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Introduction by the Organizers

The mini-workshop Mixing Times in the Kardar–Parisi–Zhang Universality Class
assembled 16 researchers primarily from Europe and North America. 11 talks were
given in total, some on forthcoming work which was subsequently posted on arxiv.
The background of participants ranged from freshly started PhD student to highly
established full professor.

To put this diverse group on the same page, we asked two more senior partic-
ipants, Patrik Ferrari and Nina Gantert, to give a short mini-course consisting of
two talks. Patrik Ferrari introduced the KPZ universality class of growth models,
a prototypical example being the KPZ equation. Interacting particle systems that
also belong to the KPZ class such as the asymmetric simple exclusion process
(ASEP) were introduced, ASEP playing a prominent role in several of the work-
shop’s talks. In ASEP on Z, there is at most one particle at each integer. Each
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particle waits an exponential time and then attempts to jump one step to the right
with probability p > 1/2, and one step to the right with probability q = 1−p. The
attempt is successful so long as no more than 1 particle is present at each integer.
In the more general colored ASEP, particles have different colors (priorities), such
that a particle with higher priority will successfully jump to a position occupied by
a particle with lower priority, swapping their positions. Particle configurations can
be mapped to height functions, making ASEP a growth model. ASEP is equally
considered on finite state spaces, and it is a limit of the stochastic six vertex model
from statistical mechanics which appeared in several talks.

Nina Gantert in turn covered some fundamental, general aspects of Markov
chain mixing. In particular, various methods to bound mixing times were dis-
cussed, as well as the cutoff phenomenon, an abrupt convergence to equilibrium
of Markov chains.

The topics of the two mini-courses were brought together in the talk of Jimmy
He, who spoke about the ASEP with one open boundary. He reported on the large
time fluctuations of the current in this model, and how these can be used to obtain
the cutoff profile of ASEP with one open boundary on a finite segment. A related
result about ASEP with closed boundaries figured in the talk of Alexey Bufetov,
where the stationary Mallows measure of ASEP was investigated in depth.

ASEP on Z converges to the KPZ fixed point, which is intimately related to
the directed landscape. Lingfu Zhang presented an axiomatic approach to the
directed landscape akin to the definition of Brownian motion, namely that the di-
rected landscape is the unique directed metric on R

2 with independent increments
and KPZ fixed point marginals. Persistence probabilities for a marginal of the
KPZ fixed point – specifically, the Airy1 process – were studied in Min Liu’s talk.
The speed process for the colored ASEP and the stochastic six vertex model was
presented by Hindy Drillick. In this process, particles have random asymptotic
speeds. Such colored models were equally presented by Milind Hegde, who estab-
lished the convergence of colored height functions to the so-called Airy sheet, a
marginal of the directed landscape.

The scope of the workshop was extended by three talks on related topics:
Amanda Priestly presented work on probabilistic parking functions, which are
related to the model of activated random walks. Elia Bisi spoke about certain
ensembles of λ−shaped random matrices, where λ is a Young diagram, a decreas-
ing sequence of non-negative integers eventually becoming zero. Bisi characterized
the limiting empirical spectral distribution of such matrices via generalizations of
Catalan numbers. Finally, Ivailo Hartarsky spoke about local dynamics of dimers
and the connectivity properties they induce.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

The ASEP with one open boundary

Jimmy He

(joint work with Dominik Schmid)

The asymmetric simple exclusion process (ASEP) is a simple toy model for par-
ticle dynamics in one spatial dimension. A possible addition to the model which
introduces rich behavior is an open boundary which allows particles to enter/exit
the system. More formally, this is a Markov process on configurations of particles
on N, where particles move left and right at rates q and 1 respectively (q < 1), and
where particles enter/exit the system at rates α and β, subject to the exclusion
rule that anything that would cause a particle to move on top of another particle
is blocked.

This model lies in the KPZ universality class, and so in particular has an as-
sociated height function h(t, x). Given the interesting results for models without
boundary, it is natural to ask what the fluctuations are when one open boundary
is present.

