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Abstract. This mini-workshop focused on recent advances in probability
theory concerned with the critical phenomena of the XY model and other
related spin systems. There were 18 participants, all working at the forefront
of this dynamic field, and from various career stages and a diverse range of
institutions as well as backgrounds and gender. The mini-workshop featured
talks by almost all participants except organizers as well as an open problem
session. The talks consisted of: a) three mini-courses of four lectures each
and b) hour long seminars from the remaining participants. The mini-courses
covered random currents for the XY model, random walk representations and
triviality in the XY and Ising models, and connections between the spherical
model and the Gaussian Free Field. The remaining seminars spanned a di-
verse range of topics, such as novel probabilistic approaches to the BKT tran-
sition in 2d, recent progress on high-dimensional spin systems and finite-size
effects, and novel geometric representations for correlations in spin systems.
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Introduction by the Organizers

The XY model is one of the simplest examples of a ferromagnetic spin system
with abelian continuous symmetry. It arises as a natural generalisation of the
celebrated Ising model to spins valued in the unit circle. In the ’70s, Berezinskii
[2] and, independently, Kosterlitz and Thouless [1], predicted that the XY model
in dimension 2 exhibits an exotic phase transition. The discovery of this so-called
BKT transition led to the theory of topological phase transitions, culminating in
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the Nobel Prize in Physics in 2016. The existence of the BKT transition was
rigorously established by Fröhlich and Spencer [3] in the ’80s using multiscale
analysis.

In the past few years, there has been significant progress towards analysing the
BKT transition from a probabilistic point of view. Key breakthroughs, yielding
alternative proofs of the existence of the BKT transition, were obtained indepen-
dently by van Engelenburg and Lis [4], and Aizenman, Harel, Peled, and Shapiro
[6]. These new approaches rely on stochastic geometric representations and in-
sights from percolation theory, in this context due to Lammers [7]. Building on
these works, a finer understanding of the connection between the BKT phase
transition and the localisation-delocalisation transition of a natural height func-
tion associated to the XY model has been obtained by Lammers [8], and van
Engelenburg and Lis [5].

The purpose of this mini-workshop was to bring together the community in-
volved at the frontier of these new breakthroughs in order to discuss recent pro-
gress, attack interesting problems and clarify the major driving problems of the
field. There were 18 participants, all working at the forefront of this dynamic
field, and from various career stages and a diverse range of institutions (including
German) as well as ethnic backgrounds and gender. During the mini-workshop,
there were three mini-courses given by Marcin Lis, Piet Lammers, and Juhan Aru.
They covered random currents for the XY model, random walk representations
and triviality in the XY and Ising models, and connections between the spherical
model and the Gaussian Free Field. Almost all participants (except the organiz-
ers) gave hour long talks on a diverse range of topics, such as novel probabilistic
approaches to the BKT transition in 2d, recent progress on high-dimensional spin
systems and finite-size effects, and novel geometric representations for correlations
in spin systems. There was additionally a two hour long open problem session
hosted by Duminil-Copin.
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Abstracts

Random currents and the BKT transition in the XY model

Marcin Lis

(joint work with Diederik van Engelenburg)

The XY model on a finite graph G = (V,E) is a probability measure on contin-
uous spin configurations σ ∈ SV , S = {z ∈ C : |z| = 1}, given by

dPXY(σ) ∝ exp
( ∑

uv∈E
β(σuσ̄v + σ̄uσv)

) ∏

v∈V
dσv,

where β is the inverse temperature, and dσv denotes the uniform measure on
S. By the Mermin–Wagner theorem [1], in two dimensions the model does not
exhibit order at any finite temperature (there is no spontaneous magnetization).
Nonetheless it famously undergoes a Berezinskii–Kosterlitz–Thouless phase
transition from exponential decay of correlations for small β to a power-law decay
of for large β [2, 3]. Kosterlitz and Thouless were awarded the 2016 Nobel prize
in physics for this discovery, and it was first rigorously confirmed in 1981 in a
landmark work of Fröhlich and Spencer [2].

An intrinsically related model is the Fourier–Pontryagin (or Kramers–Wannier)
dual – an integer-valued height function on the faces of the graph. To define it,
one expands the Boltzmann weights into a power series and integrates out the
spin variables over SV . This leads to a discrete geometric representation through

random currents. Here a random current is a function n : ~E → N, where ~E is
the set of directed edges of G, such that the total incoming and outgoing current
at each vertex are equal. This divergence-free property allows one to define
the heigh function on the faces, where the increment between two faces is the net
amount of current flowing through the edge separating the faces. The resulting
probability measure on currents, and hence also on height functions, is given by

PXY(n) ∝
∏

uv∈ ~E

βnuv

(nuv)!
.(1)

This representation is very closely related to the much better understood dou-
ble random current representation of the Ising model that originated in the
foundational work of Griffiths, Hurst and Sherman [4]. Its unique combinatorial
properties in the form of the celebrated switching lemma allow to derive iden-
tities for products of spin correlation functions. A canonical application of this
technique is the formula for the two point function squared:

〈σuσv〉2Ising = PIsing(u
n←→ v),(2)

where σv is the Ising spin at vertex v, n : E → N is the double random current

interpreted as a percolation process, and {u n←→ v} denotes the event that u is
connected to v by a path of open edges in the current (those e ∈ E with ne > 1).
The current n appearing in this formula, unlike the one in the XY model, is
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divergence free only modulo 2 meaning that for every v ∈ V ,
∑

u∼v nuv is even.
This identity and its variants have been crucial in the study of the Ising model with
applications to questions of sharpness and continuity of phase transition [5, 6], and
triviality of scaling limits [7, 8].

From a recent work of van Engelenburg and the author [10], it becomes clear
that the right geometric object to study the XY model together with its height
function is not the current itself (1) but a finer combinatorial structure built on
top of the current. One proceeds independently for each vertex, and samples
a uniform random pairing between the incoming and outgoing units of current.
This results in a collection of overlapping and self-intersecting directed loops L
whose net flux along each edge is the same as of the underlying current. A new
switching lemma for such collections of loops implies that

〈σ2
uσ̄

2
v〉XY ∝ PXY (u and v lie on the same loop in L), u, v ∈ V,(3)

where σ̄ is the complex conjugate, and ∝ means equality up to a universal constant
independent of G and β. One should note that, compared to (2), the event in (3)
is a random-walk-like rather than a percolation-like connectivity.

This offers an alternative point of view on the BKT transition: the fluctuating
loops carry statistical information about both the spin model through its correla-
tion functions like in (3), and about the underlying dual height function through
the total winding number of all loops around any given face. This together with
a recent delocalisation result of Lammers [9] was used in [10] to provide and
elementary proof of the existence of the BKT phase transition in the XY model.
The main idea of this new proof is to argue along the following lines: If the height
function delocalises which means that its variance is big in the center of a big box,
from the coupling with the loops described above it follows that the total winding
of all the loops around the center of the box is large. Furthermore this winding
being large implies that the loops must create many connections between points
lying on the two sides of the horizontal line going through the center. This means
that the probability of lying on one such loop for points that are far away from
each other is not that small and hence cannot be exponentially decaying. All in
all, a BKT-like transition must occur in the spin model.
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Extract one-arm exponent in FK models from the convergence of
height functions to GFF

Jiaming Xia

(joint work with Hugo Duminil-Copin, Hong-bin Chen, Tiancheng He, Francois
Jacopin, Dmitry Krachun and Ioan Manolescu)

We consider the 2D FK random cluster models with q ∈ [1, 4] on the square
lattice. We assume the convergence of the height functions (of the 6-vertex models
associated with the FK models) to GFF and in particular we assume that we know
the variance σ2 of the GFF. Then, we sketch an approach to obtain the one-arm
exponent α1 describing the probability of having a primal crossing of an annulus.
The basis for this approach is the BKW coupling relating the height function to
the interface loops of FK. We show that by choosing appropriate test functions
(viewed as placing charges on the plane), we can get relations between σ2, α1, and
a factor accounting for the local concentration of small interface loops.

