
Mathematisches Forschungsinstitut Oberwolfach

Report No. 47/2024

DOI: 10.4171/OWR/2024/47

Arbeitsgemeinschaft: Algebraic K-Theory and the
Telescope Conjecture

Organized by
Robert Burklund, København
Jeremy Hahn, Cambridge MA

Ishan Levy, København
Tomer Schlank, Jerusalem

13 October – 18 October 2024
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Introduction by the Organizers

Over the course of the week, participants successfully presented the main ingre-
dients disproving the telescope conjecture. The first day began with a talk by
Ravenel, introducing the conjecture, its importance to the large scale structure
of stable homotopy theory, and some of its history. We then saw a talk by Shai
Keidar that reformulated (a part of) the telescope conjecture in terms of Galois
descent. Talks by Wickelgren, Krause, and Neuhauser explained several theo-
rems to the effect that chromatically localized algebraic K-theory sends Galois
extensions to Galois extensions, thereby showing that the telescope conjecture can
be disproved by algebraic K-theory computations. Later talks described how to
compute algebraic K-theory using trace methods and the theory of cyclotomic
spectra.
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The final day concluded with applications of the disproof and proposed further
directions for the subject. In particular, Burklund and Levy explained conse-
quences for the growth rate of the p-ranks of stable homotopy groups of spheres,
as well as the Picard group of the T (n)-local category.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Telescopic localization and the telescope conjecture

Doug Ravenel

1. Early 70s

1.1. Morava K-theory. In the early 70’s Jack Morava discovered the eponynu-
mous spectra K(n). I was lucky enough to spend a lot of time listening to him
explain their inner workings.
K(0) is rational cohomology. For each n > 0 and each prime p, there is a

nonconnective complex oriented p-local spectrum K(n) with

π∗K(n) = Z/p[v±1
n ] where |vn| = 2(pn − 1).

It is related to height n formal group laws, and K(n)∗(K(n)) is related to the
Morava stabilizer group Gn. It is a p-adic Lie group and the automorphism group
of a height n formal group law over a suitable field of characteristic p.

In more detail, a formal group law over a ring R is a power series F (x, y) =∑
i,j ai,jx

iyj ∈ RJx, yK satisfying

(1) Identity: F (0, x) = F (x, 0) = x.
This means a0,0 = 0,

a1,0 = a0,1 = 1 and ai,0 = 0 = a0,i for i > 1.
(2) Commutativity: F (y, x) = F (x, y). This means aj,i = ai,j .
(3) Associativity: F (F (x, y), z) = F (x, F (y, z)). This implies complicated

relations among the ai,j .

Every complex oriented spectrum E has a formal group law over π∗E associated
with it. Here are two examples.

(1) In 1969 Daniel Quillen showed that its formal group law has a universal
property first studied by Michel Lazard in 1955, defined over

π∗MU = Z[xi : i > 0] with |xi| = 2i.

(2) E = K(n), the nth Morava K-theory. The formal group law is character-
ized by its p-fold formal sum, [p](x) = vnx

pn . This means that its height
is n. Height is known to be a complete isomorphism invariant for formal
group laws over the algebraic closure of Fp.

Formal group laws with [p](x) = xp
n

were constructed for all n and p in 1970
by Taira Honda. Hence all heights occur.
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1.2. Morava’s vision. I learned the following from Jack in 1973 and have never
forgotten it. You can find a long lost copy of his unpublished AMS Bulletin
announcement of it in my archive.

Let V denote the “vector space” of ring homomorphisms θ : L → Fp, where
L = π∗MU , and let G be the group of functionally invertible power series in 1
variable over Fp.

• Each point θ ∈ V induces a formal group law over Fp.
• V has an action of G. For γ(x) ∈ G,

F (x, y) 7→ γ−1 (F (γ(x), γ(y))) ,

which is a formal group law isomorphic to F .
• Each G-orbit is an isomorphism class of formal group laws over Fp. Hence
there is one orbit for each height.
• For each θ ∈ V , the isotropy or stabilizer group Gθ = {γ ∈ G : γ(θ) = θ}
is the automorphism group of the corresponding formal group law. When
θ has height n, this group is isomorphic to the Morava stabilizer group
Gn.
• There are G-invariant finite codimensional linear subspaces

V = V1 ⊃ V2 ⊃ V3 ⊃ · · ·

where Vn = {θ ∈ V : θ(v1) = · · · = θ(vn−1) = 0}. We know now that this
filtration of V is related to the chromatic filtation of the stable homotopy
category.
• The height n orbit is Vn−Vn+1. It is the set of Fp-valued homomorphisms
on v−1

n L/In.
• The height ∞ orbit is the linear subspace

⋂

n>0

Vn.

1.3. Smith-Toda complexes. In 1971 Larry Smith and Hirosi Toda indepen-
dently constructed the p-local finite spectrum V (n), a CW-complex having 2n+1

cells with

MU∗V (n) =MU∗/(v0 = p, v1, . . . vn) for 0 ≤ n ≤ 3 and p ≥ 2n+ 1.

Cell diagram for V (2) at p = 5, where |v1| = 8 and |v2| = 48:

•
p
•

α1

•
p
•

β1

•
p
•

α1

•
p
•

0 1 9 10 49 50 58 59

The first 2 cells comprise V (0), the mod p Moore spectrum.
The first 4 cells comprise V (1), and V (2)/V (1) ≃ Σ49V (1).
There is a cofiber sequence

Σ|vn|V (n− 1)
wn

// V (n− 1) // V (n).
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We know that K(n)∗V (n− 1) 6= 0 and that wn is a K(n)-equivalence.
These lead to the construction of the vn-periodic families aka Greek letter ele-

ments

αt ∈ πt|v1|−1S for p ≥ 3

βt ∈ πt|v2|−2pS for p ≥ 5

γt ∈ πt|v3|−2p2−2p+1S for p ≥ 7

αt is the composite

St|v1|
i

// Σt|v1|V (0)
wt

1
// V (0)

j
// S1.

2. Chromatic homotopy theory

2.1. Algebraic patterns. The Greek letter elements are nicely displayed in the
E2-term the Adams-Novikov spectral sequence. In it there are similar families for
all n.

In 1977 Haynes Miller, Steve Wilson and I constructed the chromatic spectral
sequence converging to this E2-term. It organizes things into layers so that in the
nth layer everything is vn-periodic. The structure of this nth layer is controlled
by the cohomology of the nth Morava stabilizer group Gn.

2.2. The chromatic filtration. Later we learned that the stable homotopy cate-
gory itself is similarly organized. The key tool here is Bousfield localization, which
conveniently appeared in 1978, just in time for us!

Let Sp denote the category of spectra. Given a spectrum E, Bousfield con-
structed an endofunctor LE : Sp → Sp whose image category LESp is stable
homotopy as seen through the eyes of E-theory.

We are interested in the case E = K(n). LK(n)Sp is much easier to deal with
than Sp itself. For example, we can compute π∗LK(2)V (1), but we have no hope
of computing π∗V (1).

2.3. Enter the telescope conjecture. Recall the cofiber sequence

Σ|vn|V (n− 1)
wn

// V (n− 1) // V (n)

for 0 ≤ n ≤ 3 and p ≥ 2n + 1. Since K(n)∗wn is an isomorphism, all iterates
of wn are essential. This means that the homotopy colimit of the following is
noncontractible.

V (n− 1)
wn

// Σ−|vn|V (n− 1)
wn

// Σ−2|vn|V (n− 1)
wn

// . . .

We call this the vn-periodic telescope w−1
n V (n − 1), often denoted by T (n).

The telescope conjecture says it is LK(n)V (n − 1). T (n) is more closely related
to the homotopy groups of spheres, while LK(n)V (n− 1) is more computationally
acccessible.
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San Francisco earthquake of October 17, 1989

2.4. The Hopkins-Smith periodicity theorem.

Σ|vn|V (n− 1)
wn

// V (n− 1) // V (n)

Can we generalize this to n > 3? Not exactly. To this day, nobody has con-
structed V (4) at any prime, and in 2010 Lee Nave showed that V ((p+ 1)/2) does
not exist.

On the bright side, in 1998Mike Hopkins and Jeff Smith published the following.

Periodicity Theorem. Let X be a p-local type n finite spectrum, meaning that
K(n)∗X 6= 0 and K(m)∗X = 0 for m < n. Then for some d > 0 (and divisible by
|vn|) there is a map

w : ΣdX → X where K(n)∗w is an isomorphism.

The theorem implies that the cofiber of w has type n + 1. As before we can
form a vn-periodic telescope w−1X =: T (n). It is independent of the choice of w
and the corresponding localization functor LT (n) is independent of the choice of
X .
V (n− 1) is an early example of a finite spectrum of type n.
Again the telescope conjecture equates the geometrically appealing telescope

w−1X with the computationally accessible Bousfield localization LK(n)X .

3. The telescope conjecture

When I stated the telescope conjecture in 1984, it was known to be true for n = 0
and n = 1. The height one case was proved around 1980 by Mark Mahowald for
p = 2 and Haynes Miller for odd primes.

Thus the statement for n > 1 seemed to be favored by Occam’s razor. However,
while I was visiting MSRI (now SLMath) in 1989, something happened that led
me to believe it is false for n ≥ 2.

This failure of the telescope conjecture for n ≥ 2 is now a theorem of Robert
Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank. Their proof is the subject
of this workshop.



Arbeitsgemeinschaft: Algebraic K-Theory and the Telescope Conjecture 2759

Jeremy, Tomer, myself, Ishan and Robert
at Oxford University, June 9, 2023.

Photo by Matteo Barucco.
THANK YOU!

Ambidexterity and Chromatic Cyclotomic Extensions

Shai Keidar

This talk introduces Rognes’ Galois theory [1] and higher semiadditivity as devel-
oped by Hopkins and Lurie [2]. Observing the role of semiadditivity in classical
cyclotomic extensions, we use higher semiadditivity to construct higher cyclotomic
extensions following [3]. In the K(n)- and T (n)-local settings, these higher cyclo-
tomic extensions manifest as faithful Galois extensions, yet the colimit of these
extensions is not necessarily faithful. To address this, we introduce the cate-
gory of cyclotomically complete T (n)-local spectra, which sits between SpK(n) and
SpT (n), and derive a formula for the cyclotomic completion functor.

1. Rognes’ Galois theory

Rognes’ Galois theory extends the classical notion of Galois extensions to any
symmetric monoidal ∞-category, defining a Galois extension as an algebra with a
group action satisfying simple conditions. Faithful Galois extensions are extensions
over which descent theory applies. In classical settings, this framework generalizes
regular Galois extensions of rings.

A collection of results from [4], [1], [5], and [6] shows that SK(n) → En realizes
En as a faithful Galois closure of SK(n). This is computationally significant, en-
abling descent along this extension. The faithfulness of the Galois closure of SK(n)

will turn out to be a key difference between SpK(n) and SpT (n).

2. Higher Semiadditivity

Higher semiadditivity generalizes semiadditivity by allowing the summation (or
integration) of maps along π-finite spaces — truncated spaces finite homotopy
groups.

Hopkins and Lurie proved that SpK(n) is ∞-semiadditive [2], and Carmeli,

Schlank, and Yanovski showed the same for SpT (n) [7].
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3. Higher Cyclotomic Extensions

Representation theory gives a construction the pr-th cyclotomic extension of Q
— it can be achieved by inverting an idempotent in the group algebra Q[Cpr ],
leveraging the ability to sum over Cpr elements and that p is invertible.

In higher semiadditive contexts, p itself may not be invertible, but higher
analogs of p will be. This allows us to mimic the classical construction by re-
placing the discrete group Cpr with the π-finite group BnCpr , defining the higher

cyclotomic extensions SK(n)[ω
(n)
pr ] and ST (n)[ω

(n)
pr ]. These extensions are faithful

(Z/pr)×-Galois extensions in SpK(n) and SpT (n), respectively.

4. Cyclotomic Completion

The Z×
p -pro-Galois extension ST (n)[ω

(n)
p∞ ], formed as the colimit of the higher cy-

clotomic extensions, does not necessarily maintain faithfulness, while SK(n)[ω
(n)
p∞ ]

remains faithful. To address this, we define the category (SpT (n))
∧
cyc ⊆ SpT (n)

of “cyclotomically complete” T (n)-local spectra as the Bousfield localization with
respect to S

T (ω
(n)

p∞
)
, i.e. the subcategory in which S

T (ω
(n)

p∞
)
is faithful. In particular,

SpK(n) ⊆ (SpT (n))
∧
cyc.

Following [8], we show that the cyclotomic completion functor, which is the
localization functor

(−)∧cyc : SpT (n) → (SpT (n))
∧
cyc,

is a smashing localization with unit ST (n)[ω
(n)
p∞ ]

h(Tp×Z)
, where Z×

p = Tp × Zp and
Tp is the torsion subgroup.

The goal throughout this workshop is to demonstrate that (SpT (n))
∧
cyc ( SpT (n),

thus disproving of the telescope conjecture.
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Cyclotomic and polygonic spectra

Qingyuan Bai

The disproof depends on understanding of certain K-theory spectrum, and one
possible way to approach K-theory is via trace method. Given a ring R, there is
a trace map

K(R) −→ THH(R)

which provides a good approximation (there is also trace map to other variants,
for example TC). It is thus desirable to get better understanding of THH and re-
lated constructions. The category of cyclotomic spectra is a category which hosts
interesting structures on THH(R) and allows us to manipulate them. Following
the work of Nikolaus-Scholze and Krause-McCandless-Nikolaus, we define the cat-
egory of cyclotomic spectra and polygonic spectra. We explain how THH(R) and
THH(R;M) provide objects in these categories. We define many functors out of
CycSp including TP, TC and TR.

