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Abstract. With the rapid increase in data resources and computational
power as well as the accompanying current trend to incorporate machine
learning into existing methods, data-driven approaches for modelling, analy-
sis, and control of dynamical systems have attracted new interest and opened
doors to novel applications. However, there is always a discrepancy between
mathematical models and reality such that rigorously-shown error bounds
and uncertainty quantification are indispensable for a reliable use of data-
driven techniques, e.g., using surrogate models in optimisation-based control.
Similar comments apply to data-enhanced models. Consequently, uncertainty
about parameters, the model itself and numerous other aspects need to be
taken into account, e.g., in data-driven control of (stochastic) dynamical sys-
tems. Hence, the respective paradigm changes have led to a variety of novel
concepts which, however, still suffer from limitations: many concentrate only
on a single aspect, are only applicable to systems of limited complexity, or
lack a sound mathematical foundation including guarantees on feasibility, ro-
bustness, or the overall performance. Pushing these limits, we face a wide
spectrum of theoretic and algorithmic challenges in modeling, analysis, and
control under uncertainty using data-driven methods.
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Introduction by the Organizers

The mini-workshop Data-driven Modeling, Analysis, and Control of Dynamical
Systems, organized by Clarence W. Rowley, Claudia Schillings, and Karl Worth-
mann, was fully booked with 16 participants with roughly a third from abroad.
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The initiative is closely intertwined with an envisioned DFG priority research pro-
gramme entitled

Control and Optimization in the Age of Data
—

Infinite-dimensional approaches at the interface of control, optimization, and
uncertainty.

In particular, the complete core team of this SPP initiative – Simone Göttlich,
Lars Grüne, Anton Schiela (spokesperson), Claudia Schillings, and Michael Ul-
brich – attended the mini workshop such that the scientific discussions will directly
contribute to shaping the mathematical focus of the envisioned priority research
programme in Applied Mathematics.

The scientific focus of the programme consisted of three parts: Five talks were
on analysis and surrogate modelling of nonlinear (stochastic) dynamical systems
building upon the Koopman operator and its adjoint, i.e., the Perron-Frobenius
operator. Hereby, data-driven approaches like kernel extended dynamic mode de-
composition and its numerical analysis w.r.t. data requirements, approximation
accuracy, and robustness were of particular interest – also to render techniques
from polynomial optimization applicable and allow to set up control schemes with
closed-loop guarantees. In addition, recent developments in nonlinear model reduc-
tion were presented to deal with, e.g., underlying structures encoded as nonlinear
manifolds. Then, in the second stream of research, methods originally proposed
for optimal control problems constrained by partial and/or stochastic differential
equations were investigated and extended to incorporate statistical inference in the
analysis of dynamical systems, estimate the required sample size, or use Quasi-
Monte Carlo for Bayesian optimal experimental design to name but a few. Finally,
novel insights and ideas from machine learning including neural networks and the
attention mechanism were leveraged to cope with the curse of dimensionality and
the devil of nonconvexity before the participants reflected on learning approaches
to improve data-driven stochastic control. In addition, challenging applications
were discussed in depth, e.g., traffic flow models and their underlying nonlocal
conservation laws.

Overall, it was a stimulating workshop fostering new research ideas and poten-
tial future collaboration at the intersection of various mathematical disciplines
ranging from functional and numerical analysis, operator and systems theory,
stochastics, and optimal control of dynamical systems constrained by partial
and/or stochastic differential equations such that a second edition of the work-
shop at a larger scale is planned in the near future to further foster the intensive
collaboration between various mathematical research areas.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Claudia Strauch (joint with Sören Christensen, Niklas Dexheimer, Lukas
Trottner)
Learning to reflect: On data-driven approaches to stochastic control . . . . 3271

Clarence W. Rowley (joint with Samuel E. Otto and Alberto Padovan)
Balancing with covariance matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3273
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Abstracts

Koopman operator in dynamical control systems

Karl Worthmann

(joint work with Friedrich M. Philipp and Manuel Schaller)

Recently, extended dynamic mode decomposition (EDMD, see [24, 7]) and its
variants, see, e.g., [19, 5], became a very popular data-driven technique to predict
the dynamical behavior of quantities of interest, so-called observable functions
ϕ : Rn → R, along the flow of a dynamical system. The nonlinear dynamical
system may, e.g., be governed by the differential equation ẋ(t) = f(x(t)). Then,
the Koopman operator is defined by