Let F be a nice function such that
∫
F = 0 and let q ∈ [1, 4]. Let H be the

height function of the six-vertex model. The BKW coupling gives

(1) E6V [e
i
∫
FH ] = EFK



∏

C∈C(ω)

cos
(
2πµ+

∫
int(C) F

)

cos 2πµ


 .

In the above display, the product is over all interface loops and

(2) µ =
1

2π
arccos

(√
q

2

)
∈
[
0,

1

6

]
.

Sending the mesh size to 0, we expect H to converge to some GFF with some
variance σ2 and to get

(3) E6V

[
ei
∫
FH
]
δ→0−→ EGFF

[
ei
∫
Fh
]
.

We want to extract the one-arm exponent from this. Recall the one-arm exponent
α1 defined by

(4) P[Cross(A(r, R))] = π1(r, R) ∼ (r/R)α1+o(r/R), as r/R→ 0,
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where Cross(A(r, R)) is the event that there is an open cluster crossing the annulus
with radii r and R with 0 < r < R. Our proof gives the existence of α1 and its
value (in terms of σ2).

We start from the basic case q = 4, in which case we have µ = 0 and the
right-hand side of (3) becomes

(5) EFK



∏

C∈C(ω)
cos

(∫

int(C)

F

)
 .

We choose F by placing a charge of π
2 and a charge of −π2 respectively on two

balls with radii ε at a distance of order 1 on the plane. We can show that the
above expectation is approximately

(6) PFK(the charges are connected by an open cluster) ∼ π1(ε, 1)2.
On the other hand, the GFF computation for the left-hand side of (3) gives us

(7) EGFF

[
ei
∫
Fh
]
∼ εa(σ2),

for some simple expression a(σ2) in terms of σ2. Thus, we obtain α1 = a(σ2)/2.
The other cases of q ∈ [1, 4) require more careful treatments than when q = 4.

The proof is technical, and we need more than one test function to achieve the
goal.

This project is based on the idea of Hugo Duminil-Copin. Many people involved
in this project include Hong-Bin Chen, Tiancheng He, Francois Jacopin, Dmitry
Krachu, and Ioan Manolescu. Piet Lammers contributed to the discussion at the
early stage of the project.

Delocalisation for the discrete long-range Gaussian chain

Paul Dario

1. Overview

The discrete long-range Gaussian chain is a model of discrete interfaces in one
dimension with long-range interactions. In order to define the model, three pa-
rameters need to be introduced:

• We let N ∈ N be a (large) integer which represents the length of the chain;
• We let β ∈ (0,∞) be the inverse temperature;
• We let α ∈ (1,∞) be the range exponent.

We then introduce the set of integer-valued functions

ΩN := {ϕ : Z→ Z : ∀ k /∈ {−N, . . . , N}, ϕ(k) = 0} ,
and define the discrete long-range Gaussian chain of length N at inverse tempera-
ture β and with range exponent α to be the probability distribution on the set ΩN
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given by the identity

(1) µN,β,α({ϕ}) =
1

ZN,β,α
exp


−β

∑

i,j∈Z

i6=j

|ϕ(i)− ϕ(j)|2
|i− j|α


 ,

where ZN,β,α is the normalizing constant. We will denote by VarN,β,α the variance
with respect to µN,β,α.

Various questions can be investigated on the discrete long-range Gaussian chain,
and we will be interested in this talk in the localisation/delocalisation of the chain:
for fixed inverse temperature β ∈ (0,∞) and range exponent α ∈ (1,∞), how does
the variance VarN,β,α [ϕ(0)] behaves as N →∞?

Before answering this question in more details, we state a few monotonicity
properties of this variance which are direct consequences of the Regev-Stephens-
Davidowitz monotonicity theory [9]:

(i) The variance VarN,β,α [ϕ(0)] is increasing in N ;
(ii) The variance VarN,β,α [ϕ(0)] is decreasing in β;
(iii) The variance VarN,β,α [ϕ(0)] is increasing in α.

In particular, the point (i) implies that, for fixed α ∈ (1,∞) and β ∈ (0,∞), the
sequence N 7→ VarN,β,α [ϕ(0)] is either bounded or diverges to infinity. In the first
case, we say that the chain is localised and in the second we say that the chain
is delocalised. On a qualitative level, it was proved recently by Garban [7] that
the chain is localised for any α ∈ (1, 2) and any β ∈ (0,∞), and by Coquille-van
Enter-Le Ny-Ruszel [3] that the chain is delocalised for any α ∈ (2,∞) and for any
β ∈ (0,∞) (the case α = 2 is rather singular and the chain exhibits a roughening
phase transition between a localised regime for β ≫ 1 and a delocalised regime for
β ≪ 1, see [8, 6] and the table below).

On a quantitative level, the behaviour of the variance VarN,β,α [ϕ(0)] is sum-
marised in the following table (upper and lower bounds precise up to multiplicative
constants can be obtained)

VarN,β,α [ϕ(0)] β ≫ 1 β ≪ 1
α ∈ (1, 2) 1 1
α = 2 1 lnN
α ∈ (2, 3) Nα−2 Nα−2

α = 3 N/ lnN N/ lnN
α > 3 N N

Let us make a few bibliographical comments regarding this table:

• The article of Kjaer-Hilhorst [8] proves the result in the case α = 2 and
β ≪ 1 (together with more precise results);
• The article of Fröhlich-Zergalinski [8] proves the result in the case α = 2
and β ≫ 1;
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• The article of Garban [7] proves the results in the cases: (i) β ≪ 1 for any
α ∈ (1,∞) and (ii) for any β ∈ (0,∞) and α ∈ (1, 2) ∪ (3,∞) (together
with various more precise results);
• In the article in preparation [2] with Coquille and Le Ny, the remaining
cases are proved: β ≫ 1 and α ∈ (2, 3].

This talk will be devoted to the argument of [2] and the tools developed there
are based on graph surgery techniques which have been recently used by van
Engelenburg-Lis [4, 5] and Aizenman-Harel-Peled-Shapiro [1] to study the phase
transition of related models: the two-dimensional integer-valued Gaussian free
field and the XY and Villain spin systems.

To explain the argument in more details, we first introduce a definition: to
each finite connected rooted graph G := (V,E, x) (with vertex set V , edge set E,
root x ∈ G) equipped with conductances λ := (λij)ij∈E ∈ (0,∞)E , we associate a
random interface by equipping the set of functions ΩV := {ϕ : V → Z : ϕ(x) = 0}
with the probability distribution

P
IV−GFF
G,λ ({ϕ}) := 1

ZG,λ

∑

ϕ∈ΩV

exp


−

∑

ij∈E
λij (ϕ(i)− ϕ(j))2


 .