From now on a prime p is fixed and all spectra are assumed to be p-complete:
in particular Sp would mean the category of p-complete spectra. The category of
(p-typical) cyclotomic spectra is defined as the following lax equalizer:

CycSp := LEq[(Id, (−)tCp) : SpBT
⇒ SpBT]

It almost follows directly from the abstract definition that the category CycSp is a
presentable stable∞-category with a symmetric monoidal structure. It also follows
that one can compute mapping spectra in the category CycSp via an explicit
equalizer diagram of mapping spectra in SpBT. An example of cyclotomic spectra
is Striv: it has underlying spectrum S with trivial T-action and the Frobenius map
S → StCp is the canonical map. We can define the following functors on CycSp,
for X ∈CycSp:

TC−(X) := XhT ∈ Sp

TP(X) := XtT ∈ Sp

TC(X) := mapCycSp(S
triv, X) ∈ Sp

and TR(X) := limk TR
k(X) where

TRk+1(X) := XhC
pk ×

(XtCp )
hC

pk−1 X
hC

pk−1 · · ·XhCp ×XtCp X ∈ Sp.

Another source of cyclotomic spectra is THH of a ring spectra R: the cyclic
bar construction of R comes with amounts of extra information including cyclic
structure and Frobenius map, which implies that the spectrum THH(R) has a
T-action and a Frobenius map, so THH(R) lifts to an object in CycSp. In fact
THH(−) provides a symmetric monoidal functor Alg(Sp)→CycSp.

Finally we talk about polygonic spectra: we focus on the case of truncating set
T = 〈p〉 = {1, p}. In this case we define the category of polygonic spectra to be
the oplax limit (with functors idSp and (−)tCp)

PgcSp〈p〉 := Sp
→
×
Sp

SpBCp .
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The category is a presentable stable ∞-category with symmetric monoidal struc-
ture. The category PgcSp〈p〉 could be identified with the category of genuine
Cp-spectra. An important collection of examples of polygonic spectra comes from
cyclotomic spectra: there is a restriction functor

CycSp→ PgcSp〈p〉

which forgets about the T-action but only remembers the Cp-action and the Frobe-
nius map. Another type of examples of polygonic spectra comes from THH with
coefficients: for a ring spectra R and an R-R-bimodule M , one can write down a
simplicial object of cyclic bar complex forM and define THH(R;M) to be the col-

imit. A nontrivial construction with cyclic bar complex implies that THH(R;M
⊗
R
p
)

has a Cp action along with a Frobenius map

THH(R;M)→ THH(R;M
⊗
R
p
)tCp .

Thus THH(R;M) lifts to an object in PgcSp〈p〉. In fact THH(−;−) lifts to a
functor BiMod→ PgcSp〈p〉.

References
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K-Theory, Land-Tamme, and Levy

Turner McLaurin, Kirsten Wickelgren

1. K-Theory and Localizing Invariants

Given a stable ∞-category C, one extracts the non-connective and connective
K-theory spectra, denoted K(C) and K(C) respectively. Here, K0(C) admits a
tractable description as

K0(C) =
{
free abelian group on symbols [X ] for X ∈ C

}
/ ∼

where [X ] = [X ′] + [X ′′] if there exists a cofiber sequence X ′ → X → X ′′ in C.
We begin by stating the universal property of K-theory of Blumberg, Gep-

ner, and Tabuada. Recall that an ∞-category C is idempotent-complete if its
image under the Yoneda embedding is closed under retracts. Let CatEx

∞ denote

the ∞-category of small stable ∞-categories, and Catperf∞ the full subcategory of

idempotent-complete small stable ∞-categories. The inclusion Catperf∞ → CatEx
∞

admits a left adjoint denoted Idem : CatEx
∞ → Catperf∞ . A functor C → D in CatEx

∞

is said to be a Morita equivalence if Idem(C)→ Idem(D) is an equivalence.
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Example 1. Let A be an E1-ring, and let perf(A) denote the ∞-category of

compact objects of ModA. Then perf(A) ∈ Catperf∞ , and the connective K-theory
of A is defined to be

K(A) := K(perf(A))

Definition 2. A sequence A
i
−→ B

p
−→ C in Catperf∞ is exact if A → B is fully

faithful, the composite A → C is 0, and B/A → C is an equivalence. The exact
sequence is split if both i and p admit left adjoints which compose with i and p
to give the respective identities. A sequence A → B → C in CatEx

∞ is exact (split

exact) if Idem(A)→ Idem(B)→ Idem(C) is exact (split exact) in Catperf∞ .

Definition 3. A functor E : Catperf∞ : Catperf∞ → Sp is localizing if it sends exact
sequences to fiber sequences.

functor E : CatPerf∞ → Sp is an additive invariant if it sends split exact sequences
to fiber sequences.

Example 4. The functors K, THH, and TC are localizing. Every localizing
invariant is additive, but the converse is not true. For example, connective K-
theory is additive, but not localizing.

Here, we follow Land and Tamme’s terminology. Blumberg, Gepner and Tabuada
also require that localizing invariants preserve filtered colimits, which would ex-
clude TC.

Theorem 5 (Blumberg-Gepner-Tabuada). [3] There exist stable presentable ∞-

categories Mloc and Madd, and localizing and additive invariants Uloc : Cat
Ex
∞ →

Mloc and Uadd : CatEx
∞ → Madd respectively, which are universal in the follow-

ing sense: given any stable presentable ∞-category D, post-composition induces
equivalences

U∗
loc : Fun

L(Mloc,D)→ Funloc(Cat
Ex
∞ ,D)

U∗
add : FunL(Madd,D)→ Funadd(Cat

Ex
∞ ,D)

where FunL(Mloc,D) denotes the ∞-category of colimit preserving functors, and

Funloc(Cat
Ex
∞ ,D) and Funadd(Cat

Ex
∞ ,D) denote the ∞-categories of localizing and

additive invariants, which preserve filtered colimits and invert Motiva equivalences,
respectively.

Theorem 6 (Blumberg-Gepner-Tabuada). [3] For any C ∈ Catperf∞ , there is a
natural equivalence of spectra

MapMloc
(Uloc(Sp

ω),Uloc(C)) ≃ K(C)

MapMadd
(Uadd(Sp

ω),Uadd(C)) ≃ K(C)

Moreover, for any additive invariant, which inverts Morita equivalences and pre-
serves filtered colimits, E : CatEx

∞ → Sp, there is a natural equivalence

Map(K,E) ≃ E(Spω)
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In particular, taking E = THH, we obtain π0Map(K,THH) ≃ π0THH(Spω) ≃
π0(S) ≃ Z. The natural transformation K → THH given by the image of 1 refines
to the Dennis trace K → TC.

Theorem 7 (Dundas-Goodwillie-McCarthy). [5] Let B → A be a morphism of
connective E1-ring spectra such that π0(B) → π0(A) is surjective, with kernel a
nilpotent ideal. Then the Dennis Trace induces a pullback

K(B) TC(B)

K(A) TC(A)

y

Taking A = π0B, we see that computing the spectrum K(B) can be reduced to
the more tractable problems of computing TC(A), TC(B), and K(π0B).

When computing with K-theory, one is naturally led to the question of when
a pullback of rings induces a pullback on K-theory spectra. As noted at the
beginning of [2], Swann showed that there is no functor K2 for which Milnor
squares (which are pullback squares of rings A′×′

BB with B → B′ surjective) give
rise to the long exact excision sequence. Land and Tamme [2] proved that one can
obtain pullback diagrams in K-theory, or more generally any localizing invariant
E, by equipping the spectrum A′ ⊗A B with a different ring structure.

Theorem 8 (Land-Tamme). Any pullback square

A B

A′ B′

y

of E1-ring spectra refines naturally to a commutative square

A B

A′ A′ ⊙B
′

A B

B′

such that any localizing invariant sends the outer square to a pullback. Further-
more, the underlying spectrum of A′ ⊙B

′

A B is A′ ⊗A B.

Definition 9. A localizing invariant E is truncating if E(A) → E(π0A)
1 is an

equivalence for any connective E1-algebra A.

Example 10. The localizing invariant K inv := fib(K → TC) is truncating by
Dundas-Goodwillie-McCarthy.

1As with K-theory, we denote E(A) := E(perf(A)).
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2. Topological Cyclic Homology

Ishan Levy extends the Dundas-Goodwillie-McCarthy theorem to the fixed points
of connective ring spectra by Z-actions.

The ∞-category of spectra Sp has a t-structure whose n-connective objects can
be described as Sp≥n = {E ∈ Sp : πi(E) = 0 for i < n}. If R is an E1-ring, then
there exists a t-structure on Mod(R) whose connective and coconnective objects
admit the following description: Mod(R)≥0 is the stable subcategory of Mod(R)
generated by R under colimits and extensions, and Mod(R)<0 consists of those
R-modules whose underlying spectrum is in Sp<0.

Lemma 11. [1, 3.1] Let R be a (−1)-connective E1-ring. Let M be any R-module
which is connective as a spectrum. Then

(1) M ∈ Mod(R)≥0.
(2) For any right R-module N with N ∈ Sp≥0, we have M ⊗R N ∈ Sp≥0.

Proof. (1) The t-structure on Mod(R) supplies a cofiber sequence τ≥0M →M →
τ<0M . As τ≥0M ∈ Mod(R) is built from R by colimits and extensions, and as
R is (−1)-connective, it follows that the underlying spectrum of τ≥0M is (−1)-
connective. As M is connective as an underlying spectrum by assumption, it
follows that τ<0M is as well. Since τ<0M ∈ Sp<0, it follows that τ<0M = 0, thus
τ≥0M →M is an equivalence; in particular, M ∈Mod(R)≥0.

(2) By assumption M is generated by R by colimits and extensions, and as
−⊗RN preserves such constructions, it follows thatM⊗RN is build out of colimits
and extensions by R⊗R N ≃ N . If N ∈ Sp≥0, it follows that M ⊗R N ∈ Sp≥0 as
well. �

Lemma 12. [1, 3.2] Let R,S be E1-rings in Sp≥−1. Suppose that f : R → S
is an i-connective map of E1-rings for i ≥ −1. Let M,N be right and left S-
modules respectively, with M,N ∈ Mod(S)≥0. Then M ⊗R N → M ⊗S N is
(i+ 1)-connective.

Proposition 13. (Waldhausen)[1, 3.3] Let f : R → S be an i-connective map of
connective E1-spectra for i ≥ 1. Then fib(K(f)) is (i+ 1)-connective.

Theorem 14. [1, 3.5] Let

R0 R1 R2

S0 S1 S2

be a map of cospans of connective E1-rings that is levelwise i-connective for i ≥ 1.
Then for any truncating localizing invariant E, E(R0 ×R1 R2)→ E(S0 ×S1 S2) is
an equivalence, and TC(R0 ×R1 R2)→ TC(S0 ×S1 S2) is i-connective.

Proof. Let R3 = R0×R1 R2 and S3 = S0×S1 S2, and let U ′
loc denote the version of

the universal localizing invariant of [3] that does not necessarily preserve filtered
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colimits. Note that R3 is (−1)-connective. By [2], we have a pullback square

U ′
loc(R3) U ′

loc(R0)

U ′
loc(R2) U ′

loc(R0 ⊙
R1

R3
R2)

y

where the underlying spectrum of R0⊙
R1

R3
R2 is equivalent to R0⊗R3R2. Applying

Lemma 3.1, we see that R0 ⊙
R1

R3
R2 is connective. By assumption, fib(Rj → Sj)

is i-connective for i ≥ 1, hence π0(fib(Rj → Sj)) ≃ 0, so that π0(Rj) → π0(Sj)
is an equivalence. Therefore E(π0(Rj))→ E(π0(Sj)) is an equivalence, and as E
is truncating, we find that E(Rj) → E(Sj) is an equivalence. Then R3 → S3 is
(i− 1)-connective, and the map R0⊗R3 R2 → S0⊗R3 S2 is i-connective by Lemma
11. Moreover, by Lemma 11 and Lemma 12, the map S0⊗R3S2 → S0⊗S3S2 is also
i-connective. It follows that the composite R0⊗R3 R2 → S0⊗S3 S2 is i-connective.

On underlying spectra, this agrees with the map R0 ⊙
R1

R3
R2 → S0 ⊙

S1

S3
S2, which

we conclude is also i-connective. Thus E(R0 ⊙
R1

R3
R2) → E(S0 ⊙

S1

S3
S2) is an

equivalence and TC(R0⊙
R1

R3
R2)→ TC(S0⊙

S1

S3
S2) is (i+1)-connective by Theorem

7. Finally, by Theorem 8 we deduce that E(R3) → E(S3) is an equivalence, and
that TC(R3)→ TC(S3) is i-connective. �

Remark 15. Giving a ring R a Z-action is the same as giving an automorphism
φ : R→ R. Given the latter, RhZ fits into the pullback square

RhZ R

R R×R

y

∆

(1,φ)

Applying Theorem 14 to the cospan R
∆
−→ R×R

(1,φ)
←−−− R we get the following.

Theorem 16. [1, B] Let f : R → S be a map of connective E1-rings with Z-
actions, such that f is 1-connective. Then for any truncating invariant E, we
have that E(RhZ) → E(ShZ) is an equivalence. Moreover, if f is i-connective,
then TC(RhZ)→ TC(ShZ) is also i-connective.