(Ktϕ)(x̂) = ϕ(x(t; x̂))

for all states x̂ ∈ Rn, times t ≥ 0, and observables ϕ contained in a suitably
chosen function space [17], where x(t; x̂) represents the solution of the underlying
autonomous differential equation emanating from initial value x̂ at time t ≥ 0.
For many function spaces, (Kt)t≥0 is a strongly continuous semigroup of bounded
linear operators, cf., e.g., [16]. For discrete time systems given by the nonlinear
map F : Rn → R

n, the Koopman operator is defined analogously.
While convergence of EDMD to the Koopman operator in the infinite-data

limit was established in [9], the derivation of finite-data error bounds has been
conducted more recently: To the best of the authors’ knowledge, the first bounds
on the estimation error were shown in [11] for deterministic systems and ergodic
sampling. Then, these probabilistic bounds were extended to i.i.d. sampling in [25].
In particular, using finite-elements techniques originally developed for the error
analysis of hyperbolic partial differential equations of transport type, the bounds
proposed in [25] also cover the projection error in an L2-sense. Furthermore, an
extension to stochastic differential equations

(SDE) dXt = f(Xt) dt+ σ(Xt) dWt,

where σ represents the diffusion of a Brownian motion, was deduced in [13] and
further extended in [15] to time-homogeneous Markov processes in Polish spaces
– both in discrete and continuous time. The latter results were derived using
techniques developed in [16] using the features Φxj := k(xj , ·), j ∈ Z1:d, as ob-
servables, where k denotes the continuous and strictly positive definite kernel of a
reproducing kernel Hilbert space H (RKHS).

The RKHSs of Wendland radial basis functions with (adjustable) smoothness
degree k ∈ N0 correspond to L2-Sobolev spaces of regularity order σn,k := n+1

2 +k
with equivalent norms, see, e.g. [22, Corollary 10.48] for integer Sobolev orders.
Employing these allows to prove the Koopman invariance

KH ⊆ H
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and, together with the fact that the Koopman operator is always closed in RKHSs,
to establish pointwise bounds on the full approximation error depending on the
fill distance, see [10].

Extension to dynamical control systems. The Koopman framework was
extended to systems with input, i.e.,

ẋ(t) = f(x(t), u(t))

in [23, 8], where u ∈ L∞
loc([0,∞),Rm) denotes the control function. In particu-

lar, control affinity is preserved for the generator of the Koopman semigroup [14].
Then, analogous results w.r.t. finite-data error bounds for EDMD can be shown,
see [13] and [18] for probabilistic bounds on the estimation and the projection
step, respectively. Again, using the RKHS generated by Wendland RBFs, a novel
algorithm was proposed in [2], which allows for flexible sampling – also along
trajectories. In particular, uniform finite-data error bounds were derived and, in
addition, is was shown that asymptotic stability certified by a Lyapunov function
is maintained if a compatibility condition suitably linking the modulus of conti-
nuity and the Lyapunov decrease is met. Based on such pointwise error bounds, a
data-driven controller design with stability guarantees can be conducted, see, e.g.,
[21, 20]. Herein, recent results using polynomial optimization [4] may be lever-
aged in future work. Similar results can be derived for model predictive control
(MPC, see, e.g., [6]) using the novel finite-data error bounds using the techniques
introduced in [1, 3]. Here, future work may leverage so-called random Fourier
features to determine features (corresponding to data points in the RKHS setting)
of particular interest [12].
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Analysis of large-scale System with Koopman Operators

Feliks Nüske

Koopman operators have emerged as a powerful device for data-driven modeling
of complex dynamical systems. We consider a dynamical system Xt ∈ Rd, where
t ≥ 0 is the time variable, and Xt is the state of the system. As a guiding example,
we consider stochastic differential equations (SDEs) of the form

(1) dXt = F (Xt) dt+ σ(Xt) dWt,
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with drift vector field F : Rd 7→ Rd and diffusion field σ : Rd 7→ Rd×d. The
Koopman operator is the linear evolution operator for conditional average values
of observable functions φ : Rd 7→ C under the flow of the dynamics [1]:

(2) Ktφ(x) = E [φ(Xt) |X0 = x] =

∫
φ(y) pt(x, dy),

where pt(x, ·) denotes the stochastic transition kernel associated to the dynam-
ics (1). If the dynamics are deterministic, the above definition reduces to Ktφ(x) =
φ(Xx

t ), where X
x
t is the state attained at time t if the initial condition is X0 = x.

