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Abstract. Rough path theory emerged in the 1990s and was developed in
the 2000s as an improved approach to understanding the interaction of com-
plex random systems. As a broader alternative to stochastic calculus, it
simultaneously settled significant questions and substantially expanded the
scope of classical methods in stochastic analysis. Subsequent related devel-
opments have had an impact at the highest level, Martin Hairer’s work on
regularity structures being among the most prominent.

In 2020, rough analysis gained its own AMS classification code, 60L, and
this workshop focused on the currently most active areas of the subject among
two central strands:
(1) the mathematics of the signature transform, including its applications

to data science and finance, and
(2) rough path theory applied to novel areas in stochastic analysis, such as

homogenization, SLE and rough PDEs.
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Introduction by the Organizers

The workshop Directions in Rough Analysis occurred in November 2024 and was
organised by Thomas Cass (Imperial College London), Christa Cuchiero (Vienna
University) Peter Friz (TU and WIAS Berlin, Germany). It was attended by par-
ticipants from a wide distribution of institutions with contributions ranging from
long-form presentations, to shorter talks focussed on very recent developments.
In keeping with Oberwolfach custom, each day’s schedule was finalised the day

https://creativecommons.org/licenses/by-sa/4.0/deed.en


2902 Oberwolfach Report 49/2024

beforehand allowing participants’ to align their talks with the surrounding discus-
sions.

Rough Analysis is a comparatively recent branch of mathematics, having gained
its own AMS classification code (60L) in 2020. It encompasses both rough path
theory, including its application in stochastic analysis, as well as the mathematics
of the signature (Chen-Fliess series). The workshop gathered together leading
experts and promising researchers at all career stages for focussed interaction on
the current challenges in the area. The discussions helped to establish a set of
future research directions in the field.

An important direction, emphasised by several participants’, was on applica-
tions of the signature to the analysis of streamed data. The workshop began
with a presentation by Terry Lyons who gave an overview of recent developments,
drawing connections with a new class of signature-based evolution equations that
capture transformer architectures in deep learning. Other contributors presented
new results on the use of signature-based kernel methods. A further strand of
research related to the interaction between signature representations and rough
differential equations and methods based on randomised signatures. Explicit se-
ries expansions to certain stochastic path-dependent integral equations in terms of
the signature of the time-augmented driving Brownian motion were presented by
Eduardo Abi-Jaber. Josef Teichmann considered signature transforms from the
point of view of invariant theory showing that real analytic functions that are in-
variant under time reparametrizations admit a convergent signature expansion. In
a similar spirit, signature Taylor expansions of sufficiently regular non-anticipative
maps of rough paths can be derived, which was presented by Francesca Primavera.
Here, the approximation properties of the signature are used as a proof technique
to obtain a functional Ito-formula and in turn Taylor expansions for maps of rough
paths.

A significant recent offshoot has been to establish suitable analogues of the
signature to analyse two-dimensional data such as images or graphs, and to un-
derstand the corresponding algebraic, geometric and analytic structures which un-
derpin them. In general, algebraic properties have witnessed a stream of works and
are closely related to a number of the participants’ interests (Bruned, Ebrahimi-
Fard, Tapia). Recent applications of the signature in a real-world setting, in
particular in view of statistical regression methods, were presented by Xin Guo.

A second key direction was to make progress on questions at the interface of
rough paths and stochastic analysis. Topics in which there is much interest in-
clude homogenisation and fast-slow systems prompted by the work of Melbourne
and co-authors. Applications from Mathematical Finance, encompassing “rough
volatility”, robust finance, rough stochastic analysis with jumps and data-driven
modeling, were other important themes of the workshop. Furthermore, the inter-
connection of rough path ideas with SPDEs derived from stochastic calculus, as
well as mean-field systems with control and common noise played a central role.
Francois Delarue presented for instance a mean field control theoretic approach
to analyse the convergence of gradient descent in deep ResNets, a certain type of
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artificial neural networks. Also, motivated by understanding the gradient descent
in deep neural networks, a gradient flow on control space with rough initial con-
dition was analysed by Paul Gassiat, showing how essential questions from deep
learning can benefit from techniques of rough path theory.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

A coupling between Sinai’s random walk and Brox’s diffusion

Samy Tindel

(joint work with Xi Geng, Mihai Gradinaru)

Sinai’s random walk is a standard model of 1-dimensional random walk in random
environment. Brox diffusion is its continuous counterpart, that is a Brownian
diffusion in a Brownian environment. The convergence in law of a properly rescaled
version of Sinai’s walk to Brox diffusion has been established 20 years ago.

In this talk, I have explained a strategy which yields the convergence of Sinai’s
walk to Brox diffusion thanks to an explicit coupling. This method, based on
rough paths techniques, opens the way to rates of convergence in this demanding
context. A large part of the talk has been dedicated to introduce the basic objects
we are manipulating. Then I have explained how rough paths can help to quantify
the convergence rate. The talk is based on the preprint [1].

References

[1] X. Geng, M. Gradinaru, S. Tindel, A coupling between Sinai’s random walk and Brox’s
diffusion, Arxiv preprint (2024).

Wong-Zakai approximation of density functions

Yuzuru Inahama

In this talk we discuss the Wong-Zakai approximation of probability density func-
tions of solutions at a fixed time of rough differential equations driven by fractional
Brownian rough path with Hurst parameter H (1/4 < H ≤ 1/2). Besides rough
path theory, we use Hu-Watanabe’s approximation theorem in the framework of
Watanabe’s distributional Malliavin calculus. (See [1].) When H = 1/2, the ran-
dom rough differential equations coincide with the corresponding Stratonovich-
type stochastic differential equations. Even in that case, our main result seems
new. (This talk is based on the speaker’s reecent preprint [2].)

References

[1] Y. Hu and S. Watanabe, Donsker’s delta functions and approximation of heat kernels by
the time discretization methods, J. Math. Kyoto Univ. 36 (1996), no. 3, 499–518.

[2] Y. Inahama, Wong-Zakai approximation of density functions, preprint, arXiv:2304.01449.
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Functional Ito-formula and Taylor expansions for non-anticipative

maps of càdlàg rough paths

Francesca Primavera

(joint work with Christa Cuchiero, Xin Guo)

We rely on the approximation properties of the signature of càdlàg rough paths
to derive a functional Ito-formula for non-anticipative maps of rough paths. This
leads to a functional extension of the Ito-formula for càdlàg rough paths (by Friz
and Zhang (2018)) which coincides with the change of variable formula formu-
lated by Dupire (2009) whenever the functionals representations, the notions of
the regularity of the functionals and the integration concepts can be matched. In
contrast to these works, by using the concept of vertical Lie derivatives, we can
also incorporate path functionals where the second order vertical derivatives do
not commute as it is the case for typical signature functionals. As a byproduct,
we show that sufficiently regular non-anticipative maps admit a functional Tay-
lor expansion, leading to a far reaching generalization of the recently established
results by Dupire and Tissot-Daguette (2022).

References

[1] C. Cuchiero, X. Guo, and F. Primavera. Functional Ito-formula and Taylor expansions for
non-anticipative maps of càdlàg rough paths. In preparation, 2024.

Randomised Path Developments and Signature Kernels as

Scaling Limits

William F. Turner

(joint work with Thomas Cass, Samuel Crew, Cristopher Salvi)

Scaling limits of random developments of a path into a matrix Lie group have
recently been used to construct signature-based time series kernels. General linear
group developments have been shown to be connected to the ordinary signature
kernel [2], while unitary developments have been used to construct the path char-
acteristic function distance [3] which has proven a successful discriminator for
generative modelling tasks. By leveraging the tools of random matrix theory and
free probability theory, we are able to provide a unified treatment of both limits
under general assumptions on the randomisation. For unitary developments, we
show that the limiting kernel is given by the contraction of a signature against
the monomials of freely independent semicircular random variables. Using the
Schwinger-Dyson equations, we show that this kernel can be obtained by solving
a novel quadratic functional equation. We also present ongoing work with Samuel
Crew and Cristopher Salvi where we consider more general driving matrix models
which also asymptotically satisfy a Schwinger-Dyson equation. The corresponding
limit in this setting solves a path-dependent integro-differential equation.
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References

[1] Cass, T., Turner, W. F. Free probability, path developments and signature kernels as uni-
versal scaling limits. (2024), arxiv:2402.12311

[2] Cirone, N. M., Lemercier, M., Salvi, C. Neural signature kernels as infinite-width-depth-
limits of controlled resnets. International Conference On Machine Learning. pp. 25358-25425
(2023)

[3] Lou, H., Li, S., Ni, H. PCF-GAN: generating sequential data via the characteristic function
of measures on the path space. Advances In Neural Information Processing Systems. 36
(2024)

Mean Field Approach to Deep ResNets

François Delarue

(joint work with Samuel Daudin)

In this talk, I will present a mean-field approach to deep ResNets in machine
learning. These networks have already been the subject of several mathematical
works, some of them explicitly based on the theory of rough paths. Conceptually,
the mean field approach addresses the overparametrized regime in presence of an
infinite number of observations, see [1] an earlier work in this direction. From a
mathematical point, only the statistical states of the neurons and the features mat-
ter in the analysis. Here, we use the tools from mean field control theory to prove
that, for many initial initial conditions, the network exhibit local stability prop-
erties, which force the corresponding gradient descent to converge exponentially
fast when initialized close to the optimal parameters. This is a joint work with
Samuel Daudin, supported by ERC ELISA AdG 101054746 (Programme Horizon
Europe).