Theorem 1 ([1, Theorem 1.1]). Assume that β < α. Then depending on ρ, as
t → ∞,

(ρ > 1
2 ) P

(

−
h (t, 0)− µt

σt1/3
≤ s

)

→ FGSE(s),

(ρ = 1
2 ) P

(

−
h (t, 0)− µt

σt1/3
≤ s

)

→ FGOE(s),

(ρ < 1
2 ) P

(

−
h (t, 0)− µρt

σρt1/2
≤ s

)

→ Φ(s),

where FGSE and FGOE are Tracy–Widom GSE and GOE distributions, Φ is the
standard normal distribution, and µ, σ, µρ, σρ are explicit constants.

This result turns out to have applications to have applications to the study of
mixing times in a finite version of the model. In particular, if we now consider a
finite version of the process on {0, 1, . . . , n} where particles cannot move past n, we
obtain an ergodic Markov chain, which thus converges to its stationary measure.
A natural question is to ask how long it takes to reach equilibrium.

In joint work with Dominik Schmid [2], sharp asymptotics known as the cutoff
profile are obtained for this time to equilibrium, and in particular the shape of
the transition to stationarity is given by either the FGSE , FGOE , or Φ distribution
functions, depending on the value of ρ.
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Exact decay of the persistence probability in the Airy
1
process

Min Liu

(joint work with Patrik Ferrari)

The Airy process A1 is expected to govern the long-time, large-scale spatial fluctu-
ations in the 1d KPZ universality class for flat non-random initial conditions. Our
focus will be on its persistence probability, which quantifies the likelihood that the
process stays below a given threshold c over a time span of length L. This proba-
bility is anticipated to decay exponentially as e−κ(c)L. In this talk, we will see how
to derive an analytic formula for κ(c) when c ≥ 3/2. Since the formula is analytic
only for c > 0, we will also discuss how to construct its analytic continuation for
c < 0. Additionally, we will present numerical results to verify the validity of this
continuation.

Mixing measure and ASEP

Alexey Bufetov

We study the statistics of the Mallows measure on permutations in the limit pio-
neered by Starr (2009). Our main result is the local central limit theorem for its
height function. We also re-derive versions of the law of large numbers and the
large deviation principle, obtain the standard central limit theorem from the local
one, and establish a multi-point version of the local central limit theorem.

We also study the asymptotic behavior of the Asymmetric Simple Exclusion
Process (=ASEP) with finitely many particles. It turns out that a certain ran-
domized initial condition is the most amenable to such an analysis. Our main
result is the behavior of such an ASEP in the KPZ limit regime. A key techni-
cal tool introduced in the paper – the coloring of ASEP particles with the use of
random Mallows permutations – may be of independent interest.

These results allow to obtain the mixing times of ASEP with fixed number of
particles on a closed segment and fixed parameter q. They also can be important
tools for studying the plethora of mixing time for ASEP questions in the limit
q → 1.
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Random matrices, Young diagrams, and trees

Elia Bisi

(joint work with Fabio Deelan Cunden)

Fix, once and for all, a collection {Xi,j : i, j ≥ 1} of complex i.i.d. random variables
with EXij = 0 and E|Xi,j |

2 = 1. Consider the random matrix ensemble given by
the sequence WN = 1

NXNX∗
N , where XN is the N × N matrix (Xi,j)

N
i,j=1 and

X∗
N is its adjoint. The random matrix WN is Hermitian and positive-definite,

with eigenvalues 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN . A classical result [1] states that, with

probability 1, the empirical spectral measure ρN = 1
N

∑N
i=1 δxi

of WN converges
weakly to the measure with density

MP(dx) =
1

2π

√

4− x

x
1[0,4](x) dx.

The latter is called Marchenko–Pastur distribution and can be characterised as the
unique probability measure on [0,∞) whose moments are the Catalan numbers :

∫ ∞

0

xkMP(dx) =
1

k + 1

(

2k

k

)

=: Ck.

For later purposes, we recall one of the countless combinatorial objects [2] that
Catalan numbers count (pun intended!): Ck is the number of rooted plane trees
on k + 1 vertices.

