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Abstract. High-dimensional control problems and mean field equations have
been of increased interest in recent years and novel numerical tools tackling
the curse of dimensionality have been developed. These optimization tasks

are strongly related to learning problems such as data-driven optimal con-
trol and learning of deep neural networks. As a consequence, there is a huge
potential to employ control theoretical techniques in Machine Learning. The
Mini-Workshop was devoted to discuss possible synergies among the various
tools developed in these fields.
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Introduction by the Organizers

The workshop High-Dimensional Control Problems and Mean-Field Equations with

Applications in Machine Learning brought together 16 mathematicians from Ger-
many, Italy, UK, US, France, the Netherlands and Switzerland. Each participant
contributed to the event by delivering a 45-minute seminar, presenting their lat-
est research findings and theoretical advancements, and actively engaging in open
discussion sessions held in the evenings.

The workshop focused on several interconnected themes: high-dimensional con-
trol problems and mean-field equations, numerical tools to address the curse of
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dimensionality, and data-driven optimal control techniques using deep neural net-
works. The theme of high-dimensional approximation tools addressed methods
such as kernel methods, tensor decomposition techniques, and neural networks,
which aim to circumvent the curse of dimensionality by exploiting structural prop-
erties in the data. These tools are essential for controlling semi-linear PDEs and
designing Lyapunov and value functions with bounded complexity. Mean-field
optimal control explored strategies for managing complex multi-agent systems,
addressing challenges like non-locality, non-linearity, and non-convexity, with ap-
proaches such as sparse controls, model predictive control, and turnpike properties
offering computational advantages. Agent-based methods in optimization high-
lighted the potential of interacting particle systems and mean-field approaches for
tackling high-dimensional optimization tasks in spaces of probability measures,
leveraging metrics like Wasserstein and Fisher–Rao distances. Lastly, the machine
learning theme examined the interplay between mean-field PDEs, optimal control,
and machine learning models such as ResNets and kernel methods, showing how
these frameworks can provide both practical tools for solving control problems and
deeper mathematical insights into machine learning processes.

The first part of the week emphasized optimal control frameworks, featuring
diverse perspectives on the topic. Chiara Segala explored controllability of con-
tinuous networks through kernel-based learning approximations, while Alessandro
Scagliotti addressed strategies for managing uncertainty in control systems via av-
eraged and uniform ensemble optimal control. Luca Saluzzi discussed the role of
sparsity and low-rank structures in high-dimensional parametrized optimal con-
trol problems, and Mathias Oster examined adaptive ResNet architectures through
insights from the mean-field limit. Tobias Breiten offered a mathematical perspec-
tive on optimal control for hypocoercive Fokker–Planck equations, while Giacomo
Albi presented innovative approaches to controlling high-dimensional particle sys-
tems in magnetically confined fusion plasma. Finally, Susana Gomes investigated
the dynamics of opinion formation and how controlling the underlying network
structure can guide collective behavior.

A joint session on Tuesday afternoon with the mini-workshop “Data-driven
Modeling, Analysis, and Control of Dynamical Systems” added further value, fea-
turing talks by Dante Kalise on advanced control for large-scale interacting particle
systems and Lars Gruene on neural network approximation of optimal value func-
tions. While this session served as an initial focal point, the cross-disciplinary ex-
changes it sparked extended well beyond the joint session and continued through-
out the duration of the workshop, fostering ongoing dialogue and collaboration
among participants.

From mid-week onward, the focus shifted toward optimization, mean-field equa-
tions, gradient flows, and game theory. Yuyang Huang delved into the challenges of
high-dimensional Hamilton–Jacobi–Bellman PDEs for global optimization, while
Urbain Vaes introduced derivative-free Bayesian inversion using multiscale dynam-
ics. Oliver Tse examined variational acceleration methods in probability measure
spaces, and Giacomo Borghi explored the dynamics of measure-valued agents and



High-Dimensional Control Problems and Mean-Field Equations 3213

their applications in optimization. Franca Hoffmann presented coupled Wasser-
stein gradient flows for min-max and cooperative games, while Swann Marx ana-
lyzed optimization of quasi-monotone evolution equations using the moment-SOS
hierarchy. Lauren Conger introduced a novel control parameterization for con-
strained systems, and Elisa Iacomini framed traffic flow problems within a game-
theoretic context.

The workshop was also marked by spontaneous discussions and impromptu
seminars driven by participants’ curiosity. Notably, Mathias Oster introduced
tensor train decomposition, and Oliver Tse explored connections between score-
based generative models and the Schrödinger bridge problem.

As organizers, we were pleased with the high mathematical quality of the pre-
sentations and the collaborative atmosphere that characterized the workshop. Dis-
cussions and exchanges extended beyond the scheduled sessions, fostering an envi-
ronment of continued dialogue and knowledge sharing. The collection of abstracts
below reflects the range of topics covered, and we warmly invite the reader to
explore them.
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Abstracts

Control of continuous networks and a kernel-based

learning approximation

Chiara Segala

(joint work with Michael Herty, Giuseppe Visconti)

Residual deep neural networks can be modeled as interacting particle systems,
leading to a formulation based on neural differential equations. For large-scale
input data, these systems can be further approximated through mean-field neu-
ral networks, providing a powerful framework for analyzing their dynamics. This
mean-field description enables the training process to be reframed as a control-
lability problem for the solutions of the mean-field dynamics. In this work, we
consider the controllability of both microscopic and mean-field dynamics and pro-
pose a computational approach based on kernel-based learning methods. This
approach provides an efficient and numerically robust solution to the ResNets
training problem.

1. Neural differential equations and their mean-field limit

Here, we are interested in a particular class of learning-based methods, the deep
residual neural networks (ResNets). Given a set of input data x0i , i = 1, . . . ,M ,
the ResNet propagates those through the layers κ = 0, . . . , L + 1, to provide a
state prediction xi(L + 1). This state is compared with given reference data yi.
The dynamics depend on a large set of parameters, called weights w(κ) and biases
b(κ). Their values are obtained as a solution to an optimization problem and
the typically iterative process is called training. The objective or cost is given
by a distance ℓ between predictions xi(L+ 1) and the reference yi. ResNets have
also been formulated for infinitely many layers, leading to the definition of neural
differential equations [1], i.e.

(1)

{
ẋi(t) = σ

(
w(t)xi(t) + b(t)

)
, t ∈ [0, T ]

xi(t0) = x0i ,

for each i = 1, . . . ,M and time-step ∆t. The system of differential equations (1)
describes the time propagation of each measurement xi(t) ∈ R

d and input data
x0i ∈ R

d. In the continuous limit, the parameters of the network are time-
dependent functions, the weights w(t) ∈ R

d×d, and the bias b(t) ∈ R
d. For fixed

time T , then the training process turns into an optimal control problem:

(2) min
(w(t),b(t))

1

M

M∑

i=1

ℓ(xi(T ) − yi) subject to (1).

The computational and memory cost of the training of a neural network, increases
with the dimension M of the data set. For this reason, an approach based on
statistical mechanics leads to the mean-field limit of (1) for M → ∞, see [3]. The
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time-dependent probability measure µt := µ(t, ·) ∈ P1(Rd) fulfills the nonlinear
transport equation

(3) ∂tµt(x) + ∇x ·
(
σ
(
w(t)x + b(t)

)
µt(x)

)
= 0, t > 0.

The initial condition µ0 ∈ P1(Rd) is obtained as limit (in the sense of measures)

of limM
1
M

∑M
i=1 δ(x − x0i ). The training problem (2) allows for a mean-field de-

scription as an optimal transport problem

(4) min
(w(t),b(t))

L :=

∫

Rd

∫

Rd

ℓ(x− y)dξT (x, y)

∫

y∈Rd

dξT (x, y) = dµT (x) ,

∫

x∈Rd

dξT (x, y) = dν(y)

where ν ∈ P1(Rd) is the probability measure of the target data for M → ∞. The
existence of solutions to (4) has been established in [4].

2. A numerical approach for training based on the kernel

learning method

The computational framework to determine optimal parameters w and b in contin-
uous ResNets will be based on a kernel method, to approximate the loss function,
in both the microscopic case (2) and the mean-field limit (4). Kernel methods are
supported by a well-developed theory [6], and come with efficient algorithms [5].
From a mathematical point of view, these methods rest on the concept of kernels
and function spaces generated by kernels, so-called reproducing kernel Hilbert
spaces. In recent years, there has been an increasing interest in the application
of kernel methods approaches in the context of interacting particle systems, see
e.g. [2]. Define the function L on the space X := R

d×d × R
d of possible pairs of

control (w, b) by

L : X → R
+
0 , (w, b) 7→ L((w, b)) .

Since the loss function of a typical neural network contains the summation of
possibly many target values, different techniques are known to efficiently compute
its gradient, e.g. the stochastic gradient method. Here, we propose to approximate

L by a function L̂ that is fast and simple to evaluate with respect to the parameters

(w, b). Provided L̂ as an accurate approximation L, we expect that training of L
can be replaced by a more efficient training of L̂. The approximation should be
consistent on the microscopic and mean-field level. Therefore, we consider kernel-
based methods that have recently been shown to allow for an extension in the case
of infinitely many agents (or data points M in our case) [2]. The approximation

L̂ is given by a weighted sum

(5) L̂(w, b) =
N∑

n=1

αn k
(

(w, b) ,
(
w, b

)
n

)
,

where α1, . . . , αN ∈ R are coefficients,
(
w, b

)
1
, . . . ,

(
w, b

)
N

∈ X are given values
and k : X ×X → R is a kernel function. To specify the approximation we need
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to determine suitable choices for (w, b)n and then compute the corresponding co-
efficients αn of the approximation. Both will be detailed below. The set of all

functionals L̂ represented by the series (5) forms a Hilbert space. Hence, the
question is closely related to the problem of describing the Hilbert space gener-
ated by the kernel k, the so-called reproducing kernel Hilbert space. The idea of
the approximation problem (5) is as follows. Assume we have N possibly noisy
measurements of the feature map

zi = L((w, b)i) + η, i = 1, . . . , N,(6)

for noise η. Using kernel methods, problem (6) can be solved by L̂ belonging to the
RKHS H given as a solution to a minimization problem for a continuous, strictly
convex function L and λ > 0 :

L̂ = argminL∈H L (L((w, b)1),L((w, b)2), . . . ,L((w, b)N )) + λ‖L‖2H ,(7)

with

L =
1

N

N∑

i=1

‖zi − L((w, b)i)‖2Σ.(8)

The training algorithm we propose consists of determining L̂ and considering the

optimization of the function L̂ with respect to the variables (w, b).