Talk presented on November 5th 2024, at the MFO conference ‘Directions in
Rough analysis’.

References

[1] W. E, J.Han, Jiequn, Q. LI. A mean-field optimal control formulation of deep learning,
Research in the Mathematical Sciences 6 (2019).

Non-explosion and strong completeness

Xue-Mei Li

(joint work with Kexing Ying)

We study solution theory for rough differential equations (RDE) and the strong
completeness problem for stochastic differential equations (SDE). An SDE is said
to be strongly complete if for each initial value x, there exists a unique global solu-
tion Ft(x) (i.e. the SDE is complete), and the map (t, x) 7→ Ft(x, ω) is continuous
almost surely. Continuity with respect to the initial data implies the existence of
a perfect cocycle and is an underlying assumption for numerical solutions.



2912 Oberwolfach Report 49/2024

In case where the Banach fixed point theorem is applicable to the SDE, strong
completeness is often solved at the same time (e.g. in the case for SDEs in Rd

with Lipschitz continuous coefficients). It had been a general belief that a ‘com-
plete’ SDE, with smooth coefficients, is automatically strongly complete, so much
so nobody questioned until a first counter example was given by K.D. Elworthy
[Elw78]. An open problem immediately arise: provide a criterion for the strong
completeness for generic SDEs on non-compact manifolds.

This problem was first solved in [Li94] by coupling the SDE with its linearized
equation. In Rd this is formulated as follows: Let σ, b be locally Lipschitz con-
tinuous, (so a local continuous solution flow exists, which is the starting point in
[Li94]), we consider the SDE

dxt = b(xt) dt+

m∑

k=1

σk(xt) dW
k
t , dvt = Dbxt

(vt) dt+

m∑

k=1

Dσkxt
(vt) dW

k
t .

Fixing the initial condition x0, the solution to vt with initial condition v0 is the
derivative of x 7→ Ft(x) in probability at x0 in the direction of v0. It is referred as
the derivative flow and denoted byDFt(x0)(v0). Fixing x, DFt(x) is a d×d-matrix,
and we denote |(DFt)(x)| for its norm .

Theorem 1. [Li94] Suppose the SDE is complete.

(1) It is strongly p-complete, if for each compact set K ⊂ Rd and t > 0,

sup
x∈K

E

(
sup
s≤t
|DxFs|p

)
<∞

for some p > d− 1 (p = 1 if d = 2).

(2) Let g : Rd → R+ be such that supx∈K E
(
e6p

2
∫

t

0
g(Fs(x))ds

)
< ∞ for any

compact K ⊂ Rd. If furthermore,

(1)

{
|Dσk|2 ≤ g,
2〈Dbx(v), v〉 + (p− 2)

∑m
k=1

1
|v|2 〈(Dσk)x(v), v〉2 ≤ 6pg(x)|v|2,

for all x, v ∈ Rd, k = 1, . . . ,m, then for some constant c,

E

(
sup
s≤t
|DFs(x)|p

)
≤ cE

(
e6p

2
∫

t

0
g(Fs(x))ds

)
≤ c

t

∫ t

0

Ee6p
2tg(Fs(x))ds.

(3) If there exists C such that

(2)
1

2

m∑

1

|Dg(σk)|2 +
1

2

m∑

1

D2g(σk, σk) +Dg(b) ≤ C,

then for any c > 0, there exists cK such that E[ecg(xt)] ≤ ecg(x0)+Kt.

Consequently (1) and (2) imply strong completeness.

For example, if σk and 〈b(x), x〉 are bounded above, it suffices to assume that the
derivatives are bounded. An example of an SDE is provided where the coefficients
are bounded and C∞ smooth, and yet strong completeness fails (see [LS09]).
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Recent investigations into strong completeness have focused on extending the
growth conditions on the drift term and reducing the regularity requirements for
the coefficients, we mention specially [SS17]. Our results improve current known
results on SDE and our results on RDE’s builds on that of Lyons, Friz-Victor,
Friz-Hairer. Further references will be detailed in our forthcoming article.

Let V,H be Banach spaces. Assume that there exists a non-decreasing function
f ∈ C(R+;R+) satisfying

∫∞

r
1

f(s) ds =∞ for some r > 0 and β > 0 such that, for

all x ∈ H and t ≥ 0,

(3)

〈
x

‖x‖ , b(x)

〉
≤ f(‖x‖).

Theorem 2. [LY25] Let b ∈ Liploc(H ;H) satisfy (3), σ ∈ C3(H ;L(V ;H)) and
� ∈ Cα+(R+;V ) for some α ∈ (13 ,

1
2 ). Then, if there exist some κ ∈ [0, 12 ) such

that for all x ∈ H,

• ‖b(x)‖ ≤ f(‖x‖)1+κα;
• ‖Dnσ(x)‖ <∼ f(‖x‖)(1−nκ)α− for n = 0, 1, 2,

the rough differential Equation dxt = b(xt) dt + σ(xt) d�t is globally well-posed.
Applying to SDE, we obtain strong completeness.

The corresponding result for Young differential Equation is as follows:

Theorem 3. [LY25] Let b ∈ Liploc(H ;H) satisfy (3), σ ∈ Lip(H ;L(V ;H)) and
γ ∈ Cαloc(R+;V ) for some α > 1

2 . If there exists some κ ∈ [0, 1) such that for all
x ∈ H,

(1) ‖b(x)‖ <∼ f(‖x‖)1+κα,
(2) ‖Dnσ(x)‖ <∼ f(‖x‖)(1−nκ)α− for n = 0, 1.

Then, the Young differential Equation dxt = b(xt) dt + σ(xt) dγt has a global

solution for every initial condition. Furthermore, it is unique if σ ∈ C( α
1−α )+.

References

[Elw78] K. D. Elworthy. Stochastic dynamical systems and their flows, pages 79–95. Academic
Press, London and New York, 1978.

[Li94] Xue-Mei Li. Strong p-completeness of stochastic differential equations and the exis-
tence of smooth flows on noncompact manifolds. Probability Theory and Related Fields,
100(4):485–511, 1994.

[LS09] Xue-Mei Li and Michael Scheutzow. Lack of strong completeness for stochastic flows.
The Annals of Probability, 39, 08 2009.

[LY25] Xue-Me Li and Ke Xing Ying. Strong completeness and uniform non-explosion via rough
differential equations. Under prepration, 2025.

[SS17] Michael Scheutzow and Susanne Schulze. Strong completeness and semi-flows for sto-
chastic differential equations with monotone drift. Journal of Mathematical Analysis
and Applications, 446(2):1555–1570, 2017.
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Chain rule symmetry for singular SPDEs

Yvain Bruned

(joint work with Carlo Bellingeri, Vladimir Dotsenko)

We consider the stochastic geometric heat equation given by

(1) ∂tu
α = ∂2xu

α + Γαβγ(u) ∂xu
β∂xu

γ + hα(u) + σαi (u) ξi ,

where i ∈ {1, ...,m}, α ∈ {1, ..., d} and u : R+×T 7→ Rd. The functions Γαβγ : Rd →
R with Γαβγ = Γαγβ are smooth Christoffel symbols. The functions σαi : Rd → R are

the components of a smooth vector field on Rd. The ξi are independent space-time
noises. The geometric motivation of equation (1) is to provide a natural stochastic
process taking values in the space of loops in a compact Riemannian manifold. Its
invariant measure is expected to be the Brownian loop measure. The construction
for space-time white noise is performed in [5]. The connection with the Brownian
loop measure remains an open problem.

For solving this equation, we start by fixing a natural approximation of solutions
of (1) via a class of mollifiers that are compactly supported smooth functions
̺ : R2 → R integrating to 1 with ̺(t,−x) = ̺(t, x), ̺(t, x) = 0 for t ≤ 0. For
ε > 0, we replace ξi by its regularisation ξεi = ̺ε ∗ ξi, where ∗ is the space-time
convolution and

(2) ̺ε(t, x) = ε−3̺(ε−2t, ε−1x).

Here, we have used the parabolic scaling where time counts double in comparison
to space. One has the following regularised equation

(3) ∂tu
α
ε = ∂2xu

α
ε + Γαβγ(u) ∂xu

β
ε∂xu

γ
ε + hα(uε) + σαi (uε) ξ

ε
i .

The main problem is to find suitable counter-terms such that uε converges and
such that the geometry of the equation is not broken. This question has been
answered only for space-time white noise in [5] by using the complete solution
theory provided by Regularity Structures in [11, 7, 9, 2]. In the next theorem, one
has a statement for the full subcritical regime:

Theorem 1 ([4]). There exist renormalisation constants Cε(τ) such that the
renormalised equation of (1) is geometric given by:

∂tu
α
ε = ∂2xu

α
ε + Γαβγ(uε) ∂xu

β
ε∂xu

γ
ε

+ hα(uε) + σαi (uε) ξ
ε
i +

∑

τ∈Bξ

Cε(τ)Υα
Γ,σ[τ ](uε) ,

where Bξ depends on the ξi and the ΥΓ,σ[τ ](uε) are computed with the σi and the
covariant derivative ∇XY defined by

(∇XY )α(u) = Xβ(u) ∂βY
α(u) + Γαβγ(u)Xβ(u)Y γ(u) .