Let us briefly mention a very well-known connection with the KPZ universality
class, due to [3]. When the random variablesXi,j ’s are standard complex Gaussian,
WN is a complex Wishart matrix (this is also referred to as the Laguerre Unitary
Ensemble). In this special case, the largest eigenvalue xN of WN has the same
distribution as the exponential last passage percolation on anN×N grid (a popular
KPZ integrable model). Furthermore, after an appropriate rescaling, xN converges
in law to the Tracy–Widom distribution, a typical KPZ limiting distribution.

1

3

2

1

2

3 2

4

6

Figure 1. On the left-hand side, the self-conjugate partition λ =
(6, 3, 3, 1, 1, 1) of length ℓ = 6. On the right-hand side, a λ-plane
tree.
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Here we consider the more general model of Young-diagram-shaped random
matrices. Let λ = (λ1 ≥ · · · ≥ λℓ ≥ 1) be a self-conjugate integer partition of
length ℓ, viewed as the set of integer pairs (i, j) such that 1 ≤ i ≤ ℓ and 1 ≤ j ≤ λi;
see the Young diagram ‘box’ representation in Fig. 1. A λ-shaped random matrix
is an ℓ× ℓ matrix whose (i, j)-entry equals Xi,j if (i, j) ∈ λ, and zero otherwise.

A natural way to construct a sequence of Young-diagram-shaped random ma-
trices whose size grows to infinity and whose asymptotic shape is λ is to consider
the dilation Nλ of λ by a factor N (i.e. the partition obtained by replacing every
box of λ by an N × N grid of boxes) and to consider an (Nλ)-shaped random
matrix Xλ

N . When λ = (1), Xλ
N coincides with the previously defined XN . The

question is now whether the spectral distribution ρλN of Wλ
N := 1

NℓX
λ
N(Xλ

N )∗ has
a limit.

Define a λ-plane tree to be a rooted plane tree with vertex set V and edge set E,
together with a labelling of the vertices c : V → {1, . . . , ℓ} such that (c(u), c(v)) ∈ λ
for all {u, v} ∈ E; see Fig. 1. Then, we have:

Theorem 1 ([4]). With probability 1, the sequence of random measures ρλN con-
verges weakly as N → ∞ to the (unique) probability measure ρλ whose moments
are

∫ ∞

0

xkρλ(x) dx =
Cλ

k

ℓk+1
,

where

Cλ
k := #{λ-plane trees on k + 1 vertices}.

When λ = (1), we recover the classical case: Cλ
k = Ck for all k and ρλ = MP.

To extract more information about the combinatorial sequence Cλ
k , two ap-

proaches are considered in [4]:

(1) exact formulas: Cλ
k can be expressed as a homogeneous polynomial of

degree k + 1 in the multirectangular coordinates of λ, using certain enu-
merations for labelled trees from [5];

(2) generating functions, which solve an algebraic equation (this implies that
ρλ is algebraic in the sense of Rao and Edelman [6]).

Two examples have a more explicit solution. The first one [7] is staircase par-
titions, i.e. those of the type λ = (ℓ, ℓ − 1, . . . , 1): in this case, Cλ

k has the simple

form ℓ
k+1

(

(ℓ+1)k
k

)

, and ρλ is the law of a product of ℓ+1 independent Beta random

variables. The second one [4] is fat hooks, i.e. Young diagrams made of two rect-
angular blocks: in this case, ρλ can be expressed as a free convolution of measures
involving a Marchenko–Pastur and a Bernoulli distribution.

Several related topics remain to be explored, e.g.: limiting spectral distributions
for dilations of non-self-conjugate partitions and, more generally, for sequences of
partitions converging to a limit shape; more precise analysis and characterisations
of such limiting measures; joint density of the eigenvalues of λ-shaped random
matrices, and related asymptotics, in the Gaussian case.
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Scaling limit of the colored ASEP and stochastic six-vertex models

Milind Hegde

(joint work with Amol Aggarwal, Ivan Corwin)