The discrete long-range Gaussian chain introduced in (1) can be easily expressed
in this formalism.

Let us then fix a finite rooted graph G := (V,E, x) equipped with conductances
as well as a vertex v ∈ V . The core of the argument of [2] relies on the fact that
the following operations on the graph G have a monotonic effect on the variance
of the height ϕ(v):

(i) Erasing an edge from the graph G increases the variance of the height
ϕ(v);

(ii) Identifying two vertices of the graph G reduces the variance of ϕ(v);
(iii) Adding a new vertex in the middle of an edge while suitably adjusting the

conductances reduces the variance of ϕ(v).

These operations can then be combined to simplify the graph associated with
the model (1) (while having a monotonic effect on the variance of ϕ(0)) in order
to obtain a simpler graph (essentially a one dimensional nearest-neighbour line)
on which the variances of the corresponding model of random interfaces can be
explicitly computed.
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Polaron and its effective mass

Chiranjib Mukherjee

(joint work with Rodrigo Bazaes, Mark Sellke and S. R. S. Varadhan)

1. The Fröhlich Polaron

The Polaron problem in quantum mechanics is inspired by studying the slow move-
ment of a charged particle, e.g. an electron, in a crystal whose lattice sites are
polarized by this slow motion. The electron then drags around it a cloud of po-
larized lattice points which influences and determines the effective behavior of the
electron.

By Feynman’s path integral formulation [6], the Polaron problem can be studied
using a probabilistic layout, which we will focus on here. The physically relevant
quantities of the Polaron are given by its ground state energy g(α) and its effective
mass meff(α). The former is defined as

(1)

g(α) := lim
T→∞

1

T
logZα,T ,

Zα,T := E

[
exp

{
α

2

∫ T

−T

∫ T

−T
dsdt

e−|t−s|

|ω(t)− ω(s)|

}]

where E denotes expectation w.r.t. the law of increments of a three-dimensional
Brownian path. Here α > 0 is a constant, known as the coupling parameter which
measures how strongly the electron is coupled with its neighborhood. The strong
coupling limit of g(α) was studied by Pekar in 1949 who also conjectured that the
limit

(2)

g0 := lim
α→∞

g(α)

α2
exists, and

g0 = sup
ψ∈H1(R3)
‖ψ‖2=1

[ ∫ ∫

R3×R3

ψ2(x)ψ2(y)

|x− y| dxdy − 1

2
‖∇ψ‖22

]
.

By a well-known result of E. Lieb [8], the above variational formula g0 admits
a rotationally symmetric, smooth and centered maximizer ψ0 ∈ H1(R3) with
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‖ψ0‖2 = 1 which is unique except for spatial translations. Starting with the
expression (1) and using large deviation theory from [3], Pekar’s conjecture (2)
was proved by Donsker and Varadhan [4]. Later a different proof was given by E.
Lieb and L. Thomas [10] using a functional analytic approach.

2. Effective mass and Polaron path measure

We turn to the study of the effective massmeff(α) (see (9) below for its definition).
According to a conjecture of Landau and Pekar [7] from 1948, the effective mass
meff(α) should diverge like α4 in the strong coupling limit:

(3) meff(α) ∼ α4 as α→∞

Studying meff(α) and in particular proving its divergence rate turned out to be
much more subtle. In 1987, H. Spohn [14] established a link between meff(α)
and the actual path behavior under the Polaron measure. Indeed, the exponential
weight on the right hand side in (1) defines a tilted measure on the path space of the
Brownian motion, or rather, on the space of increments of Brownian paths. More
precisely, let P = PT be the law of the Brownian increments {ω(t)−ω(s)}−T≤s<t≤T
for three dimensional Brownian motion. Then the Polaron measure is defined as
the transformed measure

(4) P̂α,T (dω) =
1

Zα,T
exp

(
α

2

∫ T

−T

∫ T

−T

e−|t−s|

|ω(t)− ω(s)|dtds
)
P(dω)

with the partition function Zα,T defined in (1). is the total mass of the exponential
weight, or the partition function.

It was conjectured by Spohn in [14] that for any fixed coupling α > 0 and as
T → ∞, the distribution of the diffusively rescaled Brownian path under the
Polaron measure should be asymptotically Gaussian with zero mean and variance
σ2(α) > 0. The following results were shown in [11]: for any α > 0, the infinite
volume limit

(5) P̂α = lim
T→∞

P̂α,T

exists and can be identified explicitly. Indeed, both P̂α,T and the limit P̂α is an
explicit “mixture”

(6) P̂α,T (·) =
∫

Pξ̂,û(·) Θ̂α,T (dξ̂ dû), P̂α(·) =
∫

Pξ̂,û(·) Θ̂α(dξ̂ dû)

of centered Gaussian measures Pξ̂,û, indexed by (ξ̂, û) = {[si, ti], ui} that stand for

the realizations of a point process (possibly overlapping intervals [si, ti] in [−T, T ],
resp. in the entire real line). The mixing measures Θ̂α,T and Θ̂α = limT→∞ Θ̂α
above are the laws of this Poisson point process, with a suitable tilt. We refer to
[11] for details.
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As a result of the Gaussian representation (5)-(6) and the above point processes
structure, the following CLT was also shown in [11] for any α > 0:

(7)
lim
T→∞

P̂α,T

[
ω(T )− ω(−T )√

2T
∈ ·
]
= lim
T→∞

P̂α

[
ω(T )− ω(−T )√

2T
∈ ·
]

= N(0, σ2(α)I3×3)

where N(0, σ2(α)I3×3) is a three-dimensional Gaussian vector with mean zero and
covariance matrix σ2(α)I3×3 where the homogenized variance admits the varia-
tional representation
(8)

σ2(α) = lim
T→∞

1

2T
E
P̂α,T

[∣∣ω(T )− ω(−T )|2
]
= lim

T→∞

1

2T
E
P̂α
[∣∣ω(T )− ω(−T )|2

]

= lim
T→∞

sup
f(·)

[
f(T )− f(−T )√

2T
− 1

2

∫ T

−T
ḟ2(t)dt− 1

2

n(ξ̂,û)∑

i=1

u2i |f(ti)− f(si)|2
]

Here, the supremum is take over functions f : [−T, T ]→ R with square-integrable
derivatives, and the limit in the second line above is taken almost surely and in

L1 w.r.t. the aforementioned tilted law Θ̂α of the point process with realizations

(ξ̂, û) = {[si, ti], ui} (see [11]).
Assuming the validity of the above CLT (7), already in [14] Spohn had proved

(see also [5]) a simple relation between the effective mass meff(α) and the above
CLT variance σ2(α):

(9) meff(α)
−1 = σ2(α) for any α > 0,

In [14] it was also conjectured that the the strong coupling behavior of the infinite-

volume limit limα→∞ limT→∞ P̂α,T = limα→∞ Pα (suitably rescaled) should con-
verge to the so-called Pekar process, which is a diffusion process with generator

(10)
1

2
∆ +

∇ψ
ψ
· ∇,

where ψ is any solution of the variational problem (1). It was proved in [12] that

(after rescaling) P̂α converges as α→∞ to a unique limit which is the increments
of the Pekar process.

