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Introduction by the Organizers

The workshop Anabelian Geometry and Representations of Fundamental Groups
was attended by 42 participants mainly from Japan, Europe and North America,
including a number of young participants, with further participants following the
talks virtually. We had 16 talks of 60 minutes each and two talks of 30 minutes.

Investigating the connections between étale and Tannakian fundamental groups
and arithmetic/geometric data is a central goal of several branches of modern
arithmetic geometry. Such relationships have been intensively studied from dif-
ferent points of view, including anabelian geometry, the yoga of motives and local
systems, and Hodge-theoretic methods (both complex-analytic and p-adic). The
increased interaction between mathematicians working from these different points
of view towards similar goals was a focal point of the workshop.

Anabelian geometry was represented by the talks of Tamagawa who reported
on work on analogues of the Neukirch-Uchida theorem for m-step solvable Galois
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groups, and by Bresciani who defined the toric fundamental group and applied
it to Grothendieck’s section conjecture. Tim Holzschuh used the étale homotopy
type, for instance, for simply connected and possibly singular varieties over the
reals to prove an analogue of the real section conjecture. The homotopical point of
view was also present in Mair’s talk about condensed shapes. Furthermore, Lüdtke
presented work connecting the section conjecture to the Chabauty-Kim approach
to rational points, Kwon discussed the number theoretic Shafarevich conjecture,
and Gropper talked about techniques from mapping class groups in the study of
outer automorphism groups of the pro-p Galois groups of p-adic fields.

In the talk by Kerz we learned about an inductive approach to Deligne’s mono-
dromy-weight conjecture based on an arithmetic Kashiwara conjecture. Saito dis-
cussed how to expand singular supports to mixed characteristic.

Complex analytic spaces and the role of fundamental groups in their structure
was the main focus of the talk by Brunebarbe circling around the Shafarevich
conjecture, this time in the context of complex geometry. Krämer explained how
a Tannakian approach to sheaves on complex abelian varieties and convolution
combine with big monodromy to give arithmetic finiteness results, in relation with
Shafarevich’s finiteness conjectures for varieties with good reduction outside a fixed
set of places of a number field. The talk by Olsson explained how to categorically
reconstruct point objects in the bounded derived category of coherent sheaves
on torsors under abelian varieties. Litt reported on formal solutions of algebraic
differential equations, discussing a criterion for the formal solution to be algebraic
which is related to the p-curvature conjecture.

The p-adic side of local systems featured in the talk by Shimizu, which de-
scribed a pointwise criterion for a Zp-local system to be semistable, and purity
for prismatic F -crystals. Petrov explained the theory of characteristic classes for
p-adic étale local systems. Then we had two talks about Poincaré duality in p-
adic cohomology: Nizio l spoke about the intricacies of Poincaré duality in proétale
cohomology of partially proper rigid analytic varieties, while Reinecke discussed
relative mod-n Poincaré duality with respect to a smooth, proper morphism of
locally noetherian analytic adic spaces. The notion of a tame fundamental group
for rigid analytic spaces was the topic of Achinger’s talk who connected finiteness
properties to those for fundamental groups of complex analytic spaces via a chain
of reductions, while passing through logarithmic fundamental groups in positive
characteristic.

The exceptional environment at the Mathematisches Forschungsinstitut Ober-
wolfach stimulated inspiring discussions among all the participants, who immensely
enjoyed the workshop and are very grateful for the institute’s hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Relative mod-n Poincaré duality in nonarchimedean geometry . . . . . . . . . 2636

Nadav Gropper
Mapping class group and Dehn twists of p-adic fields . . . . . . . . . . . . . . . . . 2639

Piotr Achinger (joint with Katharina Hübner, Marcin Lara, and Jakob Stix)
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Abstracts

m-step solvable anabelian geometry of finitely generated fields

Akio Tamagawa

(joint work with Mohamed Säıdi)

Anabelian geometry of fields (sometimes called “birational anabelian geometry”)
has much longer history than anabelian geometry of schemes intiated by Grothen-
dieck around 1980 [1][2]. Roughly speaking, it asks whether from the absolute
Galois group of certain types of fields — e.g. fields finitely generated over the
prime field — one can reconstruct the original field purely group-theoretically.
The main results of anabelian geometry of fields were satisfactorily established by
mid-1990s, by Neukirch-Uchida [3][7] (for number fields), Uchida [8] (for global
function fields), and Pop [4][5] (for finitely generated fields).

In this talk, we discuss m-step solvable anabelian geometry of finitely gener-
ated fields, which is a variant of anabelian geometry of finitely generated fields and
where the absolute Galois group is replaced by its maximal m-step solvable quo-
tient for some m (≥ 2). Among others, we present the speaker’s recent joint work
with Säıdi on m-step solvable versions of theorems of Neukirch-Uchida (m ≥ 2; see
[6] for m ≥ 3), Uchida (m ≥ 2), and Pop (m ≥ 9). We also discuss the common
structure — local theory and global theory — of proofs of these results and more
details on proofs for number fields and global function fields.
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Pure ℓ-adic local systems over local fields

Moritz Kerz

(joint work with Hélène Esnault)

We define and study pure Qℓ-adic étale local systems on a smooth variety X over
a p-adic local field K with p 6= ℓ, in analogy to [1]. The two most basic open
problems about such local systems are:

(1) Whether they degenerate to a limiting mixed structure at a ramification
point, and

(2) Whether their cohomology is pure.

Definition 1.

(i) A continuous Galois representation

ρ : Gal(K/K)→ GL
Qℓ

(V )

has weight w ∈ Z if a lift of the geometric Frobenius Frq, acting on the
monodromy graded piece grMa V , has eigenvalues with complex absolute val-

ues q
a+w

2 .
(ii) A Qℓ-adic local system on X is pure of weight w ∈ Z if, for all closed

points x ∈ X, the local Galois representation Lx is pure of weight w, and
if the underlying geometric local system LK is semi-simple and arithmetic.

Here, ‘arithmetic’ means that the geometric local system descends to a local
system over a model of X over a finitely generated field.

Conjecture 2 (Meta Conjecture). All known results about variations of (integral)
pure Hodge structure have an analog for the pure local systems of Definition 1.

For example, let us make this precise for X a smooth curve with smooth com-
pactification j : X → X, and a pure local system L on X of weight w.

Conjecture 3.

(1) For a closed point x ∈ X \ X, the geometric monodromy graded piece
grM

geo

a L is pure of weight a + w for all a ∈ Z.
(2) Hi(XK , j∗L) is pure of weight w + i for all i ∈ Z.

A standard Lefschetz pencil argument shows that Conjecture 3(2) would imply
Deligne’s monodromy-weight conjecture.

A potential way to approach Conjecture 3 is to reduce it to an arithmetic
version of Kashiwara’s conjecture [2]. In some cases, we can prove this arithmetic
Kashiwara conjecture by using an idea of Grothendieck [4, I.5] of ”tilting” the
problem to the usual known Kashiwara conjecture in equal characteristic zero.

Theorem 4. If L is moreover tame, and if, for a complex embedding K →֒ C, the
isomorphism class [LK ] has a finite orbit under the action of the mapping class
group (see [3]), then Conjecture 3 holds.
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On the generalised real Section Conjecture

Tim Holzschuh

Utilising the so-called Sullivan Conjecture from equivariant unstable homotopy
theory, we derive the generalised (pro-2) real Section Conjecture for a large class
of varieties.

1. The generalised Section Conjecture

Before introducing the generalised Section Conjecture, we quickly recall the ordi-
nary Section Conjecture. To this end, we fix the following situation:

Setup. Let k be a field with separable closure k̄ ⊃ k, and let X be a geometri-
cally connected quasi-compact and quasi-separated scheme over k. Write Galk :=
Gal(k̄/k) for the absolute Galois group of k with respect to k̄, Xk̄ for the base
change of X to k̄, and let x̄ ∈ Xk̄ be a geometric point.

Recall that in the above situation, one has a short exact sequence of profinite
groups

(πét
1 (X/k)) 1 πét

1 (Xk̄, x̄) πét
1 (X, x̄) Galk 1,

the so-called fundamental exact sequence of étale fundamental groups.

Notation. We write Γ(πét
1 (X/k)) := Homout

Galk
(Galk, π

ét
1 (X)) for the set of sec-

tions of the above fundamental exact sequence.

With these notations in place, we can now state Grothendieck’s Section Con-
jecture:

Section Conjecture. Let X be a proper hyperbolic curve over a finitely generated
field extension k of Q. Then the canonical map

X(k)→ Γ(πét
1 (X/k))

is a bijection.

Note that, in the language Artin and Mazurs (profinite) étale homotopy type
Πét(X) of [1], hyperbolic curves X are étale K(π, 1)-varieties , i.e. all the higher
étale homotopy groups πét

n (X) vanish for n > 1. Many higher-dimensional varieties
do not share this property. It is thus unreasonable to expect the Section Conjecture
to hold for such varieties.
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Instead, one ought to formulate a generalised Section Conjecture that replaces
the set Γ(πét

1 (X/k)) with an appropriate variant Γét(X/k) that incorporates all the
higher étale homotopy-theoretic information of X/k. In joint work with Peter. J.
Haine and Sebastian Wolf [2], we prove a higher-dimensional generalisation of the
fundamental exact sequence, the so-called fundamental fibre sequence, which states
that the canonical square

Πét(Xk̄) Πét(X)

Πét(k̄) ≃ ∗ Πét(k)

is a homotopy pullback square.1 Such a fibre sequence always induces a long
exact sequence on homotopy groups, which in this case, using that k is also an
étale K(π, 1), recovers the fundamental exact sequence together with isomorphisms
πét
n (Xk̄)→ πét

n (X) for any n > 1.
It is now very natural to replace the set Γ(πét

1 (X/k)) of “π1-sections” with the
set of sections of the fibration Πét(X)→ Πét(k) up to homotopy:

Definition. We write Γét(X/k) := π0 mapΠét(k)(Π
ét(k),Πét(X)) for the set of

étale sections of X/k.

The generalised Section Conjecture thus states:

Generalised Section Conjecture. The canonical map

X(k)→ Γét(X/k), a 7→ [a∗]

is a bijection.

Remark.

(1) Of course, one still has to determine for which varieties X/k the above
conjecture should hold, as it clearly does not hold in general (e.g. X = A1

k).
(2) One can check that if X is aspherical, i.e. if πét

n (X) = 0 for n > 1, then
Γét(X/k) = Γ(πét

1 (X/k)) and the above conjecture precisely recovers the
ordinary Section Conjecture.

(3) Using a homotopy-theoretic analogue of the group-theoretic pro-p comple-
tion, one can also formulate an appropriate generalised pro-p Section Con-
jecture for any choice of prime p. We denote the set of generalised pro-p
sections by Γét

p
(X/k).

2. SC = π0(SC)

Note that X(k) = X(k̄)Galk is the set of fixed points under the natural Galois
action on X(k̄). Similarly, one can show that the set Γét(X/k) is given as the set
of (homotopy classes of) homotopy fixed points under the natural action of Galk
on Πét(Xk̄) induced by its geometric action on Xk̄:

1Here, and in the following, we exclusively work with Lurie’s ∞-categorical incarnation of
the étale homotopy type via the (profinite) shape of the étale ∞-topos of X, as introduced in [3,
Appendix E].
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Observation. There is a canonical identification

Γét(X/k) = π0(Πét(Xk̄)hGalk).

So from this perspective the Section Conjecture is asking for a comparison

X(k) = X(k̄)Galk π0 Πét(Xk̄)hGalk = Γét(X/k)

of fixed points with homotopy fixed points.
A deep conjecture, first proposed in [4], (now a theorem by work of Miller [5],

Carlsson [6] and Lannes [7]) in equivariant unstable homotopy theory, the so-called
Sullivan Conjecture, is precisely about such comparisons:

Sullivan Conjecture. Let G be a finite p-group and K a finite-dimensional G-
CW-complex. Then the composition

(KG)∧p → (KhG)∧p → (K∧
p )hG

is an equivalence of p-profinite homotopy types. Here, (−)∧p denotes p-profinite
completion of homotopy types.