We discuss the scaling limit of the colored asymmetric simple exclusion process
(ASEP) and the colored stochastic six-vertex (S6V) model, which is based on joint
work with Amol Aggarwal and Ivan Corwin. Both models can be obtained from
their standard (uncolored) counterparts by evolving different initial conditions
using the same randomness, often called the basic coupling. The observable of
interest is called the colored height function, denoted h(x, 0; y, t), and is defined
as the number of particles of color at least x to the right of y (in colored ASEP)
at time t and the number of arrows exiting horizontally from the vertical ray
starting at (t, y) (in colored S6V). Under KPZ rescaling of space and fluctuations
at time t, i.e., scaling space by t2/2 and fluctuations by scale t1/3, the colored
height function in both models converges to the Airy sheet S : R2 → R, a random
continuous constructed as the scaling limit of a model known as Brownian last
passage percolation in work of Dauvergne-Ortmann-Virág.

The Airy sheet is defined via a variational problem in an object known as the
parabolic Airy line ensemble, which is a countable collection of random continuous
non-intersecting functions defined on R, and which arises as the edge scaling limit
of Dyson Brownian motion. Thus, to prove convergence of the colored ASEP and
S6V height functions to S, one must find a representation of them as variational
problems in prelimiting versions of the parabolic Airy line ensemble. To do this,
we first embed the colored height function, as a function of position with the color
argument fixed, as the first curve in a discrete line ensemble (depending on the fixed
color). The collection of such discrete line ensembles as we vary the color together
forms a structure called a colored line ensemble, defined in work of Aggarwal-
Borodin via a certain fused vertex model and the Yang-Baxter equation. Due to
the underlying structure of a vertex model, the colored line ensemble structure
comes with a certain Gibbs or spatial Markov property, which can be written in
terms of the weights of the fused vertex model. Remarkably, by analyzing the
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weights carefully, we show that the first curve in the constituent line ensembles
of the colored line ensemble can be written, up to a random but well-controlled
error, as a variational problem in a single line ensemble.

Since this is a prelimiting version of the definition of the Airy sheet in terms of
the parabolic Airy line ensemble, the proof of convergence to the Airy sheet reduces
to showing that this single line ensemble, appropriately rescaled, converges to the
parabolic Airy line ensemble. The prelimiting line ensemble itself has a Gibbs
property, which is crucial to showing this convergence. Indeed.,many previous
works have shown convergence of prelimiting line ensembles associated with other
models by making use of their Gibbs properties. Those proof, however, all made
use of monotonicity properties that the Gibbs properties enjoyed; namely, that
if two sets of boundary datas are ordered, one larger than the other, then the
measures can be coupled to also be ordered in the same way. In contrast, the
line ensemble and Gibbs property associated to the ASEP and S6V model does
not possess these forms of monotonicity. As a result we are led to develop a new
framework to establish convergence of the prelimiting line ensemble, making use
of much weaker form of monotonicity that only compares one-point probabilities.

Introduction to the Kardar–Parisi–Zhang universality class

Patrik L. Ferrari

In the introductory lecture we describe the Kardar–Parisi–Zhang (KPZ) univer-
sality class of stochastic growth models, some of the large time limit processes,
connections with interacting particle systems and directed polymers in a random
environment. Finally we describes some useful techniques.

The KPZ universality class contains models describing the evolution of an in-
terface given by a height function x 7→ h(x, t). Here we focus on space x being
one-dimensional. The prototypical effective equation is the KPZ equation

∂th =
1

2
∂2
xh+

1

2
(∂xh)

2 + ξ

where ξ is the white noise. As written, the KPZ equation ill-defined since a
stationary solution is a two-sided Brownian motion (with diffusion constant 2)
and thus the term (∂xh)

2 is ill-defined. A way to make sense of it is to regularize
the noise in space, ξ → ξǫ, and take ǫ → 0, but we do not enter in these details in
the lecture.

One can also consider discrete (in space and/or time) models, which have the
same physical properties as the KPZ equations. Then by universality one expects
the same large time limit process of the interface.