3. Purity Theorem

We discuss the Purity results of Land, Mathew, Meier, and Tamme [4]. Fix a prime
p and n ≥ 1, and let K(i) denote the i-th Morava K-theory at the prime p. Let
Vn be a type n complex; that is, a pointed finite CW-complex with K(i)⊗Vn = 0
for i < n, and K(n) ⊗ Vn 6= 0. A self map νn : ΣdVn → Vn is called a νn-
map if K(i)∗(νn) is an equivalence for i = n, and nilpotent for i 6= n. Let
T (n) := Σ∞Vn[ν

−1
n ] be the telescope of νn. For a spectrum E, let LE : Sp→ SpE

denote the Bousfield localization functor, where SpE denotes the ∞-category of
E-local spectra.
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Theorem 17 (Land, Mathew, Meier, Tamme). Let A be a ring spectrum. For
n ≥ 1, the canonical map A→ LT (n−1)⊕T (n)A induces an equivalence in T (n)-local
K-theory.

One can use such purity results to reprove the following theorem of Mitchell.

Theorem 18 (Mitchell). Let E be a module over K(Z). Then K(n)∗E ≃ 0 for
all n ≥ 0.

Lemma 19. [4, Lemma 2.3] Let R be a ring spectrum and n ≥ 1. Then R is
K(n)-acyclic if and only if R is T (n)-acyclic.

Corollary 20. For any ordinary ring R, LT (n)K(R) ≃ 0 and LT (n)TC(R) ≃ 0.

Proof. Note that both K(R) and TC(R) are modules over K(Z). By Theorem
18, K(n)∗K(R) ≃ 0 and K(n)∗TC(R) ≃ 0, and by Lemma 19, we find that
T (n)∗K(R) ≃ 0 and T (n)∗TC(R) ≃ 0. �

Proposition 21. [4, Cor 4.30] Let n ≥ 2 and let A be a commutative ring spec-
trum. Then LT (n)K(A)→ LT (n)TC(A) is an equivalence.

Proof. By the Dundas-Goodwillie-McCarthy theorem, we have a bicartesian square

K(A) TC(A)

K(π0(A)) TC(π0(A))

As the localization functor LT (n) is a left adjoint, applying it to the diagram above
yields a bicartesian square

LT (n)K(A) LT (n)TC(A)

LT (n)K(π0(A)) LT (n)TC(π0(A))

Finally, by Theorem 18, LT (n)K(π0(A)) ≃ 0 and LT (n)TC(π0(A)) ≃ 0, so that
cofib(LT (n)K(A)→ LT (n)TC(A)) ≃ 0, and thus LT (n)K(A)→ LT (n)TC(A) is an
equivalence. �

Proposition 22. Let n ≥ 2 and let A be a connective E1-ring spectrum with
Z-action. Then LT (n)K(AhZ)→ LT (n)TC(A

hZ) is an equivalence.

Proof. Let f : A → π0(A) denote the canonical map; as fib(f) ∈ Sp≥1, f is

1-connective. Then by Theorem 16, K inv(AhZ) → K inv(π0(A)
hZ) is an equiva-

lence. By definition, K inv(AhZ) fits in a fiber sequence K inv(AhZ) → K(AhZ) →
TC(AhZ); applying LT (n) yields a fiber sequence

LT (n)K
inv(AhZ)→ LT (n)K(AhZ)→ LT (n)TC(A

hZ)

To prove that LT (n)K(AhZ) → LT (n)TC(A
hZ) is an equivalence, it suffices to

show that LT (n)K
inv(AhZ) ≃ 0, or equivalently LT (n)K

inv(π0(A)
hZ) ≃ 0. Observe
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that π0(A)
hZ is a Z-module, hence both K(π0(A)

hZ) and TC(π0(A)
hZ) are K(Z)-

modules. By Mitchell’s theorem, K(n)∗K(π0(A)
hZ) and K(n)∗TC(π0(A)

hZ) both
vanish, which by Theorem 19 implies LT (n)K(π0(A)

hZ) and LT (n)TC(π0(A)
hZ)

vanish, thus LT (n)K
inv(π0(A)

hZ) ≃ 0. �
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The cyclotomic t-structure

Piotr Pstrągowski

We discuss the Antieau-Nikolaus t-structure on cyclotomic spectra introduced in
[1]. Following the work of Hahn-Wilson and Burklund-Hahn-Levy-Schlank [2, 3],
we relate the condition of being cyclotomically bounded to various other proper-
ties a cyclotomic spectrum might possess, such as satisfying the Segal conjecture,
canonical vanishing, or the existence of Bökstedt elements.
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Disassembling the disproof

Jeremy Hahn

We give an overview of the disproof of the telescope conjecture, explaining how
Lichtenbaum-Quillen properties & cyclotomic redshift are both applied. This is a
preview for the rest of the week’s talks.
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Purity and Galois descent

Achim Krause

This talk was about recent results regarding telescopically localized algebraic K-
theory LT (n)K(−), specifically about the Purity theorem of [1], which says that
LT (n)K(R) only depends on LT (n)⊕T (n−1)(R), and the descent results of [2], which
say that LT (n+1)K(−) of Ln,f -local rings (or categories) has Galois descent.

Early indicators that K-theory plays well with chromatic localisation (in addi-
tion to the role topological K-theory played in the origins of chromatic homotopy
theory) were a result of Mitchell on the vanishing of LT (n)K(R) for n ≥ 2 and or-

dinary rings R, as well as a result of Thomason that LK(1)K(A) = LK(1)K(B)hG

for a G-Galois extension B/A, i.e. that K(1)-local algebraic K-theory of ordinary
rings satisfies Galois descent. So the main theorems of [1] and [2] are generalisa-
tions of those results to higher height:

Theorem 1 (Purity theorem, [1]).

LT (n)K(R) ≃ LT (n)K(LT (n)⊕T (n−1)R).

If one defines the chromatic height of an E∞ ring as the largest n such that
LT (n)R 6= 0, this says in particular that K(−) increases chromatic height by
(at most) 1. This is Rognes’ “redshift” philosophy, and one can view purity as
a strengthening of redshift in the sense that the above says that the height n
information contained inK(R) only depends on the height n and n−1 information
in R.

For an Ln,f -local ring R, purity in particular says that LT (m)(K(R)) = 0 for
m ≥ n+ 2. The descent result by [2] essentially provides a more refined analysis
of the top nonvanishing chromatic layer of K(R), proving that LT (n+1)K(−) has
Galois descent. More precisely, the statement is the following:

Theorem 2 (T (n + 1)-local Galois descent, [2]). Let G be a finite p-group, and
let C be a stable idempotent complete Ln,f -local ∞-category with G-action. Then

LT (n+1)K(ChG) ≃ LT (n+1)K(C)hG.

In particular, for a Ln,f -local G-Galois extension R′ of R, we have Perf(R) ≃
Perf(R′)hG, and so the above implies Galois descent for p-groups. For general
finite groups, the statement is wrong in higher height (but true in Thomason’s
case n = 1).

Not only are these two results somewhat related, the proofs in the two papers
[1] and [2] are also subtly entangled. We will proceed by first proving a weak form
of purity, namely that LT (n)K(R) only depends on Ln,f(R). This will then be
used to establish a key inductive ingredient in the proof of Galois descent. As part
of the inductive proof of Galois descent, we will then also establish a vanishing
result which can be used to deduce the full purity result.
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1. Proof of a weak version of the purity theorem

We want to check that LT (n)K(R) only depends on the Ln,f -localisation of R. We
first prove a “highly connective” preliminary version:

Lemma 3. Fix n. There exists m such that if A→ B is any m-connective Ln,f -
equivalence between connective spectra,

K(A)→ K(B)

is an Ln,f -equivalence.

Proof. Due to an argument with the Bousfield-Kun functor, it suffices to check
that Σ∞Ω∞K(A) → Σ∞Ω∞K(B) is a LT (n)-equivalence. For connective rings,

Ω∞τ≥1K(A) = BGL(A)+, and the plus construction goes away under suspension.
So we need to prove that

Σ∞BGL(A)→ Σ∞BGL(B)

is an LT (n)-equivalence. Since A → B is an LT (i)-equivalence for i ≤ n, we get
that Ω∞A→ Ω∞B induces an isomorphism on vi-periodic homotopy groups (i.e.
[V,−][v−1] for a type i complex V and vi self-map v). Since GL(A) ⊂ M(A)
is a union of connected components and M(A) is a filtered colimit of Ω∞Ar×r,
we also get that GL(A) → GL(B) and hence BGL(A) → BGL(B) is an iso on
vi-periodic homotopy groups. Now a priori this is not strong enough to give a
LT (n)-equivalence on the suspension spectra, but Bousfield proves that it is if the
map is highly connective (with an explicit bound m that only depends on n). �

To remove the connectivity hypotheses on the map A → B one can then use
Land-Tamme excision. Specifically, we show the following special case:

Lemma 4. If n ≥ 1 and R is connective and Ln,f -acyclic, then LT (n)K(R) = 0.

Proof. For any k ≥ 0, consider the following statement: For all Ln,f -acyclic con-
nective R, LT (n)K(R)→ LT (n)K(τ≤kR) is an equivalence.

Above we have proven this for k = m where m only depended on n. Now we
proceed by downwards induction, using that τ≤kR is a square-zero extension over
τ≤k−1R and is classified by a pullback square

τ≤kR τ≤k−1R

τ≤k−1R τ≤k−1R ⊕ πkR[k + 1].

To a pullback square of rings, Land-Tamme associate a new square where the
bottom right term is replaced by the circle-dot product τ≤k−1R ⊙τ≤kR τ≤k−1R.
The map from τ≤k−1R to the circle-dot ring is an equivalence under τ≤k and
hence by the inductive assumption gives an equivalence on LT (n)K(−). So from
the Land-Tamme pullback square we get that LT (n)K(τ≤kR)→ LT (n)K(τ≤k−1R)
is an equivalence, and we can proceed inductively.
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For k = 0 we learn that LT (n)K(R) is truncating, i.e. depends only on π0(R).
If Ln,fR = 0, in particular LT (0)R = 0, so R is a Z/pm-algebra for some m and
it suffices to check LT (n)K(Z/pm) = 0. By a similar argument as above starting

with the square-zero extension Z/pm → Z/pm−1, we can reduce to m = 1, and
LT (n)K(Fp) = 0 follows from Quillen’s computation since K(Fp) is p-adically
discrete. �

For the general (possibly nonconnective) result, one directly shows that for
a stable (or just additive) category C where mapC(X,Y ) is Ln,f -acyclic for all
objects, one has LT (n)K

add(C) = 0, using Schwede-Shipley-Morita theory and
that additive K-theory only depends on the connective endomorphism spectrum
of a generator. For a general stable category one may then use that Kadd(C) acts
on K(C).

Lemma 5. If C is an Ln,f -acyclic stable category, LT (n)K(C) = 0.

Theorem 6 (Weak purity theorem). LT (n)K(R) only depends on Ln,fR.

Proof. Tensoring the Verdier sequence

kerLn,f → Perf(S)→ Perf(Ln,fS)

with Perf(R), and using that Ln,f is smashing, we get

kerLn,f ⊗ Perf(R)→ Perf(R)→ Perf(Ln,fR),

and since the left hand category if Ln,f -acyclic, the result follows from the previous
lemma. �

2. Galois descent

To study Galois descent of K-theory, we may organize K-theory into an equi-
variant spectrum. Through the formalism of spectral Mackey functors, this is
very straightforward: For C a small stable idempotent complete ∞-category with
G-action, we have a Mackey functor with values in Catperf∞ which takes

G/H 7→ ChH

This is a category-valued Mackey functor, and if we apply any additive invariant
like K, we get a spectral Mackey functor KG(C) with KG(C)

H = K(ChH).
To show Galois descent we want to compare LT (i)KG(C)

H and LT (i)K(C)hH ,
i.e. whether this spectrum is Borel. In fact, we will inductively reduce these
questions to G = Cp using solvability of p-groups. More generally, for a genuine
Cp-spectrum M , we may compare MCp to MhCp

and MhCp using assembly and
coassembly maps. In the diagram

LT (i)MhCp
→ LT (i)M

Cp → LT (i)M
hCp

(1) The first morphism is an equivalence if and only if LT (i)ΦCp
M = 0.

(2) The second morphism is an equivalence if and only if LT (i)M is Borel.

(3) The composite is an equivalence if and only if LT (i)M
tCp = 0.
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If our input is suitably localized, the third condition will be implied by Kuhn’s
blueshift theorem:

Theorem 7 (Kuhn). If R is Ln,f -local, then LT (n)R
tCp = 0, and RtCp is Ln−1,f -

local.

(See [3] for an elegant proof using little more than the Bousfield-Kuhn functor
and a version of the Kahn-Priddy theorem.)

So we will deduce Galois descent from vanishing of geometric fixed points. The
key ingredient is the following lemma, which facilitates the inductive step:

Lemma 8. For an E∞ ring R and i ≥ 1, we have the implications (1)⇒ (2)⇒ (3)
in:

(1) LT (i)R = 0 and LT (i)K(RtCp) = 0.

(2) LT (i)Φ
Cp(KCp

(R)) = 0.
(3) LT (j)K(R) = 0 for all j ≥ i+ 1.

Proof. For (1)⇒ (2) one may assume R to be connective (this uses the weak form
of purity above!). We have the maps

K(R)hCp
→ K(R[Cp])→ K(Perf(R)hCp).

The second map has cofiber given byK(stmodR(Cp)), by the associated Verdier se-
quence. This category is RtCp -linear, and so LT (i)(stmodR(Cp)) = 0 if LT (i)(R

tCp)
= 0. The first map is the assembly, and here one may use Dundas-Goodwillie-
McCarthy to reduce to the following two statements:

• The assembly gives an iso LT (i)K(π0R)hCp
→ LT (i)K(π0R[Cp]). By

Mitchell’s special case of purity for ordinary rings, this is a nontrivial
statement only for i = 1, in which it is an explicit computation.
• The assembly gives an iso LT (i) TC(R)hCp

→ LT (i) TC(R[Cp]), and same
for π0R instead of R. This relies on a description by Hesselholt-Nikolaus
on the cofiber of the assembly on TC as THH(R;Zp)hS1 [1]⊗Cp, which is
an R-module and thus vanishes T (i)-locally by assumption.