The statement above is valid for any subcritical noises ξi which are noises whose
space-time Hölder regularity is greater than −2. For convergence theorems con-
cerning the iterated integrals built out of this noise see [9, 14, 12]. These papers
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show the convergence of the solution of the renormalised equation. Theorem 1
is also valid for quasilinear equations (see [6]) where the chain rule is used for
removing non-local counter-terms.

One can make explicit the dimension of these geometric counter-terms via two
theorems:

Theorem 2 ([4]). For all subcritical noises ξi, sufficiently high dimension d, one
can compute the dimension of (ΥΓ,σ[τ ])τ∈Bξ

.

Theorem 3 ([1]). For all subcritical noise ξ, d = 1 and m = 1, the dimension of
(ΥΓ,σ[τ ])τ∈Bξ

is the dimension of the free Novikov algebra.

The free Novikov algebra is described in [10] see also [3] for an application of
this structure to singular SPDEs. When the dimension d is not sufficiently high
and not equal to 1, it is very difficult to compute such a dimension. Let us stress
that the study of the chain rule symmetry for stochastic geometric heat equation
is actually quite general. Indeed, one can look at a general class of subcritical
equations:

∂tu
α − Luα =

∑

(β1,r1),...,(βn,rn)∈O−

Γα(β1,r1),...,(βn,rn)
(∂puγ : (γ, p) ∈ O+)

n∏

i=1

∂riuβi

+ σαi (∂puγ : (γ, p) ∈ O+)ξi ,

where L is a differential operator, Γα(β1,r1),...,(βn,rn)
and σαi are smooth coefficients.

The O+, O− are finite subsets of {1, ..., d} × Nd+1. The ∂puγ (resp. ∂riuβi) are
functions (resp. distributions) when (γ, p) ∈ O+ (resp. (βi, ri) ∈ O− ). One can
use the same techniques for computing the dimension of geometric counter-terms
but there is no natural generating set and it has to be performed case by case.

Let us briefly explain the main steps of the proof of Theorems 1, 2 and 3. One
first starts by writing the renormalised equation in the next theorem

Theorem 4 ([2] & [8]). There exist renormalisation constants Cε(τ) and a com-
binatorial set Sξ associated with some coefficients (ΥΓ,σ[τ ](uε))τ∈Sξ

such that the
renormalised equation of (1) is given by:

(4)

∂tu
α
ε = ∂2xu

α
ε + Γαβγ(uε) ∂xu

β
ε∂xu

γ
ε

+ hα(uε) + σαi (uε) ξ
ε
i +

∑

τ∈Sξ

Cε(τ)Υα
Γ,σ[τ ](uε) .

One wants to find a choice of Cε(τ) such that
∑

τ∈Sξ

Cε(τ)ΥΓ,σ[τ ](uε) =
∑

ν∈Bξ

Cε(ν)ΥΓ,σ[ν](uε).

where the Cε(ν) depend on the Cε(τ). For doing so, one has to first understand the
elements τ ∈ 〈Sξ〉 such that ΥΓ,σ[ν](uε) is invariant under change of coordinates.
In the sequel, we explain this procedure in dimension one but it is the same for
higher dimension. Given a diffeomorphism ϕ, one has

(ϕ · Γ)(ϕ(u))ϕ′(u)2 = ϕ′(u) Γ(u)− ϕ′′(u) , (ϕ · σ)(ϕ(u)) = ϕ′(u)σ(u) .
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Then, we define the space Vgeo ⊂ 〈Sξ〉 as consisting of those elements τ such that,

ϕ ·ΥΓ,σ[τ ] = Υϕ·Γ,ϕ·σ[τ ].

One can replace ϕ by a family (ψt)t≥0 with ψ0 = id, ∂tψ|t=0 = h and get the
following equivalence from [5, 1]

τ ∈ Vgeo ⇔ (∂tψt ·ΥΓ,σ[τ ])|t=0 = (∂tΥψt·Γ,ψt·σ[τ ])|t=0

⇔ Υh
Γ,σ[ϕ̂geo(τ)] = 0⇔ ϕ̂geo(τ) = 0.

where Υh
Γ,σ[ϕ̂geo(τ)] are coeffcients depending on h and the injectivity of the map

τ 7→ Υh
Γ,σ[τ ] is crucially used in the last equivalence. Then, it boils down to find a

basis of ker ϕ̂geo and to compute its dimension. The strategy for the proof depends
on the dimension:

• In sufficiently high dimension, the set Sξ is formed of decorated trees. The
proof relies on operad theory and homological algebra in [4].
• In dimension one, the set Sξ is formed of multi-indices as introduced in

[15, 13]. An elementary proof (linear algebra) is performed in [1].

They are several applications/open problems following these results:

• Itô Isometry in the full subcritical regime for Gaussian noises. One could
use operadic and homological tools.
• Global solution in the full subcritical regime.
• Chain rule for small dimensions d (d 6= 1).
• Application to conjectures in geometry: In dimension one, geometric ele-

ments without Christoffel symbol are generated by Lie Brackets.
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Rough Geometric Integration

Harprit Singh

(joint work with A. Chandra)

Combining ideas from Whitney’s geometric integration theory and rough analysis,
we introduce spaces of rough differential k–forms on d-manifolds which are formally
given by f =

∑
I fIdx

I where (fI)I belong to a class of genuine distributions of
negative regularity. These rough k–forms have several properties desirable of a
notion of differential forms:

• they can be integrated over suitably regular k-manifolds,
• they form a module under point-wise multiplication with sufficiently reg-

ular functions,
• exterior differentiation as well as the Stokes theorem extend to these

spaces,
• they come with natural embeddings into distribution spaces,
• they contain classes of form valued distributional random fields.

Finally, these spaces unify several previous constructions in the literature. In
particular, they generalise spaces of α–flat cochains introduced by Whitney [5] and
Harrison–Norton [4], they contain the (rough) k-forms f ·dg1∧ ...∧dgk introduced
by Züst using Young integration [6] and have been revisited for k = 2 in [1], and
for d = 2 and k = 1 they are close to the spaces which Chevyrev et al. [3, 2] use
to make sense of Yang–Mills connections. Lastly, as a technical tool we introduce
a ‘simplicial sewing lemma’, which provides a coordinate invariant formulation of
the (known) multi-dimensional sewing lemma.
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Coming up from −∞ for the KPZ equation

Nicolas Perkowski

(joint work with Carlos Villanueva Mariz)

We consider the KPZ equation

∂th =
1

2
∂xxh+

1

2
(∂xh)2 + ξ, h(0) = h0,

on a torus TL = R/(LZ) for L > 1, where ξ is a space-time white noise. Our main
results are two estimates that are largely independent of the initial condition h0,
in the spirit of [2]. For the first estimate we assume that h0|[0,1] ≥ 0 and obtain a
lower bound

inf
x∈TL

h(t, x) ≥ −C(ξ, L, t)

t
,

where C(ξ, L, t) > 0 is independent of h0|[0,1]c and locally bounded in t. Moreover,

for α < 1
2 we control the Hölder semi-norm:

sup
x 6=y∈TL

|h(t, x)− h(t, y)|
|x− y|α ≤ C(ξ, L, α, t),

where C(ξ, L, α, t) > 0 is independent of h0. Both of these results are derived via
the variational formulation of relative entropy, inspired by the stochastic control
formulation in [1]:

h(t, x) = sup {EQx
[h0(Xt)]−H(Qx|Px)} ,

where Px is the law of x + W mod L for a Brownian motion W , and where
H(Qx|Px) is the relative entropy.
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Higher order approximation of nonlinear SPDEs with additive

space-time white noise

Helena Kremp

(joint work with Ana Djurdjevac, Máté Gerencsér)

In this talk based on [1], we consider strong approximations of 1+1-dimensional
stochastic PDEs driven by additive space-time white noise:

∂tu = ∆u+ f(u) + ξ, u(0, ·) = u0 ∈ C1/2(T).

It has been long proposed [2, 3], as well as observed in simulations, that approx-
imation schemes based on samples from the stochastic convolution, rather than
from increments of the underlying Wiener processes, should achieve significantly
higher convergence rates with respect to the temporal timestep. Utilizing the sto-
chastic sewing lemma [4], we prove that for a large class of nonlinearities f , with
possibly superlinear growth, a temporal rate of (almost) 1 can be achieved, a ma-
jor improvement on the rate 1/4 that is known to be optimal for schemes based
on Wiener increments. The spatial rate remains (almost) 1/2 as it is standard in
the literature.
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Limit Theorems For Signatures

Yuri Kifer

I will discuss moment and almost sure invariance principles and laws of iter-
ated logarithm for normalized multiple iterated sums and integrals of the form

S
(v)
N (t) = N−v/2

∑
0≤k1<···<kv≤Nt

ξ(k1) ⊗ · · · ⊗ ξ(kv), [t ∈ [0, T ] and S
(v)
N (t) =

N−v/2
∫
0≤s1<···<sv≤Nt

ξ(s1) ⊗ · · · ⊗ ξ(sv)ds1 . . . dsv, where {ξ(k)}−∞<k<∞ and

{ξ(s)}−∞<s<∞ are centered stationary vector processes with some weak depen-
dence properties which can be generated, in particular, by dynamical systems so
that ξ(k) = g ◦ T k or ξ(s) = g ◦ T s for some (vector) function g. The results
are applicable, in particular, to hyperbolic and expanding dynamical systems with
their Gibbs measures, Gibbs-Markov maps and some systems which can be repre-
sented via the Young towers construction. Sequences of iterated sums and integrals
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were called signatures in recent papers in rough paths, data science and machine
learning.