We finally turn to the strong coupling behavior of the effective mass meff(α).
First, using a functional analytic route from [10], it was shown in [9] that
limα→∞meff(α) = ∞. Using the point process techniques from [11], in [2], this
was improved to a bound meff(α) ≥ Cα2/5. Using a different probabilistic ap-
proach employing Gaussian correlation inequality, [13] showed the almost quartic

bound meff(α) ≥ C α4

log(α)6 .

Analyzing the point process representation (5)-(6) and the variational formula (8)
from [11] in the strong coupling limit and convergence to the Pekar process [12],
the sharp bound

m(α) ≥ Cα4
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was recently shown in [1], verifying the Landau-Pekar conjecture (3) from 1948
upto constants.
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Polaron and the Landau- Pekar- Spohn Conjecture. arXiv: 2307.13058

[2] V. Betz and S. Polzer. Effective mass of the Polaron: a lower bound. arXiv: 2201.06445.
Comm. Math. Phys. (2023)

[3] M. D. Donsker and S. R S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, IV Comm. Pure Appl. Math. 36 (1983), 183–212.

[4] M. D. Donsker and S. R S. Varadhan. Asymptotics for the Polaron. Comm. Pure
Appl. Math., 1983, 505-528

[5] W. Dybalski and H. Spohn. Effective Mass of the Polaron- Revisited. Annales Henri Poincaré
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Mini course on mixing and triviality in the XY model

Piet Lammers

The Ising model and the XY model are lattice models in which random spins
are assigned to the vertices of the square lattice graph Z

d, with d denoting the
dimension. In the Ising model the spins take values in {±1}, while for the XY
model the target space is S1.

While a variety of tools is available for the analysis of both models, our un-
derstanding of the Ising model is now significantly more advanced than that of
the XY model. For example, the question of continuity of the phase transition is
open in all dimensions d ≥ 3, while it has been proved for the Ising model in any
dimension.

The purpose of this mini course is to review some recent developments on the
XY model: namely, a new perspective on the Brydges–Fröhlich–Spencer walk.
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This new perspective was recently used to prove that the Berezinskii–Kosterlitz–
Thouless transition of the two-dimensional XY model coincides exactly with the
localisation-delocalisation transition of the corresponding height function. In a
collaboration with Paul Dario, Trishen Gunaratnam, and Romain Panis, we aim
to adapt the recent proof of Aizenman and Duminil-Copin for triviality (Gaus-
sianity) of the scaling limit of the Ising model at criticality in four dimensions
to the XY model. We have not yet completed this adaptation, but we have re-
ceived some interesting partial results, which strongly suggest that it is possible
to complete the proof. Most importantly, we obtained mixing for the random cur-
rent representation of the model, meaning that spatially separated regions behave
approximately independently.

This course consists of several parts.

• First, we discuss how the BFS random walk can be obtained by developing
the exponentials in the partition function, via Poisson point processes.
• Second, we discuss the Ginibre inequality, which implies the FKG lattice
condition for the function J 7→ ZJ , where J = (Jxy)xy∈E(G) is a family
of coupling constants and ZJ the corresponding partition function for the
XY model. This way of phrasing the Ginibre inequality may be surprising,
because the FKG lattice condition is usually considered in the context of
the weights of a probabilistic model.
• Third, we discuss some consequences of the Ginibre inequality. For exam-
ple, it can be used to control the behaviour of the BFS random walk via a
series of inequalities. It is important here that the partition function ZJ
appears as a weight of this walk. However, the FKG lattice condition is
applied to this weight in quite a nontraditional way.
• Then, we discuss Fröhlich’s proof of triviality of the Ising and XY models
in dimension d ≥ 5. We believe that this proof is almost equivalent to
Aizenman’s proof (published earlier in the same year), and in fact our new
perspective on the BFS random walk seems to suggest that this random
walk is analogous to the backbone exploration used in Aizenman’s work.
• Finally, we discuss (very broadly) the proof of Aizenman and Duminil-
Copin, and we present the proof of mixing in the context of the XY model,
which is the main ingredient of the proof in the context of the Ising model.

Random (tangled) currents for the φ4 model

Franco Severo

(joint work with Trishen S. Gunaratnam, Christoforos Panagiotis, Romain Panis)

The φ4 model is a statistical mechanics model of ferromagnetism with real-valued
spins attached to each vertex of a graph whose values are confined according to a
quartic single-site potential. The model is described by a probability measure on
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RZ
d

given by

〈F (φ)〉 = 1

Z

∫
F (φ) exp

(
β

∑

{x,y}∈E(Zd)

φxφy −
∑

x∈Zd

(
gφ4x + aφ2x

))
dφ

where g > 0 and a ∈ R are coupling constants, β > 0 is the inverse temperature,
and Z is a normalisation constant.

This model naturally interpolates between two famous models of statistical
physics, namely the Gaussian free field (obtained for g = 0 and a large enough)
and the Ising model (obtained in the limit g = a/2→∞). In fact, he φ4 model is
conjectured to be deeply related to the Ising, in the sense that both should belong
to the same universality class. A manifestation of this was discovered by Griffiths
and Simon in [6], where they show that the φ4 model arises as a certain near-
critical scaling limit of mean-field Ising models. Other results towards universality
were obtained in dimensions d ≥ 5 by Aizenman [1] and Fröhlich [4], and more
recently in dimension d = 4 by Aizenman and Duminil-Copin [2], where triviality
of their scaling limits were established. Establishing rigorously universality results
in dimensions 2 and 3 (where the scaling limits are expected to be non-trivial)
remains a difficult challenge.

In this talk we describe a new geometric representation of the φ4 model, ob-
tained in [7]. This representation, which we call random tangled currents, is
the analogue of the random current representation of the Ising model, first in-
troduced by Aizenman in [1] and later used in multiple influential works on the
Ising model. We obtain such a representation for the φ4 model by properly tak-
ing the limit of the Ising random current representation along the aforementioned
approximation of Griffiths and Simon [6].

As an application of this representation, we adapt a work of Raoufi [8] on
the Ising model, in order to obtain obtain a classification of translation-invariant

Gibbs measures. We say that a measure ν on R
Z
d

is a Gibbs measure at inverse
temperature β ≥ 0 if it satisfies the corresponding DLR equation

(1) ν(f) =

∫

η∈RZd

〈f〉ηΛ,βdν(η)

for every finite Λ ⊂ Zd and f ∈ RΛ bounded and measurable, where 〈·〉ηΛ,β is the

φ4 measure at β ≥ 0 on Λ with boundary conditions η. For each β ≥ 0, let G(β) be
the set of all Gibbs measures at β and GΓ ⊂ G(β) be the subset of Gibbs measures
which are invariant under all translations γ of Zd. We prove the following.

Theorem 1. For every d ≥ 2, g > 0, a ∈ R and β ≥ 0, one has GΓ(β) =
{t〈·〉+β + (1− t)t〈·〉−β , t ∈ [0, 1]}.

In dimensions d ≥ 3, we can combine this result with the infrared bound of
Fröhlich, Simon, and Spencer [5] to conclude that there exists a unique Gibbs
measure at criticality. Such a result is known as continuity of the phase transition,
and was established for the Ising model in dimensions d ≥ 3 in the seminal work
of Aizenman, Duminil-Copin, and Sidoravicious [3].