3. Perspectives

We proposed a computational framework based on the reproducing kernel method
to efficiently solve the general optimal control problem associated with the training
process of a neural network. So far, the technique has been applied to static
controls only. Future work includes extending the algorithm to time-dependent
control using model predictive control.

References

[1] T. Q. Chen, Y. Rubanova, J. Bettencourt and D.K. Duvenaud Neural ordinary differential
equations. Advances in neural information processing systems, 6571–6583 (2018).

[2] C. Fiedler, M. Herty, M. Rom, C. Segala and S. Trimpe. Reproducing kernel Hilbert spaces
in the mean field limit. DKinetic and Related Models, 16(6): 850-870 (2023).

[3] M. Herty, T. Trimborn and G. Visconti. Mean-field and kinetic descriptions of neural differ-
ential equations. Foundations of Data Science, 4(2):2 (2022).

[4] M. Herty, A. Thuenen, T. Trimborn and G. Visconti. Continuous limits of residual neural
networks in case of large input data. Communications in Applied and Industrial Mathemat-
ics, 13(1): 96-120 (2023).

[5] B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond MIT press, 2022.

[6] I. Steinwart and A. Christmann. Support vector machines. Springer Science & Business
Media, 2008.



3220 Oberwolfach Report 56/2024

Managing uncertainty in control systems: averaged and uniform

ensemble optimal control

Alessandro Scagliotti

In this report, we consider an ensemble of control systems in R
n of the form

(1) ẋ = bθ(x) +

m∑

i=1

Aθ
i (x)ui(t) = bθ(x) +Aθ(x)u, x(0) = xθ0,

where θ ∈ Θ is an unknown quantity that ranges in a compact subset of an
Euclidean space and that is in charge of parametrizing the systems. Here, the dy-
namics is assumed to be Lipschitz-continuous in the state variable, and to depend
continuously on the parameter θ. We observe that, in the model (1), the uncer-
tainty can involve both the Cauchy datum and the dynamics itself. We insist on
the fact that all the ODEs of the ensemble are simultaneously driven on the time
horizon [0, T ] by the same control u ∈ U := L2([0, T ],Rm). When we are assigned
a precise value of θ ∈ Θ, we are interested in finding a control u ∈ U such that

(2) ℓ
(
xθu(T ), θ

)
+ α

∫ T

0

f(t, u(t)) dt→ min,

where ℓ : R
n×Θ → R is a C1-regular function that prescribes the end-point cost for

the elements of the ensemble, f : [0, T ]×R
m → R designs the running cost (which

is assumed to be L2-weakly coercive and lower semi-continuous), and finally α > 0
is a constant that tunes the regularization provided by the integral term. Since we
do not have access to the exact value of θ, we cannot directly address the problem
stated in (2) before having saturated the dependence on θ. To this aim, we have
two possible strategies. On the one hand, in the case θ is the realization of a
random vector with law µ, we can define the functional Jµ : U → R as follows

(3) Jµ(u) :=

∫

Θ

ℓ
(
xθu(T ), θ

)
dµ(θ) + α

∫ T

0

f(t, u(t)) dt,

which relates to the formulation of an averaged ensemble optimal control problem,
where we ought to find a policy u⋆ ∈ U that does a good job ‘on average’ (see
[2, 3]). On the other hand, in the case we need to pursue a more conservative
approach, we are interested in constructing a control that performs well in the
least favorable conjuncture (see [9]), and we consider the functional

(4) IΘ(u) := sup
θ∈Θ

ℓ
(
xθu(T ), θ

)
+ α

∫ T

0

f(t, u(t)) dt,

which relates to the formulation of an uniform ensemble optimal control problem.
In the case #supp(µ) = ∞ or #Θ = ∞, then every single evaluation of the
functionals Jµ or IΘ implies handling simultaneously infinitely many systems. For
this reason, in view of applying this machinery to real-world problems, a natural
approach consists in formulating optimal control problems that involve ensembles
with finitely many elements. Namely, we can substitute the original measure µ
associated to the averaged functional Jµ with a discrete measure µN (related, e.g.,
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to empirical samplings from µ). Moreover, in the minimax problem concerning IΘ,
a viable strategy is to take the supremum over a finite subset ΘN ⊂ Θ. In this way,
we introduce the functional JµN

as in (3), but using the measure µN in the first
integral. Similarly, IΘN

is defined according to (4), and the parameter θ is allowed
to vary only in ΘN ⊂ Θ when computing the sup of the first term. It is reasonable
to expect that, if µN and ΘN contain ‘enough information’ about µ and Θ, then
the minimizers of JµN

and IΘN
will be close to the averaged and uniform ensemble

optimal controls, respectively. It turns out that this is actually the case (see [6]
for the averaged problem, and [7] for the minimax), and it can be made rigorous
by establishing a Γ-convergence result. Below, we write W2(µ, ν) to denote the
2-Wasserstein distance between the probability measures µ, ν. Moreover, recalling
that ΘN ,Θ are embedded in a Euclidean space, we adopt the notation dH(ΘN ,Θ)
for the Hausdorff distance between ΘN and Θ.

Theorem. Let (µN )N≥1 be a sequence of probability measures such that the
distanceW2(µN , µ) → 0 asN → ∞, and let (JµN

)N≥1 and Jµ be the corresponding
functionals defined as in (3). In addition, let (ΘN )N≥1 be a sequence of subsets
of Θ such that the distance dH(ΘN ,Θ) → 0 as N → ∞, and let (IΘN

)N≥1 and IΘ
be the corresponding functionals defined as in (4). Then, we have the following:

• The functionals (JµN
)N≥1 are equi-coercive and Γ-converge to the func-

tional Jµ as N → ∞ when U is equipped with the weak topology of L2.
• The functionals (IΘN

)N≥1 are equi-coercive and Γ-converge to the func-
tional IΘ as N → ∞ when U is equipped with the weak topology of L2.

Moreover, if the function f : [0, T ] × R
m → R that prescribes the running cost

is strictly convex in the second variable, then the minimizers of (JµN
)N≥1 and

(IΘN
)N≥1 converge L2-strongly (up to subsequences) to minimizers of Jµ and IΘ,

respectively.

This framework finds relevant applications in quantum control [1]: for example,
in [7], the numerical resolution of a minimax problem allowed the construction
of a signal for controlling a qubit whose resonance frequency was affected by un-
certainty. It is worth mentioning that the controllability of that ensemble had
been previously shown in [5]. Moreover, leveraging on the Γ-convergence of the
averaged problems, in [8], the Authors proposed a procedure for recovering nu-
merically the optimal transport map between absolutely continuous measures µ, ν
when empirical approximations µN , νN are available.

Finally, as possible further research directions, we mention the possibility of
deriving quantitative bounds that relate, e.g., the distance between the minimizers
of Jµ and JµN

to the quantity W2(µN , µ), or, in case of uniform ensemble prob-
lems, estimating the distance between the minimizers of IΘ and IΘN

in terms of
dH(ΘN ,Θ). Another interesting point concerns the employment of the Conditional
Value-at-Risk for the ‘interpolation’ between averaged and uniform problems, as
done in [4] for controlled PDEs.
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Sparsity and low rank structures in high dimensional parametrized

optimal control problems

Luca Saluzzi

(joint work with Stefano Massei, Maria Strazzullo)

Optimal control problems arise in numerous applications, ranging from engineering
to finance. In many practical scenarios, these problems involve nonlinear dynamics
and are parameterized by various factors, making their solution computationally
demanding. The State-Dependent Riccati Equation (SDRE) method [1] provides
an extension of the well-known Linear Quadratic Regulator to nonlinear systems,
offering an effective approach for solving such problems. This report explores the
application of SDRE for approximating parameterized optimal control problems,
focusing on computational efficiency and dimensionality reduction.

1. Methodology

The SDRE framework transforms a nonlinear optimal control problem into a se-
quence of Algebraic Riccati Equations (AREs), which are solved iteratively at
different time steps and for various parameter values. Since these AREs are of-
ten high-dimensional, their solution presents significant computational challenges.
To address this, we adopt the Newton-Kleinman iterative scheme for solving the
Riccati equations, which enhances numerical stability and convergence. Addition-
ally, we leverage sensitivity analysis to obtain a more efficient initialization of the
iterative process, reducing computational overhead.

Given the high-dimensional nature of the problem, we explore two distinct
approaches for reducing computational cost.
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Low-Rank Approximation. In scenarios where the solution of the Riccati equa-
tion shows a low rank structure, we employ a Dynamic Low Rank Approximation
(DLRA) technique [3]. Specifically, DLRA is applied to the parameterized dynam-
ics of the system, allowing us to approximate the solution in a reduced subspace.
By evolving the reduced basis dynamically, DLRA captures essential system vari-
ations while avoiding the full high-dimensional representation, making it particu-
larly suitable for large-scale and transport-dominated problems.

Banded Approximation in the Full-Rank Case. For full-rank problems, we
exploit the off-diagonal decay property of the ARE solution. Under certain con-
ditions, the Riccati solution exhibits a structure where off-diagonal elements be-
come negligible, allowing for an effective banded matrix approximation [2]. This
approach significantly lowers computational complexity while preserving essential
control properties. The off-diagonal decay phenomenon is intrinsically linked to
the concept of decaying sensitivity in optimal control, where the interdependence
between state variables weakens as their spatial, temporal, or graph-theoretic dis-
tance increases [4]. This characteristic allows for the efficient representation of
global functions as the summation of localized contributions, thereby enabling
scalable computations in high-dimensional control settings.