Since (−)∧p preserves connected components, we arrive at the following:

Slogan. SC = π0(SC), i.e. the (generalised) Section Conjecture is the π0-portion
of the Sullivan Conjecture.

In [8], we turn the above slogan into a theorem when working over k = R:

Theorem. Let X/R be any equivariantly triangulable2 scheme. Then:

(1) X satisfies the generalised pro-2 Section Conjecture, i.e. the map

X(R)→ Γét
2 (X/R)

is a bijection.
(2) If, in addition, X is geometrically étale nilpotent3, then X satisfies the

generalised Section Conjecture, i.e. the map

X(R)→ Γét(X/R)

is a bijection.

Remark.

(1) This is the first result in anabelian geometry for non K(π, 1)-varieties.
(2) Also note that the above result is in some sense orthogonal to all other

existing results in anabelian geometry, since one e.g. assumes that πét
1 (Xk̄)

vanishes.

2By definition, this just means that X(C) carries the structure of a finite-dimensional GalR-
CW-complex and is required in order to apply the Sullivan Conjecture. This is for example
satisfied if

(1) X/R is affine and of finite type, or
(2) X/R is projective, or
(3) X/R is smooth.

3This is for example satisfied if XC is étale simply connected, i.e. if πét
1
(XC) = 1.
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(3) In accordance with our proposed slogan, the above Theorem is actually the
π0-portion of another theorem comparing X(R)∧2 with (Πét(XC)∧2 )hGalR or
(in the nilpotent case) with (Πét(XC)hGalR)∧2 .

(4) The first part of the above Theorem generalises the results obtained inde-
pendently by Mochizuki [9], Stix [10], Vistoli–Bresciani [11], Wickelgren
[12], and Pál [13] in the case of hyperbolic curves over R.

Let us conclude with a conjecture:

Conjecture. Any separated scheme of finite type X/R is equivariantly triangula-
ble.

References

[1] M. Artin & B. Mazur, Étale Homotopy, Lecture Notes in Mathematics (1969)
[2] P. Haine, T. Holzschuh, S. Wolf, The fundamental fiber sequence in étale homotopy theory,

IMRN, Volume 2024, Issue 1, 175–196
[3] J. Lurie, Spectral Algebraic Geometry, https://www.math.ias.edu/~lurie/papers/SAG-

rootfile.pdf

[4] D.P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, The 1970
MIT Notes

[5] H. Miller, The Sullivan Conjecture on Maps from Classifying Space, Annals of Mathematics
(1985)

[6] G. Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Inventiones mathemat-
icae (1991)

[7] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien
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Geometric duality for p-adic pro-étale cohomology of analytic varieties

Wies lawa Nizio l

(joint work with Pierre Colmez, Sally Gilles)

Let p be a prime. Let K be a finite extension of Qp. Let K be an algebraic closure

of K and let C = K̂ be its p-adic completion; let GK = Gal(K/K). Or analytic
varieties are separated.

We are in the process of writing down a proof of the following result.

https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
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Theorem 1. (Poincaré Duality) Let X be a smooth, partially proper rigid analytic
variety over K, connected, of dimension d. Then, for j ∈ Z, there is a natural
quasi-isomorphism in TVS

RΓproét(XC ,Qp(j))
∼→ R HomTVS(RΓproét,c(XC ,Qp(d− j))[2d],Qp).

Here TVS is the category of Topological Vector Spaces, i.e., v-sheaves of en-
riched (in condensed sets) solid Q

p
-vector spaces on PerfC and pro-étale cohomol-

ogy is seen in TVS; the Hom is internal.
The proof passes to syntomic cohomology (via a geometric version of a com-

parison theorem), represents syntomic cohomology via a complex of solid quasi-
coherent sheaves on the Fargues-Fontaine curve, proves a Poincaré duality for such
complex, and then projects this duality down to the TVS category. The Poincaré
duality on the FF curve reduces to Hyodo-Kato duality on the whole curve and
the filtered B+

dR-duality at infinity (both of which are known). The functional an-
alytic problems can be solved because all the infinite data ”come from the base”
and can be ”taken out” via a projection formula. The enriched structure is nec-
essary for the computation of Ext-groups between Banach-Colmez spaces (and
enters through the enriched Yoneda Lemma). See Proposition 3.

Theorem 1 yields the computation:

Corollary 2. There is a natural exact sequence in TVS

0→ Ext1TVS(H2d−i+1
proét,c (XC ,Qp(d)),Qp)

→ Hi
proét(XC ,Qp)

→ HomTVS(H2d−i
proét,c(XC ,Qp(d)),Qp)

→ 0

This is proved by a reduction to the following vanishing result (a topological
version of a result of Anschütz-Le Bras)

Proposition 3. Let F1,F2 be Banach-Colmez spaces. Then

ExtaTVS(F1,F2) = 0, a ≥ 2.

Which, in turn, is proved by using Mac-Lane resolutions (those are naturally
enriched in this setting) and reducing, via the enriched Yoneda Lemma, to the
computation of cohomologies of complexes built from cohomologies of affine spaces
with values in the sheaves Qp and Ga. These complexes can be represented by com-
plexes of Fréchet spaces and hence are exact if and only if are exact algebraically.
But the algebraic complexes represent Ext-groups in VS-category, where they are
known to vanish in degrees at least 2 by Anschütz-Le Bras.

Remark 4. There is an independent, ongoing project of Anschütz-Le Bras-Mann
that studies 6-functor formalism for p-adic pro-étale cohomology on analytic va-
rieties. In particular, this should include duality results of the type stated in
Theorem 1.
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On the converse to Eisenstein’s last theorem

Daniel Litt

(joint work with Yeuk Hay Joshua Lam)

This work is motivated by the following question; the earliest place I have been
able to find it in print is [1], and see also [2] for a nice overview.

Question. (Fuchs, 1875) When does an algebraic differential equation have solu-
tions which are algebraic functions?

Considering some basic examples shows that this a priori algebraic question is
actually of an arithmetic nature; for example, the differential equation

(
∂

∂z
− a

z

)
f(z) = 0, a ∈ C

has solutions of the form cza, which are algebraic if and only if a is a rational
number. For linear differential equations, there is a now-standard conjectural
answer:

Conjecture 1. (Grothendieck-Katz p-curvature conjecture [3]) Let A be a matrix

with entries in Q(z). Then all of the solutions to
(

∂
∂z −A

)
~f(z) = 0 are algebraic

if and only if
(

∂
∂z −A

)p ≡ 0 mod p for almost all primes p.

This conjecture is widely open; the main cases that are known are due to Katz
[3] (who proved it for Picard-Fuchs equations) and Chudnovsky-Chudnovsky [4],
Bost [5], and André [6], (who proved it in the case of solvable monodromy), though
there is other beautiful work handling some sporadic cases.

The main goal of this work is to understand a variant of the conjecture suitable
for non-linear differential equations, and to try to gather some evidence for it.
The conjecture is as follows:

Conjecture 2. Let f(z) =
∑

anz
n ∈ Q[[z]] be a solution to a (possibly non-

linear) differential equation

f (n)(z) = F (z, f(z), f ′(z), · · · , f (n−1)(z)),

with F ∈ Q(z, y0, · · · , yn−1) and F (0, f(0), · · · , f (n−1)(0)) defined. Then the fol-
lowing are equivalent:

(1) f(z) is algebraic over Q(z),
(2) There exists N such that all ai ∈ Z[ 1

N ], and
(3) There exists ω : Primes→ Z≥0 with

lim
p→∞

ω(p)

p
=∞

such that a0, · · · , aω(p) ∈ Z(p) for almost all primes p.

That (1) implies (2) is a theorem of Eisenstein, appearing in the final paper he
published before his death at the age of 29 [7]. It is trivial to see that (2) implies
(3). Of course all of the reverse implications are very difficult. If one could show
that (3) implies (1), this would resolve the p-curvature conjecture, but in fact this
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conjecture is (at least a priori) much stronger than the p-curvature conjecture. For
linear ODE, some variant of it has been considered by André and Christol [6].

Before stating our results, we reformulate the conjecture in a more geometric
context. Let π : M → S be a smooth morphism of smooth schemes, and let
F ⊂ TM be an integrable foliation on M/S, i.e. a subsheaf closed under the Lie
bracket [−,−] such that the natural composition

F →֒ TM → π∗TS

is an isomorphism. Let m ∈M be a point.

Conjecture 3. The following are equivalent:

(1) There exists an algebraic leaf of F through m, and
(2) There exists a descent of M, S, π,m,F to a finitely-generated Z-algebra

R and a formal leaf SpfR[[x1, · · · , xdim(S)]]→M of F through m.
(3) An appropriate analogue of condition (3) of Conjecture 2 here, which we

omit for brevity.

We now explain the situations in which we can verify Conjectures 2 and 3.

Theorem A. (Lam-L–) Let f : X → S be a smooth proper morphism of smooth
C-schemes. Let (E ,∇) = (R2kf∗Ω•

X/S ,∇GM ) be the relative de Rham cohomology

of f , equipped with its Gauss-Manin connection. Fix s ∈ S and m ∈ Es = H2k
dR(Xs)

in the image of the cycle class map

Zk(Xs)Q → H2k
dR(Xs).

Then the formal flat section to the Gauss-Manin connection through m is algebraic
if and only if it descends to a formal section over a finitely-generated Z-algebra,
i.e. Conjecture 3 is true in this case.

The proof relies on the Mazur-Ogus theorem relating the behavior of the crys-
talline Frobenius to the Hodge filtration modulo p.

Theorem B. (Lam-L–) Let f : X → S be a smooth proper morphism of smooth
C-schemes, with X/S a relative genus one curve. Let

(E ,∇) = Symn(R1f∗Ω•
X/S ,∇GM )

be a symmetric power of the relative de Rham cohomology of f , equipped with
its Gauss-Manin connection. Fix s ∈ S,m ∈ Es. Then the formal flat section
∇ through m is algebraic if and only if it descends to a formal section over a
finitely-generated Z-algebra, i.e. Conjecture 3 is true in this case.

For example, this applies to the solutions to Picard-Fuchs equations associated
to modular forms (see e.g. [8, Proposition 21]).

There are a number of other cases in which we can verify Conjecture 3 for linear
ODE; for example, for Picard-Fuchs equations associated to families of abelian
varieties at “CM initial conditions,” certain hypergeometric functions, etc. For
brevity’s sake, we only give one more case, where we verify it for certain non-
linear differential equations.
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Let f : X → S be a smooth projective morphism (possibly equipped with a
relative snc divisor, which we ignore for this abstract). One may associate to f the
moduli stackMdR(X/S), which parametrizes flat bundles on X/S. This stack is a
crystal over S; that is, loosely speaking, there is a natural isomonodromy foliation
on MdR(X/S)/S, whose leaves are families of flat bundles with locally constant
mononodromy representation (up to conjugacy). This foliation is the non-abelian
analogue of the Gauss-Manin connection, and has been studied classically; for
example the Painlevé VI and Schlesinger equations are special cases. Our main
theorem in this case is:

Theorem C. (Lam-L–) Let f : X → S be smooth proper (possibly equipped
with a relative snc divisor), and fix s ∈ S. Let [(E ,∇)] ∈ MdR(Xs) be a Gauss-
Manin connection on Xs, i.e. Rig∗ΩdR,Y/Xs

for some smooth proper g : Y → Xs.
Then the leaf of the isomonodromy foliation on MdR(X/S) through [(E ,∇)] is
algebraic if and only there exists a formal isomonodromic deformation over a
finitely-generated Z-algebra. That is, Conjecture 3 is true in this case.

The proof relies on Ogus-Vologodsky’s non-abelian Hodge theory in positive
characteristic, and on the theory of the Higgs-de Rham flow (due to Faltings,
Lan-Sheng-Zuo, and Esnault-Groechenig).

