = {⟨n/pi⟩ : 1 ≤ i ≤ k} by (5.5). Any ⟨n/pi⟩ ∈ M satisfies

⟨n/pi⟩ ∨ a(⟨n/pi⟩) = ⟨n/pi⟩ ∨ ⟨pi⟩ =

{
⟨p1⟩, i = 1,

⟨1⟩, 2 ≤ i ≤ k,

by e ≥ 2 and (5.4). Therefore, we have M = M∩BA = {⟨n/pi⟩ : 2 ≤ i ≤ k}. This
and (5.4) imply

M∨ =
{
⟨pe1p

ε2
2 · · · pεkk ⟩ : εi ∈ {0, 1} for 2 ≤ i ≤ k

}
.

By Proposition 5.1, if ⟨pe11 pε22 · · · pεkk ⟩ ̸∈ ↑ ⟨pe−1
1 p2 · · · pk⟩, then pe11 pε22 · · · pεkk

does not divide pe−1
1 p2 · · · pk. Hence e1 = e, and so ⟨pe11 pε22 · · · pεkk ⟩ = ⟨pe1p

ε2
2 · · · pεkk ⟩

∈ M∨. Therefore, β(Z/n) = M∨∪ ↑ ⟨pe−1
1 p2 · · · pk⟩.

Lemma 5.8. If p21p
2
2 | n where p1 and p2 are different prime numbers, then

β(Z/n) has no dichotomizer.
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Proof. Note that β(Z/n) contains ⟨n/p1⟩ and ⟨n/p2⟩. It is easy to see that ⟨n/pi⟩2

= ⟨0⟩ for i ∈ {1, 2}. Furthermore, ⟨n/pi⟩ is minimal for i ∈ {1, 2}. HenceM∩S con-

tains different two elements ⟨n/p1⟩ and ⟨n/p2⟩, and so β(Z/n) has no dichotomizer

by Theorem 1.6.

Proof of Theorem 1.7. Note that any n ≥ 2 is of the form

n = pe11 pe22 · · · pekk ,

where the pi are different prime numbers and

e1 ≥ e2 ≥ · · · ≥ ek ≥ 0.

In the case for (e1, e2) = (1, 0), that is, n = p1, we have β(Z/n) = {⟨1⟩, ⟨p1⟩} =

{⟨0⟩, ⟨1⟩} by Proposition 5.1. In this case, we have M = {1}, and so β(Z/n) =

M∨ ∪ a(M∨).

In the case for (e1, e2) = (1, 1), that is, n = p1p2 · · · pℓ with ℓ ≥ 2, we have

β(Z/n) = M∨ ∪ a(M∨) by Lemma 5.6.

In the case for e1 ≥ 2 > e2, that is, n = pe1p2 · · · pℓ with e ≥ 2, β(Z/n) has a
dichotomizer ⟨pe−1

1 p2 · · · pk⟩ by Lemma 5.7. We note that S = {⟨pf1p2 · · · pk⟩ : 2/e
≤ f ≤ e} by (5.4). From this and (5.5), we obtain M ∩S = {⟨pe−1

1 p2 · · · pk⟩}.
In the case for e2 ≥ 2, that is, p21p

2
2 | n and p1 ̸= p2, β(Z/n) has no

dichotomizer by Lemma 5.8. By the proof of Lemma 5.8, the subset M ∩ S is

not of the form {d}.

§6. The case for B = B

Let p be a prime number. In this section we consider the case for B = B, the
Bousfield lattice of the stable homotopy category Sp of p-local spectra. Recall that

B = {⟨X⟩ : X ∈ Sp}, where ⟨X⟩ = {W ∈ Sp : X ∧W = 0}. This is a monoidally

distributive poset, whose lattice structure is given by

⟨X⟩ ≤ ⟨Y ⟩ ⇔ ⟨X⟩ ⊃ ⟨Y ⟩.

We also have ⟨X⟩⟨Y ⟩ = ⟨X ∧ Y ⟩, ⟨X⟩ ∨ ⟨Y ⟩ = ⟨X ∨ Y ⟩, 0 = ⟨0⟩ and 1 = ⟨S0⟩.
Here, S0 is the p-local sphere spectrum.