2. Conclusion

This study highlights the potential of SDRE for efficiently approximating param-
eterized optimal control problems. By employing iterative solution techniques,
sensitivity-based initialization, and dimensionality reduction methods, we achieve
significant improvements in computational efficiency. The combination of DLRA
for low-rank scenarios and banded approximations for full-rank cases provides a
versatile framework applicable to a broad range of nonlinear control problems.
Future work will focus on further refining these techniques and exploring their
applications to large-scale and real-time control systems.
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What can we learn on adaptive ResNet architectures from the

mean field limit

Mathias Oster

(joint work with Angela Kunoth, Reinhold Schneider)

Learning a function f : R
d → R by deep neural networks with activation function

σ in for example in the L2 norm can be interpreted as an abstract optimal control
problems with measure-valued controls µ(t) of the form

min
µ(·)

J (µ(·)), J (µ(·)) =

∫

Rd

‖f(x) −
∫
aσ(A z(T, x) + b) dµ(t; a,A, b)‖2dx

s.t.
d

dt
z(t, x) =

∫
aσ(Az(t, x) + b) dµ(t; a,A, b), z(0, x) = x

and provides an interesting mathematical framework to analyse the expressivity
and optimization of deep neural networks from a continuous point of view. This
control problem can be seen as an infinitely deep neural network with distinguished
last layer. Here we exploit the ideas of Barron spaces as continuous interpretation
of infinitely wide shallow networks and neural odes as infinitely deep residual
network architectures. This continuous interpretation might allow one to deduce
new adaptive algorithms for neural network that change the depth and width of
the neural network during the training process.

We analyse analyse the gradient flows corresponding to optimizing the map
µ(·) → J (µ(·)) in the space of probability measures. To that end, we introduce
a fibered Wasserstein metric on probability measures with bounded second mo-
ment and fixed first marginal and define the notion of absolute continuous curves.
Furthermore, we define a notion of Wasserstein gradient and exemplify it on the
example of a potential functional E(µ) =

∫
V (u)dµ(u) for some twice continuously

differentiable function V . By using the equivalence of absolute continuous curves
and solutions to the continuity equation we can state the gradient flow equations
for the optimal control problem and we sketch the proof of existence of gradient
flows based on the so-called generalized minimizing movement.

Lastly, we propose a first näıve algorithm to deal with flexible architectures and
provide some very first examples. Possible impacts on adaptive strategies by using
entropy regularizations or stochasticity have been discussed.
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Optimal control for a class of hypocoercive Fokker-Planck equations

Tobias Breiten

(joint work with Karl Kunisch)

Given a set of finite-dimensional stochastic differential equations (SDEs), it is well-
known that the Fokker-Planck equation provides a global viewpoint in the sense of
formulating a dynamical equation for the underlying probability density function.
For Langevin-type equations, i.e., second-order SDEs, stochasticity typically enters
only the momentum variable, leading to a kinetic Fokker-Planck equation. As
such PDEs often combine properties of both paraolic and hyperbolic equations,
analyzing transient as well as long time behavior becomes rather complex. If
the modelled stochasticity is assumed to be dependent on the position (of a given
particle distribution), the PDE additionally becomes nonlocal. In the following, we
describe a specific optimal control problem that is constrained to such a nonlocal
kinetic Fokker-Planck equation.

A nonlinear nonlocal kinetic Fokker-Planck equation

Consider the following nonlinear nonlocal controlled Fokker-Planck equation

(1)
∂tf + v · ∇xf + U ∗ ρvf · ∇vf = U ∗ ρf∇v · (∇vf + vf) + u(α · ∇vf)

f(0, x, v) = f0(x, v),

where α ∈ L2(Rd) ∩ L∞(Rd) only depends on x ∈ R
d, u ∈ L∞(0, T ) is a scalar

time-dependent control, U denotes a smooth distance potential and

ρf (t, x) =

∫

Rd

f(t, x, v) dv, ρvf (t, x) =

∫

Rd

vf(t, x, v) dv,

where ρf (t, x) ∈ R and ρvf (t, x) ∈ R
d. The above equation is a controlled analogue

of an equation introduced in [3]. In particular, the authors of [3] have shown
that it arises as a mean-field limit of a (stochastically perturbed) particle system
which generalizes the classical Cucker-Smale models discussed in [2, 4] and [5],
respectively. As equation (1) contains both, a diffusive operator (w.r.t. the variable
v) and a transport operator (w.r.t. the variable x), it belongs to the class of
hypocoercive PDEs, see [7] for a detailed introduction into the topic.

An abstract operator formulation

When considering the dynamics (1) near the Maxwellian

µ = µ(v) = (2π)−
d
2 e−

‖v‖2

2 ,

it is convenient to introduce a shifted state variable y := f − µ and focus on the
abstract (nonlinear) Cauchy problem

ẏ = Ay +Dy − h1(y) − h2(y) + uNy +Bu(2)

where the operators A,D, h1, h2, N and B are given as
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Ay = ∆vy − v · ∇vy − v · ∇xy, Dy = U ∗ ρµyv · v,

h1(y) = U ∗ ρµyR0y, h2(y) = U ∗ ρµyv · (∇vy − yv),

R0y = −∆vy + v · ∇vy, Ny = −yα · v + α · ∇vy, B = −α · v.
In particular, with arguments similar to [2] it can be shown that A and also A+D
generate strongly continuous (contractive) semigroups, allowing for a mild solution
concept for the uncontrolled linearized equation. Based on fixed point techniques
and utilizing the fact that N and B are admissible control operators [6] for the
semigroup generated by A + D, one can further define a (local) solution concept
for the bilinearly controlled nonlinear equation.

An optimal control problem

Given a desired target state yd, one may then consider a PDE constrained optimal
control problem of the form

inf
u∈Uad

J (u) :=
1

2

∫ T

0

‖y(u; t) − yd(t)‖2 dt+
β

2

∫ T

0

u(t)2 dt,

where y(u; ·) is the (controlled) solution to (2). Since the underlying equation is
only hypocoercive, neither the choice of the norm for the tracking term y − yd
nor the set of admissible controls is trivial. Indeed, the lack of coercivity prevents
from building on classical compact embedding results which for many PDE control
problems ensure existence of a solution.

Challenges and future work

Besides showing existence of a local solution, several additional questions deserve
a detailed analysis. For example, a rigorous sensitivity analysis and the deriva-
tion of necessary and sufficient optimality conditions may require non standard
techniques. Moreover, studying the optimal control problem for T = ∞ and the
construction of feedback controls seem interesting research questions.
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Controlling high-dimensional particle systems in magnetically confined

fusion plasma

Giacomo Albi

(joint work with Giacomo Dimarco, Federica Ferrarese, Lorenzo Pareschi)

We address the challenge of confining high-temperature plasma in magnetic fusion
devices. In particular, we propose a mean-field optimal control problem con-
strained to the evolution of the Vlasov-Poisson systems with BGK-type collisions,
where the external magnetic fields act as control actuator to promote the confine-
ment in a bounded domain, [1, 2, 3, 4]. Hence, we consider the evolution of the
charged particle density f(t,x,v) in the phase space (x,v) ∈ R

dx ×R
dv as solution

of the kinetic model

(1)
∂f(t,x,v)

∂t
+ v · ∇xf(t,x,v) + F(t,x,v) · ∇vf(t,x,v) =

1

ε
Q(f, f)(t,x,v),

where

F(t,x,v) = E(t,x) + v ×B(t,x),

E(t,x) = −∇xφ(t,x), −∆xφ(t,x) = ρ(t,x) − ρ0(t,x),

with E(t,x) the electric field, φ(t,x) the electric potential,

ρ(t,x) =

∫

Rdv

f(t,x,v)dv,

the charge density and ρ0(t,x) a static neutralizing background and B(t,x) the
magnetic field. The collisional operator accounts for BGK-type collisions such that

Q(f, f)(t,x,v) = µ (M(t,x,v) − f(t,x,v)) , µ > 0.

The local Maxwellian M(t,x,v) is defined as

M(t,x,v) = ρ(t,x)

(
1

2πT (t,x)

)dv/2

exp

(
−|v −U(t,x)|2

2T (t,x)

)
,

where ρ, U and T are respectively mass, momentum and temperature.
Thus, the magnetic field B(t,x) is obtained as a solution of an optimality prin-

ciple, aiming at minimizing the mass which hits the boundaries and the thermal
energy close to the walls. The general form of the functional is

(2) J (Bext; f
0) :=

∫ Tf

0

(
D(f, ψ)(t) +

γ

2

∫

Ω

‖B(t,x)‖2f(t,x,v)dxdv

)
dt,

where D(f, ψ)(·) is the running cost penalizing plasma concentration close to the
boundary of the device, and γ acts as a penalization weight.

In order to realize the shape of the magnetic field we assume that it can be
decoupled over different part of the spatial domain, and it assumes constant values
over the cells as B(t,x) = (B1, . . . , BNc

), Badm = {Bk|Bk ∈ [−M,M ],M > 0, k =
1, . . . , Nc} similarly to [5, 6]. Furthermore, to efficiently derive the control we
follow a reduced-horizon approach, and we employ a Particle-in-Cell (PIC) for the
evolution of the plasma and. In this framework, it is possible to obtain a feedback
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strategy on the equation of motion based on an instantaneous prediction of the
discretized system. Then, the discretized optimization problem reads
(3)

min
B∈Badm

Nc∑

k=1

J h
k (Bk; fN

k ) =

Nc∑

k=1

∫ tn+∆t

tn



∑

ℓ∈{x,v}

Dk(fN
k , ψℓ)(τ) +

γ

2
‖Bk(τ)‖2


 dτ

The minimization problem is constrained by the evolution of the empirical density

fN
k (t,x,v) = N−1

∑N
i=1 δ(x − xi(t)) ⊗ δ(v − vi(t)) which is realized with PIC

scheme over the time interval [tn, tn + ∆t]. The particle scheme is designed over
a splitting between the transport and the collisional part of the dynamics, where
the characteristics write as follows

xn+1
i = xn

i + ∆tvn+1
i ,

vn+1
i = v⋆

i + ∆tvi ×Bk + ∆tEn
i ,

(4)

and the BGK-type collisions are accounted by the step

(5) v⋆
i = χ(η < e−µ/ε∆t)vn

i + (1 − χ(η < e−µ/ε∆t))
(
Un

i + ξ
√
T n
i

)
,

with η ∼ U([0, 1]), ξ ∼ N (0, 1), χ(·) the charateristic function and Un
i , T

n
i the

local momentum and temperature at time tn on each computational cell. Upon a
semi-implicit discretization of the running cost in (3), a feedback control can be
derived for the instantaneous prediction of the plasma dynamics with the following
form

(6) Bk(t) = P[−M,M ]

(
1

γ

(
Rk(fN

k , ψx)(t) + Rk(fN
k , ψv)(t)

))
,

where Rℓ
k(fN

k , ψℓ) encodes variations of the running cost Dk(fN
k , ψℓ). This control

is sub-optimalcontrol with respect to the solution of the original problem (1)–(2).
Nevertheless, the procedure results to be numerically efficient and robust for the
confinment of the plasma, and permits to reduce computational cost required by
optimal control synthesis.