We end with a small hint relating this case of isomonodromy foliations to the
classical p-curvature conjecture:

Proposition D. (Lawrence-L–, Lam-L–) Suppose Conjecture 3 holds for the
isomonodromy foliation on the moduli of flat bundles of rank r on the univer-
sal curve,MdR(Cg/Mg, r). Then the classical p-curvature conjecture holds for all
flat bundles of rank r.
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The section conjecture for the toric fundamental group

Giulio Bresciani

The toric fundamental group is the smallest extension of the étale fundamental
group which can manage the monodromy of line bundles, in addition to the mon-
odromy of finite étale covers. It is an extension of the étale fundamental group by
a projective limit of tori.

We study the analogue of Grothendieck’s section conjecture for the toric fun-
damental group over finite extensions of Qp. Given a smooth, projective variety
over a field k, there exists a space of Galois sections StorX/k of toric Galois sections

with natural maps

X(k)→ StorX/k → SX/k

giving a factorization of the usual profinite Kummer map X(k)→ SX/k. Moreover,

the natural map StorX/k → SX/k is injective if X is a smooth projective curve.

If P is a non-trivial Brauer–Severi variety over k, then StorP/k = ∅. As a conse-

quence, if X maps to a non-trivial Brauer–Severi variety, we have that StorX/k = ∅ as

well. This makes the toric fundamental group particularly well-suited for studying
the Grothendieck’s section conjecture using Brauer groups.

We now state the main results. After the talk, Y. Hoshi and A. Tamagawa have
found a gap in one of the proofs. Because of this, the main results are conditional
on the following statement being true.

Conjecture 1. Let X be a smooth projective curve of genus ≥ 2 embedded in an
abelian variety A over a field k finite over Qp. Assume that X ⊂ A contains no
torsion points of order prime with p. For n >> 0 large enough, the inverse image
Xn of X along pn : A→ A has index divisible by p.

We remark that part of the proof of Conjecture 1 remains correct. For instance,
we can prove that for every r > 0 there exists nr >> 0 such that every closed
point of Xnr

of ramification index ≤ r has degree divisible by p.
Conditional on Conjecture 1, we prove the following results.

Theorem 1. Assume that Conjecture 1 holds. Let X be a smooth projective
curve of genus ≥ 2 over a field k finite over Qp. Then

X(k)→ StorX/k

is bijective.

Theorem 2. Assume that Conjecture 1 holds. Let X be a smooth projective
curve of genus ≥ 2 over a number field k. Then StorX/k ⊂ StorX/k coincides with the

subset of Selmer Galois sections.

Once the theory of toric fundamental groups is established, Theorems 1 and 2 are
relatively easy consequences of the following result about standard Galois sections.

Theorem 3. Assume that Conjecture 1 holds. Let X be a smooth projective
curve of genus ≥ 2 over a field k finite over Qp, and s ∈ SX/k a Galois section. If
s does not come from a point of X(k), there exists a finite étale cover Y → X , a
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lift r ∈ SY/k of s and a morphism Y → P where P is a non-trivial Brauer–Severi
variety.

References

[1] G. Bresciani, The section conjecture for the toric fundamental group over p-adic fields,
arxiv:2409.07923 (2024).

Relative mod-n Poincaré duality in nonarchimedean geometry

Emanuel Reinecke

(joint work with Shizhang Li, Bogdan Zavyalov)

This talk is based on [3]. We explain a new, essentially “diagrammatic” proof of
finiteness and duality results for étale local systems in nonarchimedean geometry.

1. Introduction

Let us recall (a special case of) the classical statement of finiteness under higher
direct images and Poincaré duality for étale local systems in algebraic geometry.

Theorem 1 (SGA 4). Let f : X → Y be a smooth, proper morphism of schemes.
Let n ∈ O×

Y be an integer that is invertible on Y . Let L be an étale Z/n-local
system on X. Then:

(1) (finiteness) The higher direct images Rif∗L are étale Z/n-local systems on Y
for all i ≥ 0.

(2) (duality) Assume that f is of equidimension d. Then there exists a trace
morphism trf : Rf∗Z/n(d)[2d]→ Z/n such that the induced pairing

Rf∗(L)⊗L Rf∗
(
L∨(d)[2d]

) ∪−→ Rf∗
(
L⊗ L∨(d)[2d]

)
→ Rf∗

(
Z/n(d)[2d]

) trf−−→ Z/n

is perfect. That is, the tensor-hom adjoint

Rf∗
(
L∨(d)[2d]

)
→ RHom

(
Rf∗(L),Z/n

)

is an isomorphism.

2. The main statement

We want to discuss a statement in nonarchimedean geometry which is analogous
to Theorem 1, replacing schemes by adic spaces.

Example 2. The archetypical example of an adic space is the closed unit disk
D1

K for some nonarchimedean extension K of Qp. The functions on it are given
by the ring

K〈T 〉 :=
{
f =

∑∞
i=0 aiT

i ∈ K[[T ]]
∣∣ limi→∞|ai| = 0

}

of those power series that converge for all x ∈ OK . The points of D1
K are equiv-

alence classes of continuous, nonarchimedean valuations v : K〈T 〉 → Γ ∪ {0} for a
totally ordered abelian group Γ such that v

(
OK〈T 〉

)
≤ 1. Here are some examples:
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(a) (classical points) for any x ∈ OK , the valuation

vx : K〈T 〉 → R>0 ∪ {0}, f 7→ |f(x)|
(b) (disks around 0) for any 0 < r ≤ 1, the valuation

vr : K〈T 〉 → R>0 ∪ {0}, f =
∑∞

i=0 aiT
i 7→ max|y|≤r

{
|f(y)|

}
= maxi

{
|ai|ri

}

(c) (higher rank points) for any 0 < r < 1, the valuation

vr+ : K〈T 〉 →
(
R>0 × (r+)Z

)
∪ {0}, f =

∑∞
i=0 aiT

i 7→ maxi

{
|ai|(r+)i

}

where R>0× (r+)Z has the lexicographical ordering (informally: r < r+ < r′

for all r < r′ ∈ R>0).

There exists again a formalism of étale morphisms and the étale topology for
adic spaces. In this setting, Theorem 1 admits a direct analog:

Theorem 3 ([1, 2, 5, 6, 4, 3]). Let f : X → Y be a smooth, proper morphism
of locally noetherian analytic adic spaces (e.g., rigid-analytic spaces over K). Let
n ∈ O×

Y be an integer that is invertible on Y . Let L be an étale Z/n-local system
on X. Then:

(1) (finiteness) The higher direct images Rif∗L are étale Z/n-local systems on Y
for all i ≥ 0.

(2) (duality) Assume that f is of equidimension d. Then there exists a trace
morphism trf : Rf∗Z/n(d)[2d]→ Z/n such that the induced pairing

Rf∗(L)⊗L Rf∗
(
L∨(d)[2d]

) ∪−→ Rf∗
(
L⊗ L∨(d)[2d]

)
→ Rf∗

(
Z/n(d)[2d]

) trf−−→ Z/n

is perfect.

When n ∈ O+,×
Y (e.g., for rigid-analytic spaces over a nonarchimedean exten-

sion K of Qp, this means that (n, p) = 1), Theorem 3 was shown by Berkovich [1]
and Huber [2]. When n = p, the finiteness part was proved by Scholze–Weinstein
[5] (based on earlier work of Scholze in the absolute case) and the duality part
by Gabber (unpublished), Zavyalov [6], and Mann [4]. All the previous proofs for
n = p use the machinery of perfectoid spaces heavily. Our new proof of Theo-
rem 3 works uniformly for all n ∈ O×

Y and only makes minimal use of perfectoid
techniques.

Remark 4. We also prove a version of Theorem 3 for proper (but not necessarily
smooth) morphisms of rigid-analytic spaces over K, which involves the formalism
of Zariski-constructible sheaves and dualizing complexes. This version confirms a
conjecture of Bhatt–Hansen.

3. The trace map

Let us explain a new construction of the trace map featuring in Theorem 3.

Theorem 5 ([3]). There is a unique way to assign to any separated, taut, smooth
of equidimension d morphism f : X → Y between locally noetherian analytic adic
spaces and any integer n ∈ O×

Y a trace map trf : Rf!Z/n(d)[2d]→ Z/n such that:
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(1) trf is compatible with compositions
(2) trf is compatible with pullbacks
(3) if f is étale, then trf is the counit of the adjunction between f! and f∗

(4) if f : P1,an
C → Spa(C,OC), then trf is the analytification of the algebraic trace.

Remark 6. When f is in addition partially proper, such a trace map had previ-
ously been defined by Berkovich via different methods. While his trace would be
sufficient for our proof of Theorem 3, our version for not necessarily smooth mor-
phisms from Remark 4 crucially uses the more general construction in Theorem 5.

The tautness condition in Theorem 5 is a technical one that Huber needs in
order to define Rf!; it is for example implied by quasi-paracompactness.

Idea of the proof of Theorem 5. By an SGA 4-type argument, the local structure
of smooth morphisms guarantees the uniqueness of trf and reduces the construc-
tion of trf to the case when f : X → Spa(C,OC) is an affinoid curve over an
algebraically closed nonarchimedean field C. Let us explain the main idea of our
construction when X = D1

C is the closed unit disk.

Consider the universal compactification D1
C ⊂ D1

C . The complement D1
C rD1

C

consists of one point, which corresponds to the rank-2 valuation

v1+ : C〈T 〉 →
(
R>0 × (1+)Z

)
∪ {0}, f =

∑∞
i=0 aiT

i 7→ maxi

{
|ai|(1+)i

}

where again 1 < 1+ < r′ for all 1 < r′ ∈ R>0. Now excision and the Artin–

Grothendieck vanishing H2
ét(D

1
C , µn) = 0 yield an exact sequence

H1
ét

(
D1

C , µn

)
→ H1

ét({v1+}, µn)→ H2
ét,c(D

1
C , µn)→ 0.

By work of Huber and Kummer theory, H1
ét({v1+}, µn) ≃ k̂(v1+)

h,×
/n, where

k̂(v1+)
h

denotes the henselized completed residue field. The valuation v1+ extends

to k̂(v1+)
h

and thus defines a map

v1+ mod n : H1
ét({v1+}, µn)→

(
R>0 × (1+)Z

)
/n ≃ (1+)Z/n ≃ Z/n.

Finally, we check that v1+ mod n vanishes on H1
ét

(
D1

C , µn

)
and therefore descends

to the desired map H2
ét,c(D

1
C , µn)→ Z/n. �

4. Proof of Theorem 3

We present the essential idea of our proof of Theorem 3. Recall that the perfect
complexes in D(Xét;Z/n) are exactly the dualizable objects. Our proof then boils
down to the verification that for any dualizable E ∈ D(Xét;Z/n), the derived
pushforward Rf∗(E) ∈ D(Yét;Z/n) is again dualizable, with dual Rf∗(E∨(d)[2d]):
this will show the finiteness and dualizability in one fell swoop.

For our verification, we need to define an evaluation map e : Rf∗(E∨(d)[2d])⊗L

Rf∗(E)→ Z/n and a coevaluation map c : Z/n→ Rf∗(E)⊗LRf∗(E∨(d)[2d]) such
that (id ⊗ e) ◦ (c ⊗ id) = idRf∗(E) and (e ⊗ id) ◦ (id ⊗ c) = idRf∗(E∨(d)[2d]). The
evaluation map is the duality pairing from the statement of Theorem 3. In order
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to define the coevaluation map, we need a well-behaved theory of cycle classes for
adic spaces. It can be set up in a similar way as its analog in algebraic geometry.

Let ∆: X → X ×Y X be the diagonal map and h := (f, f) : X ×Y X → Y .
Denote by cl∆ the cycle class of ∆. Then the coevaluation map is

c : Z/n→ Rf∗(Z/n)→ Rf∗
(
E ⊗L E∨

)
≃ Rh∗

(
(E ⊠ E∨)⊗L ∆∗(Z/n)

)

Rh∗(id⊗cl∆)−−−−−−−−→ Rh∗

(
E ⊠ E∨(d)[2d]

)
≃ Rf∗

(
E)⊗L Rf∗(E∨(d)[2d]

)

where the second map is induced by the coevaluation for the dualizable object E ,
the first isomorphism follows from the projection formula, and the last isomor-
phism is the inverse of the Künneth map. The statement that the Künneth map is
an isomorphism is the only part of our argument that requires perfectoid methods.
Once the evaluation and the coevaluation map are defined, the verification of the
identities (id⊗ e) ◦ (c⊗ id) = id and (e⊗ id) ◦ (id⊗ c) = id amounts to a diagram
chase. One crucial input is that trpr ◦ cl∆ = id for a projection pr : X ×Y X → X .