The Exponential Lie Series and pre-Lie Magnus vector fields

Kurusch Ebrahimi-Fard

(joint work with Frédéric Patras, Anke Wiese)

In 1994, Gaines [7] defined and examined the quasi-shuffle algebra of iterated
stochastic integrals, specifically focusing on multiple iterated integrals of Wiener
processes. In 2000, Hoffman [8] studied the quasi-shuffle algebra using a Hopf
algebraic framework and introduced a rather natural Hopf algebra isomorphism
(known as Hoffman’s exponential) between the shuffle and quasi-shuffle Hopf al-
gebra. We refer to [6] for details from the viewpoint of deformations of the shuffle
Hopf algebra.

In earlier work [4], we consider stochastic differential systems driven by con-
tinuous semimartingales and governed by non-commuting vector fields. We show
that Hoffman’s exponential naturally relates Itô and Fisk–Stratonovich multiple
integrals. This permits to express the flowmap in Fisk–Stratonovich form. It is
then shown that the logarithm of the flowmap is an exponential Lie series and the
corresponding Chen–Strichartz formula is given which provides an explicit formula
for the Lie series coefficients. The Chen–Strichartz formula has shown to play a
pivotal role in the design of numerical integration schemes that preserve quali-
tative properties of the solution such as the construction of geometric numerical
schemes and in the context of efficient numerical schemes.

In the recent work [5], we extend previous results from [2, 4] by deriving a
Chen–Strichartz formula for stochastic differential equations driven by Lévy pro-
cesses, that is, we derive a series expansion of the logarithm of the flowmap of
the stochastic differential equation in terms of commutators of vector fields with
stochastic coefficients, and we provide an explicit formula for the components in
this series. The stochastic components are generated by the Lévy processes that
drive the stochastic differential equation and their quadratic variation and power
jumps; the vector fields are given as linear combinations of commutators of el-
ements in the pre-Lie Magnus expansion [1, 3] generated by the original vector
fields governing our stochastic differential equation. In particular, we show that
the logarithm of the flowmap for Lévy-driven stochastic differential equations is a
Lie series.
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Expected Signature on a Riemannian Manifold and Its

Geometric Implications

Xi Geng

(joint work with Hao Ni, Chaorui Wang)

On a compact Riemannian manifold M, we show that the Riemannian distance
function d(x, y) can be explicitly reconstructed from suitable asymptotics of the
expected signature of Brownian bridge from x to y. In addition, by looking into the
asymptotic expansion of the fourth level expected signature of the Brownian loop
based at x ∈ M , one can explicitly reconstruct both intrinsic (Ricci curvature)
and extrinsic (second fundamental form) curvature properties of M at x. As
independent interest, we also derive the intrinsic PDE for the expected Brownian
signature dynamics on M from the perspective of the Eells-Elworthy-Malliavin
horizontal lifting.
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Strong regularization of differential equations with integrable drifts by

fractional noise

Khoa Lê

(joint work with Oleg Butkovsky, Toyomu Matsuda)

We consider stochastic differential equations with integrable time-dependent drift
driven by additive fractional Brownian noise whose Hurst parameter is less than
1/2. Under some subcriticality conditions, it is shown that such equation have a
unique pathwise solution which is also path-by-path unique. Furthermore, stability
with respect to all parameters is established and the dynamical description of its
gradient flow is investigated. Our strong uniqueness result can be considered as
an extension of that from Krylov and Röckner [1] for Brownian motion. It holds
under the subcritical regime observed earlier by Galeati and Gerencsér [2], and
improves upon previous results of Nualart and Ouknine [3] for dimension one
and the second author [4]. Our methods are built around Lyons’ rough path
theory, Girsanov’s theorem, the stochastic sewing lemma and the quantitative
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John–Nirenberg inequality for stochastic processes of vanishing mean oscillation
[5].
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Degree-7 cubature on Wiener space

Emilio Ferrucci

(joint work with Timothy Herschell, Christian Litterer, Terry Lyons)

We present an explicit degree-7 cubature formula on Wiener space with drift in the
sense of Lyons and Victoir [1]. Our formula was derived thanks to the use of the
intrinsic Hopf algebra structure on the tensor algebra, in particular the Eulerian
idempotent, which replaces the PBW basis.
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Non-Markovian optimal stopping with signatures

Luca Pelizzari

(joint work with Christian Bayer, John Schoenmakers)

We consider the finite horizon optimal stopping problem for α-Hölder continuous
state-processes (Xt : 0 ≤ t ≤ T ), that is

(1) Y0 = sup
τ∈S0

E[Zτ ], Yt = ess sup
τ∈St

E[Zτ |FXt ], 0 < t ≤ T,

where Z is continuous and FX−adapted, and St denotes the set of FX−stopping-
times on [t, T ]. Our particular interest lies in highly non-Markovian processes
X , e.g. fractional Brownian motion or asset-price dynamics in rough volatility
models, where (at least conventional) Hamilton-Jacobi-Bellman (HJB) equations
do not exist.

We present two practical solution methods based on the rough-path signature
lift X<∞ of the time-augmentation (t,Xt), which serves as a universal, Markovian
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lift, encoding the memory of the state-process. First, replacing [0, T ] by some grid
0 = t0 < t1 < · · · < tN = T , we define the sequence of stopping times

τθN = tN , τθn = tn1{Ztn≥fθ(X<∞
0,tn

)} + τθn+11{Ztn<f
θ(X<∞

0,tn
)}, 0 ≤ n < N,

for fθ(x) = 〈θ,x〉 a linear functional on the tensor algebra. On the other hand,
we define the martingales

Mθ
t =

∫ t

0

fθ(X<∞
0,s )dWs, 0 ≤ t ≤ T,

where W is a standard Brownian motion. Based on a global Lp-approximation
result for signatures [1, Theorem 2.8], we get the following loose formulation of [1,
Proposition 3.3 and 3.8].

Theorem 1. Assuming that supt≤T |Zt| ∈ L2 and FX = FW , we have

E[Zτθn
0

]ր Y N0 , E[max
k

(Ztk −Mηn
tk

)]ց Y N0 , n→∞,

where Y N denotes the discrete-time version of (1), and the sequences (θn) and (ηn)
can be obtained from standard minimization problems with respect to the truncated
signature X≤n.

Similar convergence results can be established by substituting expectations with
averages [1, Proposition 3.4 and 3.10], resulting in easy-to-implement algorithms
that approximate the optimal stopping value from both above and below. We ap-
ply these methodologies for the problem of optimally stopping fractional Brownian
motion, and for pricing American options in rough volatility models.
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Duality, signatures, and measure valued processes

Sara Svaluto-Ferro

(joint work with Christa Cuchiero, Josef Teichmann)

In duality theory the moments of a processX are represented through the moments
of an auxiliary process U

E[f(U0, XT )] = E[f(UT , X0)].

We explain how we can apply this principle when X is the signature process
of a (jump-)diffusion. We also resource to existence results for sub-probability
measures valued processes to construct a dual process U satisfying the needed
integrability conditions. More details are available in [1].
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An improved Runge-Kutta method for SDEs with additive noise

James Foster

In this talk, we consider the numerical approximation of additive-noise SDEs,

dyt = f(yt)dt+ σ dWt ,(1)

where, for simplicity, we assume yt ∈ R, f : R→ R is smooth, σ > 0 and Wt ∈ R.

Given a sequence of times 0 = t0 < t1 < · · · < tN = T , we define Y0 := y0 and
consider the following one-parameter family of stochastic Runge-Kutta methods:

Ỹn := Yn + c σHn ,

Ỹn+α := Ỹn + α
(
f(Ỹn)hn + σWn + 2(1− c)σHn

)
,

Yn+1 := Yn +
(

1− 1

2α

)
f(Ỹn)hn +

1

2α
f(Ỹn+α)hn + σWn ,(2)

where (Wn , Hn) are the increment and“space-time” Lévy area of Brownian motion
over [tn , tn+1] (see [1]), hn := tn+1− tn is a step size, c ∈ R and α := 1

2 + 1
3+(1−c)2 .