Figure 1. Kelvin-Helmholtz instability test: (left) uncontrolled
case and (center) control case at t = 50. (Right) magnetic field
over time.
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Figure 1 shows the action of the magnetic field designed via instantaneous min-
imization of (3), where the plasma is confined at the centre of the domain by
defining a magnetic field fixed over ten fixed cell in the spatial domain.

Further directions of research will include the presence of uncertainties, which
severely affect this process due to erroneous measurements and missing informa-
tion, coupling with Maxwell equation for the design of the magnetic field, and the
study of deep-neural network for faster prediction and synthesis of control terms.
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Steering opinion dynamics through controlling the underlying network

Susana N. Gomes

(joint work with Andrew Nugent and Marie-Therese Wolfram)

The field of opinion dynamics began with a model of how a small group reaches
consensus on a single issue [1]. Over time, it has evolved to explore complex models
for opinion formation across populations and societies (see, e.g., [2]). Nowadays,
these models are used not only to forecast opinions [3] but also to study financial
markets, or even to control the dynamics to promote or disrupt consensus [4].

The Hegselmann-Krause (HK) model [2], also introduced by Deffuant et al. [5],
is a key model in opinion formation. It is based on the concept of bounded con-
fidence, where individuals i and j, with opinions xi, xj ∈ [−1, 1], only interact if
their opinions are sufficiently close. When they do interact, their opinions move
towards each other:

dxi
dt

=
1

|I(xi(t))|
N∑

j=1

φ(|xj − xi|)(xj − xi), i, j = 1, . . . , N,

where I(xi(t)) =
∑N

j=1 φ(|xj −xi|) is the number of individuals that interact with
xi and

(1) φ(|xj − xi|) =

{
1 if |xj − xi| ≤ R,

0 otherwise.
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The interaction function φ in(1) is the most commonly used, but others can
be used with strength potentially depending on opinion differences. These nonlin-
ear models can display complex behaviours and have been adapted to model the
influence of stubborn individuals or the transition between consensus and polari-
sation. For this, modelling the dynamics on a social network, where interactions
are restricted to connected agents, is key. This is represented by a network with a
(weighted) adjacency matrix W , where wij = 1 (or wij > 0) if agents i and j are
connected, and wij = 0 otherwise. We also assume that wii = 1 so that individual
i always considers their own opinion. The dynamics are given by

(2)
dxi
dt

=
1

ki

N∑

j=1

wijφ(|xj − xi|)(xj − xi),

where ki =
∑N

j=1 wij . The dynamics are significantly influenced by the network
structure: for exmaple, if the network is disconnected, consensus may not be
reached, even if it would for the usual dynamics. Our work in [6] made the models
more realistic by allowing the network to evolve with the opinion dynamics. We
used a weighted network and allowed the weights to increase if the two agents
have similar opinions and decrease if their opinions are too different. Crucially,
wdges can also be added or removed. Equation (2) is now coupled with a system
of ODEs for the evolution of the weights:

(3)
dwij

dt
= φ(|xj−xi|)f+(W )ij−(1 − φ(|xj − xi|)) f−(W )ij , ki(t) =

N∑

j=1

wij(t).

f+ and f− are functions of the network and control how weights increase or
decrease in time. They also satisfy properties that ensure the weights remain
bounded between 0 and 1. We explored three types of weight dynamics: logistic
(weights grow if people agree and shrink if they disagree), memory (individuals
remember past opinions), and friend of a friend (people are introduced through
common friends if they have similar opinions). Introducing weight dynamics af-
fected both the population’s ability to reach consensus and the time to reach a
stationary state.

Recent work has focused on controlling the HK model to steer dynamics towards
consensus (or accelerate this process) by directly influencing agents. This is a
theoretically interesting problem, but it would not be practically achievable. To
address this, we proposed an alternative strategy in [7], which relies on controlling
the underlying network instead. In this case, equation (3) becomes

(4)
dwij

dt
= f(uij, wij),

where uij are the controls. The disadvantage of this approach is the need for
N2 controls instead to N controls when controlling agents directly. The function
f(u,w) describes the effect of controls in the network; it has to be bounded,
integrable, satisfy similar properties to f+ and f− in (3) so that the weights are
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well-defined and remain constant if uncontrolled. We considered a simple example:
f(u,w) = s(u)(ℓ(u) − w), for a positive function s and a target function ℓ, and
posed several questions regarding existence of controls, how to compute them, and
their efficiency.

We identified all the scenarios where control is not possible (when there is opin-
ion fragmentation, or if there is a time t when the target opinion is outside the
opinion range of the agents), and proved that if the control acts sufficiently quickly,
we can prevent individuals from crossing over the target opinion by limiting indi-
vidual’s overall opinion change. If the target opinion is within the initial opinion
range, the initial opinions are not already clustered, and the control can act quickly
and create and remove edges everywhere, consensus at the target opinion can be
achieved.

Finally, we explored optimal controls by penalising the distance to the target
consensus state and the strength of controls. We found that this leads to bang-
bang controls, where edges are strengthened when the corresponding interactions
move the opinions towards the target state, and edges are weakened or removed
for interactions that would cause opinions to cross over the target.

We have started to understand how manipulating social networks can influence
opinion dynamics, but several open questions remain. These include modelling
multiple opinions simultaneously, taking mean-field limits for large populations,
studying the influence of network geometry on the dynamics, or making control
more applicable by using, e.g., sparse controls.
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Computation and Control of Unstable Steady States for Mean Field

Multiagent Systems

Dante Kalise

(joint work with Sara Bicego, Grigorios A. Pavliotis)

The study of multiagent systems exhibiting collective behavior is fundamental
in a number of disciplines, ranging from physics and biology to social sciences
[1, 2, 3]. These systems are described at the mean field level through nonlinear
and nonlocal Fokker-Planck equations, such as the McKean-Vlasov PDE. This
equation captures the evolution of the probability density ρt(x) of agents:

∂tρt = β−1∆ρt + ∇ ·
(
ρt(∇W ∗ ρt + ∇V )

)
,

where W denotes the interaction potential between agents, V represents an exter-
nal confining potential, and β is the inverse temperature. A key feature of such
systems is the existence of phase transitions - parameter regimes where multiple
steady states coexist, including both stable and unstable configurations [5, 6]. In
this talk, we develop a comprehensive mathematical and computational framework
for both identifying and controlling these steady states. The steady state solutions
ρ∞ satisfy the stationary McKean-Vlasov equation:

β−1∆ρ∞ + ∇ ·
(
ρ∞(∇W ∗ ρ∞ + ∇V )

)
= 0 .

We present a novel numerical approach combining a spectral method with a de-
flation technique to systematically compute all solutions to this equation. The
methodology employs a Galerkin approximation using Fourier modes {ψi}Li=1:

ρLt (x) =

L∑

i=1

ai(t)ψi(x) .

This discretization must carefully preserve both positivity (ρLt > 0) and mass
conservation (

∫
Ω
ρLt , dx = 1). The resulting nonlinear system for the coefficients

ai(t) is solved using a deflated Newton’s method [7], which systematically modifies
the residual operator to find multiple solutions after each convergence. Building
on this steady state characterization, we formulate an optimal control problem for
stabilizing the system around chosen unstable configurations. The control enters
as an external forcing term ut(x), leading to bilinear dynamics:

∂tρt = β−1∆ρt + ∇ ·
(
ρt
(
(∇W ∗ ρt) + ∇V + ut

))
,

for which we cast the following dynamic optimization problem

min
u

J (u) =
1

2

∫ T

0

|ρt − ρ∞|2L2(Ω) + γ|ut|2L2(Ω,Rd), dt

This optimal control problem is then embedded into a nonlinear model predictive
control (MPC) framework [8]. This approach naturally handles the nonlinearity
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and instability inherent in the problem while maintaining computational tractabil-
ity. We demonstrate the effectiveness of our methodology through detailed nu-
merical studies of two prototypical examples. The first is the Hegselmann-Krause
model for opinion dynamics [9], where we analyze the transition from consen-
sus to clustering as noise decreases. Beyond identifying the various steady state
configurations, we successfully stabilize unstable multi-cluster states that would
naturally decay to consensus. The second example considers the two-dimensional
von Mises model [10], where we maintain unstable uniform distributions against
the natural tendency toward concentration. The proposed methodology extends
recent developments in mean field control theory [11, 12, 13, 14].
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High-Dimensional Hamilton-Jacobi-Bellman PDEs for Global

Optimization

Yuyang Huang

(joint work with Michael Herty, Dante Kalise, and Nikolas Kantas)

We consider global optimization problems of the form

(1) min
x∈Rd

f(x),

where f : R
d → R is continuous, non-negative, bounded, and possibly non-convex

with many local minimizers. We introduce a novel approach to the optimiza-
tion problems (1) leveraging solutions of Hamilton-Jacobi-Bellman (HJB) equa-
tions, with an application to accelerating consensus-based optimization (CBO)
algorithms.

In the following, we present a deterministic, infinite horizon, discounted formu-
lation of the global-optimization-as-optimal-control approach. Consider a control
system where the control variable u(·) governs the state trajectory y(t) ∈ Ω ⊂ R

d

through the dynamics

(2) ẏ = u(t), u(·) ∈ U , y(0) = x.