Theorem 2. For every d ≥ 3, one has |G(βc)| = 1.
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Thick points of the planar GFF are totally disconnected ∀γ 6= 0

Ellen Powell

(joint work with Juhan Aru and Léonie Papon)

We study the set of thick points of a GFF h with Dirichlet boundary conditions in
an open and simply connected domain D ⊂ C. This is a centered Gaussian process
indexed by smooth functions that are compactly supported in D. Its covariance
is given by, for f, g ∈ C∞c (D),

E[(h, f)(h, g)] =

∫

D×D
f(x)GD(x, y)g(y)dxdy

where GD is the Green function of the Laplacian in D with Dirichlet boundary
conditions, normalised so that ∆GD(x, ·) = −∆x(·). As GD(x, x) = ∞, the pro-
cess (h, f)f∈C∞

c (D) does not correspond to integration against a pointwise defined
function. It does, however, almost surely correspond to an element of the Sobolev
space H−ǫ(D), ǫ > 0, i.e. a distribution, or generalised function.

For h a Dirichlet GFF in D, the set of thick points of h is a special set of
points at which, loosely speaking, h takes atypically high or low values. As h is
not defined pointwise, this set must be defined by regularisation. Let z ∈ D and
r > 0 and denote by ρzr the uniform measure on ∂B(z, r) where B(z, r) is the ball
centered at z of radius r. We consider the random variable hr(z) := (h, ρzr) which
is well-defined, e.g. by taking limits, since the integral

∫
GD(x, y)ρ

z
r(dx)ρ

z
r(dy) is

finite.
In fact, by [1, Proposition 2.1], if h is a GFF with Dirichlet boundary conditions

in the unit disc D := {z ∈ C : |z| < 1}, then (hr(z))r,z has a version that is
a.s. jointly Hölder continuous in r and z. We will only work with this version of
the circle average process.
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For fixed z ∈ D, a direct calculation shows that the process he−t(z) actually
evolves as a linear Brownian motion in t. In particular, limr→0 hr(z)/ log(1/r) = 0
almost surely. However, this does not rule out the existence of exceptional points
at which this limit is non-zero: these points are called the thick points of h. It is
natural to define, for γ ∈ R, the set of γ-thick points of h by

(1) Tγ(h) := {z ∈ D : lim
r→0

hr(z)

log 1/r
=

γ√
2π
}

where the factor 1/
√
2π comes from our choice of normalisation for the Green

function. Note that since we work with a Hölder continuous version of the circle
average process, there is an event of probability one on which we can determine
the existence (or not) of the limit in (1) for all z in D simultaneously. That is, the
set Tγ(h) is well defined with probability one.

It was shown in [1] that if |γ| > 2, this set is almost surely empty, and if
γ ∈ [−2, 2], it almost surely has Hausdorff dimension 2 − γ2/2. In particular, if
γ = 0, then T0(h) almost surely has Hausdorff dimension 2: 0-thick points are
typical, as discussed above.

We consider another geometric property of Tγ(h). Recall that a set U is said
to be totally disconnected if for each point x ∈ U , the connected component
of x in U consists of just that point x. A sufficient condition for a set to be
totally disconnected is that this set has Hausdorff dimension strictly less than
1. In particular, observe that if |γ| >

√
2, then Tγ(h) has almost sure Hausdorff

dimension strictly less than 1, which therefore implies that Tγ(h) is almost surely
totally disconnected. One may wonder whether this property extends to the full
range γ ∈ [−2, 2]\{0}. The answer to this question is positive and this is the main
result discussed in the talk. By conformal invariance, we may restrict ourselves to
the case where h is a Dirichlet GFF in D = D.

Theorem 1. Let h be a GFF with Dirichlet boundary conditions in D. Then
almost surely, Tγ(h) is totally disconnected for all γ ∈ [−2, 2] \ {0}.

Theorem 1 is stated for a GFF with Dirichlet boundary conditions in D. How-
ever, one can deduce from this result that a similar statement holds for a GFF
with other boundary conditions.

The proof of Theorem 1 is based on a coupling of the Dirichlet GFF with a
nested version of CLE4. This coupling, and the construction of nested CLEκ gives
rise to a different, but natural, definition of the set of γ-thick points for the GFF,
Φγ(h), defined via its so-called weighted CLE4 nesting field, as studied in [2]. The
key geometric property of CLE that we need is the following.

Theorem 2. Let κ ∈ (8/3, 4] and let Γ be a nested CLEκ in D. Then the
complement of Γ is almost surely totally disconnected.

Given Theorem 2, Theorem 1 is then a consequence of the following result, that
is of independent interest, and can be thought of as a universality statement for
different notions of GFF-thick points.
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Theorem 3. Let h be a GFF in D with Dirichlet boundary conditions. Then,
with probability one, Tγ(h) ≡ Φγ(h) for every γ ∈ [−2, 2] \ {0}.

One consequence of these results is in the probabilistic approach to Liouville
quantum gravity. One of the most important objects in this context is the so-called
Liouville quantum gravity (LQG) measure. It depends on a parameter γ ∈ (0, 2)
and can informally be defined as µγ(dz) = eγh(z)dz where h is a Dirichlet GFF. As
h is not defined pointwise, the rigorous construction of µγ involves a regularisation
procedure. This measure is intimately connected to thick points of the underlying
field. Indeed, if one samples a point according to the normalised LQG measure µγ
with parameter γ ∈ (0, 2), then this point is almost surely a γ-thick point of the
field used to construct µγ .

Another object of interest in the context of Liouville quantum gravity is the
so-called LQG metric which can be thought of as a conformal perturbation of the
Euclidean metric by the exponential of the GFF. For a parameter ξ > 0, the LQG
metric in a disk D is formally defined by

(2) Dξ
h(z, w) = inf

P :z→w

∫ 1

0

eξh(P (t))|P ′(t)|dt,

where the infimum is over all continuous paths from z to w inside D and h is a
GFF. The definition (2) is purely formal as h is not defined pointwise. A proper
construction via regularisation is more involved than the construction of µh, but
has now been succesfully carried out in a series of works by Ding, Dubédat, Dunlap,
Falconet, Gwynne and Miller.

The properties of the LQG metric crucially depend on the parameter ξ in (2).
In particular, by [3], there exists a unique ξcrit > 0 such that if ξ > ξcrit, then the
metric with parameter ξ almost surely does not induce the Euclidean topology on
D. Instead, such a metric, called supercritical, admits a set of singular points: these

points are at infinite distance from every other point. We denote by Sξh(D) this set

of singular points of Dξ
h, that is S

ξ
h(D) := {z ∈ D : Dξ

h(z, w) =∞ ∀w ∈ D\{z}}.
This set is intimately related to thick points of h. Indeed, [3, Proposition 1.11]
shows that there exists Q(ξ) ∈ (0, 2) such that

Sξh(D) = {z ∈ D : lim sup
r→0

hr(z)

log 1/r
> Q(ξ)} almost surely.

A consequence of the proof of Theorem 1 is the almost sure total disconnectedness

of Sξh(D).