The crucial point is that (2) defines a linear operation on the functions φ. Com-
bined with the Markovian property of the dynamics (1), this allows to show that
the operators Kt form a strongly continuous contraction semigroup of linear op-
erators if the observables φ are chosen from an appropriate function space, i.e.
Ks+tφ = KsKtφ and limt→0 Ktφ = φ hold for all such φ. If the dynamics (1)
admit an invariant measure µ, it is common to choose the function space as the
µ-weighted L2-space on Rd: L2

µ = {φ : Rd 7→ C :
∫
Rd

|φ(x)|2 dµ(x) >∞} [2].

Data-driven Estimation on Reproducing Kernel Hilbert Spaces. The
most widely-used numerical estimator for the Koopman operator is the Extended
Dynamic Mode Decomposition (EDMD) [3]. The method requires snapshot data
(xk, yk), 1 ≤ k ≤ m, where xk are sampled from µ and yk are obtained by evolving
the system (1) from xk over time t. For a fixed finite set of observable functions
ψi, 1 ≤ i ≤ n, we denote their evaluations at all data points xk by Ψ(X) ∈ Cn×m,
and write Ψ(Y) analogously for yk. EDMD determines a linear model that maps
the observables at all initial samples X to their values at Y with minimal error.
This leads to the regression problem

Kt = argminK∈Cn×n‖Ψ(Y)−K∗Ψ(X)‖F
= (Ψ(X)Ψ(X)∗)−1(Ψ(X)Ψ(Y)∗) = Ĝ−1Â.

In the limit of infinite m, this method converges to a Galerkin projection of Kt
on the linear span of the functions ψi [3]. Making an appropriate choice of the ob-
servables ψi is crucial for the method’s success. While suitable observables can be
manually designed for low-dimensional systems, this problem becomes increasingly
more difficult for higher-dimensional systems.

A natural approach to basis set construction is to employ a reproducing kernel
Hilbert space H generated by a symmetric and positive semi-definite kernel k(x, y),
see e.g. [4]. We denote the associated feature map by Φ(x) := k(x, ·) ∈ H. In
the spirit of using one basis function for each data point, one can define a data-
dependent basis set as ψi(x) = Φ(xi)(x) = k(xi, x), for 1 ≤ i ≤ m. The EDMD
estimator is then expressed using kernel Gramian matrices as

Kt
H = K−1

XXKYX , [KXX ]r,s = k(xr , xs), [KYX ]r,s = k(yr, xs).(3)
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For infinite data, the matrices KXX and KY X converge to cross-covariance oper-
ators

CHφ =

∫
〈φ, Φ(x)〉

H
Φ(x) dµ(x), CtHφ =

∫
〈φ, Φ(y)〉

H
Φ(x) pt(x, dy) dµ(x),

and the Galerkin approximation of Kt on the possibly infinite-dimensional RKHS
H is given by Kt

H
= (CH)−1Ct

H
[5]. The infinite-dimensional setting poses new

challenges. For example, the operator Kt
H
is only bounded if the RKHS is invariant

under the Koopman operator Kt [6]. For results on rates of convergence of the
finite-data estimator (3), see [7, 8, 9].

Low-Rank Approximation by Random Fourier Features. Computing the
kernel EDMD matrix Kt

H
in (3), or solving the associated eigenvalue problem,

costsO(m3) operations if solved in dense and full rank format. This imposes strong
constraints on the data size if the problem needs to be solved many times in order to
tune hyper-parameters of the kernel. As the kernel Gramian KXX often turns out
to be low-rank, a way out is offered by using low-rank approximation techniques.
Here, we focus on random Fourier features [10], a stochastic approximation method
tailored to translation-invariant kernels k(x, y) = γ(x − y). If γ is continuous,
positive semi-definite, and satisfies γ(0) = 1, Bochner’s Theorem [11] guarantees
the existence of a spectral measure ρ on the frequency space such that

(4) k(x, y) = E
ω∼ρ[e−iω

⊤x(e−iω
⊤y)∗].