Due to its structure, (2) achieves a high order strong convergence rate of O(h
3
2 )

and reduces to Rößler’s SRA1 scheme [2] when c = 0. Taylor expanding (2) gives

Yn+1 = Yn + f(Yn)hn + σWn + σf ′(Yk)

∫ tn+1

tn

(
Wt −Wtn

)
dt+

1

2
f ′(Yn)f(Yn)h2n

+ σ2f ′′(Yn)
(1

4
αhnW

2
n +

1

2
(c+ 2α(1− c))hnWnHn

+
1

2

(
2c− c2 + 2α(1 − c)2

)
hnH

2
n

)

︸ ︷︷ ︸
=: I(c)

+Rn ,

where the remainder term Rn satisfies E
[
R2
n

]
= O

(
h5n

)
. Our main result is then

Theorem 1. Let Itrue := 1
2

∫ tn+1

tn

(
Wt −Wtn

)2
dt. For any c, we have the errors

E
[
Itrue − I(c)

]
= 0,

E
[(
Itrue − I(c)

)2]
=

1

30
(1− α)h4n .

Since Itrue is precisely the integral that appears in the Taylor expansion of (1),
we can reduce the asymptotic local mean-squared error of Rößler’s scheme by 33%
just by setting c = 1 (which gives α = 5

6 ). The resulting scheme (called ShARK1)

1Shifted Additive-noise Runge-Kutta

https://arxiv.org/abs/2302.01362
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naturally extends to multidimensional additive-noise SDEs and, along with SRA1,
has recently been implemented in the Diffrax package for differential equations [3].
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Weak error estimates for rough volatility models

Thomas Wagenhofer

(joint work with Peter K. Friz, William Salkeld)

We consider a class of stochastic processes with rough stochastic volatility, exam-
ples of which include the rough Bergomi, see for example [2], and rough Stein-Stein
model ([1, 5]), that have gained considerable importance in quantitative finance
[3, 8]. We consider the process

Xt = X0 +

∫ t

0

f
(
WH
s

)
dBs.

with Riemann-Liouville fractional Brownian motion WH =
∫ t
0
(t − s)H−1/2dWs.

Here f is a deterministic volatility function and W and B are correlated correlated

via Bt = ρdWt +
√

1− ρ2W⊥
t for some ρ ∈ [−1, 1].

We consider the standard left-point approximation of X , that is

X
(n)
j
n

−X0 =

j−1∑

i=0

f
(
WH

i
n

)
B i+1

n
−B i

n
.

A basic question for such (non-Markovian) models concerns efficient numerical
schemes. While strong rates are well understood (order H), we tackle the intricate
question of weak rates. Over the last years, several authors, for example [4, 5, 7]
or [6], have studied this problem. We were able to proof the following

Theorem 1. Let f ∈ CN , N ∈ N, such that f and its N derivatives have at most
exponential growth. Let Φ be a polynomial test function with deg(Φ) ≤ N .

(1) There is a constant CN such that, as n→∞,

E
[
Φ
(
XT

)]
− E

[
Φ
(
X

(n)
T

)]
≤

{
CNn

−3H−1/2 ∨ n−1 for H 6= 1/6,

CNn
−1 log(n) for H = 1/6.

(2) In the uncorrelated case, with ρ = 0, we have

E
[
Φ
(
XT

)]
− E

[
Φ
(
X

(n)
T

)]
≤ CNn−1 any H > 0.

https://arxiv.org/abs/2202.02435
https://github.com/patrick-kidger/diffrax
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Our results are complemented by a lower bound which show that in the case
Φ(x) = x3, f(x) = x and H < 1/6 the obtained weak rate is indeed optimal.

To derive these weak rates we observed, that there is a closed formula for
moments of X and X(n). For this closed formula we considered the open simplex
∆◦
m in Rm and functions F : Rm × ∆◦

m → R. For such functions we defined
operators

(
INF

)
,
(
J NF

)
: Rm+1 ×∆◦

m+1 → R via

(INF )(x1, ..., xm, y, t1, ..., tm, s) = ρNf(y)

m∑

j=1

∂xj
F (x1, ..., xm, t1, ..., tm)K(tj , s),

as well as

(J NF )(x1, ..., xm, y, t1, ..., tm, s) =
N(N − 1)

2
f2(y)F (x1, ..., xm, t1, ..., tm).

Let W be an alphabet over words w with letters I, J . Define a length ℓ such that
ℓ(I) = 1, ℓ(J) = 2 and define an embedding ι such that ι(wI) = ι(w) ◦ Iℓ(wI)
and ι(wJ) = ι(w) ◦ J ℓ(wJ). Given this construction we end up with the following
moment formula:

Theorem 2. Let N ≥ 1. Then

E
[
(XT )N

]

=
∑

w∈W
ℓ(w)=N

∫ T

0

∫ t1

0

...

∫ t|w|−1

0

E
[(
ι(w)1

)(
WH
t1 , ...,W

H
t|w|

, t1, ..., t|w|

)]
dt|w|...dt1.

The right hand side now consists of iterated integrals of functions of Gaussian
random variables. Together with the following lemma we could show the main
theorem.

Lemma 1. Let Σ : [0, T ] → Rd×d be symmetric and positive semi-definite. Let
g : Rd → R smooth and W (t) ∼ N (0,Σ(t)) and define the function ϕ(t) =
E
[
g(W (t))

]
. Then ϕ is in C1 and

∂tϕ(t) =

d∑

k,l=1

1

2
∂tΣ(t)k,lE

[
∂k∂lg(W (t))

]
.
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Branched Itô formula and Itô-Stratonovich isomorphism

Nikolas Tapia

(joint work with Carlo Bellingeri, Emilio Ferrucci)

Branched rough paths, defined as characters over the Connes-Kreimer Hopf algebra
HCK, constitute integration theories that may fail to satisfy the usual integration
by parts identity. Using known results on the primitive elements we view it as
a commutative cofree Hopf algebra [5] (i.e. a commutative B∞-algebra) over the
space P of primitive elements. More precisely, there is a projection π : HCK → P
which decomposes HCK

∼= T (P) as a coalgebra, the isomorphism being given by
abstract integration maps induced by the so-called natural growth [2, 3]. This
allows us to consider Rough Differential Equations (RDEs) with drifts, i.e., of the
form

dYt =
∑

τ∈F

Vτ dXπ(τ).

and write an explicit change-of-variable formula for solutions to such RDEs in the
form

ϕ(Yt) = ϕ(Y0) +
∑

τ∈F

∫ t

0

Vτϕ(Ys) dXπ(τ)

for any smooth function ϕ, and where Vτ is a differential operator of order |τ |,
defined in terms of the original vector fields V , and in both formulas the integrals
are defined as rough integrals of suitable germs.

This formula, which is realised through an explicit morphism from the
Grossman–Larson Hopf algebra to the Hopf algebra of differential operators, re-
stricts to the well-known Itô formula in the very special case of semimartingales,
and builds on previous work by D. Kelly were a similar idea (the bracket exten-
sion) was used [4]. Our approach, however, avoids the need for any additional lifts
and is therefore only reliant on the information already contained in X.

In addition, we establish an isomorphism between HCK and the shuffle algebra
(T (P),⊔⊔,∆), which extends Hoffman’s exponential for the quasi-shuffle algebra,
and can therefore be viewed as a far-reaching generalisation of the usual Itô-
Stratonovich correction formula for semimartingales. The isormorphism is defined
by using the cofreeness of HCK to extend the Eulerian idempotent e. In other
words, we define a map Log: HCK → T (P) induced by the composition π ◦ e.
Indeed, this can be stated as a characterisation of the algebra structure of any

https://doi.org/10.1142/S0219024922500297
https://arxiv.org/abs/2304.03042
https://doi.org/10.1137/22M1485760
https://doi.org/10.1080/14697688.2017.1393551


2928 Oberwolfach Report 49/2024

commutative B∞-algebra: every commutative B∞ algebra is (isomorphic to) a
shuffle algebra (over its primitive space). Compared to previous approaches, this
transformation has the key property of being natural in the underlying vector
space and therefore is well suited for extending the theory of RDEs driven by
branched rough paths to manifolds with connections.
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Signature transforms from the point of view of invariant theory

Josef Teichmann

(joint work with Valentin Tissot-Daguette, Walter Schachermayer)

Invariant Theory has been an influential subject in mathematics for a long time:
it is an important and far reaching question how functions on a geometric object
look like which are invariant with respect to a given group action. As guiding
example on can consider functions on Rn invariant under the action of the group
of orthogonal transformations. It turns out that invariant polynomials are actually
polynomials of the radius square which serves as a generating invariant polynomial
among all invariant polynomials, see, e.g., [3].

We are interested in an infinite dimensional analog of this question. Let X
denote the Banach space of continuous bounded variation curves on [0, 1] with
values in Rd starting at 0 ∈ Rd at time 0. On bounded variation curves ω ∈ X we
consider the group action ωσ := ω ◦ σ of continuous reparametrizations σ of [0, 1],
i.e. monotone increasing homeomorphisms on [0, 1], which preserve 0 and 1. We
ask for the structure of invariant polynomials and invariant real analytic functions
on X (for a convenient definition see [2]) in this case.