Here, the control lies in the set U := {u(t) : R+ 7→ R
d,Lebesgue measurable

a.e. in t} and x ∈ R
d is a given initial condition. To quantify the performance of

the control, we consider an objective function

J (u(·), x) :=

∫ ∞

0

e−µt
(
f (y(t)) +

ǫ

2
|u(t)|2

)
dt,

where µ > 0 is a discount factor and ǫ > 0 is a parameter for Tikhonov regular-
ization. It is well-known (e.g. [3, Section II.11]) that the optimal value function

V (x) = inf
u(·)∈U

J (u(·), x)

is the unique viscosity solution to the Hamilton-Jacobi-Bellman (HJB) equation:

(3) −µV (x) + min
u∈Rd

{
DV (x)⊤u+ f(x) +

ǫ

2
|u|2
}

= 0,

with DV = (∂x1V, . . . , ∂xd
V )⊤. Once the HJB equation (3) is solved, the optimal

control u∗ of (3) is given in feedback form by

(4) u∗(x) := argmin
u∈Rd

{
DV (x)⊤u+ f(x) +

ǫ

2
|u|2
}

= −1

ǫ
DV (x).

The control law utilizes gradient informationDV from the value function, obtained
from the solution of the HJB PDE, rather than directly fetching the gradient of
the objective f .

While this framework provides valuable theoretical insights, it requires the nu-
merical approximation of a d−dimensional HJB PDE. We apply a successive ap-
proximation algorithm in the same spirit as in [4]. These algorithms can be inter-
preted as a Newton iteration to address the nonlinearity present in (3). As such,
a fundamental building block is the solution, at the m-th (m ∈ N) iteration of the
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method given a fixed control law u(m)(x), of the linear Generalized HJB equation
(GHJB) for V (m):

(5)
Gµ(V (m), DV (m);u(m)) = 0,

Gµ(V,DV ;u) := −µV +DV ⊤u+ f +
ǫ

2
|u|2.

Having computed the value function V (m), an improved feedback law is obtained
as u(m+1) = − 1

ǫDV
(m) from equation (4), and we iterate via (5). Through-

out the iterative processes, the solution of GHJB equation converges uniformly
to the solution of HJB equation (3); see [1] for details. Additionally, the nu-
merical approximation of the GHJB equation being with the selection of set of
(not necessarily linearly independent) continuously differentiable basis functions
Φn(x) = {φi(x)}ni=1 of L2(Ω), where each φi ∈ L2(Ω ; R). We approximate the
solution Vn to the (5) by a Galerkin projection:

Vn(x) =
n∑

i=1

ciφi(x) = Φn(x)⊤cn ,

and determine the coefficients cn = {ci}ni=1 by solving a system of residual equa-
tions for a given admissible control u

(6) 〈Gµ (Vn, DVn;u) , φi〉 :=

∫

Ω

Gµ

(
Φ⊤

n cn,∇Φ⊤
n cn;u

)
φi(x) dx = 0 , 1 ≤ i ≤ n

However, such methods naturally introduce numerical discretization errors that
will affect the convergence of the optimal trajectories towards the global mini-
mizer. In our work, we bridge this gap between numerical discretization errors
and global optimality by augmenting the standard CBO method [2] with the re-
sulting state feedback law u∗(x), derived from the HJB equation (3). We introduce
the controlled-CBO dynamics, which employs a system of N ∈ N interacting par-
ticles with position vector X i

t ∈ R
d, i = 1, . . . , N , evolving in time t ∈ [0,∞)

according to a system of stochastic differential equations (SDEs):

(7) dX i
t = [−λ

(
X i

t − vα(ρNt )
)

+ βu∗(X i
t)]dt+ σD

(
X i

t − vα(ρNt )
)
dW i

t

where λ, σ, β > 0 are drift, noise and control parameters, respectively. The oper-
ator D : R

d → R
d×d maps a vector ν ∈ R

d onto a diagonal matrix with elements
of ν, and

(
(W i

t )t≥0

)
i=1,··· ,N

are i.i.d Wiener processes in R
d. The consensus point

vα(ρNt ) is calculated by the weighted average

vα(ρNt ) :=
1

∑N
i=1 ω

α
f

(
X i

t

)
N∑

i=1

X i
tω

α
f

(
X i

t

)
,

where we denote by ρNt the empirical measure 1
N

∑N
i=1 δXi

t
. The weight ωα

f is
defined as

ωα
f (x) = exp(−αf(x)), α > 0.
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In addition to the standard CBO drift, the feedback control u∗ provides gradient-
like information, effectively guiding the particles toward the minimizer of the ob-
jective function. Note that the controlled-CBO method remains gradient-free, in
the sense that no gradient of the objective function is required.

The resulting controlled CBO method exhibits faster convergence rates and im-
proved robustness compared to standard CBO, especially in challenging scenarios
with limited particles or poor initialization.
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Derivative-free Bayesian Inversion Using Multiscale Dynamics

Urbain Vaes

(joint work with Antonin Dellanoce, Grigorios Pavliotis and Andrew Stuart)

Inverse problems are ubiquitous because they formalize the integration of data
with mathematical models. To fix ideas, consider the inverse problem of finding
an unknown parameter θ ∈ R

d from data y ∈ R
K where

y = G(θ) + η,(1)

with G : R
d → R

K a forward operator and η the observational noise. In the
Bayesian approach to inverse problems [1], the unknown parameter θ, the noise η
and the data y are treated as random variables. We assume for simplicity that θ
and η are independent with normal distributions θ ∼ N (m,Σ) and η ∼ N (0,Γ).
Then the joint distribution of (θ, y) follows from (1):

(θ, y) ∼ e−ΦR(θ;y)

∫
RK

∫
Rd e−ΦR(θ;y) dθ dy

, ΦR(θ; y) =
1

2

∣∣∣y −G(θ)
∣∣∣
2

Γ
+

1

2

∣∣θ −m
∣∣2
Σ
.

By Bayes’ formula, the conditional probability density function of θ given y equals

(2) π∗(θ) =
e−ΦR(θ;y)

∫
Rd e−ΦR(θ;y) dθ

.

This distribution, called the Bayesian posterior, assigns probabilities to all possi-
ble solutions of the inverse problem (1), and sampling from it enables to quantify
uncertainty for the problem, such as estimating the variance under π∗ or con-
structing confidence intervals for the unknown parameter θ. If the regularized
misfit ΦR is cheap to evaluate and easy to differentiate, then a good candidate to
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generate samples from π∗ would be to use overdamped Langevin dynamics (or a
discrete-time variation thereof), i.e. to simulate the dynamics

(3) dϑ = −∇ΦR(ϑ) dt+
√

2 dW, ϑ = θ0.

Notice that ΦR here plays the role of a potential. It is well-known that, under
appropriate assumptions, the law of ϑt converges to the distribution π∗ in the long-
time limit t → ∞. In many scientific applications, however, the forward model G
is expensive to evaluate and difficult to differentiate, and so it is not possible to
simulate the dynamics (3) directly. In this setting, derivative-free methods are an
attractive proposition.

Ensemble Kalman based interacting particle systems (and variants such as con-
sensus based and unscented Kalman approaches) have proven empirically success-
ful in this context, but suffer from the fact that they cannot be systematically
refined to generate samples that are distributed exactly according to π∗, except in
the setting of linear forward models.

In this talk, we present a new derivative-free approach that may be employed
to sample the Bayesian posterior, and can be refined so that the samples pro-
duced have a probability distribution arbitrarily close to π∗. In order to be imple-
mentable, any numerical method for solving (1) must be discrete in time. However,
for clarity of exposition, we present only the following continuous-time version of
the method in this abstract, which takes the form of a system of interacting SDEs:

dθ = − 1

Jσ

J∑

j=1

〈
G
(
θ + σξ(j)

)
−G(θ), G(θ) − y

〉
Γ
ξ(j) dt

− C(Ξ)Σ−1(θ −m) dt+
√

2C(Ξ) dW,

dξ(j) = − 1

δ2
ξ(j) dt+

√
2

δ2
dW (j), ξ(j)(0) ∼ N (0, Id), j = 1, . . . , J,

where 〈x, y〉 := x⊤Γ−1y and C(Ξ) is the following second moment matrix:

C(Ξ) =
1

J

J∑

j=1

ξ(j) ⊗ ξ(j).

This is a fast/slow system of stochastic differential equations (SDEs), with the
parameter δ determining the timescale separation between the slow process θ and
the fast Ornstein–Uhlenbeck processes ξ(j). The dynamics for θ may be viewed
as an approximation of the overdamped Langevin dynamics (3), with the fast
variables ξ(j) being employed to calculate a local approximation of ∇ΦR(θ). The
method is most useful with σ small, in which case, neglecting quadratic or smaller
terms in σ, it holds approximately that:

(5) G
(
θ + σξ(j)

)
−G

(
θ
)
≈ σ∇G(θ) · ξ(j).



3238 Oberwolfach Report 56/2024

Using this approximation, we can rewrite the equation for θ in the multiscale
system as

dθ ≈ −C(Ξ)∇ΦR(θ) dt +
√

2C(Ξ) dW,

which makes the connection with overdamped Langevin dynamics (3) apparent. A
similar idea, of using stochastic local explorers around a main particle θ to calculate
a finite difference approximation of the gradient, had been used previously in the
context of optimization, see [2, 3].

Our main goal in the presentation is to highlight the flexibility of this method-
ology and its variants, to present theoretical results on the strong and weak con-
vergence of the proposed approach in the limits δ, σ → 0, and to demonstrate its
efficacy by means of numerical experiments.
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A New Control Parameterization for Constrained Systems

Lauren Conger

(joint work with Franca Hoffmann, Antoine Leeman, Yiheng Lin, Adam
Wierman, and Eric Mazumdar)

Over the last five years, system level synthesis (SLS) [1] has been developed to
address the need for controller synthesis in the presence of large-scale systems with
communication delay, controller delay, and locality constraints. This applies, for
example, to power systems, where the speed of communication is on the same order
of magnitude as the speed of the dynamics. SLS allows for convex, distributed
construction of controllers which account for these delays and constraints. I will
discuss two recent results: (1) an extension of SLS to the infinite-dimensional
setting, including partial differential equation dynamics, and (2) a result which
gives conditions under which the addition of constraints does not decrease control
performance for any convex cost function.