For most popular kernels, the spectral measure is known and generating samples is
inexpensive. Approximating the expectation in (4) by averaging over p frequency
samples leads to a low-rank representation of the kernel Gramians [12]:

KXX = [k(xr , xs)]r,s ≈
1

p
[MM∗]r,s , KYX = [k(yr, xs)]r,s ≈

1

p
[MtM

∗]r,s ,

M =
[
e−ix

⊤

r ωu
]
r,u

∈ C
m×p, Mt =

[
e−iy

⊤

r ωu
]
r,u

C
m×p.

Moreover, it can be shown that eigenvalues of (3) can be approximated by solving
the p-dimensional eigenvalue problem

M∗Mtvi = λ̂i(t)M
∗Mvi,

which actually corresponds to applying EDMD to the randomly generated basis
set [12]:

(5) Ψω(x) =
[
eiω

⊤

u x
]p
u=1

.

Successful applications of the RFF approach have been presented in [12, 13, 14, 15],
demonstrating computational savings of several orders of magnitude compared to
solving the vanilla kernel EDMD problem.
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Summary and Outlook. Kernel-based modeling of the Koopman operator,
and stochastic approximation by random Fourier features, offer an efficient and
broadly applicable way of inferring data-driven models for large-scale dynamical
systems. Open questions include the determination of conditions for Koopman-
invariance [16], development of a theory for generator approximation [17], and a
more comprehensive theoretical investigation of Koopman-based control [18].
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Kernel based approximations of the Koopman operator

Anton Schiela

(joint work with Frederik Köhne, Friedrich Philipp, Manuel Schaller,
Karl Worthmann)

This text serves as a concise, slightly nonstandard, introduction into kernel based
approximations of the Koopman operator. Moreover, we give a short account on
the approach, taken in the paper [2], which we refer to for an overview over the
existing literature, where uniform error estimates have been shown.

Prototype Transfer and Koopman operators. Consider a nonlinear mapping
between two topological spaces X,Y :

A : X → Y

and two linear spaces F(X) and F(Y ) of functions X → R and Y → R, respec-
tively. Moreover, consider an evaluation functional, i.e., δx, which can be applied
to f ∈ F(X) and yields its value δx(f) := f(x) at x. Denote the following linear
space

∆(X) := span{δx : x ∈ X} = {λ : λ =

n∑

i=1

λiδxi : xi ∈ X,λi ∈ R, n ∈ N}.

We observe the following natural dual pairing ∆(X)×F(X) → R, given by linear
extension of the pairing 〈δx, f〉 := f(x) (and similar on Y ), which separates points
in F(X). In this setting, two linear operators, related to A, can be defined:

TA : ∆(X) → ∆(Y ) : δx 7→ δA(x) “prototype transfer operator”

KA : F(Y ) → F(X) : f 7→ f ◦A “prototype Koopman operator”.

They satisfy the adjoint relation 〈TAδx, f〉 = f(A(x)) = 〈δx,KAf〉. Typically,
these operators are considered for mappings A : X → X , and corresponding
discrete dynamical systems, given by the iteration xk+1 = A(xk). To perform
successful analysis, the function space F(X) has to be chosen and equipped with
a norm, in an appropriate way.

If F(X) and F(Y ) are Hilbert spaces, continuously embedded into the cor-
responding spaces Cb(X) and Cb(Y ) of continuous, bounded functions, we may
use orthogonal projections SX : F(X) → V (X) and SY : F(Y ) → V (Y ) onto
finite dimensional subspaces V (X) ⊂ F(X) and V (Y ) ⊂ F(Y ) to obtain a finite
dimensional approximate representation

(1) K̂A := SXKA|V (Y ) : V (Y ) → V (X)

of KA. Then the splitting KA−K̂ASY = KA(I−SY )+(I−SX)KASY , taking into
account that ‖KA‖Cb(Y )→Cb(X) ≤ ‖SY ‖F(Y )→F(Y ) = 1 yields an error estimate of
the form:

‖KA − K̂ASY ‖F(Y )→Cb(X) ≤ ‖I − SY ‖F(Y )→Cb(Y )

+ ‖I − SX‖F(X)→Cb(X)‖KA‖F(Y )→F(X).
(2)
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Thus, after appropriate function spaces have been chosen, we have to find approxi-
mation results for the orthogonal projections and a well-definedness and continuity
result of the Koopman operator as a linear mapping F(Y ) → F(X).