Proposition. Let ξ > ξcrit. Then S
ξ
h(D) is almost surely totally disconnected.
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Infinite volume limit of the Spherical Model: Appearance of the
Gaussian Free Field

Juhan Aru, Aleksandra Korzhenkova

Let Tdn be a d-dimensional discrete torus with side-length n. To each vertex x ∈ Λ,
associate a continuous “spin” θx ∈ R in such a way that the whole configuration

θ = (θx)x∈Td
n
lives on the (nd − 1)-dimensional sphere of radius

√
nd, i.e., ‖θ‖22 =∑

x θ
2
x = nd. We call θ a configuration of the spherical model on Tdn at the inverse

temperature β ≥ 0 if

θ ∼ νTd
n,β

(dθ) =
1

ZTd
n,β

exp

(
β

2

∑

x∼y
θxθy

)
Unif√ndSn

d−1(dθ),

where x ∼ y stands for the neighbouring vertices. This model was first introduced
by Berlin and Kac [BK52] in 1952 as a simplification of the Ising model that still
exhibits a phase transition in d ≥ 3, but whose free energy can be analytically
studied in the infinite volume limit. The two main methods used in the literature
to analyze the model in the thermodynamic limit are variations of the steepest-
descent method [BK52, SM75] and the so-called mean-spherical approach [LW52,
YW65, BD87], where instead of conditioning on the spin configuration, one adds
a mass term (s

∑
x θ

2
x) to the Hamiltonian in such a way that on average ‖θ‖22

equals nd. Both methods, under some unverified technical assumptions (in the
low-temperature regime in the absence of a magnetic field), may also lead to our
main result, which we prove using probabilistic tools.

Theorem 1 (Infinite volume limit of the spherical model). Let d ≥ 2. The
spherical model on Tdn at inverse temperature β > 0, [θ]n = (θx)x∈Λ, converges in
law uniformly over compact subsets of Zd as n→∞ to:

(1) β < βc: a massive Gaussian free field (GFF) on Zd scaled by 1/
√
β with

the mass m2 > 0 depending on β and d in a specific way;
(2) β = βc: a GFF on Zd scaled by 1/

√
βc;

(3) β > βc: a GFF on Z
d scaled by 1/

√
β plus an independent constant random

drift
√

β−βc

β X with X being a Rademacher random variable.

Furthermore, all local correlations of spins converge.

Let us explain the reasoning leading to the proof. We start by observing that
for any n and m2 > 0, since

∑
x θ

2
x = nd,

νTd
n,β

(dθ) ∝ exp

(
− β

2
〈θ, (−∆+m2)θ〉

)
Unif√ndSn

d−1(dθ).

Hence, the law of
√
β[θ]n is related to a massive GFF φ (for an arbitrary mass

m2 > 0) through conditioning on its norm to be equal to
√
βnd, i.e., ‖φ‖22 =

βnd. Now the idea is somewhat similar to the mean-spherical approach, but from
a probabilistic point of view: namely, we choose mass m2

n in such a way that
E[‖φ‖22] = βnd (or equivalently, GTd

n,m
2
n
(0, 0) = β for the massive Green’s function

GTd
n,m

2
n
on Tdn), which is natural due to concentration of Gaussian measure.
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For large n and fixed m > 0, GTd
n,m

2 is roughly comparable to GZd,m2 ; and
thus, the question of the existence of a critical point boils down to understanding
whether there is an m2 ≥ 0 such that GZd,m2 = β or not. Notice that this explains
the difference between the 2D and higher-dimensional cases. Indeed, since in
d = 2, GZd,0(0, 0) is infinite, by choosing the mass small enough, one could get an
arbitrarily large value of the variance GZd,m2(0, 0); whereas in d ≥ 3, there is a
maximal possible value GZd,0(0, 0) <∞.

More precisely, we observe that in the high-temperature regime β < βc :=
GZd,0(0, 0), the aforementioned sequence of masses (m2

n)n converges to a positive

number m2 > 0 in such a way that

GTd
n,m

2
n
(0, 0)→ GZd,m2(0, 0) = β.

In this case, the concentration of measure for ‖φ‖22 is sufficient to make the condi-
tioning disappear in the limit, and we obtain a purely Gaussian limit. Somewhat
refined versions of classical limiting theorems help us handle this phase rather
directly.

The low-temperature phase β > βc is already trickier. One can check that

GTd
n,m

2
n
(x, y) ∼ G0-avg.

Td
n

(x, y) + β − βc n→∞∼ GZd,0(x, y) + β − βc,

where G0-avg.
Td
n

is the correlation function of the zero-average GFF on torus. This

heuristically allows us to restate the problem in terms of the zero-average GFF
γ plus an independent zero mode, a constant (in space) Gaussian drift Z1Td

n
,

conditioned on the norm of the sum being
√
βnd. Since the drift is constant,

almost surely 1
nd ‖γ + Z1‖22 = 1

nd ‖γ‖22+|Z|2. Due to high concentration of 1
nd ‖γ‖22

around βc, conditioning on the norm of the sum forces |Z| to become constant in
the limit; and by symmetry, we obtain a Rademacher random variable for the
zero mode. Making this precise is slightly more subtle, but after finding the right
angle, the proof follows from combining basic concentration of measure results
with relatively direct density bounds.

Finally, in the critical case, we observe that G0-avg.
Td
n

(x, y) ∼ GZd,0(x, y); however,

further refinement of this relation is necessary. In this direction we prove the
following error estimates on the zero-average Green’s function on the torus in
d ≥ 3:

(1) G0-avg.
Td
n

(x, y) = GZd,0(x, y) +O(n2−d);

(2) d = 3: G0-avg.
Td
n

(x, x) < GZd,0(x, x) uniformly for large n.

Obtaining the sign was surprisingly tricky and is related to what is called Madelung
constant for electrostatic potential in certain salts – a quantity of interest in chem-
ical physics introduced in the beginning of the 20th century [Mad19].
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tladungen. Physikalische Zeitschrift, 19:524–533, 1919.
[SM75] Yu.N. Sudarev S.A. Molchanov. Gibbs states in the spherical model. Dokl. Akad. Nauk

SSSR, 224:536–539, 1975.
[YW65] C. C. Yan and G. H. Wannier. Observations on the Spherical Model of a Ferromagnet.

Journal of Mathematical Physics, 6(11):1833–1838, 11 1965.

High-dimensional spin models may not be so trivial after all....

Romain Panis

The Ising model has been studied for a century as a fundamental example of a
phase transition in statistical mechanics. We are interested here in the finite-size
scaling of the Ising model on a finite box in the Euclidean lattice Zd in dimensions
d > 4, particularly in the case of periodic boundary conditions which make the
box into a torus.

For d ≥ 1 and an integer r ≥ 3, we write Λr for the discrete box [−r/2, r/2)d ∩Zd
of volume rd, and write Tr = (Z/rZ)d for the d-dimensional discrete torus of
period r. Let G = (V,E) be a finite graph with vertex set V and edge set E.
The Ising model on G is a family of probability measures on spin configurations
σ : V → {−1,+1}, defined using the Hamiltonian

(1) HG(σ) := −
∑

xy∈E
σxσy .

The expectation of a function F of spin configurations, at inverse temperature
β > 0, is defined by

(2) 〈F 〉Gβ :=
1

ZG
β

∑

σ

F (σ)e−βH
G(σ),

where ZG
β :=

∑
σ e

−βHG(σ) is the partition function. Free boundary conditions

(FBC) on the box correspond to G = Λr with edges connecting nearest-neighbours
in Λr. Periodic boundary conditions (PBC) correspond to G = Tr with edges
connecting nearest-neighbours in Tr, which include all edges of Λr and additional
edges that join opposite sides of Λr. The two-point functions are defined by

(3) τΛr

β (x, y) := 〈σxσy〉Λr

β , τTr

β (x, y) := 〈σxσy〉Tr

β ,

and the finite-volume susceptibilities are defined by

(4) χΛr (β) :=
∑

x∈Λr

τΛr

β (0, x), χTr(β) :=
∑

x∈Tr

τTr

β (0, x).