The connection with the directed polymers goes by considering Z = exp(h) and
first solve the stochastic heat equation with multiplicative noise,

∂tZ =
1

2
∂2
xZ + Zξ
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with initial condition Z(x, 0) = exp(h(x, 0)) and then set h(x, t) = lnZ(x, t).
This is called the Cole-Hopf solution of the KPZ equation. Due to a Feynman-
Kac representation, we have an interpretation of Z a the partition function of
a Brownian motion (the directed polymer) in a random environment (the white
noise). The discrete analogue at zero temperatures is the so-called last passage
percolation model (LPP).

The other connection is to interacting particle systems, more specifically with
exclusion processes (e.g., the totally asymmetric simple exclusion process (TASEP)
or the partially asymmetric version of it (ASEP)). These models can be seen as
random interfaces by setting the discrete gradient to be ±1 depending whether
there is a particle or not, and the height function increment during time t is given
by twice the current of particles.

Some of the limit processes and properties are discussed, namely for step initial
condition h(x, 0) = |x| or flat initial condition h(x, 0) = 0. These are called
the Airy2 and Airy1 processes. For general simple exclusion processes there is a
clear KPZ scaling theory which predict how to compute the non-universal scaling
coefficients.

Two methods which have been quite useful to study large time asymptotics of
observables are also discussed. One is the slow decorrelation, which tells us that
along characteristic lines (of the macroscopic PDE) the fluctuations decorrelate
only over macroscopic times, unlike the spatial correlations which are of order
t2/3. A second technique is the comparison with stationarity, first used in LPP
models and then for TASEP height function. This allows to control the local
increment of the height function for generic initial conditions with the increments
of stationary initial conditions (which are explicit). In particular, to show tightness
of the limit processes.

Some elementary facts about mixing times and cutoff for

Markov chains

Nina Gantert

In this short minicourse, we give an introduction to mixing times and the cutoff
effect for Markov chains. All the results that we mention can be found in [3]. The
classical theory studies a fixed Markov chain on a finite (but possibly large) state
space S. We always assume that the Markov chain is irreducible and aperiodic
(for simplicity, we will only consider Markov chains in discrete time). Then, there
is a unique invariant distribution π and, for all x ∈ S, the law P t(x, ·) of the chain
after t time steps (started from x) converges to π. One can characterize the rate
of convergence of P t(x, ·) to π: it is well-known that the exponential rate of decay
of the distance of P t(x, ·) to π is given by the spectral gap of the Markov chain
(which can be defined in the non-reversible case as well).

Fix ε ∈ (0, 1). Themixing time tmix(ε) of a Markov chain is the first time t when
the maximal distance to π (the maximum is taken over the starting values) is at
most ε. More precisely, we define d(t) := max

x∈S
||P t(x, ·)−π(·)||TV where ||µ−ν||TV
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is the distance of µ and ν in total variation. Then t 7→ d(t) is non-increasing and
we define the mixing time tmix(ε) as

tmix(ε) := min{t : d(t) ≤ ε} .

We remark that this definition can be generalized by replacing the total variation
by other distances on the space of probability measures on S. The concept of
mixing times is particularly useful for sequences of Markov chains on growing
state spaces. Examples for such sequences are: the simple random walk on the n-
cycle, the simple random walk on the n-dimensional hypercube, the symmetric or
asymmetric exclusion process with open boundaries on a segment of length n. The
mixing time can determine the running time of an algorithm used for simulation.
We write tmix := tmix(1/4).

We discuss the relation of mixing times with the spectral gap. Then we address
the question how to find bounds for mixing times. To this end, we introduce

• coalescent couplings of two Markov chains
• the relation of the mixing time with certain hitting times
• strong stationary times.

These all provide upper bounds for the mixing time. As examples, we consider the
simple random walk on the n-cycle, the top-to-random shuffle of a deck of n cards
and the simple random walk on the n-dimensional hypercube. In these cases, one
can give lower bounds on the mixing times directly.