Reproducing Kernel Hilbert Spaces. Consider a kernel function kX : X ×
X → R, which we assume to be symmetric, bounded, and positive definite, i.e.,

n∑

i,j=1

kX(xi, xj)λiλj > 0 ∀λ ∈ R
n \ {0}, xi ∈ X.

Defining the so-called feature maps φx(·) := kX(·, x) : X → R and the function
space

Φ(X) := span {φx : x ∈ X} ⊂ F(X)

we obtain a linear mapping:

KX : ∆(X) → Φ(X) : δx 7→ φx,

which is surjective by definition of Φ(X) and injective due to positive definiteness of
kX , and thus invertible. In particular, for a set of given pointsXn := {x1, . . . xn} ⊂
X and values fi with i = 1 . . . n, we can find a unique λ ∈ ∆(Xn), such that
KXλ ∈ Φn(X) := KX(∆(Xn)) ⊂ Φ(X) interpolates these values:

KX

( n∑

j=1

λjδxj

)
(xi) =

n∑

j=1

λjφxj (xi) =

n∑

j=1

λjkX(xi, xj) = fi,

by solving the system KXλ = f , where KX is an spd matrix, given by (KX)ij =
kX(xi, xj). Here the entries λj of the vector λ represent both the weights of the
evaluation functionals δxj and the coefficients of the interpolant function with
respect to the basis {φxj}.

Since kX can be interpreted as symmetric and positive definite bilinear form on
∆(X), we can equip ∆(X) and Φ(X) with the following inner products:

〈λ, µ〉N∗(X) := 〈λ,KXµ〉 on ∆(X), 〈f, g〉N (X) := 〈K−1
X f, g〉 on Φ(X).

By this construction we obtain the reproducing property 〈φx, f〉N (X) = 〈δx, f〉 =
f(x) for all f ∈ Φ(X), which implies ‖φx‖N (X) = ‖δx‖N∗(X) =

√
φx(x) =√

kX(x, x).
Then the completion N (X) of Φ(X) with respect to its scalar product is called

the native space of kX , while its dual N ∗(X) is the completion of ∆(X), and KX

can be extended to the Riesz-isomorphism N ∗(X) → N (X). It is not hard to
see that we have the continuous embedding N (X) →֒ Cb(X), as long as kX itself
is continuous and bounded. Also the reproducing property extends to N (X),
and (N (X), 〈·, ·〉N (X)) is called a reproducing kernel Hilbert space (RKHS). In an
RKHS, interpolation and orthogonal projection SX of N (X) onto Φn(X) coincide:

g = SXf ⇔ 〈f − g, v〉N (X) = 0 ∀v ∈ Φn(X)

⇔ 〈f − g, φx〉N (X) = 0 ∀x ∈ Xn

⇔ f(x) = g(x) ∀x ∈ Xn.
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Approximation with Wendland RBFs. In [2], a kernel based approximation
of the Koopman operator with Wendland radial basis functions (RBFs) was anal-
ysed for the case that X = ΩX and Y = ΩY are bounded Lipschitz domains in Rd.
It is known (cf. e.g. [1]) that the native spaces of these functions are fractional
order Sobolev spaces, i.e., N (Ω) = Hσ(Ω) →֒ Cb(Ω), where σ depends on the
order s of the Wendland functions and the spatial dimension d. It was shown in
[2] that KA : Hσ(ΩY ) → Hσ(ΩX) is a well defined and bounded linear operator,
provided that A : ΩX → ΩY is a sufficiently smooth diffeomorphism.

Thus, (2) can be applied for the choices F(X) = Hσ(ΩX), F(Y ) = Hσ(ΩY ).
For the finite dimensional spaces V (X) and V (Y ) we choose Φn(ΩX) and Φn(ΩY ),
spanned by the RBFs with centers Xn = {xi}i=1...n ⊂ ΩX and Yn = {yi}i=1...n ⊂
ΩY . For the interpolation with RBFs, uniform errors estimates (cf. e.g. [1]) are of

the form ‖f − SXf‖∞ ≤ ch
s+1/2
X ‖f‖Hσ(ΩX ), where hX := supξ∈ΩX minx∈Xn ‖x−

ξ‖2 is the fill-distance. Inserting this into (2) yields

‖KA − K̂ASY ‖Hσ(ΩY )→Cb(ΩX ) ≤ C1h
s+1/2
Y + C2h

s+1/2
X .(3)