It follows from the Griffiths inequalities that τΛr

β is nonnegative and increasing in

r, so that the infinite-volume two-point function τβ(x, y) = limr→∞ τΛr

β (x, y) and

infinite-volume susceptibility χ(β) := limr→∞ χΛr (β) exist in [0,∞]. Moreover,
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it is known that there is a critical inverse temperature βc, below which τβ(x, y)
decays exponentially as |x− y| → ∞ and χ(β) is finite.

The setting of dimensions d > 4 corresponds to the mean-field regime of the
model. It is characterised by a simplification of the critical behaviour of the model.
This simplification can be observed either qualitatively or quantitatively. In two
independent works, Aizenman [1] and Fröhlich [2] proved that the scaling limits (in
an appropriate sense) of the critical Ising model (with FBC) in dimensions d > 4
are Gaussian, or trivial. This simplified behaviour can be quantified through the
computation of critical exponents. From [1], we know that for d > 4 and β < βc,

(5) χ(β) ≍ 1

βc − β
.

Very recently, it was proved in [3] that, for d > 4, there are positive constants
c0, C0 such that for all β ≤ βc,

(6)
c0

(1 ∨ |x|)d−2
≤ τβc

(0, x) ≤ C0

(1 ∨ |x|)d−2
(x ∈ Z

d).

These results concern the infinite-volume Ising model. It is natural to ask how they
are modified when working in a finite setting. In this setting, different boundary
conditions may generate very different (near-)critical pictures. The influence of
boundary conditions on finite-size critical behaviour in dimensions d ≥ 4 has
been studied extensively in the physics literature for Ising and related models. In
particular, it has been observed numerically and via physics scaling arguments
that, for d > 4,

(7)
τΛr

βc
(0, x) ≍ 1

(1 ∨ |x|)d−2
, τTr

βc
(0, x) ≍ 1

(1 ∨ |x|)d−2
+

1

rd/2
,

χΛr (βc) ≍ r2, χTr(βc) ≍ rd/2.

(The claim for τΛr

βc
(0, x) is for x not too close to the boundary of the box). The

constant term r−d/2 in τTr

βc
(0, x) is referred to as the plateau, and is responsible

for the larger susceptibility for PBC compared to FBC. For the Ising model in
dimensions d > 4, the absence of a plateau for FBC was proven in [4]. In recent
years, the plateau for PBC has been proven to exist for simple random walk in
dimensions d > 2 [5, 6], self-avoiding walk for d > 4 [5, 7], and percolation for d > 6
[8, 9]. A general theory of the effect of FBC vs PBC in the setting of the weakly-
coupled hierarchical n-component |ϕ|4 model in dimensions d ≥ 4 was developed
in [10, 11]. Together with Yucheng Liu and Gordon Slade [12] we investigated this
observation and obtained the following results.

Theorem 1. Let d > 4. There exists c = c(d) > 0 such that, letting

(8) β∗ := βc − cr−d/2,
for every r large, every x ∈ Tr,

(9) τTr

β∗ (0, x) ≍ (1 ∨ |x|)−(d−2) + r−d/2.

In particular, χTr (β∗) ≍ rd/2.
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Let Sr := r−d
∑

x∈Tr
σx denote the average spin on the torus. Define the

renormalised coupling constant by

(10) gTr(β) = −
〈S4
r 〉Tr

β − 3(〈S2
r 〉Tr

β )2

(〈S2
r 〉Tr

β )2
.

By the Lebowitz inequality [13], the above numerator is non-positive, so gTr(β) ≥
0. By the second Griffiths inequality, 〈S4

r 〉Tr

β ≥ (〈S2
r 〉Tr

β )2, so gTr(β) ≤ 2. The

following theorem shows that gTr(β∗) is bounded away from zero. This indicates a
non-Gaussian limit for the average field at β = β∗: for a Gaussian random variable
the numerator in (10) is zero. This is in contrast to the situation at (and below)
βc with free boundary conditions [1, 2, 14, 15], where the limit is Gaussian.

Theorem 2. Let d > 4. There is a constant cg > 0 such that for all r large,

(11) 0 < cg ≤ gTr(β∗) ≤ 2.
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[2] Fröhlich, J. On the triviality of λϕ4 theories and the approach to the critical point in d¿4

dimensions. Nuclear Physics B. 200, 281–296 (1982)
[3] Duminil-Copin, H. & Panis, R. New lower bounds for the (near) critical Ising and ϕ4 models’

two-point functions. ArXiv Preprint ArXiv:2404.05700. (2024)
[4] Camia, F., Jiang, J. & Newman, C. The effect of free boundary conditions on the Ising

model in high dimensions. Probability Theory And Related Fields. 181 pp. 311–328
[5] Slade, G. The near-critical two-point function and the torus plateau for weakly self-avoiding

walk in high dimensions. Mathematical Physics, Analysis And Geometry. 26, 6 (2023)
[6] Deng, Y., Garoni, T., Grimm, J. & Zhou, Z. Two-point functions of random-length random

walk on high-dimensional boxes. Journal Of Statistical Mechanics: Theory And Experiment.
23203

[7] Liu, Y. A general approach to massive upper bound for two-point function with application
to self-avoiding walk torus plateau. ArXiv Preprint ArXiv:2310.17321. (2023)

[8] Hofstad, R. & Sapozhnikov, A. Cycle structure of percolation on high-dimensional tori.
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Vortex fluctuations in 2d Coulomb gas and maximum of the IV-GFF

Avelio Sepúlveda

(joint work with Christophe Garban)

Vortices play a fundamental role in the large scale fluctuations of statistical physics
models in 2d such as the XY (plane rotator) model or the Villain model. Their
statistics, especially in the case of the Villain model, are described by a celebrated
statistical physics model called the (lattice)-2d Coulomb gas. Upper bounds on the
fluctuations of these systems in the low temperature regime have been analyzed in
the seminal work by Fröhlich and Spencer [1] and lead to the first rigorous proof of
the existence of a Berezinskii-Kosterlitz-Thouless phase transition. (See also the
recent proofs [2, 3] which rely on the delocalization result from [4]). There is no
direct way to tune the proof from [1] to provide lower bounds on fluctuations. In
the case of the Villain model, lower bounds on fluctuations are equivalent to upper
bounds on the two-point function 〈σxσy〉 and the best upper bounds known so far
on the latter are given by the celebrated McBryan-Spencer estimate [5]. These
bounds capture the fluctuations produced by the Gaussian spin-wave but do not
quantify the amount of fluctuations coming from the vortices (i.e. the topological
defects).

We study the influence of the vortices on the fluctuations of 2d systems such
as the Coulomb gas, the Villain model or the integer-valued Gaussian free field.
In the case of the 2d Villain model, we prove that the fluctuations induced by the
vortices are at least of the same order of magnitude as the ones produced by the
spin-wave. We obtain the following quantitative upper-bound on the two-point
correlation in Z2 when β > 1

〈σxσy〉Villain
β ≤ C

(
1

‖x− y‖2

) 1
2πβ

(

1+βe−
(2π)2

2
β

)

The proof is entirely non-perturbative. Furthermore it provides a new and algo-
rithmically efficient way of sampling the 2d Coulomb gas. For the 2d Coulomb gas,
we obtain the following lower bound on its fluctuations at high inverse temperature

E
Coul
β [〈∆−1q, g〉] ≥ exp(−π2β + o(β))〈g, (−∆)−1g〉.