The main result is the following: let f : 0 ∈ U ⊂ X → R be an invariant real
analytic function on an open domain containing 0, then its power series expansion
at 0 can be solely written in terms of signatures, i.e.

f(ω) =
∑

k≥0

∑

|w|=k

aw Sigw(ω) ,

where signature component Sigw(ω) at length k word w ∈ {1, . . . , d}k is given by
the iterated integral

Sigw(ω) =

∫

0≤t1≤...≤tk≤1

dωw1(t1) · · · dωwk(tk)
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for ω ∈ X . This fully characterizes the set of all invariant polynomials as well
as the set of all invariant real analytic functions on U ∋ 0. Notice that invariant
real analytic functions turn out to be weak-∗-continuous due to symmetry even
though they are only continuous with respect to the strong topology a priori. No-
tice also that the space of invariant, symmetric k-multilinear, strongly continuous
maps on X is therefore actually finite dimensional, namely spanned by signature
components of words of length k.

It is furthermore interesting to ask which curves ω have trivial signature, i.e. the
same signature as 0. It turns out, following the seminal and beautiful work [1],
that those are precisely the tree-like curves. We can now also characterize those
curves by the property they can be deformed to the constant curve taking value 0
within their own range with an argument coming from complex analysis.
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A gradient flow on control space with rough initial condition

Paul Gassiat

(joint work with Florin Suciu)

Given smooth vector fields V1, . . . , Vd on Rn, an initial point x ∈ Rn, consider, for
u ∈ L2 := L2([0, 1],Rd) the controlled ODE

(1) Xt = x+

∫ t

0

d∑

i=1

Vi(Xt)u
i
tdt, t ∈ [0, 1].

We are then given a target point y ∈ Rn and consider the following classical
deterministic control problem.

(2) Find u ∈ L2([0, 1],Rd) s.t. X1 = y.

Note that in many situations of interest, the number of vector fields d is smaller
than the ambient dimension n, so that, at a given time t, the system is only
allowed to move in a subspace of all possible directions. However, assuming the
bracket-generating condition

(3) ∀z ∈ Rn, Lie(V1, . . . , Vd)
∣∣
z

= Rn,

the well-known Chow-Rashevskii theorem guarantees the existence of a solution
to (2).
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Motivated by understanding the gradient descent in deep neural networks, we
consider a non-problem specific gradient flow procedure : let L be defined by

L : u ∈ L2([0, 1],Rd) 7→ |y −Xx
1 (u)|2 ,

so that L ≥ 0 and any zero of L is a solution to (2), and given an initial control
uinit, consider the ODE (valued in L2([0, 1],Rd))

u(0) = uinit,
d

ds
u(s) = −∇L2L(u(s)).

We are then interested in the following question : can we find conditions guaran-
teeing that for u as above, it holds that

(4) lim
s→∞

u(s) = u∞ with L(u∞) = 0.

A first positive observation is that, thanks to the openness of the endpoint
map u 7→ Xx

1 (u) under the bracket-generating condition, L admits no non-global
local minima. However, L may in general admit critical points which are not

minima : indeed, since the gradient of L is seen to be

(5) (∇L)(u) = (y −Xx
1 (u)) ·Rn (∇L2Xx

1 )(u),

this may happen if u is such that the differential of the endpoint map is not
surjective. Such controls are well-known to exist (for instance, u = 0 is always
one if d < n, since then Im(dXx

1 ) is spanned by V1(x), . . . , Vd(x)), and play an
important role in sub-Riemannian geometry (they are typically called singular
controls). Another serious problem when trying to prove convergence is that,
since L does not contain any cost (or penalization) term, its sub-level sets are not
bounded (in fact, it is easy to see that it has zeroes of arbitrarily high norm), and
there is no a priori guarantee that the trajectory will not diverge to infinity.

We are interested in the regime where uinit is rough, for instance uinit = Ḃ
white noise. Note that, in this case uinit is not in L2, but one can still makes sense
of the above gradient flow in a robust way via the modern stochastic analysis
techniques of rough path theory.

Our first result is of a qualitative nature and shows, in a rather general setting,
an advantage of initialising from such a rough initial condition.

Theorem 1. Let V1, . . . , Vd be C∞
b bracket-generating vector fields on Rn. Let

uinit = Ḃ(ω) where B is a Brownian motion. Then, almost surely :
(1) There exists v ∈ L2 such that L(uinit + v) = 0.
(2) For any v in L2, uinit + v is not a saddle-point, i.e. ∇L(uinit + v) = 0 ⇒

L(uinit + v) = 0.
(3) If the trajectory (v(s) = u(s)−uinit)s≥0 is bounded in L2, then convergence

(4) holds.

The above result, while a clear hint that rough initial conditions may help, does
not guarantee convergence as the gradient flow could still diverge to infinity. Our
next theorem, shows (almost sure) convergence in a simple (but non-trivial) case.
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Theorem 2. Let V1, . . . , Vd be C∞
b bracket-generating vector fields on Rn, with

step-2 nilpotent Lie algebra, i.e.

∀i, j, k ∈ {1, . . . , d}, [[Vi, Vj ] , Vk] ≡ 0.

Let uinit = Ḃ(ω) where B is a Brownian motion. Then, almost surely, for any
initial and target points x, y ∈ Rn, convergence (4) holds.

The convergence proof is based on combining ideas from Malliavin calculus with
 Lojasiewicz inequalities.

A possible motivation for our study comes from the training of deep Residual
Neural Nets, in the regime when the number of trainable parameters per layer is
smaller than the dimension of the data vector. Our positive results can be seen as
a theoretical justification for a choice of initialized weights with SDE-type scaling
(see [1, 2, 4] for related recent works)

The talk is based on the article [3].
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Transportation Marketplace Rate Forecast using Signature Transform

Xin Guo

(joint work with Haotian Gu, Tim Jacobs, Phil Kaminsky, Xinyu Li)

Freight transportation marketplace rates are typically challenging to forecast ac-
curately. In this work, we have developed a novel statistical technique based on
signature transforms and have built a predictive and adaptive model to forecast
these marketplace rates. Our technique is based on two key elements of the signa-
ture transform: one being its universal nonlinearity property, which linearizes the
feature space and hence translates the forecasting problem into linear regression,
and the other being the signature kernel, which allows for comparing computa-
tionally efficiently similarities between time series data. Combined, it allows for
efficient feature generation and precise identification of seasonality and regime
switching in the forecasting process.

An algorithm based on our technique has been deployed by Amazon trucking
operations, with far superior forecast accuracy and better interpretability versus
commercially available industry models, even during the COVID-19 pandemic and
the Ukraine conflict. Furthermore, our technique is able to capture the influence



2932 Oberwolfach Report 49/2024

of business cycles and the heterogeneity of the marketplace, improving prediction
accuracy by more than fivefold, with an estimated annualized saving of $50 million.
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Some path-dependent processes from signatures

Eduardo Abi Jaber

(joint work with Louis-Amand Gérard, Yuxing Huang)

We provide explicit series expansions to certain stochastic path-dependent integral
equations in terms of the path signature of the time augmented driving Brownian
motion. Our framework encompasses a large class of stochastic linear Volterra and
delay equations and in particular the fractional Brownian motion with a Hurst
index H ∈ (0, 1). Our expressions allow to disentangle an infinite dimensional
Markovian structure. In addition they open the door to:

(1) straightforward and simple approximation schemes that we illustrate nu-
merically

(2) representations of certain Fourier-Laplace transforms in terms of a non-
standard infinite dimensional Riccati equation with important applications
for pricing and hedging in quantitative finance.
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On the signature of an image

Fabian Harang

(joint work with Joscha Diehl, Kurusch Ebrahimi Fard, Samy Tindel)

The 1D signature, introduced by T. Lyons within the framework of rough path
theory, has revolutionized the analysis of complex systems. Originally developed
to provide a pathwise approach to stochastic differential equations [Lyo98], it has
proven to be a powerful tool in extracting fundamental features of paths, see, e.g.,
[CK16]. Its success lies in its ability to encode the essential structure of paths in
an infinite series of iterated integrals, capturing both local and global information.
Beyond rough paths, the 1D signature has found remarkable applications in data
science, where it serves as an effective feature extraction tool for time series, with
successes in tasks ranging from handwriting recognition to psychiatric diagnosis,
and more.
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This talk will explore how the strengths of the 1D signature are extended to
two-dimensional domains through the 2D signature, a novel mathematical frame-
work designed to handle fields such as images. We will discuss the challenges of
generalizing the algebraic and analytical principles of the 1D signature, to the 2D
signature, such as Chen’s relation and shuffle-type products. It also introduces
invariances to transformations like translation, stretching, and rotation, ensuring
its applicability across diverse datasets.

A cornerstone of the 2D signature is its universal approximation property, which
allows it to approximate continuous functionals on smooth fields with arbitrary
precision. This property, combined with its invariances, makes it a compelling
tool for feature extraction and classification tasks in image analysis and beyond,
as illustrated in the experimental work [ZLT22]. Furthermore, the 2D signature
has significant theoretical implications, such as its role in solving hyperbolic partial
differential equations with multiplicative noise.

In this talk, we will highlight the mathematical foundation and practical ap-
plications of the 2D signature. While addressing the challenges of extending the
signature framework to two dimensions–such as handling simplex permutations
and ensuring a shuffle product construction, we will outline potential directions
for future research and applications. The 2D signature opens exciting new avenues
for understanding and processing two-parameter data, blending rigorous mathe-
matics with practical innovation.