For (2) ⇒ (3), K(R)tCp is a module over geometric fixed points. If we had
LT (j)K(R) 6= 0, by the chromatic Nullstellensatz we would get a ring mapK(R)→

Ej and hence ΦCp(KCp
(R)) → K(R)tCp → E

tCp

j , where Ej is height j Morava
E-theory associated to some algebraically closed field k of characteristic p. But it

is not hard to check that LT (i)E
tCp

j 6= 0 whenever i ≤ j − 1, proving the claim.

(The paper uses a more direct, pre-Nullstellensatz argument based on [4].) �

Theorem 9 (Galois descent and vanishing in high heights). Let C be an Ln,f -local
stable ∞-category, then LT (m)K(C) = 0 for m ≥ n+ 2, and

LT (n+1)(C
hG) ≃ LT (n+1)(C)

hG

for any finite p-group acting on C.

Proof. For the vanishing part, K(Ln,fS) acts on K(C), and so it suffices to know
LT (m)K(Ln,fS) = 0. To deduce this from part (3) of the previous result, we
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need LT (n+1)Ln,fS = 0 (clear), and LT (n+1)K(Ln,fS
tCp) = 0. Since Ln,fS

tCp is
Ln−1,f -local by Kuhn, and so an Ln−1,fS-module, this follows inductively.

For the descent part, we reduce to G = Cp by solvability, and then use that in
the diagram

LT (n+1)K(C)hCp
→ LT (n+1)K(ChCp)→ LT (n+1)K(C)hCp

the cofiber of the left map is given by the geometric fixed points of
LT (n+1)ΦCp

KCp
(C), and of the long composite by LT (n+1)K(C)tCp . On these,

we have LT (n+1)ΦCp
KCp

(Ln,fS) acting. But this vanishes by part (2) of the pre-
vious lemma. So the left map and the composite are equivalences, and Galois
descent follows. �

Combining the weak purity result above with this descent result, one may re-
place the Ln,f -locality assumption on C by a weaker version where one replaces C
by an R-linear category for R an E∞ ring with LT (n)R

tCp = 0.
We also can prove the strong version of purity:

Theorem 10 (Purity theorem). LT (n)K(R) → LT (n)K(LT (n−1)⊕T (n)R) is an
equivalence.

Proof. By the weak form of purity, we may assume R to be Ln,f -local already.
Tensoring the sequence

kerLn−2,f → Perf(S)→ Perf(Ln−2,fS)

with Perf(R), we obtain a sequence

kerLn−2,f ⊗ Perf(R)→ Perf(R)→ Perf(Ln−2,fR).

Tensoring instead with Perf(LT (n−1)⊕T (n)R), we obtain the same sequence with
R replaced by LT (n−1)⊕T (n)R, but crucially the kernel does not change: This is
because kerLn−2,f is generated by a type n−1 complex, and tensoring with a type
n−1 complex turns R→ LT (n−1)⊕T (n)R into an equivalence (since R is Ln,f -local
by assumption). So on K-theory, one gets a pullback square

K(R) K(LT (n−1)⊕T (n)R)

K(Ln−2,fR) K(Ln−2,fLT (n−1)⊕T (n)R).

After applying LT (n), the bottom row vanishes by the vanishing result, and so the
claim follows. �
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Cyclotomic Redshift

Leor Neuhauser

This talk is entirely based on [BMCSY23]. The disproof of the telescope conjecture
consists of two claims:

(1) every K(n+ 1)-local spectra is cyclotomically complete, and
(2) there exists some T (n)-local ring spectrum R such that KT (n+1)(R) :=

LT (n+1)K(R) is not cyclotomically complete.

To approach (2), we need to understand how T (n + 1)-local K-theory interacts
with higher height cyclotomic extensions. Our goal in this talk is to prove that
T (n+ 1)-local K-theory satisfies redshift:

Theorem 1. Let R be a T (n)-local ring spectrum, then there is an isomorphism

KT (n+1)(R[ω
(n)
p∞ ]) ≃ KT (n+1)(R)[ω

(n+1)
p∞ ]

The main tool in proving this theorem will be descent for T (n + 1)-local K-
theory. In [CMNN22], the authors proved descent along finite p-groups:

Theorem 2. Let C be an Lfn-local category (i.e. a stable category with Lfn-local
mapping spectra) with G-action for a finite p-group G, then

KT (n+1)(C
hG)

∼
−→ KT (n+1)(C)

hG.

To consider arbitrary higher cyclotomic extensions, we need to generalize this
result for groups in spaces. In fact, we will prove a vast generalization, including
all limits and colimits along π-finite p-spaces.

Theorem 3. The functor KT (n+1) : CatLf
n
→ SpT (n+1) commutes with π-finite

p-space indexed (co)limits.

The proof of Theorem 1 then proceeds by applying Theorem 3 to Perf(R) with
a constant Bn+1Cpr+1 action to deduce

KT (n+1)(R[B
nCpr ])

∼
−→ KT (n+1)(R)[B

n+1Cpr+1 ]

Recall that the cyclotomic extension R[ω
(n)
pr ] was defined by splitting an idempo-

tent on R[BnCpr ]. By showing that the idempotents are compatible on both sides
of the above isomorphism, we conclude cyclotomic redshift

KT (n+1)(R[ω
(n)
pr ])

∼
−→ KT (n+1)(R)[ω

(n+1)
pr ]

with the case r =∞ achieved as a filtered colimit.
To prove Theorem 3, we first use the purity result of [LMMT24] to reduce to

the claim to n-monochromatic categories. A category C is n-monochromatic if it is

Lfn-local and L
f
n−1C = 0. The inclusion of n-monochromatic categories in Lfn-local
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categories CatMf
n
→֒ CatLf

n
has a right adjoint denoted Mf

n : CatLf
n
→ CatMf

n
,

and purity tells us that for every C ∈ CatLf
n
KT (n+1)(C) ≃ KT (n+1)(M

f
n (C)). The

functorMf
n : CatLf

n
→ CatMf

n
commutes with all limits and colimits, so we reduce

Theorem 3 to proving that KT (n+1) : CatMf
n
→ SpT (n+1) commutes with π-finite

p-space indexed (co)limits.
We now use the fact that both CatMf

n
and SpT (n+1) are ∞-semiadditive cat-

egories. Immediately this implies that the π-finite p-space indexed limits and
colimits agree, but moreover, using the ∞-semiadditive structure, we can reduce
the problem to only proving that KT (n+1) : CatMf

n
→ SpT (n+1) commutes with

constant colimits indexed on a π-finite p-space concentrated in a single homotopy
degree. This is then done by induction on the homotopy degree, bootstrapping
Theorem 2.
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Basic Examples of Lichtenbaum–Quillen

Gabriel Angelini-Knoll

Lichtenbaum [5] and Quillen [8] conjectured that there should be a relationship
between algebraic K-theory and étale cohomolology providing K-theoretic descrip-
tions of special values of Dedekind zeta functions. This can be phrased as the
question of whether the fiber of the localization map

K(OF [1/p]) −→ Lf1K(OF [1/p])

is bounded above where K denotes p-complete algebraic K-theory. More generally,
we say that a p-complete spectrum X is asymptotically Lfn-local if the localization
map X → LfnX has bounded above fiber. If X is p-cyclotomic, then TR(X) is

asymptotically Lfn+1X-local if and only if V ⊗ X is cyclotomically bounded for
some p-local, type n+ 2 finite spectrum. For example, if X = THH(R) for a ring

spectrum R then this implies that TC(R) is asymptotically Lfn+1-local and one

can often show that K(R) is asymptotically Lfn+1-local.
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In this talk, I showed that TC(Fp) is asymptocially Lf0 -local, TC(Zp) is asymp-

totically Lf1 -local, and TC(ℓ) is asymptotically Lf2 -local. We also discussed red-
shift in each case. Along the way, we observed that THH(Fp)/p, THH(Zp)/(p, v1)
and THH(ℓ)/(p, v1, v2) are cyclotomically bounded and gave explicit computations
of TC(Fp), π∗TC(Zp)/p of π∗TC(ℓ)/(p, v1). These results are originally due to
Hesselholt–Madsen [4], Bökstedt–Madsen [3], and Ausoni–Rognes [1] respectively.
For simplicity, fix p ≥ 7 and p-complete all invariants.

First, we recall a result of Hopkins and Mahowald [6] that there is an equivalence

Fp ≃ Th(Ω2S3 1+p
−→ BGL1Sp)

of E2-rings. By Blumberg–Cohen–Schlichtkrull [2], this implies that

THH(Fp) ≃ Fp ⊗ ΩS3
+

and from this we can deduce that there are preferred isomorphisms of Fp-algebras

THH∗(Fp) ∼= Fp[µ] ,THH∗(Zp) ∼= Fp[µ
p]〈λ1〉 ,THH∗(ℓ) ∼= Fp[µ

p2 ]〈λ1, λ2〉

where Fp[µ
pk ] denotes polynomial algebra on a class µp

k

in degree 2pk and Fp〈λj〉
denotes an exterior algebra on a class in degree 2pj − 1.

Fix R ∈ {Fp,Z, ℓ} and let F be a suitable Smith–Toda complex. We will

consider the unit map η : π∗F −→ π∗F ⊗TC−(R) and say that y ∈ π∗F ⊗TC−(R)
is in the Hurewicz image of x ∈ π∗F if the unit map sends x to y. In my talk, I
proved the following results:

(1) There is a non-trivial class in π0TC
−(Fp) in the Hurewicz image of p ∈

π0Sp, which is detected by tµ ∈ H2
gp(S

1,THH2(Fp)).

(2) There is a non-trivial class in π2p−3TC
−(Zp) in the Hurewicz image of

α1 ∈ π2p−3Sp, which is detected by tλ1 ∈ H
2
gp(S

1,THH2p−1(Zp)).

(3) There is a non-trivial class in π2p−2TC
−(Zp)/p in the Hurewicz image of

v1 ∈ π2p−2S/p, which is detected by tµp ∈ H2
gp(S

1,THH2p(Zp)/p).

(4) There is a non-trivial class in π2p−3TC
−(ℓ) in the Hurewicz image of α1 ∈

π2p−3Sp, which is detected by tλ1 ∈ H
2
gp(S

1,THH2p−1(ℓ)).

(5) There is a non-trivial class in π2p2−2p−1TC
−(ℓ)/p in the Hurewicz image of

β′
1 ∈ π2p2−2p−1S/p, which is detected by tpλ2 ∈ H

2p
gp(S

1,THH2p2−1(ℓ)/p).

(6) There is a non-trivial class in π2p2−2TC
−(ℓ)/(p, v1) in the Hurewicz image

of v2 ∈ π2p2−2p−1S/p, which is detected by tpλ2 ∈ H
2p
gp(S

1,THH2p2−1(ℓ)/p).

In each case, except for the proof of Item (5), the proof follows from a careful
analysis of the map of Adams spectral sequences

Cotor∗,∗A∗
(Fp, π∗Fp ⊗ F ) Cotor∗,∗A∗

(Fp, π∗Fp ⊗ F ⊗ (limCP 1 THH(Fp)))

π∗F π∗(limCP 1 THH(Fp))
η
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where η : F → F ⊗ TC−(R) → F ⊗ limCP 1 THH(R) is the unit map. The case
Item (5) relies on a power operation

Pk : π2k−1(S/p⊗−) −→ π2pk−1(S/(p, v1)⊗−).

Consider the diagram of spectral sequences

F∗THH(R)tCp [t] F∗THH(R)[t] F∗THH(R)[t, t−1]

F∗(THH(R)tCp)hS
1

F∗TC
−(R) F∗TP(R)

(ϕp)[t] (−)[t−1]

ϕhS1

p can

and let E1 := F∗THH(R)[t], Ê1 := F∗THH(R)[t] and µ
−1E1 := F∗THH(R)

tCp [t].

Let G : (THH(R)tCp)hS
1

≃ TP(R) be the equivalence from [7, Lemma II.4.2].
For Fp, we observe that for bidegree reasons the middle and right spectral

sequence collapse at the first page. Using the relation tµ = p we can resolve
multiplicative extensions to show show that the canonical map

can : TC−
∗ (Fp) −→ TP∗(Fp)

is given in by the map Zp[t, µ]/(tµ−p)→ Zp[t, t
−1] which inverts t. Consequently,

µ ∈ π2THH(Fp)/p is a Bökstedt class. I showed that the map ϕhS
1

p is the map

Zp[t, µ]/(tµ− p)→ Zp[µ, µ
−1] given by inverting µ and G(µ)=̇t−1 where =̇ means

equals up to a unit. We concluded that TC∗(Fp) = Zp〈∂〉 with |∂| = −1. This
implies that LT (0)K(Fp) 6= 0 and LT (1)K(Fp) = 0 proving redshift.

As a consequence, there is a map Ztriv
p −→ THH(Fp) of E∞-algebras in p-

cyclotomic spectra. Using this, one can show that the cyclotomic Frobenius map

ϕp : THH(R) −→ THH(R)tCp

is given by inverting µ on π∗ when R = Fp, inverting µ
p on mod p-homotopy when

R = Zp, and inverting µp
2

on mod (p, v1)-homotopy when R = ℓ. This implies
the Segal conjecture, so THH(Fp)/p is bounded in the cyclotomic t-structure.
To show that THH(Zp)/(p, v1) and THH(ℓ)/(p, v1, v2) are bounded in the cy-

clotomic t-structure, we will observe that µp ∈ π2pTHH(Zp)/(p, v1) and µp
2

∈
π2p2THH(ℓ)/(p, v1, v2) are Bökstedt classes.