A sequence of Markov chains satisfies cutoff if the distance of P t(x, ·) to π
drops from being close to 1 to being close to 0 over a time interval which is
(asymptotically) smaller than the the mixing time. More precisely, there is cutoff
if

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1,

where we write in t
(n)
mix(ε) for the mixing time of the n-th Markov chain. In other

words, there is cutoff if the first order of the mixing time does not depend on ε.
This can be shown easily to be equivalent to

lim
n→∞

d(n)(ct
(n)
mix) =

{

1 if c < 1
0 if c > 1,

where we write d(n)(·) for the distance belonging to the n-th Markov chain and t
(n)
mix

for the mixing time of the n-th Markov chain. Going back to our examples, the
simple random walk on the n-cycle does not satisfy cutoff while the top-to-random
shuffle and the random walk on the n-dimensional hypercube do. The question
whether a given sequence of Markov chains satisfies cutoff is in general not easy.
We refer to several recent and ongoing works for the symmetric or asymmetric
exclusion process with open boundaries on a segment of length n.
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Characterization of the directed landscape from the KPZ fixed point

Lingfu Zhang

(joint work with Duncan Dauvergne)

Two central objects in the KPZ universality class are the KPZ fixed point and the
directed landscape, which are the scaling limits of the growth process and directed
metric, respectively. It is known that the KPZ fixed point gives marginals of the
directed landscape, and the directed landscape is a natural coupling of multiple
instances of the KPZ fixed point.

I will discuss a work in preparation with Duncan Dauvergne, where we show
that the directed landscape is the unique process with the KPZ fixed point as its
marginals, satisfying four natural properties: independent increments, a semigroup
structure, monotonicity, and shift commutativity. This gives a characterization of
the directed landscape, and provides a framework for proving convergence to the
directed landscape given convergence to the KPZ fixed point. We apply this frame-
work to prove convergence to the directed landscape for 1D exclusion processes
with potentially non-nearest neighbour interactions, exotic couplings of ASEP, the
Brownian web and random walk web distance, and directed polymers. In partic-
ular, we give new proofs of directed landscape convergence for colored ASEP and
the KPZ equation.

Local dynamics for 3d dimers

Ivailo Hartarsky

(joint work with Lyuben Lichev, Fabio Toninelli)

Consider the state space of dimer configurations (perfect matchings) on a hyper-
cubic box [n]d. A local move consists in successively switching the dimers along
an alternating cycle of small length. We study the connectivity properties of the
state space equipped with these transitions. We establish that each configuration
admits at least order nd−2 alternating cycles of length at most 4d − 2. Further-
more, cycles of length at most 4d − 4 are sufficient to connect the configuration
space on the unit hypercube [2]d. The conjecture that cycles of length 4 and 6 are
sufficient for three dimensional boxes remains open, obstructing the study of the
associated Markov chain.
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It is important to note that, while our proofs can also be viewed as new proofs
of known facts in two dimensions, in the higher dimensional setting, standard
tools such as height functions become unavailable. Instead, our approach is purely
combinatorial.

The stochastic six-vertex model speed process

Hindy Drillick

(joint work with Levi Haunschmid-Sibitz)

For the stochastic six-vertex model on the quadrant Z≥0 × Z≥0 with step initial
conditions and a single second-class particle at the origin, we show almost sure
convergence of the speed of the second-class particle to a random limit taking
values in the rarefaction fan. This allows us to define the stochastic six-vertex
model speed process, whose law is ergodic and stationary for the dynamics of the
multi-class stochastic six-vertex process. We also prove that the fluctuations of
the second-class particle around its asymptotic limit are bounded on the order of
t7/9.

Speed processes were first constructed for TASEP [Amir-Angel-Valko ’08], a
zero temperature model. For positive temperature models, new tools were re-
quired. The ASEP speed process was recently constructed in [Aggarwal-Corwin-
Ghosal ’23] using moderate deviation tail bounds and Rezakhanlou’s coupling for
ASEP [Rezakhanlou ’95]. To construct the stochastic six-vertex model speed pro-
cess, we develop analogous results for the stochastic six-vertex model.

In particular, we need the following two ingredients, which are the key novelties
of this paper:

• A geometric stochastic domination result that states that a second-class
particle to the right of any number of third-class particles will at any fixed
time be overtaken by at most a geometric number of third-class particles.