References

[1] Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes
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Mapping class group and Dehn twists of p-adic fields

Nadav Gropper

1. Motivation

The main motivation for the talk is to understand anabelian questions about a
p-adic field K, through the lens of Arithmetic Topology.

In [1], Mochizuki proved the following:

Theorem. Let K be a finite extension of Qp, let GK be its absolute Galois group,
and let OutFilt(GK) be the group of outer automorphism of GK , which preserve
the ramification filtration.

Then the natural morphism

AutQp
(K)→ OutFilt(GK)

is a bijection.

https://arxiv.org/abs/2410.08200
https://arxiv.org/abs/2206.02022
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On the other hand, it is known that the absolute Galois group of a p-adic field
does not determine the field (see for example [3]). This naturally leads to the
following question:

Question 1. What is the structure of the group Out(GK)?

In [2] a non trivial element of Out(GK) was constructed. It was later shown in
[8], that if p is odd, and K is an abelian even degree extension of Qp, then these
have infinite order in Out(GK), and so the outer automorphism constructed in [2]
does not preserve the ramification filtration.

Other than that, very little was known about the outer automorphism group.

2. Main Results

In the talk we outline the ideas and tools used [7] to study Out(GK). These ideas
are highly influenced by the philosophy of arithmetic topology.

Arithmetic Topology, first pioneered in [9] by Mazur, draws analogies between
number theory and low dimensional topology (see [5] for a more detailed view of
arithmetic topology).

Under this analogy, a p-adic field should correspond to a surface, and Out(GK)
should look like the mapping class group of a surface.

Our main result strengthens the above analogy and gives further insight to
Out(GK):

Theorem 1. Let K be a p-adic field, and let GK(p) be the maximal pro-p quotient
of the absolute Galois group of K.

There is a family of infinite order elements of Out(GK(p)) which generalize the
notion of Dehn twists on a surface.

The first step is to look at a group theoretic description of curves on a surface
and Dehn twists. We have the following classical fact (see for example [6] theorem
4.12.1):

Theorem. A simple closed curve on a surface S, gives rise to a splitting of π1(S)
as an amalgamated free product over Z, or as an HNN extension over Z. Con-
versely, all splittings over Z of π1(S), into HNN extensions and amalgamated free
products, arise in such a way.

Now given a Z splitting of a group one can define a Dehn automorphism.

Definition 1. Given a group G and a Z splitting of it, we define an automorphism
of G, called the Dehn twist associated to the splitting, as follows:

If the Z splitting is A∗<c>B, we define the Dehn twist δ to be the automorphism

δ(a) = a, δ(b) = cbc−1

for all a ∈ A, b ∈ B.
If the the Z splitting is HNN extension A∗<c>, we define the Dehn twist δ to be

δ(a) = a, δ(t) = ct

for all a ∈ A and where t is the stable letter of the HNN extension.
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When looking at surface groups, these generalized Dehn twists are the classical
Dehn twists. Similar definitions can be made for pro-p groups and Zp splittings.

In order to work with surfaces and p-adic fields at the same time, we look at
Demushkin groups [4], these are pro-p groups with a Poincaré duality of dimension
2, and they include GK(p), and the pro-p completion surface groups.

In the talk, we explain the description we have for all Zp splittings of a De-
mushkin group.

By using this description, together with the notion of intersections of splittings,
we can show that Dehn twist automorphisms, have infinite order in the outer
automorphism group.

We finish with the following:

Question 2. Does the profinite group, generated by all Dehn twists, have finite
index in Out(GK(p))?
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Tame fundamental groups of rigid spaces

Piotr Achinger

(joint work with Katharina Hübner, Marcin Lara, and Jakob Stix)

Étale fundamental groups of rigid-analytic spaces can be challenging to under-
stand. For example, πét

1 (DCp
) of the affinoid unit disc over Cp is not topologically

finitely generated, as

H1
ét(DCp

,Fp) = Hom(πét
1 (DCp

),Fp)

is infinite. For a proper smooth rigid-analytic space X over Cp, the cohomology
groups H∗

ét(X,Fp) are finite (as shown by Scholze [15]), and the étale fundamental
group is likewise expected to be topologically finitely generated.1 However, it

1We learned of this question from Bogdan Zavyalov.
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seems that we currently lack tools to show this, unless X is the analytification of
an algebraic variety.

As in the case of schemes [13], one can deal with such issues by considering the
tame quotient of the fundamental group. For us, a rigid-analytic space over a non-
archimedean field K is an adic space locally of finite type over Spa(K,K+). Thus,
the residue fields of points of X are equipped with valuations, and the natural
definition that presents itself (considered in [7]) is the following: an étale morphism
of adic spaces f : Y → X is tame if for every y ∈ Y , the finite separable extension
of valued fields k(y)/k(f(y)) is tamely ramified (meaning that [k(y)sh : k(f(y))sh]
is prime to the residue characteristic exponent). For X connected, tame finite
étale maps Y → X form a Galois category whose fundamental group πt(X) is
a quotient of πét

1 (X).
However, with this definition, the tame fundamental group πt

1(DCp
) is still

infinite! Indeed, the coverings defined by

yp − y = λx (λ ∈ Cp with |λ| = 1)

are tame (even unramified) and yield an infinite number of maps πt
1(DCp

) → Fp.
Intuitively, the tameness condition introduced above measures only the ramifica-
tion along the special fiber of a formal model of X , while in the presented example
the wild ramification happens at infinity of the special fiber. We correct this
by introducing the following notion: an étale morphism of rigid-analytic spaces
f : Y → X is tame relative to K if for every maximal point y ∈ Y and ev-
ery valuation subring V ⊆ k(y)+ containing K+, the extension of valued fields
k(y)/k(f(y)) is tamely ramified with respect to V . Again, for X connected, we
obtain a Galois category whose fundamental group πt(X/K) is a quotient of πt

1(X).
For the unit disc DCp

, such test pairs (y, V ) consist of points of DCp
(con-

tinuous valuations on K〈x〉 which are ≤ 1 on K+〈x〉) and one additional point
corresponding to a rank two continuous valuation which is unbounded on K+〈x〉.
In fact, if X is quasi-compact and separated, then the test pairs (y◦, k(y)+) form
the set of points of an adic space (not a rigid space in general) X containing X , the
universal compactification of X/K defined by Huber [6, §5.1]. Alternatively,
X can be described as the inverse limit of all compactifications of special fibers of
all formal models of X [11]. Thus πt

1(X/K) = πt
1(X), whenever X exists.

Our main result is the following.

Theorem 1. Let X be a connected qcqs rigid space over a non-archimedean field
K. Suppose that the tame Galois group πt

1(K) = Aut(Kt/K) is topologically
finitely generated. Then πt

1(X/K) is topologically finitely generated.

Similarly, if K is algebraically closed, we can show the Künneth formula

πt
1(X × Y/K) ≃ πt

1(X/K)× πt
1(Y/K),

and that if L is an algebraically closed non-archimedean field containing K, then
πt
1(XL/L) ≃ πt

1(X/K). In light of [3, 14] it is an interesting question whether
πt
1(X/K) is topologically finitely presented. Using our methods, we can show that

this is the case if X is smooth and admits a semistable model such that the strata of
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its special fiber admit normal crossings compactifications. In this situation, there
is a “van Kampen formula” expressing πt

1(X/K) in terms of the more classically
studied tame fundamental groups of the strata.

The proof of Theorem 1 relies on

(1) desingularization techniques [9, 16] which allow us to reduce the finite
generation question to the case where K = K and X is smooth, with
a semistable formal model X (treated as a log formal scheme over K+),

(2) a “semistable Abhyankar’s lemma,” relating πt
1(X) (not πt

1(X/K)!) to the
Kummer étale fundamental group πét

1 (X0) of the log special fiber,
(3) an additional argument showing that πt

1(X/K) is isomorphic to the tame

Kummer étale fundamental group πét,t
1 (X0/k) (a notion we needed to in-

troduce along the way, and which I will not explain here),
(4) and finally, proving that for a suitable class of log schemes over an al-

gebraically closed field k, the tame Kummer étale fundamental group is
topologically finitely generated (see Theorem 2 below).

Logarithmic geometry beyond fs. A major obstacle to this approach is that
since K = K, it is not discretely valued, and hence the log special fiber X0 will not
be an fs log scheme, precluding the application of most of logarithmic geometry.
Recall that a log scheme is fs if it locally admits a chart by an fs (finitely generated
and saturated) monoid. Here, the log structure on K+ admits a chart by the
monoid Γ+

K , the positive part of the value group. This monoid is not finitely
generated; however, it is valuative and divisible, which turns out to be quite helpful
in this context.

In order to overcome the obstacle, we needed to develop the foundations of
logarithmic geometry beyond fs log schemes, which is a project by itself. (Similar,
though less comprehensive, approaches appear in some recent papers [1, 2, 12].)
The basic notion is that of an sfp morphism. A map of saturated monoids P → Q
is sfp (finitely presented up to saturation) if Q is the saturation of a finitely
presented monoid over P , or equivalently, if

Q = (P ⊕P0
Q0)sat

for a map of fs monoids P0 → Q0 (these are precisely the compact objects of the
category of saturated monoids over P ). A map of saturated log schemes Y → X
is locally sfp if it is étale locally of the form

Spec(Q→ B)→ Spec(P → A)

where (P → A)→ (Q → B) is a map of saturated prelog rings such that P → Q
is sfp and A ⊗Z[P ] Z[Q] → B is finitely presented as a map of rings; it is sfp if
it is locally sfp and qcqs. Crucially, we show that if (P → A) = lim−→ (Pα → Aα)
is a filtered colimit of saturated prelog rings, then the category of sfp log schemes
over Spec(P → A) is the colimit of the system of categories of sfp log schemes over
Spec(Pα → Aα). Since for any given (P → A) we can find such a system with Pα

fs and Aα finitely generated over Z, this allows us to extend many known results
from fs log schemes to sfp maps (analogously to the elimination of noetherian
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hypotheses in [5, §8]). Using this, we define smooth, étale, and Kummer étale
maps, and develop the theory of the Kummer étale site and the Kummer étale
fundamental group (see [8]) for arbitrary saturated log schemes.

Interestingly, sfp or Kummer étale maps might not be locally of finite type as
maps of schemes. Indeed, there exist tame extensions of valued fields L/K such
that Γ+

L is not finitely generated as a monoid over Γ+
K , and the valuation ring

L+ is not finitely generated over K+. (For example, let K be a non-archimedean

field with |2| = 1, with value group Z + Z
√

2 ⊆ R, and let L = K(
√
x,
√
y) where

ν(x) = 1 and ν(y) =
√

2.) However, the map Γ+
K → Γ+

L is sfp, and with the natural
log structures, the map Spec(L+) → Spec(K+) is Kummer étale. Surprisingly,
thanks to fundamental results of Kato [10] and Tsuji [17], these difficulties go
away for sfp log schemes over a base with a chart given by a divisible valuative
monoid, such as Spec(K+) for an algebraically closed non-archimedean field K.

Back to tame fundamental groups. With all these preparations, we can finish
the proof of Theorem 1 by proving:

Theorem 2. Let X be a connected log scheme which is sfp over Spec(P → k)
where P is a divisible valuative monoid with finitely many faces and k is an alge-

braically closed field. Then the tame Kummer étale fundamental group πét,t
1 (X/k)

is topologically finitely generated.

The proof uses “formal gluing” along the log stratification of X to reduce to
the case of locally constant log structure, which in turn can be reduced to the case
of trivial log structure. In this case, we use alterations to reduce to a result of
Esnault and Kindler [4].