In the case of Zp, we further qutient by tµp = v1 and consider

Ê1 = Fp[t, t
−1]〈λ1〉 =⇒ TP∗(Zp)/(p, v1) .

The fact that α1 is detected by tλ1 implies dp(t
1−p) = tλ1 and the spectral se-

quence collapses after this page. We conclude that

can : Fp[t
p, µp]/(tpµp)〈λ1〉 −→ Fp[t

p, t−p]〈λ1〉

is given by inverting tp and ϕhS
1

p is given by inverting µp. This shows that µp ∈
THH2p(Zp)/(p, v1) is a Bökstedt class.

By a result of Bökstedt, we know that the map TC2p−1(Zp) → THH2p−1(Zp)
is surjective so G(λ1) = λ1 and more generally G(λa1t

−jp)=̇λa1µ
jp for a ∈ {0, 1},
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j ∈ Z. We conclude

TC∗(Zp)/(p, v1) ∼= Fp〈λ1, ∂〉 ⊕ Fp{t
dλ1 : 0 < d < p}

and the v1-Bockstein spectral sequence collapses (e.g. use the motivic filtration).
This implies LT (1)K(Zp) 6= 0 and LT (2)K(Zp) = 0 proving redshift.

In the case of ℓ, we also quotient by tµp
2

= v2 and consider

Ê1 = Fp[t, t
−1]〈λ1, λ2〉 =⇒ TP∗(ℓ)/(p, v1, v2), .

The fact that α1 is detected by tλ1 and β′
1 is detected by tpλ2 implies differentials

dp(t
1−p) = tλ1 and dp2(t

p−p2) = tpλ2. We conclude that

can : Fp[t
p2 , µp

2

]/(tp
2

µp
2

)〈λ1, λ2〉 −→ Fp[t
p2 , t−p

2

]〈λ1, λ2〉

is given by inverting tp
2

and ϕhS
1

p is given by inverting µp
2

. This shows that

µp
2

∈ THH2p2(ℓ)/(p, v1, v2) is a Bökstedt class. Using the same power operation
as before and Bökstedt’s result, we can determine that G(λs) = λs for s = 1, 2 and

more generally G(λa1λ
b
2t

−jp2)=̇λa1λ
b
2µ

jp2 for a, b ∈ {0, 1} and j ∈ Z. From this, we
can determine that TC∗(ℓ)/(p, v1, v2) is

Fp〈λ1, λ2, ∂〉 ⊕ Fp〈λ2〉{t
dλ1 : 0 < d < p} ⊕ Fp〈λ1〉{t

dpλ2 : 0 < d < p}

and the v2-Bockstein spectral sequence collapses (e.g. use the motivic filtration).
This implies that LT (2)K(ℓ) 6= 0 and LT (3)K(ℓ) = 0 proving redshift.
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Adams operations on BP 〈n〉

Lennart Meier

Our goal is to construct Adams operations on BP 〈n〉. We will first recall the
definition of BP 〈n〉.

1. Forms of BP 〈n〉

After localizing at p, the complex cobordism spectrum MU splits into (shifted)
copies of BP , where π∗BP ∼= Z(p)[v1, v2, . . . ]. From now on, we implicitly localize
everywhere at p. A complex-oriented ring spectrum R is called a form of BP 〈n〉
if the map BP → R induces an isomorphism Z[v1, . . . , vn]→ R.

Classic examples of forms of BP 〈n〉 are the Adams summand of ku (at height
1) and the spectrum tmf1(3) (at height 2, for p = 2). These are actually E∞-
ring spectra. By work of Lawson and Senger, we know that for general p and n,
there are no E∞-forms of BP 〈n〉; but work of Hahn and Wilson [4, Theorem A]
establishes forms of BP 〈n〉 with an E3-MU -algebra structure. In the following,
we will denote by BP 〈n〉 always a form of BP 〈n〉 with this structure.

2. Adams operations

We give several examples of Adams operations. For this, fix a prime l 6= p.

(1) The most classical Adams operations are the E∞-operations ψl : ku→ ku.
These also induce operations ψl on the Adams summand (and thus on some
BP 〈1〉).

(2) Let F be a formal group law of height n over Fp and En the associated
Lubin–Tate spectrum. The l-series [l] induces an automorphism of F and
hence (by the Goerss–Hopkins–Miller theorem) an E∞-automorphism of
En, which we call ψl.

(3) Jack Davies constructed E∞-Adams operations on many variants of topo-
logical modular forms; applying this to tmf1(3) yields E∞-Adams opera-
tions on some BP 〈2〉.

(4) The stable Adams conjecture provides a homotopy between J and Jψl as
E∞-maps BU → BSL1(S).

1 Thus, ψl becomes a map over BSL1(S)(p)
and Thomifying yields an E∞-Adams operation ψl : MU → MU . We
denote by MUψ the E∞-ring spectrum MU together with its Z-action by
ψl.

Our goal is to prove the following two theorems.

Theorem 1 ([2], Corollary 5.16). Together with its Adams operation ψl, the spec-
trum En lifts to an E2-MUψ-algebra.

1The stable Adams conjecture has a complicated history. Friedlander claimed a proof in 1980,
which however is incorrect. Bhattachariya and Kitchloo [1, Theorem 1.8] provides a corrected
proof with additional conditions on the prime l. Friedlander [3] sheds doubts on part of the
argument of [1] and provides a version for general l; however, he seems never to state that his
spectrum bS agrees with bsl1(S). We treat the stable Adams conjecture as a hypothesis here.
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Theorem 2 (Main theorem; [2], Theorem 5.4). There exists an Adams operation
ψl on BP 〈n〉 making it into an E1⊗A2-MUψ-algebra, and the map BP 〈n〉 → En
lifts to an E1-MUψ-algebra map.

Here, the map BP 〈n〉 → En comes from an identification of LK(n)BP 〈n〉 with

E
hµpn⋊Gal(Fp)
n .
Concretely, the E1⊗A2-algebra structure on BP 〈n〉 means that the multiplica-

tion map BP 〈n〉 ⊗MU BP 〈n〉 → BP 〈n〉 is E1 and thus THH(BP 〈n〉) still retains
an A2-structure (i.e. a homotopy unital multiplication).

Lastly, we remark that the surjection π∗MU → π∗BP 〈n〉 implies that ψl has
to act on π2kBP 〈n〉 as it does on π2kMU , i.e. by multiplication by lk.

3. Proof of the main theorem

Assuming Theorem 1, we will sketch the proof of the E1-part of Theorem 2. We
will construct the Adams operations cell by cell.

Proposition 3 (Odd cells; stated in the proof of Proposition 5.29 of [2]). There
is a filtration

MU = R0 → R1 → · · · → R∞ = BP 〈n〉

of E1-MU -algebras together with pushouts

MU{
⊕

Σ2i−2MU}

��

// MU

��

Ri−1
// Ri

of E1-MU -algebras, where MU{M} denotes the free E1-MU -algebra on an MU -
module M .

The proof idea is similar to how one shows that some space has only cells in
odd dimensions, i.e. using homology. Here our homology theory sends connective
MU -algebras A (with π0A = Z) to fib(Z → Z ⊗A⊗MUZ Z). For A = BP 〈n〉, one
computes by applying a Tor-spectral sequence twice that its homology is concen-
trated in odd degrees, where it consists of free Z-modules. A suitable Hurewicz
theorem allows to inductively construct the cell-structure of Proposition 3.

Showing the E1-part of Theorem 2 amounts to completing the square

BP 〈n〉 //❴❴❴

��

ψl∗BP 〈n〉

��

En // ψl∗En

in E1-MU -algebras. Applying Proposition 3 to do this cell-by-cell, we see ob-
structions in π2i−2ψ

l
∗BP 〈n〉 = π2i−2BP 〈n〉. As this injects into π2i−2En, these

obstructions have to vanish by Theorem 1. Together with an argument about the
connectedness of the space of nullhomotopies, this shows Theorem 2.
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4. Adams operations on Lubin–Tate spectra

We will sketch here a proof of Theorem 1. By the map

LK(n)BP 〈n〉 ≃ E
hµpn⋊Gal(Fp)
n → En,

the Lubin–Tate spectrum obtains the structure of an E3-MU -algebra. This is
equivalent structure to an E4-map to the E3-center of En, which happens to agree
with En (essentially since LK(n)S→ En is pro-Galois); thus we obtain an E4-map
MU → En. By the universal property of Thom spectra, this corresponds to an E4-
nullhomotopy of BU → BSL1S → BSL1En and thus to a pointed nullhomotopy
of BU〈6〉 ≃ B4BU → B4BSL1S→ B4BBSL1En.

To show Theorem 1, we need to produce a Z-equivariant refinement of this
nullhomotopy. Here, we act on En via ψl (to obtain a Z-equivariant spectrum

Eψn ). Denoting by S1,[l2] the circle with a Z-action of degree l2, we further use

a suitable Z-equivariant version of B4 so that Map∗(S
3 ∧ S1,[l2],−) reproduces

BU → BSL1S→ BSL1E
ψ
n . Thus, if the nullhomotopy refines Z-equivariantly, we

obtain an E3-map MUψ → Eψn , yielding Theorem 1.
To produce the Z-equivariant refinement, we have to compute

π∗Map(B4BU,B5SL1En)
hZ.

As B4BU ≃ BU〈6〉 has even cells, this can be done via an Atiyah–Hirzebruch
spectral sequence, and the groups inject into their rationalization. As B5SL1S is
rationally trivial, a Z-equivariant nullhomotopy must exist and one can show it to
be compatible with the original non-equivariant nullhomotopy.

Remark 4. It would have been good enough for our purposes to have an E1-
MUψ-algebra structure in Theorem 1. But the proof of this would have been no
easier since B3BU does not have the nice even cell structure of B4BU ≃ BU〈6〉.
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Lichtenbaum–Quillen for truncated Brown–Peterson spectra

John Rognes

Let p be any prime and n ≥ 0 an integer. Recall from Basterra–Mandell [2] that
BP is a retract of MU(p) in E4-rings. Following Hahn–Wilson [3, Thm. A], let

R := BP 〈n〉
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be an E3-BP -algebra such that the composite ring homomorphism

Z(p)[v1, . . . , vn] ⊂ BP∗ → R∗

is an isomorphism. Let Cpk denote the subgroup of T of order pk when 0 ≤ k <∞,
and T itself when k =∞.

The topological Hochschild homology spectrum THH(R) is a cyclotomic E2-
THH(BP )-algebra, with (p-)cyclotomic structure map

ϕ : THH(R) −→ THH(R)tCp ,

and canonical maps

can: THH(R)hCpk −→ THH(R)tCpk

for 0 ≤ k ≤ ∞, all compatible with the (residual) T-actions.

Theorem 1 (Segal conjecture, [3, Thm. C, Thm. 4.0.1]). Let U be any type ≥ n+1
finite p-local spectrum. The cyclotomic structure map U ⊗ ϕ is truncated, i.e.,
induces an isomorphism

U∗ϕ : U∗THH(R)
∼=
−→ U∗THH(R)tCp

in all sufficiently large degrees ∗ ≫ 0.

Proposition 2 ([3, Prop. 6.2.1]). There is a finite p-local E1-ring U with a non-
nilpotent central vn+1-element v ∈ U∗ of degree |v| = (2pn+1 − 2)e, such that

(1) v has Adams filtration e;
(2) U ⊗R splits as an R-module as a finite sum of suspensions of Fp;
(3) the homomorphism U∗BP → U∗R is surjective.

The cofiber U/v is a type n+ 2 finite p-local spectrum.

Theorem 3 (Canonical vanishing, [3, Thm. D, Thm. 6.3.1]). There are U and v
as above, and an integer d, such that for each 0 ≤ k ≤ ∞ the canonical homomor-
phism

(U/v)∗can: (U/v)∗THH(R)hCpk
0
−→ (U/v)∗THH(R)tCpk

is zero whenever ∗ ≥ d.

The Segal conjecture and canonical vanishing together imply cyclotomic bound-
edness.

Corollary 4 (Bounded TR, [3, Thm. G, Thm. 3.3.2(f)]). For each type n + 2
finite p-local spectrum V , the graded abelian group V∗TR(R) is bounded.

This conclusion is equivalent to saying that V ⊗ THH(R) is bounded in the
cyclotomic t-structure, by Antieau–Nikolaus [1, Thm. 9].

The relative topological Hochschild homology

THH(R/BP ) = R⊗R⊗BPRop R

is an E2-BP -algebra with T-action, with homotopy fixed points TC−(R/BP ) =
THH(R/BP )hT. Letting vn+1 be the lowest-degree generator of

(vn+1, vn+2, . . . ) = ker(BP∗ → R∗) ,
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its suspension σvn+1 ∈ [vn+1] is the lowest-degree generator of

ker(π∗(R ⊗BP R
op)→ R∗) ,

and its double suspension σ2vn+1 ∈ [σvn+1] is the lowest-degree generator of

ker(π∗THH(R/BP )→ R∗) .

Theorem 5 (Polynomial THH, [3, Thm. E, Thm. 2.5.4]). There is an isomor-
phism of even R∗-algebras

π∗THH(R/BP ) ∼= R∗[γpiσ
2vn+1 | i ≥ 0] ,

with lowest-degree generator σ2vn+1 in degree 2pn+1.

Theorem 6 (Detection, [3, Thm. F, Thm. 5.0.1]). There is an isomorphism of
even R∗-algebras

π∗TC
−(R/BP ) ∼= π∗THH(R/BP ) [[t]]

with |t| = −2. The unit map ι : BP → TC−(R/BP ) takes vn+1 to t · σ2vn+1.

The E2-ring maps

TC(R)
π
−→ TC−(R) −→ TC−(R/BP )

lead to the following variant of [3, Thm. B], where we may assume T (n+1) = v−1U .