The talk is based on the joint work with Joscha Diehl, Kurusch Ebrahimi Fard,
and Samy Tindel [DEFHT24]. All authors are grateful to the Center for Advanced
Studies (CAS) in Oslo for funding the “Signatures for Images” project over the
academic year 2023/2024, during which the writing of this article happened.
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Trees vs. multi-indices in rough paths and regularity structures

Pablo Linares

Given a differential equation of the form

dYt = al(Yt)dX
l

t , Y : [0, 1]→ R,

we consider representations of the solutions in terms of multi-indices, as first in-
troduced in [9] for quasi-linear SPDEs. These take the form

Yt =
∑

β

zβ[a, Ys]xst; β ,

where the sum runs over multi-indices β of (l, k),

zβ[a, Ys] =
∏

(l,k)

(
1
k!

dkal
dyk

(Ys)
)β(l,k)

,

and the components xst; β are recursively constructed (assuming smoothness) solv-
ing an infinite family of linear ODEs. The goal is to compare such expansions with
those based on trees in branched rough paths [6].

We make the comparison at the level of the underlying pre-Lie algebra structure.
While tree-based expansions rely on the free pre-Lie algebra [4], (populated) multi-
indices together with the pre-Lie product defined by the derivation D =

∑
(l,k)(k+

1)z(l,k+1)∂z(l,k)
give the structure of the free Novikov algebra [5]. The pre-Lie

algebra structure allows us to rewrite the hierarchy of defining equations for x in
terms of a differential equation of the form

dxst = ρD(expD(xst))z(l,0)dX
l

t , xss = 0,

cf. [8], which is the pre-Lie version of Cartan’s development for Hopf-algebraic
smooth rough paths [1], and which is based on the Guin–Oudom procedure [7].
We also construct an analogue of the insertion pre-Lie product and the extraction-
contraction Hopf algebra in trees [3] for multi-indices, based on the pre-Lie product
given by derivations of the form

∑

k

(
1
k!D

kzγ
)
∂z(l,k)

,

cf. [8]. This allows us to define groups of algebraic renormalization of rough paths.

These ideas can be extended to the context of regularity structures, [2].
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Regularization by multiplicative noise

Chengcheng Ling

(joint work with Konstantinos Dareiotis, Máté Gerenscér, Gerald Lampl,
Khoa Lê)

Understanding the effect of random perturbations in deterministic dynamics is a
central topic of research in stochastic analysis. Regularization by noise (RBN)
refers to the beneficial effects produced by random perturbations for various types
of systems. The simplest instance of this phenomenon are stochastic differential
equations (SDEs) driven by an additive Brownian motion W :

dXt = b(Xt)dt+ dWt, X0 = x ∈ Rd

where strong well-posedness holds even when the vector field b fails to be Lipschitz
continuous. A concrete example clearly given is in one dimensional Euclidean
space R let us consider the ordinary differential equation (ODE) and SDE with

the singular drift b(x) = 2sign(x)
√
|x|2 which has singular point at x = 0:

dXt = 2sign(Xt)
√
|Xt|2dt, dXt = 2sign(Xt)

√
|Xt|2dt+ dWt, X0 = 0.

Without noise the ODE has many solutions, e.g. Xt = 0 and another two extremal
solutions Xt = ±t2. Surprisingly the corresponding SDE has a unique strong
solution, therefore it is well-posed.

In general, for an ODE with singular non-Lipschitz coefficient, we know from
the classical Peano theory that there may exist non-unique solutions. Get along
with the development of Itô’s martingale theory, it has been shown that adding
further Brownian type noise could save the ill-posed equation via smoothing out
the singularity and make it to be well-posed. Recently this field has been exten-
sively explored among different concepts from stochastic calculus. In this talk we
will introduce the ideas from classical Itô calculus involving the theory from PDEs
and modern tools from rough path theory and Malliavin calculus for tackling the
problems on well-posedness theory and numerics of a class of singular SDEs driven
by multiplicative Brownian [1, 2] and fractional Brownian noise [3].
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Loop invariants and conjugation

Rosa Preiß

(joint work with Joscha Diehl, Jeremy Reizenstein)

Observing a closed trajectory, it is natural to ask which properties, like the enclosed
area, remain the same under changing the simultanous start- and endpoint across
the loop. Let S(X) ∈ T ((Rd)) = T (Rd)∗ denote the iterated-integrals signature of
the path X .

Definition 1. We call u ∈ T (Rd) a loop invariant if

〈S(X), u〉 = S(X ′), u〉
holds for all loops X and X ′ such that X and X ′ only differ by moving the start-
and endpoint.

We relate these to conjugation invariants, which are a canonical object of study
when treating (tree reduced) paths as a group with multiplication given by the

concatenation. Let
←−
X denote the path X traversed backwards and X ⊔ Y the

concatenation of the paths X and Y .

Definition 2. We call v ∈ T (Rd) a conjugation invariant if

〈S(Z ⊔ Y ⊔←−Z ), v〉 = 〈S(Y ), v〉
holds for all paths Y and Z.

If we restrict the condition to loops Y , then we call the larger set of v satisfying
the relation conjugation invariants for loops.

A key observation is the following.

Proposition 1. u ∈ T (Rd) is a conjugation invariant for loops if and only if it is
a loop invariant.

During the talk, the proof was sketched pictorially.

A

B

B−1

Figure 1: A closed path A conjugated by a path B [1, Figure 3.2].
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We conjecture that all loop invariants can be written as shuffles of trivial loop
invariants (shuffles of anything with letters), signed areas (ij−ji) and conjugation
invariants.

Conjugation invariants, however, are fully charaterized in terms of combinato-
rial necklaces. For an introduction to combinatorial necklaces see [3, Chapter 7].

One of our main theorems is then the following.

Theorem 1. There are infinitely many algebraically independent loop invariants.

Another open problem that remains is to characterize the equivalence relation
X ∼ X ′ defined by

〈S(X), u〉 = 〈S(X ′), u〉 for all loop-invariants u.

The talk was based on the preprint [1] and featured an excursion on some
contents of [2].
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Controlled RSDEs, pathwise stochastic control, dynamic

programming principles

Huilin Zhang

(joint work with Peter Friz and Khoa Lê)

We study stochastic optimal control of rough stochastic differential equations (RS-
DEs). This is in the spirit of the pathwise control problem (Lions–Souganidis 1998,
Buckdahn–Ma 2007; also Davis–Burstein 1992). With renewed interest from a va-
riety of fields, including filtering, reinforcement learning and SPDE theory, we
establish regularity of rough value functions, validity of a rough dynamic pro-
gramming principles and new rough stability results for HJB equations, removing
excessive regularity demands previously imposed by flow transformation methods.
Measurable selection is used to see that RSDEs have jointly measurable version,
allowing us to relate RSDEs to “doubly stochastic” SDEs under conditioning. In
contrast to previous works, Brownian statistics for the to-be-conditioned-on noise
are not required, aligned with the “pathwise” intuition that these should not mat-
ter upon conditioning. Depending on the chosen class of admissible controls, the
involved processes may also be anticipating. The resulting stochastic value func-
tions coincide in great generality for different classes of controls. RSDEs theory
offers a powerful and unified perspective on this problem class.
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Deep Reinforcement Learning for Games with Controlled

Jump-diffusion Dynamics

Ruimeng Hu

(joint work with Liwei Lu, Xu Yang, Yi Zhu)

Many real-world multi-party decision-making problems are subject to sudden ex-
ogenous events–such as wars, central bank decisions, or global crises like COVID-
19–that can cause major shifts in the system, impacting all players simultane-
ously. These scenarios can be modeled mathematically as games with controlled
jump-diffusion dynamics. In [1], we introduce a computational framework using
the actor-critic method in deep reinforcement learning to solve stochastic control
problems with jumps. More precisely, for a generic stochastic control problem un-
der the Lévy model, where the state process Xt ∈ Rd follows a controlled Itô-Lévy
process:

(1) dXt = b(Xt−, ut) dt+ σ(Xt−, ut) dWt +

∫

Rd

G(Xt−, z, ut)Ñ(dt, dz),

where {Wt}Tt=0 is a d-dimensional standard Brownian motion, N is a Poisson

random measure with the Lévy measure ν and Ñ(dt, dz) := N(dt, dz) − ν(dz) dt
is the compensated Poisson random measure, we aim to find the optimal u∗ that
maximize the expected utility of running and terminal rewards:

(2) Ju(t, x) = Et,x

[∫ T

t

f(s,Xs, us) ds+ g(XT )

]
.

We developed an actor-critic framework that employs neural networks to param-
eterize both the value function (critic) and the control (actor). Policy evaluation
and policy improvement are applied iteratively to update these networks. We
further extend this algorithm to handle multi-agent games with jumps, utilizing
parallel computing to improve computational efficiency. To illustrate the accuracy,
efficiency, and robustness of our approach, we provide numerical examples includ-
ing the Merton problem with jumps, linear quadratic regulators, and the optimal
investment game under various conditions.
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An adaptive algorithm for rough differential equations

Christian Bayer

(joint work with Simon Breneis, Terry Lyons)

We consider a system y controlled by a rough path x in the form of a rough
differential equation, say

dyt = f(yt)dxt.