Using the kernel kY : ΩY ×ΩY → R we can compose KAKY : ∆(ΩY ) → N (ΩX),
such that KAKY δy(x) = kY (A(x), y) = φy(A(x)) = KAφy(x). Thus, we may
define A ∈ Rn×n via Aij := kY (A(xi), yj) = KAφyj (xi) = KAKY δyj (xi). Then

representations of K̂A : Φn(ΩY ) → Φn(ΩX) by matrices can be done as follows,
depending on the bases used:

i) If we choose the feature maps φxi , φyj as bases (called canonical bases),
so that f ∈ Φn(ΩY ) is represented by λ ∈ Rn, we apply A to obtain a
vector w ∈ Rn with wi = f(A(xi)) = KAf(xi). Then by K−1

X w we obtain
the coefficient vector µ of the interpolant g = SXKAf ∈ Φn(ΩX) of KAf .
Hence

K̂A ∼ K−1
X A with canonical bases.

ii) If we choose Lagrangian bases, so that f ∈ Φn(ΩY ) is represented by
the vector of its values fj = f(yj) we first compute its representation in

the canonical basis λ = K−1
Y f , and then evaluate KAf(xi) by application

of A to λ. This yields the Lagrangian representation of the interpolant
g = SXKAf , and thus

K̂A ∼ AK−1
Y with Lagrange bases.

Mathematical details, further theoretical results, and numerical examples can be
found in [2].
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Statistical Inference in Optimization of Random Partial

Differential Equations

Thomas M. Surowiec

1. Introduction

Optimization of random partial differential equations (PDEs) provides a robust,
risk-adapted alternative to traditional deterministic PDE-constrained optimiza-
tion by incorporating randomness into the differential operator, forcing terms,
boundary data, and even the domain. Although forward solutions become inher-
ently random, a single deterministic decision is required for design optimization
problems, such as topology optimization [4] or ensemble optimal control [7], made
prior to realizing uncertain quantities.

Viewed abstractly, these optimization solutions resemble M-estimators in sta-
tistics [1, 5], enabling the adaptation of statistical inference tools to infinite-
dimensional settings. This perspective aids in analyzing stability (non-asymptotic
effects of distribution changes on solutions and values) and asymptotic statistics
(behavior of solutions and values as sample sizes grow). Finally, practical consid-
erations, such as computing error rates and subsampling bootstrapped confidence
intervals, are discussed. The talk’s findings are primarily based on [3] and [6].

2. Stability and Asymptotic Statistics

Structural properties such as convexity, growth properties of the objective, and dif-
ferentiability are needed to prove the sharpest results. For this reason, we consider
a class of smooth, strongly convex, infinite-dimensional optimization problems that
arise from the optimal control of a random elliptic PDE. This has the form: For
an open bounded Lipschitz domain D and metric space Ξ, we consider the sto-
chastic optimization problem: Minimize J (u, z) := 1

2EP [‖u(·) − ũ‖2H ] + α
2 ‖z‖2H

subject to (u, z) ∈ L2(Ξ, P ;V ) × Zad, where α > 0, ũ ∈ H , Zad denotes some
closed convex bounded subset of H and u(·) solves the random elliptic PDE:
a(u(ξ), v; ξ) =

∫
D
(z(x) + g(x, ξ))v(x) dxfor P -a.e. ξ ∈ Ξ and all test functions

v ∈ V . The random forcing term g : D × Ξ → R is measurable on D × Ξ and
g(·, ξ) ∈ H for each ξ ∈ Ξ and the spaces H and V are given by H = L2(D)
and V = H1

0 (D). More general settings are possible. Under standard regularity
assumptions on a this problem has the reduced form over z ∈ Zad:

(1) min

{
FP (z) =

∫

Ξ

f(z, ξ) dP (ξ) : z ∈ Zad

}

with the integrand f(z, ξ) = 1
2

∥∥A(ξ)−1(z + g(ξ)) − ũ
∥∥2
H

+ α
2 ‖z‖2Hfor any z ∈ H

and P -a.e. ξ ∈ Ξ, where g ∈ L2(Ξ, P ;H) and A(ξ) is the bounded linear operator
associated to the bilinear form a. Standard arguments can be used to show that
there exist unique solutions z(P ) of (1) for any Borel probability measure P over
Ξ. and that FP has quadratic growth around z(P ).