• Upper and lower moderate deviation tail bounds that quantify how close
the height function of the stochastic six-vertex model started from step
initial conditions will be to its limit shape.

These results will be used in the following way. We want to control the behavior
of a single second-class particle. Hydrodynamic theory allows us to control the
bulk behavior of many particles, so we augment our system by filling up all empty
positions to the left of Xt with third-class particles. We then use our effective hy-
drodynamic estimates to control the union of the second- and third-class particles.
Finally, we can revert this back to an estimate of the position of the second-class
particle since we know that our second-class particle is to the left of at most a
geometric number of the third-class particles. A similar argument can be made to
bound the position of the second-class particle from the left.
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A Probabilistic Parking Processes

Amanda Priestley

(joint work with Pamela E. Harris, Thiago Holleben, J. Carlos Mart́ınez Mori,
Keith Sullivan, and Per Wagenius)

1. Introduction

In 1966 Konheim and Weiss [1] introduced a now classical parking problem which
is defined as follows. Fix n ∈ N and consider a sequence of n cars, each given
labels in [n] := {1, . . . , n}, attempting to park on the sites of the line segment
[n] according to the following protocol. Initially, each car records its preferred
parking spot in the preference vector α := (α1, . . . , αn) ∈ [n]n with αi being
the preference of car i. The cars then enter the street from left to right, and
try to park in increasing order of their labels. If their preferred parking spot is
unoccupied, they are able to immediately park in their desired spot. Otherwise,
the car continues to drive to the next available spot to the right and parks there. If
there is no such available parking spot, then the car exits the street and is unable
to park. The set of preference vectors α such that all cars are able to park under
the aforementioned protocol are called parking functions, denoted by PFn. To
give a few simple but illustrative examples, the vector (1, 1, 1 . . . , 1) is a parking
function, as is any permutation in Sn. However the vector (n, n, n . . . , n) is not a
parking function. Konheim and Weiss initiated the study of these combinatorial
objects by proving that |PFn | = (n+1)n−1, and since, classical parking functions,
and several new variants [2, 3, 4] have been of great interest to the enumerative
combinatorics community.

1.1. A Model of Stochastic Parking. In the forthcoming work of Harris,
Holleben, Martinez Mori, Priestley, Sullivan, and Wagenius [5] the authors in-
troduce a model of stochastic parking based on the classical protocol of Konheim
and Weiss. Again letting n ∈ N represent both the number of cars attempting
to park and the size of the parking lot, and α = (α1, α2, . . . , αn) ∈ [n]n denote a
preference vector, the case of successful parking is the same. However, in the case
that a car, say car i’s, preferred spot is occupied, with probability 0 ≤ p ≤ 1, it
takes one step to the right and attempts to park in spot αi + 1 ∈ [n]. Similarly,
with probability 1 − p, it takes one step to the left and attempts to park in spot
αi − 1 as long as αi − 1 ∈ [n]. In this way, car i performs a random walk on
the segment starting from its preferred spot αi, and parks in the first unoccupied
spot in [n] it encounters, if any. Note that the case in which p = 1 reduces to the
original protocol of Konheim and Weiss [1]. As in the classical model, cars arrive
one at a time, and a car may only enter the street only after its predecessor has
completed the search process. Now, we distinguish two different variants of this
model depending on the dynamics at the boundaries, namely spots 1 and n: Recall
that in the classical parking protocol, a preference vector was deterministically ei-
ther a member of the set of parking functions, or it was not. In this probabilistic
model, every function in [n]n now has some probability attributed to it of allowing
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all of the cars to park, and determining this probability and the expected running
time of the process, are now the central questions of interest.

1.2. Contributions. Before describing the contributions in [5], we first must give
one more preliminary definition. A weakly increasing parking function is exactly
as it sounds, a parking function which whoes entries are weakly increasing order.
Equivalently, a weakly increasing parking function is a vector α ∈ [n]n such that

αi ≤ i, for all cars i ∈ [n], and we denote the set of all such functions by PF
↑
n .

One can see using this second definition, that if α is a weakly increasing parking
function, then the outcome permutation, or the final order of the parked cars in the
lot at the end of the classical parking process, must be the identity permutation.
In other words, at the end of the protocol, the first car will have parked in spot
one, the second in spot two, and so on.