Corollary 7. Multiplication by v acts non-nilpotently on U∗TC
−(R/BP ), so

T (n+ 1)∗TC
−(R/BP ) 6= 0 and T (n+ 1)∗TC(R) 6= 0.

References

[1] Benjamin Antieau and Thomas Nikolaus, Cartier modules and cyclotomic spectra,
J. Amer. Math. Soc. 34 (2021), no. 1, 1–78.

[2] Maria Basterra and Michael A. Mandell, The multiplication on BP , J. Topol. 6 (2013),
no. 2, 285–310.

[3] Jeremy Hahn and Dylan Wilson, Redshift and multiplication for truncated Brown–Peterson
spectra, Ann. of Math. (2) 196 (2022), no. 3, 1277–1351.

THH of cochains on the circle

Neil P. Strickland

Given a space X we write D+(X) for the mapping spectrum from X to the sphere
spectrum S. This might also be denoted by F (X+, S) or SX , and called the
spherical cochain ring for X . The spectrum A = D+(S

1) = D+(BZ) = SBZ can
also be regarded as the homotopy fixed point spectrum ShZ for the trivial action
of Z on S. Let R = THH(A) be the topological Hochschild homology spectrum
of A. If B is any other Z-equivariant A∞ ring spectrum then there is a natural
map R → THH(BhZ); because of this, R (or its p-adic completion) plays a role
in the disproof of the Telescope Conjecture. In this note we discuss some relevant
structure of R.

As a general feature of THH, the spectrum R has an action of the circle. We
call this the outer circle and denote it by T; it will be convenient to distinguish
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it notationally from the circle S1 in the definition of A, which we call the inner
circle. Both circles have group structures which we write additively.

Because A is commutative, the spectrum R also has a commutative ring struc-
ture with the following universal property. For each a ∈ T we have a ring map
ia : A → R, depending continuously on a. Moreover, if we have a continuous
family of ring maps fa from A to another commutative ring B, there is a unique
f : R→ B with fia = fa for all a. In other words, R is the T-fold coproduct of A.

Using this we can construct many ring endomorphisms of R. Put

Γ = End(T)× End(S1)×Hom(T, S1)× T× S1 ≃ Z3 × (S1)2.

For p ∈ End(S1) and b ∈ S1 we define αp,b : S
1 → S1 by αp,b(t) = pt + b. For

(n, p, q, a, b) ∈ Γ we define γ(n, p, q, a, b) : R → R to be the unique ring map such
that the following diagram commutes.

A A

R R

is

α∗
p,qs+b

ins+a

γ(n,p,q,a,b)∗

One can make Γ into a monoid in such a way that this gives a monoid action.
The Dehn twist, which plays an important part the disproof of the Telescope
Conjecture, is closely related to the action of Hom(T, S1) ⊂ Γ. The cyclotomic
structure of R is related to the action of p.1T ∈ End(T) and the translation action
of Cp = ker(p.1T), both of which are part of the Γ-action. Most other construc-
tions mentioned here are equivariant for appropriate actions of Γ. In particular,
Γ acts on the space Hom(T, S1) × S1. The group T is a submonoid of Γ, and
Hom(T, S1) × S1 decomposes T-equivariantly as S1 ∐

∐
q 6=0 T/ ker(q) (where q

runs over Hom(T, S1)). There is a canonical Γ-equivariant ring map φ from R to
the ring

R̂ = D+(Hom(T, S1)× S1) = A×
∏

q 6=0

D+(T/ ker(q)).

It turns out that R̂ is a kind of completion: the relationship between R and R̂ is
like the relationship between an infinite direct sum and the corresponding infinite
product. There are various cyclotomic constructions that can be done easily for

R̂, and our problem is to decomplete the answer to get corresponding results for
R.

There is a Hochschild filtration A = F0R ≤ F1R ≤ · · · ≤ R of R, in which
FiR.FjR ≤ Fi+jR and FiR/Fi−1R ≃ A⊗Σ

i(A/S)⊗i but A/S= S−1 so FiR/Fi−1R
≃ A. Using this we see that FiR ≃

⊕
j≤iA as an A-module, and so R ≃

⊕
j∈N A.

We can understand the ring structure of the homotopy by comparison with the
ring

π∗(R̂) = Map(Hom(T, S1), π∗(S)〈ǫ〉) ≃ Map(Z,Z)⊗ π∗(S)〈ǫ〉.

(Here ǫ is an exterior generator in degree −1 corresponding to the generator of
H−1(A).) Let NP < Map(Z,Z) be the ring Q[x] ∩Map(Z,Z) of numerical poly-
nomials, which is spanned by the functions bk(x) =

(
x
k

)
. It can be shown that the
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map φ : R→ R̂ identifies π∗(R) with NP⊗π∗(S)〈ǫ〉. (The ring NP also appears in
algebraic topology as KU0(BS

1), and one can show that there is an isomorphism
KU ⊗R ≃ KU ⊗ (S1 ×BS1) of KU -algebras that is compatible with this.)

We now p-complete everywhere. It is a standard fact that the p-completion of
NP can be identified with the ring of p-adically continuous functions from Z to
Zp. When we perform cyclotomic constructions on the factors F ((T/ ker(q))+, Sp)

in R̂p, many features depend only on the p-adic valuation of the element q ∈
Hom(T, S1) ≃ Z. Because the set pvZ×

p is open and closed in Zp, its characteristic
function is continuous, and so comes from an idempotent element on π0(Rp), which
we can use to split Rp as a product. We can also do the same (more obviously)

for R̂p. The fact that some features are constant on pvZ×
p makes it meaningful

to ask whether other features vary continuously on that set. The main conclusion
is that the cyclotomic invariants of R are the p-adically continuous parts of the

corresponding invariants for R̂. Using this we can compute enough about the
cyclotomic invariants of R to see that the sphere S lies in the thick subcategory
of cyclotomic spectra generated by the fibre of the canonical map R→ A. This is
the key fact about R needed elsewhere in the disproof of the telescope conjecture.

In more detail, the results can be described as follows. We write Cm for the
the cyclic subgroup of order p in T, and ζ for any map induced by the map
p.1T : T→ T/C → T. We then have

R̂= D+(S
1)×

∏

q 6=0

D+(T/ ker(q))

R̂hT= D+(BT× S1)×
∏

q 6=0

D+(B(ker(q)))

R̂hCp=
∏

p|q

D+(BC × S
1)×

∏

p∤q

D+(T/ ker(pq))

R̂tCp= D+(S
1)∧p ×

∏

p|q 6=0

D+(T/ ker(q))
∧
p≃ R̂

∧
p via ζ

(R̂tCp)hT/C= D+(B(T/Cp)× S
1)∧p ×

∏

p|q 6=0

D+(B(ker(q)/Cp))
∧
p≃ (R̂∧

p )
hT via ζ

Let Uv be the set of elements of p-adic valuation v in Hom(T, S1). The first of the
above isomorphisms gives

π0(R̂
∧
p ) = π0(D+(S

1)∧p )×
∏

v≥0

Map(Uv, π0(D+(T/Cpv ))).

We will write

π0(R
∧
p ) ∼ π0(D+(S

1)∧p )×
∏

v≥0

C(Uv, π0(D+(T/Cpv ))).

Here C(Uv,−) refers to functions that are continuous with respect to the p-adic
topology on Uv, and we write ∼ rather than = because π0(R

∧
p ) is in fact the
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subring of the product defined by a certain asymptotic condition as v →∞. The
rings π∗(R

hT, π∗(R
hCp), π∗(R

tCp) and π∗((R
tCp)hT/Cp) can be described in similar

terms.

Locally unipotent Z-actions

Liam Keenan

1. Why locally unipotent Z-actions?

One of the basic technical notions used in Burklund–Hahn–Levy–Schlank’s dis-
proof of the telescope conjecture is that of a locally unipotent Z-action. The tele-
scope conjecture, if true, predicts that T (n+ 1)-local topological cyclic homology
satisfies descent for certain covers of the form RhZ → R, where satisfying descent
is equivalent to the coassembly map

(1) T (n+ 1)⊗ TC(RhZ)→ T (n+ 1)⊗ TC(R)hZ

being an equivalence. The overall strategy of the disproof is to produce one of
these coverings for which the map (1) is not an equivalence. By a relatively direct
analysis ([2, Section 3.4]) combined with deep computations of Hahn–Wilson [4],
the map (1) fails to be an equivalence for R = BP〈n〉 with the trivial Z-action
but the map BP〈n〉BZ → BP〈n〉 is not a covering, so we have not yet produced
a counterexample. Therefore, if it was possible to “trivialize” the Z-action for a
suitable covering of BP〈n〉, the disproof would be well under way. Enter locally
unipotent Z-actions.

Slogan: Locally unipotent Z-actions on finite objects can be trivialized up to
rescaling the Z-action.

2. Definition and basic properties

Throughout, we work with presentable stable categories, C, and view objects with
Z-action as diagrams of the form X : BZ → C. We will often speak of such a
diagram in terms of an object X ∈ C and an automorphism ψ : X

∼
−→ X , obtained

from 1 ∈ Z→ MapC(X,X).

Definition 1. Let C be a presentable stable category. We let CBZ,u denote the
localizing subcategory of CBZ generated by the image of (−)triv : C → CBZ. The
we denote the inclusion CBZ,u → CBZ by ι.

Example 2. Certainly, S with the trivial Z-action is locally unipotent. Given
any Z-action ψ : X

∼
−→ X where ψ − 1 is an equivalence, this action will fail to

be locally unipotent; for instance, if X is a Q-module then multiplication by a
rational number on X is not locally unipotent.

Remark 3. By the adjoint functor theorem, ι admits a right adjoint (−)u :
CBZ → CBZ,u. When C is additionally presentably symmetric monoidal, then ι
is symmetric monoidal and (−)u is lax symmetric monoidal.
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In nice cases, it is possible to give a characterization of locally unipotent Z-actions
in line with the familiar notion of local unipotence from algebra.

Example 4. ([2, A.25]) For M an abelian group with Z-action, M is locally
unipotent if and only if for all m ∈ M , we have that (ψ − 1)◦N (m) = 0 for some
N ≫ 0.

Example 5. ([2, A.27]) If C has a compact generator, V , then X ∈ CBZ,u if and
only if the Z-action on the homotopy groups π0MapC(Σ

kV,X) is locally unipotent
for all k. Consequently, the Z-action on a spectrum, X , is locally unipotent if and
only if the Z-action on π∗X is locally unipotent.

Example 6. ([2, Theorem 5.4]) Burklund–Hahn–Levy–Schlank construct a Z-
action on BP〈n〉∧p by a certain Adams operation Ψℓp ; let ℓp = 3 if p = 2 and
ℓp = 2 if p > 2. For any k ≥ 0, it follows from the construction of these Adams
operations ([2, Lemma 5.30, Corollary 5.31]) that

Ψℓp : π2kBP〈n〉
∧
p → π2kBP〈n〉

∧
p

is multiplication by ℓkp. However, as k is always divisible by p− 1, Examples 4 and
5 show that this action is locally unipotent.

It is profitable to study locally unipotent actions in terms of categories of mod-
ules. Let S[t±1] = S[Z], with t ∈ π0(S[t

±1]) = Z[t±1]. Clearly, S[t±1] determines
a spectrum with Z-action, and by a standard Morita theory argument there is a
symmetric monoidal identification

SpBZ ≃ Mod(S[t±1]),

given by X 7→ mapZ(S[t
±1], X); importantly, we use the symmetric monoidal

structure coming from the fact that S[t±1] is a bicommutative bialgebra in spectra.

Under this identification, the full subcategory SpBZ,u can be identified with the full
subcategory of (t−1)-nilpotent S[t±1]-modules, which has orthogonal complement
given by modules over S[t±1][(1 − t)−1]. These subcategories form a recollement

of Mod(S[t±1]), and consequently for any ψ : X
∼
−→ X , we have a natural “gluing”

cofiber sequence

ι(Xu)→ X → X [(ψ − 1)−1].

More generally, by tensoring with a presentable stable category C, we obtain a
similar recollement for CBZ as well as a gluing cofiber sequence, which shows that
Xu ≃ 0 if and only if ψ − 1 is an equivalence [2, A.22, A.24].

Lemma 7. [2, Lemma A.21] The functor (−)hZ : CBZ,u → C induces a symmetric
monoidal equivalence

CBZ,u ∼
−→ Mod(C; SBZ),

compatible with restriction to any nZ ⊆ Z. Consequently, the adjunction (ι ⊣ (−)u)
can be expressed as

S⊗SBZ (−) : Mod(C; SBZ) ⇋ Mod(C; S[Z]) : mapS[Z](1C ,−),

where S is viewed as a (S[Z], SBZ)-bimodule.
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Proof. Using the Lurie tensor product as above, we can reduce to the universal case
of C = Sp, where the claim follows from [1, A.4] combined with the observation

that (−)hZ : SpBZ,u → Sp is conservative. �

3. Trivializing locally unipotent actions

We now specialize to the case where C is a stable, p-complete, presentable cat-
egory, e.g. C = Sp∧p , the category of p-complete spectra obtained by Bousfield
localization at S/p. Throughout, we will often leave the prime p implicit and we
hope this does not cause confusion for the reader.

In the p-complete setting, the local unipotence of a Z-action ψ : X
∼
−→ X is

equivalent to the local unipotence of the induced pZ-action on X ; this follows from
the observation that in the p-complete setting inverting (ψ − 1)p is the same as
inverting ψp − 1. This observation will allow us to compute the underlying object
of ιXu.

Lemma 8. [2, Lemma A.32] Let C be a stable p-complete, presentable category,
and let X ∈ CBZ. There is a natural equivalence

colimkX
hpkZ ∼

−→ ιXu

of objects in C. Consequently, X is locally unipotent if and only if the map

colimkX
hpkZ → Xhe = X,

is an equivalence.