This estimate coincides with the predictions based on a RG analysis from [6] and
suggests that the Coulomb potential ∆−1q at inverse temperature β should scale
like a Gaussian free field of inverse temperature of order exp(π2β).

Finally, we transfer the above vortex fluctuations via a duality identity to the
integer-valued GFF by showing that its maximum deviates in a quantitative way
from the maximum of a usual GFF. More precisely, we show that with high prob-
ability when β > 1

max
x∈[−n,n]2

Ψn(x) ≤
√

2β

π

(
1− βe− (2π)2β

2

)
logn .
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where Ψn is an integer-valued GFF in the box [−n, n]2 at inverse temperature
β−1. Applications to the free-energies of the Coulomb gas, the Villain model and
the integer-valued GFF are also considered.
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Two loop Loewner potentials

Sid Maibach

(joint work with Yan Luo)

In recent work under the same title [9] with Yan Luo, we introduce two-loop
Loewner potentials, which is are functionals of pairs of non-intersecting Jordan
curves in the Riemann sphere. Heuristically, they are the probability densities of
a pair of curves appearing as interfaces in CFTs / lattice models. In this sense,
the definition is

(1) HZ
Ĉ,2

(γ1, γ2) =
2

c
log

Z(D1)Z(A)Z(D2)

Z(Ĉ)
,

where D1 is a simply connected domain, D2 ⊔ A = C \ D1 and A is an annulus
bounded by the closed simple curves γ1 and γ2, and Z(·) are the partition func-
tions of the (boundary) CFT with central charge c in the respective domains and
boundary conditions such that indeed γ1 and γ2 become interfaces.

To motivate this definition, we first consider the probabilistic two-loop Loewner
potential involving renormalized Brownian loop measure Λ∗, see [1], and the one-
loop Loewner potential H

Ĉ,1 defined in [2, 3], which emerges from the general-

ization of SLE loop measure to two loops under the assumption of a “cascade
relation”:

(2) H
Ĉ,2(γ1, γ2) = H

Ĉ,1(γ1) +H
Ĉ,1(γ2) + Λ∗(γ1, γ2).

The main question in our work is what is the infimum of the two-loop Loewner
potential? The answer is relevant for large deviations theories of two-loop SLE
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measures, where a Loewner energy / rate function would be defined by

(3) I
Ĉ,2(γ1, γ2) = H

Ĉ,2(γ1, γ2)− inf
η1,η2

H
Ĉ,2(η1, η2)

and also pertains to the more geometric objective of finding conformally natural
embeddings of the loops into the Riemann sphere [8].

We introduce four equivalent formulas for H
Ĉ,2(γ1, γ2), one of which is in terms

of zeta-regularized determinants of the Dirichlet b.c. Laplacian in the respective
domain. We single this one out, because it leads to a variational formula much
like in [5] for the one-loop case,
(4)

∂εHĈ,2(ω
εν(γ1), ω

εν(γ2))
∣∣
ε=0

= − 1

3π
ℜ
(∫ ∫

D1

ν S[f−1
1 ] |dz|2+

∫ ∫

D2

ν S[f−1
2 ] |dz|2

)

where ν is a Beltrami differential with support in D1∪D2 and f1, f2 are Riemann
mappings of the domains D1 and D2 respectively. Note that at any critical point
of H

Ĉ,2, all the variations above and hence the Schwarzian derivatives S[f−1
1 ] and

S[f−1
2 ] must vanish. This implies that f1 and f2 are Möbius transformations and

consequently γ1 = f1(S
1) and γ2 = f2(S

1) are circles. By Möbius invariance,
we reduce our question of finding the minimizer to the concentric circles S1 and
e−2πτS1, where τ is the modulus of the annulus enclosed by the circles. Using
explicit expressions for the zeta-regularized determinants of Laplacians in this
setup, we find that

(5)
H

Ĉ,2(e
−2πτS1, S1)→ −∞, as τ →∞,

H
Ĉ,2(e

−2πτS1, S1)→∞, as τ → 0.

Therefore, the definition of H
Ĉ,2 does not lead to a notion of Loewner energy.

Our proposed solution is to turn to the two-loop Loewner potentials HZ
Ĉ,2

based

on CFT partition functions. By geometric considerations, they differ from H
Ĉ,2

only by a function of the modulus τ of the annulus between the loops (not just for
circles). Mathematically, this definition also emerges from the real determinant
line bundle [6, 4]. We find that a minimizer for HZ

Ĉ,2
must also be a circle and

that it exists if and only if

(6) e−
π
3 cτZdzdz̄({e−2πτ ≤ |z| ≤ 1})

has a global minimum for τ ∈ (0,∞). Since this condition in somewhat open-
ended, let us pose the following questions: Do we find anything interesting by
asking whether the condition above holds by known examples of CFT partition
functions? How does the two-loop SLE measure relate to specific models such as
the O(n) loop model or to the counting measure on CLE as in [7]?
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Relation between the geometry of sign clusters of the 2D GFF and its
Wick powers

Titus Lupu

In 1990 Le Gall showed an asymptotic expansion of the epsilon-neighborhood of a
planar Brownian trajectory (Wiener sausage) of finite duration into integer powers
of 1/| log ε| [LG90]. The coefficient of the leading term is the occupation measure
of the Brownian path. Higher order terms involve more complicated renormalized
quantities, the renormalized self-intersection local times, which can be thought
of as measures on multiple points of the Brownian motion, renormalized through
polynomial compensation so as to remove the divergences.

In my talk I will present an analogue of this result in the case of the two-
dimension continuum Gaussian free field (GFF). Consider D ⊂ C a bounded open
simply-connected domain, and Φ a GFF on D with 0 boundary conditions. As
shown in [ALS23], Φ admits a decomposition into sign clusters: there is a countable
collection of Ki two-by-two disjoint compact subsets of D, such that

Φ =
∑

i

σi νi,

where the σi are i.i.d. uniform signs in {−1, 1}, and the νi are positive measure
supported on Ki, actually Minkowski contents in the gauge | log ε|1/2ε2.

These sign clusters Ki can be further expanded into half-integer powers of
1/| log ε|. We define an epsilon-neighborhood of Ki via the conformal radius:

Ki,ε = {z ∈ D|CR(z,D \Ki) < εCR(z,D)}.
Then, for every N ≥ 1 and every fixed test function f ,

∫

Ki,ε

f(z) d2z =
1√
2π

N∑

n=0

(−1)n (2π)n+1/2

2nn!(n+ 1/2)

〈ψi,2n+1, v〉
| log ε|n+1/2

+ o(| log ε|−(N+1/2)),

where the o(| log ε|−(N+1/2)) is in the L2 sense. In the expansion above, for n = 0,
ψi,1 = νi, and for n ≥ 1, the ψi,2n+1 are generalized functions supported on Ki.
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Actually, these are restriction of odd Wick powers of Φ to Ki:

ψi,2n+1 = lim
ε→0

1Ki,ε
: Φ2n+1 : ,

with
: Φ2n+1 :=

∑

i

σi ψi,2n+1.
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UNI DUFOUR
24, Rue du Général Dufour
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