(1) The extension of SLS to infinite-dimensional settings is join work with
Franca Hoffmann and Antoine Leeman. Let the state sequence be given by
[x(0), . . . , x(T )] ∈ X , control inputs by [u(0), . . . , u(T )] ∈ U , and observations
by [y(0), . . . , y(T )] ∈ Y . We consider the weak form of linear dynamics, with inner
products on Hilbert spaces U,X, Y ,
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〈x, f〉X = 〈x,Af〉X + 〈u,Bf〉U + 〈wx, f〉X , ∀ f ∈ D(A) ∩D(B) ⊆ X

〈y, g〉Y = 〈x, Cg〉X + 〈wy , g〉Y ∀ g ∈ D(C) ⊆ Y .

where A is a block matrix with operator A repeated on the first superdiagonal,
operators B, C defined similarly, and wx ∈ X and wy ∈ Y are the state disturbance
and sensing error, respectively. For example, A = ∂x or Af = A ∗ f . In classical
control, u is a linear function of the state or observation, given by

〈u, h〉U = 〈x, Kxh〉X ∀h ∈ D(Kx) (state feedback)

〈u, h〉U = 〈y, Kyh〉Y ∀h ∈ D(Ky) (output feedback) .

The gain operators Kx,Ky are upper-block triangular because the feedback is
causal. The SLS paramerization instead relates the disturbance sequences to the
state and input. In the state feedback setting, let φx and φu be block-upper-
triangular, parameterizing the state and inputs in terms of the disturbances:

〈x, f〉X = 〈wx, φxf〉X ∀ f ∈ D(φx) ⊆ X

〈u, h〉U = 〈wx, φuh〉X ∀ g ∈ D(φu) ⊆ U .

Support constraints can be added to φx and φu to account for delays and to enforce
locality constraints; this is one of the key features of the SLS parameterization.

The set of φx, φu that are consistent with the dynamics are specified by the
system level constraint

〈f, φxf̂〉X = 〈f, φxAf̂〉X + 〈f, φuBf̂〉X + 〈f, f̂〉X ∀ f ∈ X , f̂ ∈ D(A) ∩D(B) .

We prove that the space of controllers parameterized by Kx is the same as the
space parameterized by φu, φx, and that the gain Kx in terms of the closed-loop
maps is

〈f, φ−1
x φuh〉X = 〈f, Kxh〉X ,

for appropriate test functions f, g. Importantly, one can solve for φx, φu in a
parallelized fashion; see [2] for details as well as the output feedback setting.

(2) The following is joint work with Yiheng Lin, Adam Wierman, and Eric
Mazumdar. In the classical the setting where x(t) ∈ R

dx , y(t) ∈ R
dy , and

u(t) ∈ R
du , we present a method for computing the controllability and observ-

ability volume for constrained systems, motivated by the co-design problem of
sensor and actuator placement for control cost optimization. We present results
for controllability, with observability following directly as the dual problem. The
controllability Gramian

Wc =

T−1∑

t=0

AtBB⊤(A⊤)t

has a determinant which is proportional to the volume of initial conditions from
which the state can be driven to zero with one unit of control input. We use SLS
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to generalize Wc to account for actuation delay, communication delay, and locality
constraints. To do this, we define

Vc = volume
{
ATx0 : h(x0) ≤ 1

}

h(x0) = min
u

T∑

t=0

‖u(t)‖2 = min
φu

x⊤0

(
T−1∑

t=0

φu(t)⊤φu(t)

)
x0

such that [I −A, −B]

[
φx
φu

]
= I , φx(T ) = 0 , supp φx = Sx , supp φu = Su .

We prove that when there are no additional constraints, that is, φx and φu have
support for all entries, V 2

c = detWc. This means that our result is consistent
with existing notions of controllability. Secondly, we prove that the set {ATx0 :
h(x0) ≤ 1} is an ellipsoid for locality and delay-type constraints, and the volume
has a closed-form solution. Finally, we provide a rank condition to check the
loss of any convex cost function, including controllability, resulting from adding
constraints. If the rank condition holds, then the addition of constraints does not
decrease performance for any convex cost function. This rank condition is much
faster to check than computing the controllability volume, offering an efficient
alternative. We use this condition to show that locality constraints can be added
to large-scale systems without loss. For details, see [3].

Related open questions include:

(1) Co-design: given a sensing or actuation budget and a control cost function,
how can sensors or actuators be selected to minimize control cost?

(2) Is there a local and distributed algorithm that can solve the rank or con-
trollability volume problem?

(3) When links are added or removed from the dynamics (A, B, or C) or the
communication network, when does this lead to better sensing or control-
lability versus further enabling disturbances to propagate?

(4) Can convergence of ADMM in the PDE setting be proven to converge to
the optimal solution?
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Acceleration Methods in the Space of Probability Measures

Oliver Tse

(joint work with Shi Chen, Qin Li, and Stephen J. Wright)

The search for a minimizer of an objective functional E : P(Rd) → R∪{+∞} on the
space P(Rd) of probability measures plays a significant role across many machine
learning problems, encompassing areas such as generative modeling, Bayesian in-
ference, and reinforcement learning. These problems are stated as

ρ∗ ∈ argmin
ρ∈P(Rd)

E(ρ).

A well-known approach to finding a minimizer ρ∗ is to perform a gradient flow

evolution in the space of probability measures P(Rd) w.r.t. the 2-Wasserstein dis-
tance W2, using the objective functional E as the driving functional. More specif-
ically, one considers a curve t 7→ ρt ∈ P(Rd) satisfying

∂tρt = div(ρt∇ ∂E(ρt)),

where ∂E denotes the L2-derivative of E. When E is geodesically λ-convex w.r.t
W2, it is known that ρt converges to ρ∗ with rates [1]

E(ρt) − E(ρ∗) ≤
{
O(t−1) for λ = 0,

O
(
e−2λt

)
for λ > 0.

As a result, the gradient flow method experiences slow convergence when λ ≈ 0.
This applies equally to the gradient descent method used for optimization prob-

lems in Euclidean space. Consequently, various strategies have been developed to
accelerate gradient descent approaches in Euclidean space. Notable acceleration
methods include momentum-based acceleration methods such as the heavy-ball

[2] and Nesterov ’s acceleration methods [3], which have had considerable practi-
cal and theoretical significance, especially in machine learning applications [4, 5].
While much of the research has centered on optimization within Euclidean spaces,
accelerated gradient methods in the realm of probability measures are lacking.

In this talk, I introduce and motivate a class of acceleration methods for curves
t 7→ µt ∈ P(Rd×R

d) satisfying the Hamiltonian flow evolution

∂tµt + divx(µt∇v∂Ht(µt)) = divv(µt∇x∂Ht(µt)),

where Ht : P(Rd×R
d) → R ∪ {+∞} is a time-dependent Hamiltonian given by

Ht(µ) =
1

2

∫∫

Rd×Rd

|v|2 µ(dxdv) + eβtE(ρ),

where ρ(dx) = µ(dx × R
d) represents the x-marginal of µ, describing spatial dis-

tribution, and t 7→ βt is an increasing function satisfying β̇t ≤ 1.
In the case when E is only geodesically convex (λ = 0) w.r.t W2, I show that

the x-marginal ρ of µ along the Hamiltonian flow enjoys the convergence rate

E(ρt) − E(ρ∗) ≤ O(e−βt).
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In particular, one obtains Nesterov’s accelerated rates by choosing βt = log(1+t2).
The proof of the result follows from a well-chosen Lyapunov functional of the form

Lt(µ) = W
2
2(ρ, ρ∗) +

d

dt
W

2
2(ρ, ρ∗) + eβt

(
E(ρ) − E(ρ∗)

)
≥ 0,

which was adapted from a Lyapunov function used in the Euclidean case [6]. Using
second-order W2-calculus, one deduces the differential inequality

d+

dt
Lt(µt) ≤ 0 for almost every t ≥ 0,

from which we obtain Lt(µt) ≤ Lt0(µt0) for every t ≥ t0. Here, d+/dt is the upper
Dini derivative. Since

W
2
2(ρt, ρ∗) +

d

dt
W

2
2(ρt, ρ∗) ≥ 0 for every t ≥ 0,

one then concludes from the monotonicity of the Lyapunov functional along the
Hamiltonian flow µt that

E(ρt) − E(ρ∗) ≤ e−βtLt0(µt0) for every t ≥ t0,

and therewith justifying the claim.
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Dynamics of measure-valued agents and applications to optimization

Giacomo Borghi

(joint work with Michael Herty, Andrey Stavitskiy)

We illustrated in the seminar a novel multi-agent dynamic of consensus type pro-
posed in [1] where each agent is a probability measure over R

d. The research is
motivated by the development of consensus-based optimization algorithms [4] to
solve problems of the form

(1) µ⋆ ∈ argmin
ν∈P(Rd)

E(ν)
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for an objective function E : P(Rd) → [0,∞), with P(Rd) being the space of Borel
probability measures over R

d. We discussed also the case of Gaussian measures and
how the optimization method can be enhanced by the introduction of stochasticity.

1. Consensus dynamics in 2-Wasserstein space

In consensus-based optimization, agents aim to self organize around a global mini-
mum by instantaneously moving towards a consensus point. In Euclidean settings
such point is given by a weighted average of the agents’ position where higher
weights are assigned to agents with lower objective values. This is done by using
exponential weights of the type ω(ν) := exp(−αE(ν)) for some parameter α > 0.

At a time t ≥ 0, we consider N measure-valued agents with bounded second
moments and absolutely continuous with respect to Lebesgue: µi

t ∈ Pac
2 (Rd) for

i = 1, . . . , N . We equip Pac
2 (Rd) with the 2-Wasserstein metric W2(·, ·). Instead

of considering Euclidean averages, we use the metric notion of Frechét mean (also
known as “barycenter” in the literature) to compute the consensus point between
the agents. For absolutely continuous agents and positive weights the barycenter
is shown to unique and defined as

Barycenterω(µ1
t , . . . , µ

N
t ) := argmin

ν∈P2(Rd)

N∑

i=1

ω(µi
t)W

2
2(µi

t, ν) .