Note that, the proofs of all known results of (topological) finite generation of
fundamental groups in algebraic geometry eventually rely on the finite generation
of the topological fundamental group of smooth curves over C. Ultimately, so does
our proof, after a very long pipeline of reductions.
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Non-abelian Chabauty and the Selmer Section Conjecture

Martin Lüdtke

(joint work with L. Alexander Betts, Theresa Kumpitsch)

Grothendieck’s Section Conjecture predicts that for a smooth projective curve
X/Q of genus at least two, every Galois section is induced by a rational point.
The Selmer Section Conjecture is a weaker version which assumes that the Galois
section locally comes from a Qv-point for every place v. In this talk I present our
results [1] on a new strategy for proving instances of the Selmer Section Conjecture
based on non-abelian Chabauty calculations. We show that whenever X satisfies
Kim’s Conjecture for all choices of auxiliary prime p in a density 1 set of primes,
then the Selmer Section Conjecture holds for X . The analogous statement for
S-integral points on affine hyperbolic curves is also proved. We demonstrate the
viability of our strategy by verifying Kim’s Conjecture for X = P1r{0, 1,∞} over
Z[1/2] and any choice of auxiliary prime p > 2.

1. The Selmer Section Conjecture

Let X be a smooth projective curve of genus g ≥ 2 over a number field K.
Grothendieck’s Section Conjecture predicts a description of the set of rational
points X(K) in terms of the étale fundamental group of X . More precisely, writ-
ing GK = Gal(K/K) for the absolute Galois group of K we have the fundamental
exact sequence:

(1) 1 −→ πét
1 (XK) −→ πét

1 (X) −→ GK −→ 1.

Every rational point x ∈ X(K) induces a section sx : GK → πét
1 (X) which is well-

defined up to π1(XK)-conjugacy. The assignment x 7→ [sx] defines the profinite
Kummer map

(2) κ : X(K) −→ S (X/K) := {conjugacy classes of sections of (1)}.
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It is known that this map is injective. Grothendieck’s Section Conjecture states
that it is also surjective.

For any place v of K we have a similar local profinite Kummer map

(3) κv : X(Kv) −→ S (XKv
/Kv)

which is compatible with the inclusion X(K) ⊆ X(Kv) on the one hand and the
restriction of sections to a local decomposition group Gv ≤ GK on the other.

Definition 1. We say that a section s ∈ S (X/K) is Selmer if s|Gv
is in the image

of κv for every place v of K.

Conjecture 2 (Selmer Section Conjecture). Every Selmer Section is induced by
a rational point.

Sections which are induced by a rational point are clearly Selmer. Thus,
Grothendieck’s Section Conjecture is equivalent to the combination of the Selmer
Section Conjecture and the statement that every section is Selmer. The latter
statement would follow from the p-adic Section Conjecture, as the surjectivity
of κv is known for real places [2, Cor. 3.13] and trivial for complex places. In this
talk I present a result which reduces the Selmer Section Conjecture to a conjecture
in non-abelian Chabauty theory.

2. Non-abelian Chabauty

Let X be a smooth projective curve of genus g ≥ 2 over Q. Assume that X(Q) 6= ∅
and fix a rational base point b ∈ X(Q). Let p be a prime of good reduction for X .
The non-abelian Chabauty method (also known as the Chabauty–Kim method)
produces a nested sequence of subsets

X(Qp) ⊇ X(Qp)1 ⊇ X(Qp)2 ⊇ X(Qp)3 ⊇ . . .

which are defined by locally analytic functions on X(Qp) and all contain the set
of rational points X(Q) [3, 4]. Roughly speaking, the set X(Qp)1 corresponds
to the classical Chabauty method [5]; it is finite whenever the Mordell–Weil rank
r := rkZ JacX(Q) satisfies r < g. The set X(Qp)2 can be computed using Quadratic
Chabauty [6]; it is finite under the weaker condition r < g+ρ− 1, where ρ denotes
the Picard number of X .

Conjecture 3. X(Qp)n is finite for n≫ 0.

The finiteness of X(Qp)n for sufficiently large n is implied by the Bloch–Kato
conjecture [4]. It is conjectured that the sets X(Qp)n not only become finite but
eventually coincide exactly with the set of rational points [7, Conj. 3.1].

Conjecture 4 (Kim’s Conjecture). X(Qp)n = X(Q) for n≫ 0.

There is a natural variant of the non-abelian Chabauty method for S-integral
points on affine hyperbolic curves. For p 6∈ S of good reduction it produces sub-
sets X(Zp)S,n ⊆ X(Zp) containing the set of S-integral points X(ZS), and Kim’s
Conjecture in this setting states that X(Zp)S,n = X(ZS) for n ≫ 0. We re-
mark that we are working with the refined Chabauty–Kim method as introduced
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by Betts–Dogra [8], which produces potentially smaller sets than the classical
Chabauty–Kim method.

3. Main results

Let X/Q be a smooth projective curve of genus at least two and assume that X
has a rational point. Our first result provides a strategy for proving the Selmer
Section Conjecture by verifying cases of Kim’s Conjecture:

Theorem 5 (Betts–Kumpitsch–L., [1]). Assume that X satisfies Kim’s Conjecture
for all p in a density 1 set of primes. Then the Selmer Section Conjecture holds
for X.

We actually prove the natural generalisation of this result for S-integral points
on any hyperbolic (not necessarily projective) curve. In our second main result,
we verify Kim’s Conjecture in one case for infinitely many choices of p.

Theorem 6 (Betts–Kumpitsch–L., [1]). Kim’s Conjecture holds for X = P1 r

{0, 1,∞} over Z[1/2] for all choices of the auxiliary prime p > 2.

Combining the two theorems we recover a result by Stix [9, Cor. 6] saying
that the Selmer Section Conjecture holds for X = P1 r {0, 1,∞} over Z[1/2].
This shows that Theorem 5 provides a viable strategy for proving instances of the
Selmer Section Conjecture.
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Log prismatic F -crystals and purity

Koji Shimizu

(joint work with Heng Du, Tong Liu, Yong Suk Moon)

We discuss semistable p-adic local systems on a rigid-analytic variety that admits
a semistable formal model based on [5].

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k. Let OK denote the ring of integers and fix a uniformizer π.

Let X be a rigid-analytic variety over K and let L be a p-adic étale local system
on X . We regard L as a family of Galois representations parametrized by X : for
each x ∈ X and a geometric point x with support x, the absolute Galois group
Galκ(x) acts on the stalk Lx. We want to understand p-adic Hodge theoretic
properties (de Rham, crystalline, semistable,...) of L. Here we focus on semistable
local systems. For this, we start with a semistable formal model.

So let us slightly change our setup: let X → Spf OK be a semistable p-adic
formal scheme and let X denote the generic fiber of X . This means that étale
locally, X is étale over Spf R where

R = OK〈T1, . . . , Tm, T±1
m+1, . . . , T

±1
d 〉/(T1 · · ·Tm − π).

In this talk, we assume X = Spf R for simplicity. Then the mod π fiber is
Spec k[T1, . . . , Tm, T±1

m+1, . . . , T
±1
d ]/(T1 · · ·Tm), and the generic points of the ir-

reducible components correspond to the prime ideals (π, Ti) ⊂ R (1 ≤ i ≤ m). Let
OKi

denote the p-adic completion of the localization R(π,Ti): this is a complete
discrete valuation ring with imperfect residue field k(T1, . . . , Ti−1, Ti+1, . . . , Td).
Set Ki = OKi

[p−1] and ξi = Spa(Ki,OKi
) ∈ X . We call the points ξi the X-Shilov

points of X .

Theorem 1 (Semistable purity [5]). An étale Zp-local system L on X is semistable
if and only if the Qp-representation Lξi

[p−1] of GalKi
is semistable for each i.

Here the notion of semistable Galois representations for Ki (which has imperfect
residue field) is defined via Fontaine’s period ring formalism. However, defining a
reasonable notion of semistable Zp-local systems is not straightforward: it is one
of the main goals of this talk and explained in the last paragraph of this note.

We use prismatic theory by Bhatt–Scholze [1] and its log variant by Koshikawa
[8]. Equip X with the log structure MX = OX ∩ (OX [p−1])× and let (X,MX)∆
denote the absolute log prismatic site: an object is a log prism (A, I,MSpf A)
together with morphisms

(X,MX)← (Spf A/I,MSpfA/I) →֒ (Spf A,MSpf A),

where the first morphism is strict and the second is an exact closed immersion. We
consider flat topology. It comes with the structure sheaf O∆ and the ideal sheaf
I∆ defined by O∆(A, I,MSpf A) = A and I∆(A, I,MSpf A) = I. The Frobenius ϕA

on A given by the δ-structure defines the Frobenius ϕ on O∆.

Example 2. The following log prisms are important for us.
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(1) The Breuil–Kisin log prism: (SR, (E(u)),MSpf SR
) where

SR = W (k)〈T1, . . . , Tm, T±1
m+1, . . . , T

±1
d 〉[[u]]/(T1 · · ·Tm − u),

and E is the minimal polynomial of π over W (k); the Frobenius is given
by ϕSR

(Ti) = T p
i and the log structure MSpf SR

is induced by Nd → SR

sending ei to Ti.
(2) (Ainf(R),Ker θ,MSpfAinf (R)), where R is the integral closure of R in the

maximal étale extension of R[p−1], and θ is Fontaine’s map Ainf(R) =

W (R
♭
)→ R

∧

p . The Frobenius is given by the Witt-vector Frobenius, and
there is a canonical log structure.

We consider certain sheaves with Frobenius structure, following [2, 6]:

Definition 3.

(1) A Laurent F -crystal is a pair (E , ϕE) where E is a vector bundle of O∆[I−1

∆
]∧p -

modules and ϕE is an isomorphism ϕ∗E ∼=−→ E .
(2) An analytic prismatic F -crystal is a compatible system (E∆, ϕE

∆
) of pairs

(E∆,A, ϕE
∆
,A) over (A, I,MSpf A) ∈ (X,MX)∆ where E∆,A is a vector bundle

on SpecArV (p, I) and ϕE
∆
,A is an isomorphism ϕ∗

AE∆,A[I−1]
∼=−→ E∆,A[I−1].

Let Vectϕ,an((X,MX)∆) denote the category of analytic prismatic F -crystals
on (X,MX).

One can associate to an analytic prismatic F -crystal (E
∆
, ϕE

∆
) a Laurent F -

crystal (E , ϕE ) by considering E
∆,A⊗A[I−1]∧p for each (A, I,MSpf A) ∈ (X,MX)

∆
.

In our semistable case, this functor (E
∆
, ϕE

∆
) 7→ (E , ϕE) is fully faithful.

Theorem 4 (Bhatt–Scholze [2], Koshikawa–Yao [9]). The category of Laurent
F -crystals on (X,MX) is equivalent to the category LocZp

(X ) of étale Zp-local
systems on the generic fiber X . This is given by sending (E , ϕE) to the étale Zp-

local system corresponding to the Gal(R[p−1]/R[p−1])-module E(Ainf(R))ϕE=1.

In particular, we get a fully faithful functor (called the étale realization)

T : Vectϕ,an((X,MX)∆)→ LocZp
(X ).

This functor relates prismatic F -crystals on OK to crystalline or semistable Galois
representations of K as in (1) and (2) below:

Theorem 5.

(1) (Bhatt–Scholze [2]) When X = Spf OK with trivial log structure, T induces

an equivalence Vectϕ,an((X,MX)∆)
∼=−→ Repcris

Zp
(GalK).

(2) (Du–Liu [3]) When X = Spf OK with canonical log structure, T induces

an equivalence Vectϕ,an((X,MX)∆)
∼=−→ Repst

Zp
(GalK).

(3) (Du–Liu–Moon–S. [4], Guo–Reinecke [6]) When X is smooth over OK with

trivial log structure, T induces Vectϕ,an((X,MX)
∆

)
∼=−→ Loccris

Zp
(X ).
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Let us go back to the semistable case (X,MX) with X = Spf R. The above
results suggest a prismatic way to define semistable local systems on X . Namely,
we say that an étale Zp-local system on X is X-semistable if it is in the essential
image of T . For each 1 ≤ i ≤ m, set Ξi = Spf OKi

with canonical log structure: it
admits a morphism (Ξi,MΞi

)→ (X,MX).