Using the notion of ζ-distance introduced by Zolotarev for Borel probability
measures P,Q over Ξ associated to a set of Borel measurable integrands F defined



Data-driven Modeling, Analysis, and Control of Dynamical Systems 3269

dF(P,Q) = supf∈F |EP [f ]− EQ[f ]| , we show that the optimal values v(·) and
optimal solutions z(·) satisfy the continuity bounds

(2) |v(Q)− v(P )| ≤ dFmi(P,Q) and ‖z(Q)− z(P )‖H ≤ 2

√
2

α
dFmi(P,Q)

1
2 .

Here, Fmi = {f(z, ·) : z ∈ Zad} is the minimial information family of integrands.
The exponent in (2) can be dropped for the solutions z(·) if Fmi is replaced by the
derivative information family

Fdi =
{
〈A(·)−1(z + g(·))− ũ, A(·)−1h〉H + α〈z, h〉H : z ∈ Zad, ‖h‖H ≤ 1

}
.

These non-asymptotic results can be combined with asymptotic statements if
we replace Q by the empirical probability measure Pn defined by an iid sam-
ple of some Borel probability measure P . In this case, the results above can
be used to show that v(Pn(·)) → v(P ) and z(Pn(·)) → z(P ) P-a.s. Moreover,
under mild assumptions on Ξ and smoothness assumptions on A(ξ) and g(ξ),
relating the dimension of Ξ to degree of smoothness, we can derive rates of conver-
gences and central limit theorems from the stability bounds. These have the form:
EP[|v(Pn(·))−v(P )|] = O(n− 1

2 ) and EP[‖z(Pn(·))−z(P )‖H ] = O(n− 1
2 ) along with

the CLT statement: (
√
n(v(Pn(·))− v(P ))) N (0, P (f(z(P )))2).

3. Computational Statistics

While the theoretical results are intriguing, practical considerations must address
numerical errors, such as quadrature error, iterative solver inaccuracies, nonzero
stopping tolerances in nonlinear solvers, and small sample sizes. Accurately esti-
mating errors and confidence intervals experimentally requires a robust, fast, and
precise nonlinear solver, capable of solving millions of optimization problems. Due
to the favorable structure of these problems, their solutions can be derived by
solving a single (infinite-dimensional) semismooth equation of the form:

F(z) := z −min {b,max {a, z − c(EP [Λ(z)] + αz)}} = 0.

Here, Λ is a random affine linear operator associated with the adjoint equation of
the forward problem. This allows us to apply a form of the well-known semismooth
Newton algorithm [2, 8], once we replace the underlying measure P by a discrete
probability measure Pn.

For the convergence rates, the experiment begins by computing the “true” solu-
tion on a fixed mesh with 900 degrees of freedom (DoFs). This solution is obtained
by solving the problem to high accuracy using a large sample size of n = 500. The
resulting solution, denoted z(Pn), and the corresponding optimal value, v(Pn), are
considered as the “true” references for comparison.

Next, smaller sample sizes m = 1, . . . ,M , with M = 100, are selected. For
each m, the problem is resolved to obtain the solutions z(Pm) and optimal val-
ues v(Pm). To account for variability, the experiment is repeated 100 times
for each sample size m, generating a collection of solutions and optimal values:
{(z(Pm,j), v(Pm,j))}100j=1 .
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Importantly, the data used to compute z(Pn) and v(Pn) are not subsampled
during this process. Finally, the discrepancies between the solutions and optimal
values obtained for each sample size m and the “true” references are computed
and recorded as: ‖z(Pm,j)−z(Pn)‖L2 and |v(Pm,j)−v(Pn)|. From this we observe

‖z(Pm)− z(Pn)‖L2(Ω) ∈ O(m−0.53656) and |v(Pm)− v(Pn)| ∈ O(m−0.66035).

A similar experiment was conducted using subsampling bootstrapped confi-
dence intervals on the optimal values. However, the asymptotic nature of this
theory and the need for many subsamples of size b (even if b is much smaller than
the “true” sample size n) is substantial. Each run of semismooth Newton requires
about 8-10 iterations, resulting in several million PDE solves per subsample. As
a result, we use a coarse mesh size: 32 × 32 and set n = 1000, subsample size
b = 1000, and number of subsamples to m = 1000. For this experiment, the
subsampling is done without replacement. For a confidence level of α = 0.95 we
obtain the bounds on the optimal value: cn,b,α = 0.089148 and cn,b,α = 0.090720.
On an out-of-sample test of 100 new problems instances, the optimal values fell
between cn,b,α and cn,b,α 84 times, thus falling short of the expected value of 95.