Then, we prescribe the agents to instantaneously move towards the barycenter µ
via the optimal transport map T µ

µ : R
d → R

d. The resulting interacting multi-
agent system is therefore given by

(2)

{
µt = Barycenterω(µ1

t , . . . , µ
N
t )

d
dtµ

i
t + div

[(
T

µt

µi
t

(x) − x
)
µi
t(dx)

]
= 0 ∀ i = 1, . . . , N .

By using the formalism of Measure Differential Equations [3] we have shown in
[1] existence of solutions to (2) for compactly supported initial agents and bounded
weight functions. The result is also extended to non-absolutely continuous mea-
sures via Measure Differential Inclusions [3].

2. Optimization in Bures–Wasserstein space

Particularly interesting for applications is the case where admissible solutions to
(1) are restricted to the space of Gaussians measures in R

d. A typical example
is Gaussian Variational inference where the objective function E is the Kullback-
Leibler divergence from a given unnormalized target measure.

Non-degenerate Gaussian probability measures with the 2-Wasserstein metric
form a finite-dimensional Riemannian manifold known in the literature as Bures–
Wasserstein space [5]. Let µ = N (m,Σ) be a Gaussian measure with mean m ∈ R

d

and positive definite covariance matrix Σ ∈ Sym++
d . The tangent space at µ is

given by R × Symd, and the Riemannian metric for is given by

dBW(T, S) = tr(TΣS) =: 〈T, S〉Σ for T, S ∈ Symd ,
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Figure 1. Numerical experiment of Gaussian Variational Infer-
ence. Agents (in red, barycenter in blue) evolve according to (4)
to minimize KL divergence with respect to the target density in
contour lines. Code adapted from [2].

inducing the norm ‖T ‖Σ := 〈T, T 〉Σ. The Riemannian metric coincides with the
Wasserstein one, and Riemannian exponential and logarithmic maps are given by

expBW
Σ (T ) := (T + I)Σ(T + I) , and logBW

Σ (Σ) := Σ
1/2 (

Σ1/2ΣΣ1/2
)−1/2

Σ
1/2

. The
space is geodesically incomplete as exponentials are defined only for T ≻ −Id.

The barycenter between Gaussian agents is also Gaussian and can be efficiently
computed. We note that, therefore, if agents evolving according to (2) are initially
Gaussian, they remain Gaussian during the evolution. In this case, the consensus-
based optimization dynamics reduces to the finite-dimensional particle system

(3)





N
(
mt,Σt

)
= Barycenterω

(
N (m1

t ,Σ
1
t ), . . . ,N (mN

t ,Σ
N
t )
)

d
dtm

i
t = mt −mi

t ∀ i = 1, . . . , N
d
dtΣ

i
t = logBW

Σi
t

(Σt) ∀ i = 1, . . . , N .

Computations in Bures–Wasserstein space are cheaper compared to other Rie-
mannian metrics over the Gaussian manifold and therefore it is interesting to
apply consensus-based evolutions to perform, for instance, Variational Inference.

3. Discretization and addition of stochasticity

In consensus-based optimization, it is essential to introduce stochasticity in the
dynamics to allow the agents to sufficiently explore the search space. We show
how this can be done at the time-discrete level. We start by discretizing (3) in the
covariance space as

T i
(k+1) = ∆t logBW(Σ(k)) , Σi

(k+1) = expBW
Σi

(k)

(
T i
(k+1)

)
.
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We consider below a perturbed version of the update where we introduce a ran-

dom tangent vector W i,Σ
(k) ∈ Sym component-wise normally distributed. To ensure

the arguments of the exponential map remains inside the definition domain {T ∈
Sym |T ≻ I} we introduce for ε > 0 the closed set Ωε = {T ∈ Sym | T � −Id + εId}
and the projection map ΠΩε

(T ) := argminS∈Ωε
‖T − S‖Σ . The time-discrete con-

sensus dynamics with additional stochasticity then reads for σ(k) > 0

(4)





N
(
m(k),Σ(k)

)
= Barycenterω

(
N (m1

(k),Σ
1
(k)), . . . ,N (mN

(k),Σ
N
(k))
)

mi
(k+1) = mi

(k) + ∆t(m(k) −mi
(k)) + σ(k)

√
∆tW i,m

(k) ∀ i = 1, . . . , N

T i
(k+1) = ΠΩε

(
∆t logBW(Σ(k)) + σ(k)

√
∆tW i,Σ

(k)

)
∀ i = 1, . . . , N

Σi
(k+1) = expBW

Σi
(k)

(
T i
(k+1)

)
∀ i = 1, . . . , N .

An open problem is to consider the limit ∆t→ 0 and derive a time-continuous
description of the stochastic multi-agent system in Bures–Wasserstein space.
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Optimizing quasi-monotone evolution equations with the

moment-SOS hierarchy

Swann Marx

(joint work with Saroj Chhatoi, Didier Henrion, Nicolas Seguin)

This report is about the application of an infinite-dimensional version of the
moment-SOS hierarchy in the context of infinite-dimensional (possibly nonlinear)
dynamical systems. The system under consideration is given by:

ż = f(z), z(0) = z0,

with the time-dependent function z : [0, T ] → H , where H is a given real Hilbert
space equipped with a norm ‖ · ‖H and a scalar product 〈·, ·〉H , the dot denotes
the time derivative, f : D(f) ⊂ H → H is a given nonlinear operator, with
domain D(f) densely defined in H , and z0 ∈ D(f) is a given initial condition.
We further assume that H forms a rigged Hilbert space H1 ⊂ H ⊂ H−1, where
H1 := D(f) is equipped with a norm ‖ · ‖H1 , and where H−1 is defined as the
topological dual to H1. A typical example is H := L2(R) (square integrable
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functions), H1 := H1(R) (functions with square integrable weak derivatives) and
H−1 := H−1(R) (dual space including distributions). In the case where f is
semilinear, i.e., f(z) := Az + g(z), with A : D(A) ⊂ H → H the generator of a
strongly continuous semigroup, and g a bounded operator from H to H , the space
H1 is defined as H1 := D(A) (equal to D(f) since g is bounded) and H−1 can be
built [2] as the completion of H with respect to the norm ‖(A− ρI)−1 · ‖H , where
ρ is an element of the resolvent of A. We suppose furthermore that these Hilbert
spaces are separable.

The moment-SOS hierarchy is a mathematical technology that allows to solve
numerically with global optimality guarantees a large class of non-convex opti-
mization problems at the price of solving a family of convex relaxations (typically
semidefinite optimization problems) of increasing size. In particular, it has been
applied in many applications: optimal control; computation of invariant sets; nu-
merical scheme for conservation laws. Most of these problems can be reformulated
as finite-dimensional problems, but when dealing with PDEs, there is a need for
an extension of such a methodology in infinite-dimension, which already exists,
and which will be shortly presented in this talk.

The first step in the approach consists of reformulating a non-convex non-linear
optimization problem in a given domain as a linear problem in cones of measures
supported on this domain. One therefore is faced with a continuity equation as
follows:
∫ T

0

∫

H

(∂tφ(t, z)+ 〈∂zφ(t, z), f(z)〉H) dµt(z)dt =

∫

H

φ(T, z)dµT (z)−
∫

H

φ(0, z)dµ0(z),

with φ defined as cylindrical functions (see e.g., [1]). The Moment-SOS hiearchy
can be seen as a Galerkin projection, i.e. the idea is to take the cylindrical func-
tion as truncated Wiener polynomials to obtain a truncated (and approximated)
sequence of moments of the measure µ.

One of the main challenges when coming to this linear reformulation is to prove
that there is no gap of relaxation between the linear formulation on measures and
the nonlinear and initial formulation. This absence of relaxation gap allows to
prove that the numerical scheme converge.

It turns out that as soon as f is supposed to be quasi-dissipative, i.e. there
exists a ∈ R such that

〈f(z1) − f(z2), z1 − z2〉H ≤ a‖z1 − z2‖2H ,
then, as soon as µ0 = δy0 , µt = δy(t), allowing therefore to prove the absence of
gap of relaxation in the Moment-SOS hierarchy.
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Coupled Wasserstein Gradient Flows for Min-Max and

Cooperative Games

Franca Hoffmann

(joint work with Lauren Conger, Eric Mazumdar, Lillian Ratliff)

We propose a framework for two-player infinite-dimensional games with cooper-
ative or competitive structure. These games take the form of coupled partial
differential equations in which players optimize over a space of measures, driven
by either a gradient descent or gradient descent-ascent in Wasserstein-2 space. Let
the energy in the cooperative setting be defined as Fa : P(Rd1)×P(Rd2) → R∪{∞}
and in the competitive setting as Fc : P(Rd1) × P(Rd2) → R ∪ {∞}, where P(Rd)
is the space of probability measures on R

d,

Fa(ρ, µ) =

∫∫
f(z, x)dρ(z)dµ(x) + R(ρ) + U(µ) ,(1a)

Fc(ρ, µ) =

∫∫
f(z, x)dρ(z)dµ(x) −R(ρ) + U(µ) ,(1b)

where

R(ρ) = αH(ρ) +
1

2

∫
W1 ∗ ρ(z) dρ(z) +

∫
V1(z)dρ(z) ,

U(µ) = βH(µ) +
1

2

∫
W2 ∗ µ(x) dµ(x) +

∫
V2(x)dµ(x) ,

with α, β ≥ 0. Here, we denote by f : R
d1 × R

d2 → R the function governing
coupling forces between the species ρ and µ, by H(η) : P(Rd) → R ∪ {∞} the
entropy functional

H(η) =

{∫
η log η if η ≪ Ld

+∞ otherwise
,

for Ld the d-dimensional Lebesgue measure, by Vi : R
di → R external potentials,

and by Wi : R
di → R interaction potentials. Let us denote by W2 the Wasserstein-2

metric, and ∇W2,ηF the Wasserstein-2 gradient of F with respect to η. Then the
mean-field dynamics in the cooperative setting are

∂tρ = −∇W2,ρFa(ρ, µ) , ∂tµ = −∇W2,µFa(ρ, µ) .(2)

In the competitive case, the dynamics are

∂tρ = ∇W2,ρFc(ρ, µ) , ∂tµ = −∇W2,µFc(ρ, µ) .(3)

We characterize the properties of the Nash equilibrium of the system, and relate
it to the steady state of the dynamics. In the min-max setting, we show, under
sufficient convexity conditions, that solutions converge exponentially fast and with
explicit rate to the unique Nash equilibrium. Similar results are obtained for the
cooperative setting. We apply this framework to distribution shift induced by
interactions among a strategic population of agents and an algorithm, proving
additional convergence results in the timescale-separated setting. The convergence
of Wasserstein-2 gradient flows for min-max problems over spaces of measures was
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recently posed as an open question in [9], and our analysis provides an answer to
these questions for displacement convex-concave functionals over unbounded sets.