We now highlight some of the results in [5] for the models introduced in Sec-
tion 1.1. More specifically, we give expressions for the probability of parking and
expected time to park (i.e., a random variable analogue of the displacement statis-
tic), conditioned on all cars ultimately parking. In the following, we let X i

α be an
indicator random variable which is 1 if car i parks under the stated protocol and
preference tuple α, and 0 otherwise. Similarly, we let Xα be an indicator random
variable which is 1 if all of the cars park under the stated protocol and preference
tuple α, and 0 otherwise. Finally, let Zi

t be the random variable keeping track of
the position of car i at time t. For each car, we define the stopping times

τ iα := min{t : Zi
t = i or Zi

t = 0}

and let τa denote the time it takes the entire protocol to complete. In particular,
we have that

(1.1) E [τα | Xα = 1] =
n
∑

i=1

E

[

τ iα | Zi
τ i
α
= i

]

.

Theorem 1 (Open Boundaries). Let α = (α1, α2, . . . , αn) ∈ PF
↑
n. Under the

probabilisitc parking protocol with open boundaries, we have

(1) Pr[X1
α = 1] = 1 and, for any 1 < i ≤ n,

Pr



X i
α = 1 |

i−1
∏

j=1

Xj
α = 1



 =















i
∏

k=1

αk

k if p = 1
2

i
∏

k=1

pk−αk
pαk−(1−p)αk

pk−(1−p)k
otherwise.

(2) E[τ1α] = 0 and, for any 1 < i ≤ n, we have

E[τα|
i−1
∏

j=1

Xj
α = 1] =















1
3

i
∑

k=1

(k2 − α2
k) =

2n3+3n2+n
18 − 1

3

n
∑

i

a2k if p = 1
2

1
p−(1−p)

i
∑

k=1

k
(

1+( (1−p)
p )

k
)

(

1−( (1−p)
p )

k
) −

αk(1+( (1−p)
p )

αk)
(1−( (1−p)

p )
αk)

otherwise.

A similar result holds when starting with vectors of the form
(n, i ∈ [n − 1, n], i ∈ [n − 2, n], . . . ), and the authors give analogous results in
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the case of the Unbounded Model. Moreover, the authors also show that the
random variables X i

α are negatively correlated, and give concentration results for
the probability of any subset of cars parking.

1.3. Related Work. As one familiar with the subject might intuit, the probabilis-
tic parking protocol described can easily be interpreted as an interacting particle
system (for a thorough treatment of the subject, refer to [6, 7]). In particular,
preference vectors translate to initial configurations of particles (i.e., cars) on the
line segment such that multiple particles are allowed on the same site. Further-
more, the dynamics of the process are closely reminiscent of Activated Random
Walks [8] with sleeping rate λ = ∞ (the case in which each particle immediately
falls asleep upon landing on an unoccupied site) otherwise known as IDLA [10, 9].
However, for the dynamics described in Section 1.1, the cars, or particles, are dis-
tinct. That is, when several cars are assigned to the same initial spot, the car with
the smallest number in the order is allowed to park immediately, while other cars
must perform random walks in increasing order of their labels. This seems to have
the effect of making the model more sensitive to the initial configuration α.

Recently, and independently, Varin introduced the Golf Model [11], an inter-
acting particle system that can be seen as a generalization of IDLA. In their work,
Varin also introduces a probabilistic parking protocol on the cycle Z/nZ as a spe-
cial case of the Golf Model in which each car starts at a uniformly random spot
on the circular parking lot. The cars move to the right with probability p and to
the left with probability (1 − p) to find the nearest open parking spot, as in the
protocol described in Section 1.1. However, the work of Varin differs in several
ways. Perhaps most significantly, they focus on the setting in which there are
strictly more parking spots than cars. Thus, they are interested in studying the
distribution of empty parking spots remaining at the end of the process. Further-
more, the parking process of Varin is essentially equivalent to the IDLA model,
and as such, lets the cars be indistinguishable.
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