Let F (n) be a finite spectrum of type n, and T (n) the telescope of a vn-self-

map on F (n). By [1, Lems 1.2 and 1.3], the Bousfield classes ⟨F (n)⟩ and ⟨T (n)⟩
depend on only n. We also note that the Bousfield class ⟨K(n)⟩ of the nth Morava

K-theory spectrum is minimal for any n ≥ 0 [1, Cor. 1.7].

Conjecture 6.1 (Telescope conjecture [5, 10.5]). We have ⟨K(n)⟩ = ⟨T (n)⟩ for

any n ≥ 0.
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For a spectrum E, we have the Bousfield localization functor LE : Sp → Sp

with respect to E. We define the spectrum A(n) by the cofiber sequence

F (n) → LK(n)F (n) → A(n) → ΣF (n).

By [1, Prop. 1.6], we know that

� ⟨A(n)⟩ depends on only n,

� ⟨T (n)⟩ = ⟨K(n)⟩ ∨ ⟨A(n)⟩ for any n ≥ 0,

� A(n) ∧K(m) = 0 for all m.

Furthermore, ⟨A(n)⟩ belongs to BA, and A(n) ∧ A(n) = A(n) for any n ≥ 0 (see

[2, §5]).

Lemma 6.2. The following are equivalent:

(1) ⟨K(n)⟩ = ⟨T (n)⟩.
(2) A(n) = 0.

Proof. If A(n) = 0, then ⟨T (n)⟩ = ⟨K(n)⟩ ∨ ⟨A(n)⟩ = ⟨K(n)⟩. Conversely, if

⟨K(n)⟩ = ⟨T (n)⟩, then we have ⟨K(n)⟩ ∨ ⟨A(n)⟩ = ⟨T (n)⟩ = ⟨K(n)⟩. This implies

⟨A(n)⟩ ≤ ⟨K(n)⟩. Since A(n) ∧K(n) = 0, we have A(n) = A(n) ∧A(n) = 0.

Hovey and Palmieri modified Conjecture 6.1 as follows.

Conjecture 6.3 ([2, Conj. 5.1]). For any n ≥ 0, the Bousfield class ⟨A(n)⟩ is 0

or minimal.

Remark 6.4. In 2023, a disproof of Conjecture 6.1 was announced by Burkland,

Hahn, Levy and Schlank. It has not yet been published.

For a spectrum E, a spectrum X is E-acyclic if E ∧X = 0, and a spectrum

Y is E-local if any morphism X → Y is trivial for any E-acyclic spectrum X.

Furthermore, a spectrum E has a finite acyclic (resp. a finite local) if there exists

a nonzero finite spectrum which is E-acyclic (resp. E-local). We denote Lf
n =

LT (0)∨T (1)∨···∨T (n). Then ⟨Lf
nS

0⟩ =
∨n

i=0⟨T (i)⟩. Furthermore, ⟨Lf
nS

0⟩ is in BA,

and a(⟨Lf
nS

0⟩) = ⟨F (n+ 1)⟩ (see [2, §5]).

Hereafter, for the sake of simplicity, we denote

fn = ⟨F (n)⟩, tn = ⟨T (n)⟩, kn = ⟨K(n)⟩, an = ⟨A(n)⟩ and ℓfn = ⟨Lf
nS

0⟩.

We put

A = {n ≥ 0: an ̸= 0}.
We recall the subset M in (3.5). If Conjecture 6.3 is true, then we have

KA := {kn, am : n ≥ 0,m ∈ A} ⊂ M.
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Proposition 6.5 ([2, Conj. 5.1]). Assume that Conjecture 6.3 is true. Then, for

any spectrum X which has a finite acyclic, the Bousfield class x = ⟨X⟩ belongs to

KA∨ =
{∨

S : S is a finite subset of KA
}
.

Proof. If a nonzero spectrum X has a finite acyclic, then x = ⟨X⟩ satisfies that

xfn+1 = 0 for some n ≥ 0. Hence we have

x = x · 1 = x(ℓfn ∨ fn+1) = xℓfn ∨ xfn+1

= xℓfn = x

( n∨
i=0

ti

)
=

n∨
i=0

xti =

n∨
i=0

x(ki ∨ ai)

=
∨

i∈K(x)

ki ∨
∨

i∈T (x)

ai by the assumption and Lemma 3.8,

where K(x) = {i : 0 ≤ i ≤ n, xki = ki} and T (x) = {i ∈ A : 0 ≤ i ≤ n, xai = ai}.
Therefore x ∈ KA∨.