Theorem 6 (Prismatic purity [5]). A Laurent F -crystal (E , ϕE) on (X,MX)
extends to an analytic prismatic F -crystal if and only if the Laurent F -crystal
(E , ϕE )|Ξi

on (Ξi,MΞi
) extends to an analytic prismatic F -crystal for each i.

The main strategy of the proof is to describe these sheaves in terms of the values
at the Breuil–Kisin log prism and its self-products.

Theorem 6 allows one to compare different notions of semistable Zp-local sys-
tems on X . One can show that an étale Zp-local system on X is X-semistable if
and only if it is associated to an F -isocrystal on the log crystalline site of the mod
p fiber of X (we omit the precise formulation here): the prismatic purity reduces
the assertion to the CDVR case, which is relatively easy to verify. Moreover, we
can also prove that if X admits two semistable formal models X and X ′, then X-
semistability is equivalent to X ′-semistability. So we refer to X-semistability as
semistability and obtain a reasonable notion of étale semistable Zp-local systems
on a rigid-analytic variety that admits a semistable formal model. Now Theorem 1
follows from Theorem 6. Finally, we note that a very recent work of Guo and Yang
[7] establishes a further equivalent condition using the above purity result.
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Constructing holomorphic functions on universal covers of complex

algebraic varieties

Yohan Brunebarbe

(joint work with Benjamin Bakker and Jacob Tsimerman)

Starting from dimension 2, the class of complex manifolds that can be realized as
the universal cover of a smooth projective complex algebraic variety is mysterious.
More modestly, one can try to isolate some properties shared by all complex man-
ifolds in this class. For example, does every non-compact complex manifold in this
class admit a non constant holomorphic function? A more precise question was
asked by Shafarevich [3, IX.4.3]: is the universal cover X̃ of a smooth projective

complex variety X always holomorphically convex, i.e. does X̃ admit a proper
holomorphic map to a Stein space?

Shafarevich question has inspired many works. Notably, using techniques from
non-abelian Hodge theory and mixed Hodge theory, Eyssidieux, Katzarkov, Pan-
tev and Ramachandran [2] were able to prove that a smooth projective complex
variety admitting a faithful representation of its fundamental group has a holomor-
phically convex universal cover. However, there exist smooth projective complex
varieties with a non-linear fundamental group (the first examples were constructed
by Toledo [4]).

In my talk, I presented the following quasiprojective version of their result. Since
the smooth quasi-projective complex variety obtained by removing a point to the
complex projective plane is simply-connected but not holomorphically convex, one
needs to be careful when trying to generalize Shafarevich question to possibly non-
compact complex varieties.

Theorem 1. Let X be a connected normal complex algebraic space whose fun-
damental group admits a faithful finite-dimensional complex linear representation
ρ : π1(Xan)→ GLr(C). Then there is a partial compactification X ⊂ X̄ by a con-
nected normal Deligne–Mumford stack with isomorphic fundamental group such
that the universal cover of X̄ is a holomorphically convex complex space. In par-
ticular, the universal cover of X is a dense Zariski open subset of a holomorphically
convex complex space.

Allowing X to be quasiprojective makes the theory substantially more difficult
due to the presence of the boundary. A key step in our proof is given by the
following general existence result for so-called Shafarevich morphisms.

Theorem 2. Let X be a connected normal complex algebraic space. Let ρ :
π1(Xan) → GLr(C) be a nonextendable finite-dimensional complex linear repre-
sentation with torsion-free image. Then there exists a unique surjective proper
algebraic morphism with connected fibres s : X → Y such that for every morphism
g : Z → X from a connected complex algebraic variety Z, the representation g∗ρ
is trivial if and only if the composition Z → X → Y is constant.
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The nonextendability hypothesis says that ρ does not extend to any (strict)
partial compactification of X by a connected normal Deligne-Mumford stack. The
assumptions that ρ is nonextendable and has torsion-free image can be both re-
moved, at the price of making the statement slightly more technical.

A salient feature of our approach is the use of o-minimal geometry (and in partic-
ular of our o-minimal GAGA result [1]) to algebraize holomorphic maps between
(possibly non-compact) complex algebraic spaces.
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Condensed Shape of a Scheme

Catrin Mair

(joint work with Peter Haine, Tim Holzschuh, Marcin Lara, Louis Martini,
Sebastian Wolf)

A fundamental notion in classical homotopy theory is the etale homotopy type of
a (locally noetherian or, more generally, locally connected) scheme. Originally, it
was introduced by Artin-Mazur [1] and later refined by Friedlander [2] to the etale
topological type. These constructions aim to attach to a scheme X a homotopy
theoretical invariant recovering the (profinite) etale fundamental group

πet
1 (X, x)

introduced by Grothendieck and providing a definition of higher etale homotopy
groups. Indeed, the etale topological (resp. homotopy) type is realised as a pro-
object in (the homotopy category of) the category of simplicial sets and admits
the extended etale homotopy groups

πet
i (X, x)

as homotopy pro-groups. A modern variant of the etale homotopy type arises in
the world of ∞-categories via a universal construction in shape theory: For every
∞-topos T there exists a (up to a contractible choice) unique geometric morphism

T Ani
f∗

f∗

to the terminal ∞-topos Ani of anima (also referred to as spaces, ∞-groupoids,
Kan complexes or homotopy types). Hereby, f∗ is the left exact left adjoint,
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which, in general, does not preserve cofiltered limits. Uniquely extending f∗ along
cofiltered limits leads to a limit preserving functor

Pro(f∗) : Pro(Ani) −→ T,

which admits a left adjoint

f! : T −→ Pro(Ani).

Then, the shape of T is defined as the image of the terminal object in T under
this left adjoint

Π∞(T ) := f!(∗T ).

Applying this construction to the ∞-topos of hypercomplete sheaves of anima
Shhyp

∞ (Xet) on the etale site Xet of a scheme X defines the etale shape

Πet
∞(X) ∈ Pro(Ani).

Hoyois [3] has shown that the etale shape is in line with the classical constructions
by Artin-Mazur-Friedlander.

More recently, Bhatt-Scholze [4] introduced a refined version of the etale fun-
damental group via the pro-etale topology: The pro-etale fundamental group

πproet
1 (X, x) ∈ TopGrps

of a (locally topologically noetherian) scheme X is a topological group whose
topology is (in general) finer than just profinite. Particularly, it is a Noohi-group.
These are topological groups G that are already determined by the category G−
Set of discrete sets with a continuous action by G. For geometrically unibranch
schemes, it exactly recovers the profinite etale fundamental group. In contrary
to the etale version, the pro-etale fundamental group of any scheme cannot be
regained via the classical notion of shape as its refined topological structure is not
seen by pro-objects. This fact motivates the involvement of condensed mathematics
into homotopy theory of schemes as it constitutes a suitable framework for dealing
with algebraic structures that carry a topology.

The world of condensed mathematics allows to think of a homotopy type of a
scheme, which we refer to as condensed shape, carrying additional information
in a topological sense. This is reflected by the fact that from such a homotopy
type we cannot only recover the pro-etale fundamental group, but we can even
define higher homotopy groups inside the condensed world. The condensed shape
is realised as an object in the∞-category Cond(Ani) of condensed anima, in which
the topological direction of condensed sets and the homotopy theoretical direction
of anima are combined.

Cond(Set) Ani

Cond(Ani)
topological direction homotopy direction

There are different approaches to define the condensed shape of a (qcqs) scheme:
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1. Relative Shape Theory

This approach imitates the construction of shape relative to the new
base∞-topos Cond(Ani) using that the hypercomplete pro-etale∞-topos
Shhyp

∞ (Xproet) is equipped with a canonical geometric morphism mapping
from Cond(Ani) and admitting an additional left adjoint.

2. Condensed Classifying Space

This approach defines the condensed shape as condensed classifying space
of the Galois category

Gal(X) ∈ Cond(Cat),

a condensed version of the category of points the etale ∞-topos intro-
duced by Barwick-Haine-Glasman [5], by means of levelwise inversion of
morphisms.

For any qcqs scheme X , both approaches result in the same condensed shape

Πcond
∞ (X) ∈ Cond(Ani).

One can extract different homotopy theoretical objects from the condensed shape.

Cond(Ani)

Cond(Grps) Pro(Ani)

condensed homotopy groups pro-homotopy types

Proposition. For any scheme X , such that the subsequent notions are defined,
the condensed shape Πcond

∞ (X) recovers

i) the etale homotopy type Πet
∞(X) ∈ Pro(Ani) via the pro-homotopy type,

up to protruncation.
ii) the pro-etale fundamental group πproet

1 (X, x) ∈ TopGrps via the condensed
fundamental group, up to Noohi completion.

In the joint project we examine further properties of the condensed shape and
give concrete computations.

Example. Let X = Spec(A) be an affine scheme.

a) If A is a w-contractible ring, then

Πcond
∞ (X) = π0(X) ∈ Pro(FinSets) ⊂ Cond(Ani)

is the extremally disconnected profinite set of connected components.
b) If A = k is a field, then

Πcond
∞ (X) = BGk ∈ Ani ⊂ Cond(Ani)

is the classifying space of the absolute Galois group Gk of k.

Proposition. If X is a scheme in one of the following classes, the condensed shape
of X is trivial

Πcond
∞ (X) = ∗.

i) X is the spectrum of a strictly henselian local ring ⇐⇒ Gal(X) has an
initial object.
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ii) X is everywhere strictly local and irreducible ⇐⇒ Gal(X) has a terminal
object.
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Point objects on abelian varieties

Martin Olsson

(joint work with A.J. de Jong)

For a noetherian scheme X let D(X) denote the bounded derived category of
coherent sheaves on X .

Classical work of Mukai, Bondal, and Orlov shows that one can have two smooth
projective nonisomorphic varieties X and Y over an algebraically closed field k with
equivalent derived categories D(X) ≃ D(Y ) (as k-linear triangulated categories).
That said, there are many instances where one knows that D(X) determines the
variety X . Most notably, Bondal and Orlov [1] showed that if the canonical bundle
ωX is either ample or anti-ample then D(X) determines X . Their argument can
be viewed as a type of “reconstruction” result. They characterize the skyscraper
sheaves of points of X as certain point objects of D(X), thereby showing how to
rebuild X from D(X).

It is natural to try to understand the point objects of D(X) for other varieties
X . Let k be a field, let A/k be an abelian variety of dimension d, and let X be
an A-torsor. We say that an object K ∈ D(X) is a point object if the following
conditions hold:

(1) Exti(K,K) = 0 for i < 0.
(2) The natural map k → Ext0(K,K) is an isomorphism and the k-dimension

of Ext1(K,K) is ≤ d.

Theorem 1. If K is a point object on X then K ≃ i∗E [r], where i : Y →֒ X is
a torsor under a subabelian variety B ⊂ A, E is a simple semihomogenous vector
bundle on Y , and r is an integer. Conversely, such a sheaf on X is a point object.

Recall from [3] that when k is algebraically closed a vector bundle E on a torsor
X for an abelian variety A is called semi-homogeneous if for every point a ∈ A(k)
there exists a line bundle L on X such that t∗aE ≃ E ⊗L . If k is not algebraically
closed we say that a vector bundle E is semi-homogeneous if it becomes so after
base change to an algebraic closure.
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This theorem also gives a complete description of all the Fourier-Mukai partners
of X ; that is, a classification of smooth projective varieties X ′/k with D(X) ≃
D(X ′). Namely, they are all given as moduli spaces for simple semi-homogeneous
vector bundles on subtorsors Y ⊂ X for a subabelian variety B ⊂ A.
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Characteristic classes of étale local systems

Alexander Petrov

(joint work with Lue Pan)

To a local system L of C-vector spaces on a smooth manifold M one can at-
tach Cheeger-Chern-Simons characteristic classes ĉi(L) ∈ H2i−1(M,C/Z) (cf. [1,
Théorème 1]). They refine Chern classes of the complex vector bundle on M associ-
ated to L : the image of ĉi(L) under the connecting homomorphism H2i−1(M,C/Z)
→ H2i(M,Z) is equal to the class ci(L⊗R OM ).