Proof. By colimit interchange combined with the fact that colimkS
BpkZ ≃ S, we

have natural equivalences

colimkX
hpkZ ≃ colimkS⊗colimkSBpkZ X

hpkZ ≃ colimk

(
S⊗SBpkZ X

hpkZ
)
≃ ιXu,

which follow from Lemma 7 and resp
kZ
pk+1Z

ιXu ≃ ι(resp
kZ
pk+1Z

X)u. The second claim

follows easily from the first. �

Lemma 9. Let C be a stable p-complete, presentable category.

(1) [2, Lemma A.33] If X ∈ C is compact and X has a locally unipotent
Z-action, then for k ≫ 0 the action of pkZ on X is trivializable.

(2) [2, Lemma A.34] Assume C is equipped with a t-structure. If X ∈ C
is bounded for the t-structure, compact in C, and has a locally unipotent
Z-action, then for k ≫ 0 the action of pkZ on X is trivializable.

Proof. We prove (1) and (2) follows mutatis mutandis after unraveling the defini-

tions. By Lemma 8, we can choose k ≫ 0 so that X is a retract of XhpkZ. This

provides a nullhomotopy ψp
k

− id ≃ 0, whence the claim. �



Arbeitsgemeinschaft: Algebraic K-Theory and the Telescope Conjecture 2789

3.1. A special example. Consider the ring of continuous functions C0(Zp,Fp),
where Zp carries the p-adic topology and Fp has the discrete topology, so that
continuity is tantamount to local constancy. For brevity, we write C0(Zp) for
this ring, and note that Zp, and thus C0(Zp), carries a natural Zp-action from

+1 : Zp → Zp. We denote these objects with their Z-actions by
−→
Zp, and C

0(
−→
Zp),

respectively. This ring is relevant in virtue of the identification of commutative
algebras

WC0(Zp)⊗ SBZ ∼
−→ THH(SBZ)

from [2, Lemma 3.6]. We conclude this section by studying some of the basic struc-

tural features of WC0(
−→
Zp) which see use in the proof of the cyclotomic asymptotic

constancy theorem. Given a ∈ Zp, evaluation at a induces a ring homomorphism
C0(Zp) → Fp, and thus a map eva : WC0(Zp) → W(Fp) ≃ S∧p ; we denote base-
change along this map by (−)|a.

Proposition 10. [2, Proposition A.35] Let C be a stable, p-complete, and pre-
sentably symmetric monoidal category.

(1) The Z-action on WC0(
−→
Zp) is locally unipotent.

(2) The unit map S→WC0(
−→
Zp)

hZ is an equivalence.
(3) There is a symmetric monoidal equivalence of categories

C
∼
−→ Mod(CBZ,u;WC0(

−→
Zp)),

given by X 7→ X ⊗WC0(
−→
Zp) with inverse (−)hZ.1

(4) For each a ∈ Zp, there is a natural equivalence of functors of the form

Mod(SpBZ,u;WC0(Zp))→ Sp,

(−)hZ ≃ (−)|a ◦ fgt.

Proof. For (1), as W perserves colimits, we can write

WC0(
−→
Zp) ≃ colimkWC0(

−−−→
Z/pk)

by the definition of locally constant functions on Zp. The +1-action on
−−−→
Z/pk is

trivial after restriction to pkZ, so the colimit above is a colimit of locally unipotent

objects. (2) follows by smashing the unit map S → WC0(
−→
Zp)

hZ with Fp, and
observing that

0→ Fp → C0(Zp)
ψ−1
−−−→ C0(Zp)→ 0

is exact.2 For (3) and (4) it suffices to consider the case C = Sp. To see (3), first

observe that WC0(
−→
Zp)⊗ (−) is valued in spectra with locally unipotent Z-action.

From (2) combined with the finiteness of BZ, we see that the unit map

X → (WC0(
−→
Zp)⊗X)hZ

1In particular, every WC0(
−→
Zp)-module in CBZ,u is free.

2If f a locally constant and f(x+1) = f(x) for all x ∈ Zp, we find f must have been constant

by translating neighborhoods.



2790 Oberwolfach Report 47/2024

is an equivalence, so we may conclude by the conservativity of (−)hZ on locally
unipotent objects. Finally, for (4), we have a chain of natural equivalences

(−)|a = S⊗WC0(Zp),eva
(−) ≃ S⊗WC0(Zp),eva

WC0(Zp)⊗ (−)hZ

≃WC0(Zp)|a ⊗ (−)hZ ≃ (−)hZ

where we have used (3). �

4. Interactions with THH

We conclude by discussing the interaction of THH and TC with locally unipotent
Z-actions, with everything implicitly p-complete. Additionally we will use the

notation Wk = THH(SBp
kZ), setting W =W0, and for X a Wk-module, we define

X |0 = SBp
kZ ⊗Wk

X .

Lemma 11. [2, Lemma 4.7] Let R ∈ Alg(SpBZ,u). Then, the induced Z-action on
THH(R) is locally unipotent, and if R is connective, the induced action on TC(R)
is locally unipotent as well.

Proof. As spectra with locally unipotent Z-action are closed under tensor product
and colimits in SpBZ, the claim follows for the underlying spectrum of THH(R),
but the forgetful functor CycSp→ Sp is conservative so it detects local unipotence.
By p-completeness, we can check the claim for TC modulo p. By [3, Theorem
2.7], TC/p preserves small colimits of connective cyclotomic spectra, and colimit
preserving functors send locally unipotent Z-actions to locally unipotent Z-actions.

�

Lemma 12. [2, Lemma 4.8] Let R ∈ Alg(SpBZ,u). The natural map

Wk ⊗W THH(RhZ)→ THH(Rhp
kZ),

is an equivalence of Wk-modules.

Proof. The map above is obtained by applying THH to the map

SBp
kZ ⊗SBZ RhZ → Rhp

kZ,

which is an equivalence by the compatibility specified in Lemma 7. �

Lemma 13. [2, Lemma 4.9] Let R ∈ Alg(SpBZ,u). Then, there is a natural
factorization of the coassembly map

THH(RhZ)→ THH(RhZ)|0
∼
−→ THH(R)hZ.

In particular, if R has the trivial Z-action, then the coassembly map has the form

WC0(Zp)⊗ SBZ ⊗ THH(R)→ SBZ ⊗ THH(R).

Proof. Using the SBZ-module structure on THH(R)hZ, we have a natural factor-
ization of the coassembly map

THH(RhZ)→ SBZ ⊗W THH(RhZ)→ THH(R)hZ,
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and it remains to prove that the second map is an equivalence. As the Z-action
on THH(R) is locally unipotent, we can do so after applying S⊗SBZ (−), and the
same hypothesis implies that

THH(R) ≃ S⊗W THH(RhZ)→ S⊗SBZ THH(R)hZ ≃ THH(R),

is an equivalence, whence the claim. �

These ideas and properties are leveraged in the proof of [2, Theorem 4.4], which
asserts that when R is a suitable ring spectrum with locally unipotent Z-action
satisfying very strong chromatic finiteness conditions, then we can choose k ≫ 0
so that for V a finite spectrum of type n+2, there is an equivalence of cyclotomic
spectra

V ⊗ THH(Rhp
kZ) ≃ V ⊗ THH(RBp

kZ),

i.e., after rescaling, the functor V ⊗ THH(−) “trivializes” the Z-action on R.
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Almost compactness of cyclotomic spectra

Christoph Winges

As indicated in the preceding talk, almost compactness is a sufficient finiteness
condition which guarantees that a locally unipotent Z-action will become trivial
upon restriction to pkZ for sufficiently large k. In this talk, we will review the
notion of almost compactness and discuss characterisations of almost objects in
the category of spectra and cyclotomic spectra, following [3, Section 2.4 & Appen-
dix A.2].

Almost compactness is essentally a weaking of compactness in which we do
not require that a corepresented functor commutes with all filtered colimits, but
only with filtered colimits of uniformly bounded objects. More precisely, let C
be a cocomplete, stable ∞-category with a t-structure. The main examples to
keep in mind are the categories of spectra Sp (with the Postnikov t-structure),

of spectra with a T-action SpBT (with the pointwise Postnikov t-structure), and
of cyclotomic spectra CycSp with the cyclotomic t-structure of [1]. Recall that
this always refers to the p-complete version of these gadgets, and that cyclotomic
spectra are p-typical cyclotomic spectra.
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Definition. [3, Definition A.6] An objectX ∈ C is almost compact ifX is bounded
below and for all c ≤ b and all filtered diagrams F : I → C[c,b] the comparison map

(1) colim
I

Map(X,F )→ Map(X, colim
I

F )

is an equivalence.

The following observations are rather straightforward:

(1) If X ∈ C is bounded below and compact, then it is almost compact.
(2) In the definition of almost compactness, we may equivalently require that

the analogue of map (1) for mapping spectra is an equivalence (in the
category of not-necessarily-p-complete spectra).

(3) If the subcategory C≤0 of coconnective objects is closed under filtered
colimits, an object X ∈ C is almost compact if and only if it is bounded
below and τ≤nX is compact in C≤n for all n.

(4) The full subcategory of almost compact objects is closed under finite lim-
its, finite colimits, and sequential colimits X0 → X1 → . . . such that
cofib(Xk → Xk+1) ∈ C≥k+1. In particular, geometric realisations of al-
most compact, uniformly bounded below objects are almost compact.

This leads us to the folllowing characterisation of almost compactness in Sp.

Proposition. [3, Example A.7 & Lemma A.10]

(1) An object X ∈ Sp is almost compact if and only if it is bounded below
and all its homotopy groups are finite p-groups.

(2) If R is a connective ring spectrum such that π∗(R/p) is degreewise finitely
generated, and V is any almost compact spectrum, then V ⊗ THH(R) is
almost compact.

Proof. If X is bounded below and its homotopy groups are finite p-groups, one can
choose a cell decomposition of X whose filtration quotients are sums of shifts of
Moore spectra S/pk. Applying the observation about sequential colimits, it follows
that X is almost compact.

Conversely, the bottom homotopy group of an almost compact spectrum must
be finitely generated (and is therefore necessarily a finite p-group). By the previous
step, Eilenberg–Mac Lane spectra on finite p-groups are almost compact, so the
fibre of the first non-trivial Postnikov section ofX is almost compact. Now proceed
by induction.

For the second assertion, one chooses a cell decomposition of V as before. Since
R/p has finitely generated homotopy groups, the criterion for almost compactness
implies that R/pk is almost compact for all k. The chosen cell decomposition
of V induces a cell decomposition for V ⊗ R whose filtration quotients are finite
sums of shifts of R/pk, so V ⊗ R is almost compact by the closure properties
of almost compact objects. Using these closure properties again, it follows that
V ⊗ THH(R) ≃ |V ⊗ R⊗n| is almost compact. �

Theorem. [3, Lemma 2.43 & Proposition 2.42] Let (X,φ) be a cyclotomic spec-
trum which is bounded below.
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(1) If (X,φ) is almost compact, then X ∈ Sp is almost compact.
(2) If X ∈ Sp is almost compact and pm ≃ 0: X → X for some m, then (X,φ)

is almost compact.

Proof. Observe that an exact functor F : C → D preserves almost compact objects
if it admits a right adjoint G which preserves colimits and has bounded t-amplitude,
meaning there exist r and s such that G(D≥0) ⊆ C≥r and G(D≤0) ⊆ C≤s. We
apply this criterion to the forgetful functor CycSp→ Sp.

Recall the cofibre sequence Σ∞
+ T→ S→ S(1) in SpBT. Dualising this sequence,

we obtain a cofibre sequence S−(1) → S→ ST, where ST is the image of S under the
right adjoint to the forgetful functor SpBT → Sp. This right adjoint is easily seen
to preserve colimits, so it is given by Y 7→ ST⊗Y . Observing that (ST⊗Y )tCp ≃ 0
(since T admits the structure of a free Cp-CW-complex), we obtain a cyclotomic
spectrum (ST ⊗ Y, ST ⊗ Y → 0) for each Y ∈ Sp, and we have

mapCycSp((X,φ), (S
T ⊗ Y, 0)) ≃ mapT(X, S

T ⊗ Y ) ≃ map(X,Y ).

The resulting right adjoint G preserves colimits. As ST is (-1)-connective, it follows
that this right adjoint has t-amplitude [−1, 0]; for the upper bound, observe that

mapCycSp((X,φ), G(Y )) ≃ mapSp(X,Y )

is coconnective for all (X,φ) ∈ CycSp≥0 because connectivity of cyclotomic spectra
is detected on the underlying spectrum. This proves the first assertion.

For the second assertion, one first shows that X is almost compact as an object
of SpBT: for an appropriate filtered diagram F , the relevant comparison map can
be identified with

colim
I

mapSp(X,F )
hT → mapSp(X, colim

I
F )hT,

which is an equivalence because (−)hT preserves arbitrary sums of uniformly
bounded above spectra.

Since pm ≃ 0, the object (X,φ) is a retract of (X,φ) ⊗ D(S/pm), so we may
consider the latter. The comparison map for (X,φ) can then be identified with

colim
I

mapCycSp((X,φ), S/p
m ⊗ F )→ mapCycSp((X,φ), colim

I
S/pm ⊗ F ).

By a theorem of Burklund [2], S/pm admits an associative ring structure for
m ≥ 3, so we may assume without loss of generality that F takes values in
ModS/pm(CycSp[c,b]).