Except for trivial cases, rough differential equations do not allow for closed form
expressions, and, hence, numerical approximations are required. In this work, we
discretize rough differential equations using the log-ODE method, see [2]. In a
nutshell, the log-ODE method replaces the above rough differential equation by
a controlled ordinary equation, where the rough path x is locally, i.e., on a short
time interval [ti, ti+1], is replaced by a smooth path which generates the same
signature up to a fixed level N . The resulting ODE is then solved by a classical
ODE solver.

The framework of rough differential equations is flexible enough to accommo-
date highly varying situations including

• driving paths changing their roughness over time;
• singularities in the vector field f in time or space.

For this reason, adaptive versions of the log-ODE method have large potential. In
this specific case, we want to adaptively choose both the local time steps ∆t(s) =
ti+1 − ti, s ∈ [ti, ti+1], as well as the local degree N on [ti, ti+1].

We use the approach of A. Szepessy and his co-authors, see, for instance, [3].
In their approach, they consider the problem of optimally (adaptively) choosing
the numerical parameters – here, ∆t and N – as an optimal control problem for
minimizing the computational cost for a given error tolerance. In order to obtain
the necessary error estimates – more specifically, the error propagation–, the dual
backward equation is solved.

In [1], we

• derive well-posedness results for the corresponding dual backward equa-
tion, generalizing the classical well-posedness theory for rough differential
equations;
• derive conditions under which the error in our a-posteriori error estimate

based on a log-ODE discretization of the dual equation is asymptotically
smaller than the error if the discretization of y, allowing us to correct the
error using the a-posteriori error estimate;
• provide several numerical examples involving singularities in either the

driving path or the vector fields, the driving path changing roughness, or
stiffness of the rough differential equation.

The examples show that using the adaptive algorithm can drastically reduce
the computational cost for approximating rough differential equations, provided
that there is some inhomogeneity along the solution over time.
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Expected signature kernels of Lévy processes

Paul P. Hager

(joint work with Peter K. Friz)

The expected signature kernel arises in statistical learning tasks as a similarity
measure of probability measures on path space. Computing this kernel for known
classes of stochastic processes is an important problem that, in particular, can help
in reducing computational costs. Building on the representation of the expected
signature of inhomogeneous Lévy processes as the development of a smooth path
in the extended tensor algebra [1], we extend the arguments developed for smooth
rough paths in [2] to derive a PDE system for the expected signature of inhomo-
geneous Lévy processes. As a specific example, we demonstrate that the expected
signature kernel of Gaussian martingales satisfy a Goursat PDE.
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A semigroup approach for stochastic quasilinear equations driven by

rough noise

Alexandra Neamţu

(joint work with Antoine Hocquet)

We consider stochastic parabolic quasilinear equations perturbed by nonlinear
multiplicative noise. Exploring semigroup methods and combining techniques from
functional analysis with tools from rough path theory, we establish the pathwise
well-posedness of such equations. One key technical tool is to introduce an ap-
propriate space of controlled rough paths tailored to the parabolic quasilinear
problem. We apply our results to the stochastic Landau-Lifshitz-Gilbert equation
which models the magnetization of a ferromagnetic material. Moreover, we em-
phasize the advantage of rough path theory in the study of the long-time behavior
of such systems.
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Rough Stochastic Analysis with Jumps

Andrew Allan

(joint work with Jost Pieper)

Rough path theory provides a framework for the study of nonlinear systems driven
by highly oscillatory (deterministic) signals. The corresponding analysis is inher-
ently distinct from that of classical stochastic calculus, and neither theory alone is
able to satisfactorily handle hybrid systems driven by both rough and stochastic
noise. The introduction of the stochastic sewing lemma by Lê [3] has paved the
way for a theory which can efficiently handle such hybrid systems. In particular,
intrinsic solutions to rough stochastic differential equations (RSDEs) under opti-
mal regularity conditions on the vector fields were established by Friz, Hocquet
and Lê [2].

In this talk, we discuss how this can be done in a general setting which allows
for jump discontinuities in both sources of noise. Specifically, in [1] we establish
existence, uniqueness and stability of solutions to RSDEs of the form

dYt = b(Yt) dt+ σ(Yt) dMt + f(Yt) dXt,

where M is a sufficiently integrable càdlàg martingale, and X = (X,X) is a càdlàg
rough path. This is based on a new version of the stochastic sewing lemma, which
can handle multiple discontinuous control functions, and provides a significant
generalization of [2] in terms of the permissible classes of driving noise.
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[3] Khoa Lê, A stochastic sewing lemma and applications, Electron. J. Probab. 25 (2020) no. 38,
1–55.



2942 Oberwolfach Report 49/2024

High Rank Path Development: an approach of learning the filtration

of stochastic processes

Hao Ni

(joint work with Jiajie Tao, Chong Liu)

Since the weak convergence for stochastic processes does not account for the
growth of information over time, which is represented by the underlying filtra-
tion, a slightly erroneous stochastic model in weak topology may cause huge loss
in multi-periods decision making problems. To address such discontinuities Al-
dous introduced the extended weak convergence, which can fully characterise all
essential properties, including the filtration, of stochastic processes; however was
considered to be hard to find efficient numerical implementations. In this talk,
we introduce a novel metric called High Rank PCF Distance (HRPCFD) for ex-
tended weak convergence based on the high rank path development method from
rough path theory, which also defines the characteristic function for measure-
valued processes. We then show that such HRPCFD admits many favourable
analytic properties which allows us to design efficient algorithms to ensure the
stability and feasibility in training. Finally, by using such metric as the discrimi-
nator in hypothesis testing and generative modelling, our numerical experiments
validate the out-performance of the approach based on HRPCFD compared with
several state-of-the-art methods designed from the perspective of weak conver-
gence and therefore demonstrate the potential applications of this approach in
many classical financial and economic circumstances such as optimal stopping or
utility maximisation problems, where the weak convergence fails and the extended
weak convergence is needed. This talk is based on [1].
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Dean-Kawasaki models for particle systems

Ana Djurdjevac

(joint work with Xiaohao Ji, Helena Kremp, Nicolas Perkowski)

Interacting particle systems provide flexible and powerful models that are useful
in many application areas such as sociology (agents [3]), molecular dynamics (pro-
teins) etc. We consider systems of N particles presented by distribution dependent
SDEs

(1) dX i
t = b(X i

t , µ
N )dt+

√
2Σ(X i

t , µ
N
t ) · dW i

t , i = 1, . . . , N

with empirical distribution µN .
However, particle systems with large numbers of particles are very complex and

difficult to handle, both analytically and computationally. Therefore, a common
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strategy is to derive effective equations that describe the time evolution of the
empirical particle density µN .

A prototypical example that we will consider is the formal identification of a
finite system of particles with the singular Dean-Kawasaki equation [1, 4]

(2) du =
1

2
∇2 : (a(·, u)u)dt−∇ · (b(·, u)u)dt+

1√
N
∇ · (√uΣ(·, u)dW ).

Our aim is to introduce a well-behaved nonlinear SPDE that approximates (2) for
a particle system with mean-field interaction both in the drift and the noise term
(1). We want to study the well-posedness of these nonlinear SPDE models and
to control the weak error of the SPDE approximation with respect to the particle
system using the technique of transport equations on the space of probability
measures.
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The Surface Signature

Darrick Lee

(joint work with Harald Oberhauser)

Path development is a representation of paths in terms of matrix groups, which
is defined by the solution of a linear controlled differential equation. The path
signature is the universal path development: given any path development map, it
uniquely factors through the path signature. These representations preserve the
underlying concatenation structure of paths. In addition, they satisfy universality
and characteristicness properties, allowing us to approximate functions on path
space, and characterize the law of stochastic processes. In this talk, we consider
the higher dimensional generalization of these constructions to surfaces, preserv-
ing both horizontal and vertical concatenations. We discuss the notion of surface
development [1], which satisfies similar universality and characteristicness prop-
erties as path development, and the corresponding universal object: the surface
signature [2].
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A representation for the Expected Signature of Brownian motion up

to the first exit time of the planar unit disc

Horatio Boedihardjo

(joint work with He Lin, Lisa Wang)

The signature of a sample path is a formal series of iterated integrals along the
path. The expected signature of a stochastic process gives a summary of the
process that is especially useful for studying stochastic differential equations driven
by the process. Lyons-Ni derived a partial differential equation for the expected
signature of Brownian motion, starting at a point z in a bounded domain, until it
hits to boundary of the domain. We focus on the domain of planar unit disc centred
at 0. Motivated by recently found explicit formulae for some terms in the expected
signature of this process in terms of Bessel functions, we derive a tensor series
representation for this expected signature, coming from from studying Lyons-Ni’s
PDE. Although the representation is rather involved, it simplifies significantly to
give a formula for the polynomial leading order term in each tensor component of
the expected signature.

References

[1] H. Boedihardjo, L. He and L. Wang, A representation for the Expected Signature of Brown-
ian motion up to the first exit time of the planar unit disc, arXiv preprint arXiv:2311.03279
(2023).

Reporter: William F. Turner



Directions in Rough Analysis 2945

Participants

Eduardo Abi Jaber
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