The data of a rank n local system L is equivalent to the data of a representation
ρL : π1(M) → GLn(C) of the fundamental group (if M is connected), and class
ĉi(L) arises as the image of the universal class ĉi ∈ H2i−1

grp (GLn(C),C/Z) in group

cohomology under the map H2i−1
grp (GLn(C),C/Z)

ρ∗

L−→ H2i−1(M,C/Z).
We investigate a p-adic analog of this theory. A crucial difference in the scope

of it is that local systems with pro-finite coefficients can be considered not only
on manifolds or topological spaces, but also on arithmetic objects such as varieties
over non-algebraically closed fields.

For a connected scheme X consider an étale Zp-local system L of rank n on
X . The data of L is equivalent to the data of a continuous representation ρL :
πét
1 (X) → GLn(Zp) of the étale fundamental group of X . This representation

defines a map from the continuous cohomology of the group GLn(Zp) to the étale
cohomology of X :

ρ∗L : H•
cont(GLn(Zp),Qp)→ H•

ét(X,Qp)

By a theorem of Lazard [2, Théorème V.2.4.9] continuous cohomology of GLn(Zp)
is the free exterior algebra Λ•

Qp
(ℓ1, . . . , ℓn) on n generators in degrees deg ℓi = 2i−1.
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Definition. Characteristic classes ℓi(L) ∈ H2i−1
ét (X,Qp) of a local system L on

X are defined as the images of the classes ℓi under the map ρ∗L.

This definition was introduced by Pappas [3, 4.4.2], and closely related con-
structions of characteristic classes of Galois representations have been considered
previously by Kim [4].

The degree 1 class ℓ1(L) ∈ H1
ét(X,Qp) is simply the result of applying the

p-adic logarithm map Z×
p → Qp to the determinant det ρL ∈ H1

ét(X,Z×
p ) of the

representation ρL. Our first main result is a partial calculation of characteristic
classes for Zp-local systems on varieties over Qp:

Theorem 1. Let X be a smooth proper geometrically connected variety over Qp of
dimension d. For a Hodge-Tate Zp-local system L on X its top degree characteristic

class ℓd+1(L) ∈ H2d+1
ét (X,Qp) ≃ H1(GQp

, H2d
ét (X

Qp
,Qp)) ≃ H1(GQp

,Qp(−d)) ≃
Qp is equal to the following integer:

d!
∑

m∈Z

m · chd(grmDHT(L)) ∈ Z ⊂ Qp

where DHT(L) ≃ ⊕
m

grmDHT(L) is the graded Higgs bundle associated to L, and

chd(E) ∈ 1
d!Z for a vector bundle E denote its top degree Chern character.

One source of Hodge-Tate local systems is cohomology of families of varieties:
for any smooth proper morphism f : Y → X the local system L = Rif∗Zp of
relative étale cohomology is Hodge-Tate with DHT(L) ≃ ⊕

m≥0

Ri−mf∗Ωm
Y/X . On

the contrary, for local systems on varieties over an algebraically closed field the
characteristic classes are zero in degrees > 1:

Theorem 2. Let X be a smooth variety over an algebraically closed field k = k of
characteristic zero. For a fixed rank n there exists a constant c(n) such that for all
primes p > c(n) the class ℓi(L) ∈ H2i−1

ét (X,Qp) vanishes for i > 1 for all Zp-local
systems L of rank n.

This is a p-adic analog of a result of Reznikov [5] asserting that characteristic
classes ĉi of all complex local systems on a smooth proper algebraic variety X over
C vanish in H2i−1(X(C),C/Q) for i > 1.

The proof of Theorem 1 relies on the notion of Chern classes for pro-étale vector
bundles on X that we introduce. Given a Zp-local system on a rigid-analytic
variety X over a p-adic field K we can form the associated pro-étale vector bundle

L ⊗Zp
ÔX on the pro-étale site of X . As a consequence of the work of Huber-

Kings [6], we prove that characteristic classes of L are related to Chern classes

ci(L ⊗Zp
ÔX) ∈ H2i

ét (X,Qp(i)) of the corresponding pro-étale vector bundle via
the formula:

ci(L ⊗Zp
ÔX) = ℓi(L) · κi

where κi ∈ H1(GQp
,Qp(i)), for each i ≥ 0, is a certain class in Galois cohomol-

ogy (independent of X and L). It can be described explicitly as the image of
(−1)i ∈ Qp = (B+

dR/t
iB+

dR)GQp under the Bloch-Kato exponential map, which is
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the connecting homomorphism arising from the exact sequence of Galois modules

0→ Qp(i)→ B+,ϕ=pi

cris → B+
dR/t

iB+
dR → 0.

For a Hodge-Tate local system L, classes ci(L⊗Zp
ÔX) can be calculated using

the Hodge-Tate filtration on this pro-étale vector bundle. In the setting of Theorem
1 the class ℓd+1(L) can be recovered from the product ℓd+1(L) · κd+1. However,

in general more information than just the Chern classes of L ⊗Zp
ÔX is needed

to recover the classes ℓi(L). One could ask if an analog of Theorem 1 nonetheless
holds in the following sense.

For a smooth algebraic variety X over a finite extension K of Qp we have a
natural map

αX : Hn
ét(X,Qp)→ H1(GK , Hn−1

ét (XK ,Qp)⊗Qp
BdR) ≃ Hn−1

dR (X/K)

If X has good reduction over OK , this map is an isomorphism for n > 1.
Question. For a Hodge-Tate local system L on X , is it true that the image

of the characteristic class ℓi(L) ∈ H2i−1
ét (X,Qp) under the map αX equals

(i− 1)!
∑

m∈Z

m · chi−1(grmDHT(L))?

Here chi−1 denotes the degree 2(i − 1) component of the Chern character in de
Rham cohomology.
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Convergent Decomposition Groups and an S-adic Shafarevich

Conjecture

Andrew Kwon

Ax [1] initiated the study of the theory of pseudo-algebraically closed (PAC) fields:
we say k is PAC if every geometrically irreducible variety X over k has a k-
rational point. One may think of this as a “trivial” local-global principle, where
the local condition is vacuous. This was generalized to pseudo-real closed (PRC)
fields by Prestel [11], Basarab [2], Haran–Jarden [5], Ershov [4], where the local
condition that guarantees a k-point on X is the presence of points over all real
closures of k. The case of considering p-adic closures, hence studying the theory
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of pseudo-p closed (PpC) fields, was done by Haran–Jarden [6], Efrat–Jarden [3].
Heinemann-Prestel [7] also introduced pseudo-L closed fields, where L is a finite
set of localities, i.e., real or p-adic closures, of k. All these results were unified by
Pop in [9] by generalizing the theory of pseudo-L closed fields to the case where L
is a quasicompact set (in the so-called étale topology) of localities of k. Specializing
to the case L = ∅ recovers the theory of PAC fields. If L is instead taken to be the
quasicompact set of all real (resp. p-adic) closures then one gets the PRC (resp.
PpC) fields; and evidently any finite set is quasicompact.

To briefly summarize the consequences for the Galois theory of these fields: if
k is PAC, then the absolute Galois group Gk of k is projective [1], i.e., Gk has
solutions for every embedding problem. Appropriate notions of real, resp. p-
adically projective groups were formulated and it was shown that if k is pseudo-
real closed, then Gk is real projective, and similarly for PpC fields [5, 6]. More
generally, if k is pseudo-L closed (L quasicompact), then Gk is GL-projective,
where GL is the set of decomposition groups corresponding to the localities in
L [9]. These results essentially say that local-global principles for points induce
local-global principles for embedding problems.

This general abstract theory was made concrete by work of Rumely [12], Moret-
Bailly [8] and Pop [10], who finally gave many explicit examples of pseudo-L
closed fields as follows. Let k denote a global field and S a finite set of places
of k. The field of totally S-adic numbers is the maximal (Galois) extension of k
where all primes of S are totally split, denoted by kS. If Lp denotes the set of all
p-adic closures of k and LS = ∪p∈SLp, then Pop showed that kS is pseudo-LS
closed. Concretely, this is equivalent to saying that for every smooth, geometrically
integral k-variety X , one has

X(kS) 6= ∅ ⇔ for all p ∈ S, X(kp) 6= ∅,
where kp is the completion at p.

In this talk, I extend the previous results by considering infinite sets of places
S whose decomposition groups converge to 1. That is, for every finite Galois
extension K|k, all but finitely many p ∈ S are totally split in K|k, or equivalently,
the decomposition groups Dp tend to 1 (in the space of closed subgroups of Gk) as
|p| → ∞. Precisely, let S0 be any nonempty finite set of primes and S′ ⊃ S0 be
any infinite set of primes whose decomposition groups converge to 1. Then there
are “many” infinite subsets S ⊂ S′ such that kS satisfies a local-global principle
for rational points. We note that in this setting, LS is a union of infinitely many
Lp that is still quasicompact because of the convergence property of S.

One of the main motivations for this direction of inquiry is that the fields kS,cyc

“approximate” kcyc as S ranges over larger sets of primes, hence one gets an
“approximation” of absolute Galois groups as well. The following is new evidence
for the freeness of Gkcyc that was previously known only for finite sets of primes.

Theorem 1. With S as above, the absolute Galois group GkS,cyc of the maximal
cyclotomic extension kS,cyc of kS is profinite free of countably infinite rank.
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Arithmetic Finiteness and Big Monodromy on Abelian Varieties

Thomas Krämer

(joint work with Ariyan Javanpeykar, Christian Lehn and Marco Maculan)

At the ICM in 1962, Shafarevich conjectured that over any number field there are
only finitely many isomorphism classes of smooth projective curves of fixed genus
> 1 with good reduction outside a given finite set of primes. This was proven
by Faltings in 1983 together with the corresponding result for abelian varieties
and the Mordell conjecture. In fact such finiteness results are expected in much
greater generality: The Lang-Vojta conjecture, one of the major open problems in
Diophantine geometry, predicts the finiteness of integral points on any hyperbolic
variety over a number field. By the work of Campana-Păun, moduli spaces of
canonically polarized varieties are hyperbolic, so the Shafarevich conjecture for
a given class of canonically polarized varieties is equivalent to the Lang-Vojta
conjecture for their moduli space. Even 40 years later, the Shafarevich conjecture
is known only in very few cases beyond curves and abelian varieties, such as for
K3 and del Pezzo surfaces, certain hyperkähler varieties or flag varieties. In the
talk I discussed the following new class of varieties of general type:

Definition. A smooth projective variety over a field K is very irregular if the
Albanese morphism XK → Alb(XK) for any chosen base point over the algebraic

closure K is a closed immersion with non-zero ample normal bundle.

Very irregular varieties form a very large class of canonically polarized varieties
that includes smooth projective curves of genus > 1, smooth complete intersections
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of ample divisors on abelian varieties, and plenty of other examples. In joint work
with Maculan [5], we prove the Lang-Vojta conjecture for their moduli spaces:

Theorem 1. Over any number field K, there are up to isomorphism only finitely
many very irregular varieties X with

• good reduction outside a given finite set of places of K,

• given Hilbert polynomial with respect to the canonical bundle ωX ,

• h0(X,Ω1
X) ≥ 2 dimX + 2 (plus some mild numerical conditions that hold

in all known cases, for the precise formulation we refer to loc. cit.).

This is the first instance of a finiteness result in higher dimension that holds for
such a large class of varieties. An analogous result for smooth ample hypersurfaces
on abelian varieties was proven by Lawrence and Sawin [8], and as in their paper
we use the Lawrence-Venkatesh method [9]: We establish a general criterion for
the nondensity of integral points on varieties with a local system of geometric
origin that has big monodromy. In our case the relevant local systems arise from
a family of subvarieties of a fixed abelian variety as follows:

Let S be a smooth complex variety. Let A be a g-dimensional complex abelian
variety and X ⊂ AS a subvariety such that the projection f : X → S is a smooth
morphism with connected fibers of dimension d. For a character χ : π1(A, 0)→ C×

let Lχ be the associated local system on A. For any tuple χ = (χ1, . . . , χn) of such
characters, we get a local system

Vχ := Rdf∗pr∗A(Lχ1
⊕ · · · ⊕ Lχn

) =
n⊕

i=1

Rdf∗pr∗A(Lχi
)

on S. Its monodromy preserves the direct summands on the right hand side, and
for symmetric subvarieties the monodromy of each summand lies in a symplectic
or orthogonal group by Poincaré duality. In joint work with Javanpeykar, Lehn
and Maculan we show that for generic χ the local system Vχ has big monodromy

in the sense that its algebraic monodromy group is as big as possible given the
above restrictions — in particular it is a product of classical groups acting on each
summand via the standard representation [1]:

Theorem 2. Suppose the geometric generic fiber X := Xη̄ ⊂ AS,η̄ has ample
normal bundle and dimension d < (g − 1)/4. Then the following are equivalent:

(a) X is nondivisible, not constant up to translation, not a symmetric power
of a curve and not a product;

(b) Vχ has big monodromy for most torsion n-tuples of characters χ.