We now claim that there exists for sufficiently large e (which depends on m, b
and c) a map of fibre sequences

colim
I

mapCycSp((X,φ), F ) colim
I

mapT(X, τ≤eF ) colim
I

mapT(X, τ≤e(F
tCp))

mapCycSp((X,φ), colim
I

F ) mapT(X, τ≤e(colim
I

F )) mapT(X, τ≤e((colim
I

F )tCp))
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The middle vertical map is an equivalence since we have already shown X to be
almost compact in SpBT. We additionally claim that (−)tCp : CycSp → SpBT

preserves filtered colimits of uniformly bounded objects, which implies that the
right vertical map is also an equivalence.

This claim follows relatively easily after showing that the natural transforma-
tion (−)tCp ⇒ (τ≤e−)

tCp induced by truncation admits a retraction, which is a
consequence of a sufficiently natural version of strong canonical vanishing. This
retraction is also used in the definition of the right-hand horizontal maps (see [3,
Construction 2.40] for details). The proof of the existence of the horizontal fibre
sequences additionally relies on the validity of the Segal conjecture for bounded
cyclotomic spectra. �
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Asymptotic constancy I: The Dehn twist

Maxime Ramzi

Introduction

In order to study the failure of descent for T (n + 1)-local TC, our goal was to
relate THH(RhZ) and THH(RBZ) as cyclotomic spectra, for a suitably chosen ring
R with Z-action, at least upon tensoring with a suitably chosen finite spectrum.
We already observed that in our situation, THH(R) has a locally unipotent Z-
action and therefore its fixed points are well-approximated by THH(R)BZ, at least
upon restricting to some small enough pkZ ⊂ Z.

The strategy at this point is to express THH(RhZ) in terms of THH(R)hZ, so
that we can later compare it to THH(R)BZ and hence to THH(RBZ). The goal of
this talk was to go over Theorem 4.11 of the paper, which implements precisely
this in larger generality, but with restricted structure, namely taking into account
the cyclotomic Frobenius, but not the S1-action.

The S1-action (and the remaining details of this strategy) is then taken care
of by the second “Asymptotic constancy” talk by Sil. In the statement of the
theorem which we recall below, UAlg is the category informally described as tu-
ples consisting of an algebra with locally unipotent Z-action R ∈ Alg(SpBZ,u),
an algebra which is dualizable as a (p-complete) spectrum V ∈ Alg(Sp⋄) and a

trivialization of the Z-action on R⊗ V ∈ Alg(SpBZ).

Theorem 1 (Theorem 4.11). There is a natural square of lax symmetric monoidal
functors on UAlg of the form :
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THH(R)hZ ⊗ V ⊗W(C0(Zp)) THH(RhZ)⊗ V

(THH(R)hZ)tCp ⊗ V ⊗W(C0(Zp)) THH(RhZ)tCp ⊗ V

η0

ϕp ϕp

η1

where the vertical arrows have their canonical lax symmetric monoidal structure.
In this square, η0 is a natural equivalence, and η1 is an equivalence on a pair (R, V )
as soon as the assembly map

⊕
N(V ⊗ THH(R)tCp) → (

⊕
N V ⊗ THH(R))tCp is

an equivalence.

Thus the failure of descent for the Z-action on R is essentially the same as the
failure of descent for the trivial Z-action on S (at least up to tensoring with V ).

A reformulation of the theorem is that, as a module overW(C0(Zp)), THH(R
hZ)

is free. From Liam’s talk about local unipotence, we know that this amounts to
finding a suitably compatible (locally unipotent) Z-action on THH(RhZ), as this
action is exactly the datum of a preimage under W(C0(Zp)) (see Proposition A.35
in the paper). This is precisely what we construct, and this action is what is called
“the Dehn twist” in the paper.

1. Recollections on THH(SBZ)

There is an equivalence of commutative algebras THH(SBZ) ≃ SBZ ⊗W(C0(Zp)),
which makes the relevant cyclotomic spectra THH(RhZ) (potentially tensored with
a finite spectrum) modules over W(C0(Zp)). Furthermore, basechanging along
evaluation at 0: C0(Zp) → Fp induces an equivalence THH(RhZ) ⊗WC0(Zp) S ≃

THH(R)hZ - it follows that if THH(RhZ) is free as a W(C0(Zp))-module, it is
indeed free on THH(R)hZ.

The idea is now to try and interpret the +1-action on C0(Zp) in terms of
THH(SBZ), to ultimately define a compatible action on THH(RhZ).

Part of the talk was spent on recollections concerning the structure of THH(SBZ)
as a 〈p〉-polygonic spectrum.

2. Constructing the Dehn twist

To make it compatible with all the relevant structure, the Dehn twist is constructed
at an “earlier” level. Recall that if R ⇒ S are two algebra maps, one can make S
into an (R,R)-bimodule by using the top map to act on the left, and the bottom
map to act on the right. Making this precise provides a functor Alg(Sp)EQ →
BiMod, where EQ is the walking equalizer, that is, the 1-category pictorially
described as •⇒ •.

Now we are interested in

THH(RhZ)⊗ V ≃ THH(RhZ, V ⊗RhZ) ≃ THH(RhZ, (R⊗ V )hZ)

where the action on R⊗V is given a trivialization, so the functor of interest factors
as a composite

UAlg → Alg(Sp)(BZ)⊲ → Alg(Sp)EQ → BiMod→ PgSp〈p〉
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Where the first functor is (R, V ) 7→ (R → (R ⊗ V )), the second functor is
(R → S) 7→ (RhZ ⇒ SBZ), the third functor is the one described above, that is
(A⇒ B) 7→ (A,f Bg) and finally the last functor is (R,M) 7→ (THH(R,M)). The

Dehn twist is a lift of the functor Alg(Sp)(BZ)⊲ → Alg(Sp)EQ to Alg(Sp)EQ×BZ,
that is, it produces an automorphism of RhZ ⇒ SBZ - in fact, this is constructed in
greater generality, that is, with Alg(Sp) replaced by any category with finite limits.
The construction relies on an automorphism σ0 of EQ× BZ which is compatible
with the projections to EQ and (BZ)⊲.

The second part of the talk was dedicated to describing this lift and its proper-
ties (namely local unipotence, and its value on the sphere with trivial Z-action).
Combining these with the description of THH(SBZ) recalled earlier, the talk con-
cluded with a proof of Theorem 4.11.

Asymptotic Constancy II

Sil Linskens

In this talk, which follows [1, Sections 4.3,4.4], we completed the proof of “As-
ymptotic cyclotomic constancy” and deduced the consequences relevant for the
disproof of the telescope conjecture given in [1]. Let us first recall the relevant
assumptions for asymptotic cyclotomic constancy, followed by the statement of
the theorem.

Convention 1. We fix R ∈ AlgE1⊗A2
(Sp) with locally unipotent Z-action, which

we further assume

(1) is connective;
(2) is of fp-type n ≥ −1, i.e. R⊗ U is π-finite, where U is of type n+ 1;
(3) satisfies the height n Lichtenbaum–Quillen property, i.e. THH(R) ⊗ V is

bounded in the cyclotomic t-structure, where V is of type n+ 2.

We also fix U and V finite spectra of type n+ 1 and n+ 2 respectively.

The key example of R which satisfies these assumptions is BP〈n〉, equipped
with the Adams operations constructed in [1]. Given these conventions we may
state the main theorem.

Theorem 2 (Cyclotomic asymptotic constancy). There exists a K ∈ N such that
for all k > K, there is an isomorphism

V ⊗ THH(Rhp
kZ) ≃ V ⊗Wk ⊗ THH(R)

of Wk = THH(Shp
kZ)-modules in cyclotomic spectra.

Crucially, this result tells us that for the purposes of understanding the height

n + 1 telescopically localized topological cyclic homology of Rhp
kZ, it suffices to

consider the case where R has the trivial action. In this case one has much more
control. For example, it is shown in [1] that the thick subcategory of the fiber of
the coassembly map

LT (n+1)TC(R
BZ)→ LT (n+1)TC(R)

BZ
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always contains LT (n+1)TC(R). By [2], LT (n+1)TC(BP〈n〉) is not zero, and so we
conclude that the assembly map above cannot be an equivalence in this case. By
Cyclotomic asymptotic constancy, this implies that the assembly map

LT (n+1)TC(BP〈n〉
hpkZ)→ LT (n+1)TC(R)

hpkZ

for BP〈n〉 with its action by Adams operations is also not an equivalence. This
is the crucial fact which is used to disprove the telescope conjecture. Namely
the paper proceeds by showing that the coassembly map above exhibits the tar-
get as the so called “cyclotomic completion” of the source. This implies that

LT (n+1)TC(BP〈n〉
hpkZ) is not cyclotomically complete, and therefore also not

K(n+ 1)-local.
Moving on, let us now discuss the proof of Theorem 2. Applying the Dehn twist,

together with the fact that locally unipotent Z-actions on almost compact objects
are trivial after restricting to some pkZ, we conclude that there is an equivalence

V ⊗ THH(Rhp
kZ) ≃ V ⊗Wk ⊗ THH(R)

of A2-algebras in ModWk
(Sp). Therefore the crucial question is how to lift this

equivalence to an equivalence of cyclotomic spectra. The crucial tool is the follow-
ing result:

Proposition 3. Let X be a p-nilpotent W -module in CycSp, and let Xj =Wj⊗W
X. Suppose that

(1) The Xj are uniformally bounded;
(2) There is an isomorphism X ≃W ⊗X∞ of W -modules in spectra;
(3) X∞ is almost compact as a cyclotomic spectrum.

Then there is an isomorphism

Xj ≃Wj ⊗X∞

in ModWj
(CycSp) for k sufficiently large.

This proposition is not so difficult to prove. Simply put, the assumptions of
uniformally bounded and almost compact allow one to obtain comparison maps
φj : Xj → Wj ⊗X∞ for j ≫ 0. One then computes on homotopy groups that for
j potentially even larger, the map φj is an equivalence. Here one uses that one
knows the result “at infinity” by assumption (2), and the fact that the maps φ are
locally constant in C0(Zp) to conclude that it must be true in some neighborhood
of infinity.

We apply this result to V ⊗THH(Rhp
kZ) for k ≫ 0. Assumption (2) is precisely

the equivalence V ⊗THH(Rhp
kZ) ≃ V ⊗Wk ⊗THH(R) obtained before, while (3)

is easily verified. Therefore the crucial fact which remains to be shown is that the
cyclotomic spectra

Xj =Wj ⊗Wk
V ⊗ THH(Rhp

kZ) ≃ V ⊗ THH(Rhp
j+kZ)

are uniformally bounded. Here we apply the machinery developed in [1, Section
2], which allows us to prove the following proposition.
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Proposition 4. Let m ≥ mA2
p and let S be a hA2-ring inW -modules in cyclotomic

spectra with pm = 0. Suppose that

(1) S|0 = S ⊗W SBZ is cyclotomically bounded in a range;
(2) There is an isomorphism

π∗S ≃ π0(WC0(Zp))⊗ π∗S|0

of graded A2-rings such that the map S → S|0 is given by restriction to
zero;

(3) S satisfies Segal(≤ b′). Then S is e-truncated for some e depending on m,
b′ and the range of S|0.

Once again we apply this to R = THH(Rhp
kZ)⊗ V for k ≫ 0:

(1) follows immediately from the height n LQ property;
(2) follows from the equivalence

V ⊗ THH(Rhp
kZ) ≃ V ⊗Wk ⊗ THH(R)

of spectra obtained before.
(3) follows from the fact that the equivalence above also identifies the frobenius

on V ⊗THH(Rhp
kZ) with that of V ⊗Wk⊗THH(R). Because THH(R)⊗V

is bounded, it satisfies Segal(≤ b′) for some b′. Therefore so does V ⊗

THH(Rhp
kZ).

As explained, this suffices to conclude the proof of cyclotomic asymptotic con-
stancy.
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Assembling the proof

Niko Naumann

We will finish the construction of a counter-example to the telescope conjecture
at a prime p at height n+ 1 ≥ 2 by showing that the coassembly map (known at
this point not to be an isomorphism) is isomorphic to the cyclotomic completion
map.
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Future Directions I

Ishan Levy

(joint work with Robert Burklund, Shachar Carmeli, Jeremy Hahn, Tomer
Schlank, Lior Yanovski)

In this talk I explained some follow up work extracting some consequences of the
failure of the telescope conjecture. The mechanism of the failure of the telescope
conjecture that we showed was that at heights ≥ 2, the T (n)-local category doesn’t
have Galois hyperdescent with respect to the cyclotomic extensions.

In this talk I explained how one can construct certain obstructions to hyper-
descent with respect to Zp-Galois extensions. There is a universal example of a
Zp-Galois extension in a presentably symmetric monoidal stable category, which
is a version of Zp-equivariant spectra, constructed as additive sheaves of spectra
on finite Zp-sets in the surjection topology. In this category, the fiber of the hy-
percompletion map can be explicitly analysed and can be seen to be an N-indexed
colimit of Picard elements Pi. In the case that the finite extensions making up the
Zp-Galois extension are descendable, the maps between the Pi are sent to nilpotent
maps.

So if a Zp-extension isn’t hypercomplete, this analysis shows that either most
of the Picard elements are distinct from each other, or the nilradical of the en-
domorphism ring of the unit isn’t nilpotent. In the case of the T (n + 1)-local

algebraic K-theory of BP〈n〉hp
kZ, which form a non-hypercomplete Zp-extension

in the T (n + 1)-local category, the nilradical is nilpotent, so most of the Pi are
distinct. There are obstructions τi in π1 of the unit which are obstructions to triv-
ializing the Pi so these must also be nonzero. A slightly refined argument shows
that in the homotopy groups of a telescope that is a ring, these τi generated an
infinitely generated subgroup of π1.

As a consequence, the homotopy groups of telescopes of type n finite complexes
are never finitely generated for n ≥ 1. This in turn implies that the average ranks
of the homotopy groups of finite complexes diverges.

Reporter: Keita Allen
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