We consider the Bousfield class

i = ⟨I⟩

where I is the Brown–Comenetz dual of the sphere spectrum.

Proposition 6.6 ([2, Prop. 7.2]). A spectrum X has a finite local if and only if

the Bousfield class x = ⟨X⟩ satisfies x ≥ i.

Proposition 6.7 ([2, Cor. 7.11]). If Conjectures 1.1 and 6.3 are true, then

BA = KA∨ ∪ a(KA∨),

where a(KA∨) = {a(x) : x ∈ KA∨}. Furthermore, KA∨ ∩ a(KA∨) = ∅.

Proof. Since KA ⊂ M ⊂ BA, we have KA∨ ∪ a(KA∨) ⊂ BA by (3.1) and

Lemma 3.4. Hence we prove that BA ⊂ KA∨ ∪ a(K∨). Take an element x =

⟨X⟩ ∈ BA. If X has a finite acyclic, then x ∈ KA∨ by Proposition 6.5. If X

has no finite acyclic, then, since we assume that Conjecture 1.1 is true, X has

a finite local. Hence, by Proposition 6.6, we have x ≥ i. From Lemma 3.11, we

obtain xi = i ̸= 0, which implies a(x) ̸≥ i by Proposition 2.7(2). Let aX be a

spectrum such that ⟨aX⟩ = a(x). Then aX has no finite local by Proposition 6.6.

This and Conjecture 1.1 imply that aX has a finite acyclic, and so a(x) ∈ KA∨

by Proposition 6.5. Therefore, x ∈ a(KA∨).

We prove the second claim KA∨∩a(KA∨) = ∅. Since KA ⊂ M and KA con-

tains all the kn the subset M is an infinite subset. Therefore, by Proposition 3.15,

we have KA∨ ∩ a(KA∨) ⊂ M∨ ∩ a(M∨) = ∅.
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Proposition 6.8. If Conjectures 1.1 and 6.3 are true, then i is a dichotomizer

of B. Furthermore, B = KA∨∪ ↑ i = M∨∪ ↑ i and KA∨∩ ↑ i = ∅.

Proof. Take an element x = ⟨X⟩ ∈ B. Since we assume that Conjecture 1.1 is

true, if x ̸∈ ↑ i, then X has a finite acyclic by Proposition 6.6. Thus, x ∈ KA∨ by

Proposition 6.5. Therefore, we have B ⊂ KA∨∪ ↑ i ⊂ M∨∪ ↑ i ⊂ B.
Next turn to KA∨∩ ↑ i = ∅. If there exists y ∈ KA∨∩ ↑ i, then i ≤ y =∨

S for a finite subset S of KA. We put S = {kn ∨ an : kn ∈ S or an ∈ S} =

{tn : kn ∈ S or an ∈ S}. Then i ≤ y ≤
∨
S ≤

∨
0≤i≤N ti = ℓfN for some N ≥ 0.

Since ℓfNfN+1 = 0, we have ifN+1 = 0. On the other hand, we know that ifn = i

for any n ≥ 0 [2, Lem. 7.1(e)]. Therefore, ifN+1 = 0 is a contradiction, and so

KA∨ ∩ ↑ i = ∅.

Theorem 6.9. If KA∨ ∩ ↑ i ̸= ∅ or M ∩S ̸= {i}, then at least one of Conjec-

ture 1.1 and Conjecture 6.3 does not hold.

Proof. By Proposition 6.8, if Conjectures 1.1 and 6.3 hold, then i is a dichotomizer.

We note that i2 = 0 [2, Lem. 7.1(c)]. This and Lemma 3.3 imply that BA is a

proper subset of B, and so M∨ ∪ a(M∨) (⊂ BA) is a proper subset. Hence, by

Theorem 1.6, we have KA∨∩ ↑ i ⊂ M∨ ∩ ↑ i = ∅ and M ∩S = {i}.
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