Here most means that the claim holds outside a finite union of translates of
linear subvarieties of the character variety Char(An), as usual in generic vanishing
theory [6, 7]. The condition on the dimension can be relaxed to d < (g − 1)/2
under very weak numerical conditions, and via the Lawrence-Venkatesh method
we obtain theorem 1. The starting point for the proof of theorem 2 is the same
as in [8]: We reduce the statement about monodromy groups to a statement for
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Tannaka groups of perverse sheaves by an analogue of the theorem of the fixed part
in Hodge theory. The relevant Tannaka groups arise as follows: For any complex
abelian variety A the sum morphism endows the category of perverse sheaves with
a convolution product, which makes it a neutral Tannakian category by [6]. In
particular, for any subvariety X ⊂ A the associated perverse intersection complex
generates a semisimple neutral Tannakian subcategory. We fix a fiber functor ω on
this category and denote by GX,ω the corresponding Tannaka group. Theorem 2
is then obtained from the following result [1, 4]:

Theorem 3. Let X ⊂ A be a smooth subvariety with ample normal bundle and
dimension d < (g − 1)/4. Then the following are equivalent:

(a) X is nondivisible, not a symmetric power of a curve and not a product;

(b) The Tannaka group GX,ω is big.

The key ingredient of the proof is the general correspondence in [2, 3] between
characteristic cycles of perverse sheaves and Weyl group orbits of weights for a
maximal torus in the Tannaka group. This was already crucial for the case of
divisors in [8], but for the high codimension subvarieties in theorem 3 the conormal
geometry becomes much more involved. Using characteristic cycles, we show that
the Tannaka group is simple and acts via a minuscule representation; a careful
study of the conormal geometry also allows us to rule out wedge powers of the
standard representation in type An. The only remaining non-big cases are spin
representations and the minimal representations of E6 and E7, which we exclude by
our numerical assumptions. It is known that the exceptional group E6 does occur
for the Fano surface on the intermediate Jacobian of a smooth cubic threefold,
but here d = 2 and g = 5 which is beyond the dimension range of the previous
theorem. In a recent work with Lehn and Maculan, we show that for d < g/2 this
is the only source of examples [4]:

Theorem 4. Let X ⊂ A be a smooth irreducible subvariety with ample normal
bundle and dimension < g/2. Then the following are equivalent:

(a) X ⊂ A is nondivisible with Tannaka group G∗
X,ω ≃ E6.

(b) X is isomorphic to the Fano surface of lines on a smooth cubic threefold,
and the canonical morphism Alb(X)→ A is an isogeny.

For the proof we show that the Hodge decomposition on cohomology is defined
by a cocharacter of the Tannaka group of complex Hodge modules in the sense of
Sabbah-Schnell, and play off cocharacters of E6 against Hodge number estimates
for irregular varieties à la Lazarsfeld-Popa and Lombardi. These techniques are of
a general nature and will be useful also in other situations: For instance, do there
exist smooth subvarieties X ⊂ A whose Tannaka group GX,ω is of type E7 or a
spin group? How about subvarieties of smaller codimension in abelian varieties,
or more generally varieties with a finite morphism to an abelian variety?
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[4] T. Krämer, C. Lehn and M. Maculan, The Tannaka group E6 only arises from cubic three-
folds, arxiv.org/abs/2406.07401.
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Singular supports in positive and mixed characteristics

Takeshi Saito

1. Positive characteristic

Let X be a smooth scheme over a field k of characteristic p > 0. Let Λ be a
finite field of characteristic ℓ 6= p and by abuse of terminology we call a bounded
constructible complex F of Λ-modules on Xét a sheaf on X .

A closed subset C of a vector bundle E on X is said to be conical if it is stable
under the Gm-action. A closed conical subset C is uniquely determined by the
intersection C∩X with the 0-section, called the base of C, and the projectivization
P(C) ⊂ P(E).

Let h : W → X be a morphism of smooth schemes over k. For a closed conical
subset C ⊂ T ∗X , its pull-back h∗C ⊂ T ∗X×XW is defined to be the inverse image
by T ∗X×XW → T ∗X . The morphism h is called C-transversal if the intersection
h∗C ∩Ker(T ∗X ×X W → T ∗W ) is a subset of the 0-section of T ∗X ×X W .

For example, if C is the conormal bundle T ∗
ZX = Ker(T ∗X |Z → T ∗Z) of a

closed subscheme Z ⊂ X smooth over k, then h is C-transversal if and only if h is
transversal to Z → X ; namely, V = Z ×X W is smooth over k and codimWV =
codimXZ.

We say that a separated morphism h is F -transversal, if the canonical morphism
h∗F ⊗Rh!Λ→ Rh!F is an isomorphism. We say that F is micro supported on C
if the following conditions is satisfied:

For every pair of separated morphisms h : W → X and f : W → Y of smooth
schemes over k, if (h, f) : W → X × Y is C × T ∗Y -transversal, then (h, f) is
pr∗1F ⊗ pr∗2G-transversal for every sheaf G on Y .
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If the smallest closed conical subset C ⊂ T ∗X on which F is micro supported
exists, we call C = SSF the singular support of F . The existence is non-trivial
because F being micro supported on C1 and C2 does not imply a priori F being
micro supported on the intersection C1 ∩C2.

Theorem 1. (Beilinson [1])
1. SSF always exists.
2. Every irreducible component of SSF has the same dimension as X.

If X is a curve, an irreducible component of dimension 1 of a closed conical
subset of a line bundle T ∗X over X is either the 0-section or the fiber of a closed
point. The 0-section appears in SSF if and only if the sheaf F is generically non-
zero. The fiber of a closed point appears if and only if the sheaf ramifies there. In
higher dimension, SSF can be more complicated.

A key tool in the proof by Beilinson of Theorem 1 is the Radon transform.
First, we reduce the proof to the case where X is a projective space Pn. The dual
projective space Pn∨ is the moduli of hyperplanes in Pn. The universal family
Q of hyperplanes is canonically identified with the projectivizations P(T ∗Pn) =
P(T ∗Pn∨). Since the base of SSF equals the support of F , the singular support
is essentially determined by its projectivization P(SSF) ⊂ Q. Using this fact
and analyzing the projections Q → Pn,Pn∨ as h and f in the definition of micro
support, one can prove Theorem 1.

2. Mixed characteristic

Let X be a regular noetherian scheme over Z(p). To consider singular supports in
mixed characteristic case, we first need to solve the problem: Where SSF should
live? In the geometric case, the vector bundle T ∗X is defined by Ω1

X/k. In mixed

characteristic, Ω1
X may not be locally free. Even if it is, it will be too small, e.g. for

X = SpecZ(p).

A solution is given by the Frobenius–Witt differentials. The sheaf Ω1
X of Kähler

differentials is defined by the universality for the usual derivations satisfying d(x+
y) = dx+dy and d(xy) = xdy+ydx. The sheaf FΩ1

X of FW differentials is defined
by replacing these relations by d(x+ y) = dx+ dy + ((x+ y)p−xp− yp)/p · dp and
d(xy) = xpdy + ypdx. The fraction in the first equality means the substitution to
the quotient as a polynomial.

We assume the following finiteness condition:
(F) The reduced part XFp,red of the characteristic p fiber is of finite type over

a field k of finite p-basis [k : kp] <∞.
Then, the OX -module FΩ1

X is a locally free OXFp
-module of finite type. For

x ∈ XFp
, we have a short exact sequence 0 → F ∗mx/m

2
x → FΩ1

X,x ⊗ k(x) →
F ∗Ω1

k(x) → 0 where F ∗ denotes the Frobenius pull-back. For example, if X is

of finite type over a complete discrete valuation ring of mixed characteristic with
perfect residue field, the rank of the locally free OXFp

-module FΩ1
X is dimX .

In the following, we assume the finiteness condition (F) above and define the
FW-cotangent bundle FT ∗X on XFp

to be the vector bundle corresponding to
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FΩ1
X . Although it is restricted to the characteristic p fiber, the vector bundle has

the correct rank.
Let h : W → X be a separated morphism of finite type of regular noetherian

schemes. For a closed conical subset C ⊂ FT ∗X , we say that h is C-transversal
if the intersection h∗C ∩Ker(FT ∗X ×X W → FT ∗W ) is a subset of the 0-section
of FT ∗X ×X W . We say that a sheaf F on X is micro supported on C if the
following conditions are satisfied:

(i) The intersection of the support of F with XFp
is a subset of the base of C.

(ii) For every separated morphism h : W → X of finite type of regular noetherian
scheme if h is C-transversal, then h is F -transversal on a neighborhood of WFp

.
To use the Radon transform, we fix a regular noetherian scheme S over Z(p)

satisfying (F) and introduce a relative version. For a closed conical subset C ⊂
FT ∗X , we say that a pair (h, f) of morphisms h : W → X and f : W → Y of
regular schemes of finite type over S such that Y is smooth over S is C-acyclic if
we have an inclusion

(h∗C ×W (FT ∗Y ×Y W )) ∩Ker((FT ∗X ×X W )×W (FT ∗Y ×Y W )→ FT ∗W )

⊂ Ker((FT ∗X ×X W )×W (FT ∗Y ×Y W )→ FT ∗(X ×S Y )×X×SY W ).

We say that a sheaf F on X is S-micro supported on C if the following condition
is satisfied:

For every C-acyclic pair (h, f) as above and for every sheaf G on Y micro
supported on some closed conical subset C′ ⊂ FT ∗Y such that C′ ∩ Im(FT ∗S ×S

Y → FT ∗Y ) is a subset of the 0-section of FT ∗Y , the morphism (h, f) : W →
X ×S Y is pr∗1F ⊗ pr∗2G-transversal on a neighborhood of WFp

.
We define SSF and SSSF to be the smallest closed conical subsets of FT ∗X

on which F is micro supported and is S-micro supported respectively. We say
that a closed conical subset C ⊂ FT ∗X is S-stable if C is stable under the action
of FT ∗S ×S X . We also define SSsat

S F to be the smallest S-stable closed conical
subset of FT ∗X on which F is S-micro supported. Although we don’t know the
existence, we expect to have inclusions SSSF ⊂ SSF ⊂ SSsat

S F .
By adopting Beilinson’s argument using Radon transform, we obtain the fol-

lowing.

Theorem 2. If X is smooth over S, SSsat
S F exists.
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Institut de Mathématiques de Bordeaux
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Département de Mathématiques
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Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa
ITALY

Prof. Dr. Akio Tamagawa

Research Institute for Mathematical
Sciences
Kyoto University
Kitashirakawa-Oiwake-cho, Sakyo-ku
Kyoto 606-8502
JAPAN

Dr. Adam Topaz

632 Central Academic Building
Mathematical and Statistical Sciences
University of Alberta
Edmonton T6G 2G1
CANADA



2670 Oberwolfach Report 45/2024

Prof. Dr. Shota Tsujimura

Research Institute for Math. Sciences
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Ruth Wild

Institut für Mathematik
Goethe-Universität Frankfurt
Postfach 111932
60054 Frankfurt am Main
GERMANY

Alex Youcis

Department of Mathematics
National University of Singapore
Lower Kent Ridge Road
Singapore 119 260
SINGAPORE

Bogdan Zavyalov

Princeton University
304 Washington Rd
Princeton, NJ 08540
UNITED STATES