Further, we use these results to investigate the long-term effects of strategic
interactions in driving distribution shift in real-world machine learning contexts.
In many machine learning systems, agents whose data is analyzed by the system
are incentivized to manipulate their data to achieve a desired output. Additionally,
distribution shift can occur naturally, or agents share information that causes other
players to evolve. This behavior is not well-understood and has become a subject
of recent interest; see for instance [1, 4, 5, 7, 6, 8, 10]. In settings where the
objective of the learning algorithm opposes that of the agents, the update process
can be modeled as a min-max problem over a large number of agents, which in
a mean-field limit can be analyzed as an optimization problem over measures. In
particular, we incorporate intra-agent interactions in the model via an interaction
potential, exogenous shifts, and strategic responses to the algorithm. We illustrate
how these model components capture rich distributional behavior and can show
disparate effects of retraining among subpopulations.

The analysis of the dynamics in the cooperative setting (2) proceeds similarly to
the approach in [2], in which an HWI inequality is proven for a single species and
log-Sobolev and Talagrand inequalities follow. However, because the dynamics in
the competitive setting (3) no longer have a gradient flow structure, the classical
gradient flow techniques no longer apply. Instead, we prove that any two solution
pairs to (3) contract in W

2
2 ×W

2
2 . While the convexity and smoothness assumptions

can be generalized, even mild relaxations on the lower-bounds in finite dimensions
do not give the same guarantees. For example, in Euclidean space, assuming that
the energy satisfies a Polyak  Lojasiewicz condition instead of convexity results in
non-uniqueness of Nash equilibria. With respect to convexity, our results mirror
the state-of-the-art guarantees existing for finite-dimensional games. However,
relaxing the regularity assumptions on the functionals is likely possible, and an
interesting direction of future research.

Theoretical contributions: From an optimization perspective, the existence of
a Nash equilibrium over measures on unbounded sets has been an open question.
Since existence is unknown, there are no systematic tools for computing equilibria
and in particular, convergence of gradient descent-ascent to an equilibrium is an
open problem [9]. We expand this area of game theory in two key ways.

(1) Classical proofs for existence of Nash equilibria assume optimization over
compact spaces of measures; we prove results without this assumption by
showing contraction in P2 × P2.

(2) By analyzing distributions over action spaces rather than deterministic
actions, the achieved equilibrium is not restricted to a pure Nash equilib-
rium; it can be a mixed Nash equilibrium. Outside of specific games, such
as ones with a finite number of actions or structure that allows direct com-
putation via calculus of variations, computing mixed Nash equilibria over
continuous action spaces is difficult to solve in the general setting. Our
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results suggest that the gradient ascent-descent structure in Wasserstein-2
offers a solution.

From a PDE perspective, this setting opens the door for using techniques from
calculus of variations and gradient flows in metric spaces. In particular, it can
be framed in the language of multi-species systems, a field for which only very
few and recent results exist on asymptotics via entropy methods. We show the
existence of a unique steady state and exponential convergence to it with explicit
rates in four different two-species settings. This extends what is known about
long-time asymptotics for systems of coupled PDEs; in particular, the technical
contributions include the following.

(1) In the cooperative setting, classical functional inequalities are extended to
the case of multiple species.

(2) In the competitive setting, convergence is proven without the use of time-
scale separation; this requires entirely different proof techniques both for
existence of the steady state and convergence. Direct differentiation of
W2 results in convergence, and existence of a unique Nash equilibrium is
shown via contraction. A dynamical systems-type argument is used for
uniform estimates of the second moments.

(3) We demonstrate in a particular application setting how a Danskin-type
result (also known as an envelope theorem in analysis) can be obtained
from basic assumptions using a Γ-convergence argument. This removes a
key assumption in [3] on the differentiability of the best response (see [3,
Lemma 29]). Such a Γ-convergence approach is expected to generalize to
other choices of functionals.

Applications: One particular setting in which models of type (2) and (3) appear
is when machine learning algorithms interact with strategic populations [3]. In
many real-world settings, populations dynamically adapt their strategy based on
algorithm behavior. Optimization methods for algorithms do not usually account
for this data manipulation, and we provide examples illustrating why modeling
distribution shift in the face of learning is critical for improved performance.

(1) We illustrate our model on real data from an economics study, a setting in
which agents manipulated data in response to the action of an algorithm,
showing that our model is able to accurately capture such behavior.

(2) We show the importance of modeling distribution shift in detail. A state-
of-the-art performative prediction method, based on mean shift, is outper-
formed when the classifier follows a simple gradient descent scheme. We
also illustrate how modeling population interactions can be overlooked
when looking at classifier accuracy, but these interaction terms matter
when considering classifier performance on certain subpopulations.

Future Directions: We are currently working on extending this framework be-
yond zero-sum games to treat general multi-species systems that satisfy a suitable
notion of monotonicity.
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A Game-Theoretic Framework for Traffic Flow

Elisa Iacomini

(joint work with Xi Di, Chiara Segala, Michael Herty, Mathieu Lauriere)

A traffic system can be interpreted as a multiagent system, wherein vehicles choose
the most efficient driving approaches guided by interconnected goals or strategies.
With the rise of autonomous vehicles (AVs), the characteristics of traffic flow could
be transformed if AVs are designed to drive differently from humans. To address
this, we focus on developing a game-theoretic approach to traffic flow models using
mean field approximation, which allows us to devise the payoff or cost functions for
cars on a microscopic scale and transform such a behavior to macroscopic traffic
characteristics [2]. This leads to the proposal a broader class of traffic flow models
by manipulating the objective function in the obtained forward-backward PDE
system.



High-Dimensional Control Problems and Mean-Field Equations 3251

Generalised Second-Order Traffic Flow Mean Field Game

Second-order traffic flow models overcome the limitations of first-order models by
introducing an additional equation that describes the variation of the velocity in
time, incorporating non-equilibrium dynamics which are able to capture complex
phenomena like stop-and-go waves; here, we focus on Generalized Second-Order
Models (GSOMs), which at macroscopic level reads as:

(1)





ρ(t, x)t + (ρ(t, x) u(t, x, w))x = 0,

(ρ(t, x)ω(t, x))t + (ρ(t, x)ω(t, x) u(t, x))x = ρ(t, x) r(ρ, u, ω),

ρ(0, x) = ρ0(x), ω(0, x) = ω0(x),

where ρ is the density at time t at point x, u is the mean velocity and ω is the
Lagrangian marker, i.e. a specific characteristic of drivers.
A Mean Field Game (MFG) is a game-theoretic framework to model complex
multiagent dynamics arising from the interactions of a large population of rational
agents, whose dynamical behaviors are characterized by optimal control problems.
In order to state the problem, we make the following modeling assumptions:

• all cars are indistinguishable, with the same predefined driving cost,
• each car gets information on traffic state from all the others and plans its

velocity control anticipating others’ behaviors,
• cars act in a non cooperative way.

The N -car differential game is defined as: Each car aims to select its optimal
velocity control by minimizing its driving cost functional:

JN
i (x, vi, wi) =

∫ T

0

fN
i (x(t), vi(t), wi(t)) dt+ VT (x(T ), w(T )), i = 1, · · · , N.

Therefore, the optimal control problem of the representative agent reads as:

(2) ũ(t, x, ω) = arg min
v(t)

∫ T

0

f (v(t); ρ(t, x), ω(t, x)) dτ + VT (x(T ), w(T )) ,

s.t.





ẋ(t) = v(t),

ẇ(t) = r(ρ(t, x), v(t), ω(t, x)),

x(0) = x, w(0) = w,

where (ρ, ω) are given by (1) and ũ is the optimal velocity, which depends on ω.
Then, the Hamilton-Jacobi-Bellman (HJB) equation corresponding to (2) can

be derived, under the assumptions that f(ρ, v, ω) is strictly convex with respect
to the second argument v, and the relaxation function r(ρ, u, ω) is affine linear in
u, i.e. r(ρ, u, ω) = αu+ s(ρ, ω), α ∈ R, as shown in [4].
Substituting the HJB into (2) and writing explicitly (1), we obtain the GSOM-
MFG system:
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[GSOM-MFG]





(GSOM) ρt + (ρ u)x = 0,

(ρω)t + (ρω u)x = ρ r(ρ, u, ω),

(HJB) Vt + f∗ (V ; ρ, ω) + s(ρ, ω)Vw = 0,

ũ = f∗
V(V ; ρ, ω),

u =
∫
w f

∗
V(V ; ρ, ω)dw,

where V = Vx + αVw and f∗ is the Legendre transform of f .
Numerically, we use a fixed-point strategy for solving the GSOM-MFG: we

solve the GSOM forward employing Lax Friedrichs scheme in order to get the
triple (ρ, u, ω), and then we solve backward the HJB employing upwind scheme
in time and the central difference scheme in space, in order to obtain the traffic
speed u.

Challenges and future work

This work can be extended in several directions: (1) investigate mathematical
properties of GSOM-MFG, including existence and uniqueness of equilibria and
(2) extend GSOM-MFG to networks where cars need to choose routing decisions.
Dynamic traffic assignment and traffic flow models on networks are primarily fo-
cused on routing choice of cars, whereas MFGs on networks allow cars to select
both driving control on edges and route choice at junction points. How to for-
mulate this problem on large-scale networks and (3) solve it efficiently would be
a challenge. Moreover the agent’s impact is assumed to be localized in space, so
that can only affect traffic density at that location. Another extension is (4) to
consider nonlocal traffic flow models in which the impact of a single agent affects
traffic density further down- or upstream.
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