4. Open Problems

Experiments presented in the talk revealed a strong relationship between the sam-
ple parameters (n, b,m) and the mesh parameter h for the “hit-or-miss” statistic
defined by the confidence interval, warranting deeper study. Theoretical results
were primarily for an ideal setting, raising questions about extensions to nonconvex
risk-neutral or nonsmooth (possibly nonconvex) risk-averse problems. Addition-
ally, the considered randomness was static, prompting the question: What insights
can be gained for time-dependent stochastic processes, such as stochastic control?
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Learning to reflect: On data-driven approaches to stochastic control

Claudia Strauch

(joint work with Sören Christensen, Niklas Dexheimer, Lukas Trottner)

Our approach to data-driven stochastic control lies at the intersection of classical
stochastic control theory and nonparametric statistics, with the aim of providing
a rigorous yet flexible framework for addressing dynamic decision making under
uncertainty. In this context, methods based on ideas from reinforcement learn-
ing have attracted considerable attention in recent years due to their success in
solving complex problems such as playing games like chess and Go, optimising
robotic systems, and enabling autonomous navigation. Central to reinforcement
learning is the ability of an agent to learn optimal strategies by interacting with
its environment, without requiring explicit knowledge of the underlying system
dynamics. This model-free approach, often implemented using (deep) neural net-
works, offers immense flexibility but lacks interpretability and often provides lim-
ited convergence guarantees. In contrast, classical stochastic control relies on
precise mathematical models of the system dynamics and provides interpretable
and theoretically sound solutions. However, the assumption of full knowledge of
the underlying process limits its applicability to real-world problems where such
information is unavailable or difficult to estimate.

We aim to bridge these paradigms by combining the theoretical foundations
of stochastic control with statistical learning and estimation methods. The goal
is to derive interpretable and robust strategies for controlling systems when the
dynamics are unknown, while addressing the exploration-exploitation dilemma
that is central to reinforcement learning. In doing so, data-driven approaches
retain the interpretability and convergence guarantees of stochastic control while
borrowing the adaptability and learning capacity of reinforcement learning.

Technical framework. In general, stochastic control theory is concerned with
decision making in systems governed by random processes, where the objective
is to optimise a cost or reward functional over time. Consider, for example, a
dynamic system modelled by a scalar Itô diffusion process described by the SDE

(1) dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0,

where b : R → R is the drift, σ : R → R is the dispersion coefficient, and (Wt)t≥0

is a standard Brownian motion. The control is often exerted by mechanisms such
as reflecting barriers, impulses or continuous adjustments of the system state.

Two common classes of stochastic control problems are singular and impulse
control. In singular control, the controlled process XZ

t evolves as

dXZ
t = b(XZ

t )dt+ σ(XZ
t )dWt + dUt − dDt,

where Z = (Ut, Dt) are control processes representing cumulative upward and
downward adjustments, respectively. The objective is to minimise the long-run
average cost, which combines the continuous, nonnegative running cost function c
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and control costs qu, qd > 0, that is, we consider the criterion

lim sup
T→∞

1

T
E

[∫ T

0

c(XZ
s )ds+ quUT + qdDT

]
.

Similarly, impulse control seeks to optimise interventions at discrete times (τn)n∈N,
where the process is reset to a specified state after each intervention. The goal is
to maximise the asymptotic growth rate of the cumulative rewards

sup
K

lim inf
T→∞

1

T
E


 ∑

n:τn≤T

g(XK
τn−)


 ,

where the supremum extends over all admissible impulse strategies K = (τn)n∈N,
τ1 ≤ τ2 ≤ . . . an increasing sequence of stopping times.

In both cases, classical solutions rely on full knowledge of the characteristics of
the process described by (1). When this knowledge is not available, the problem
becomes inherently statistical, requiring the estimation of key process character-
istics from observed data.

Data-driven stochastic control: between statistics and optimization. In
our work, nonparametric estimation techniques play a crucial role in bridging the
gap between limited knowledge of system dynamics and optimal decision making.
For the problems outlined above, a central concept is the invariant density, which
describes the long-term behaviour of an ergodic process. For the diffusion process
described by the SDE (1), there are explicit criteria that ensure the existence of
an invariant density, which is then given explicitly as

ρ(x) =
1

Cb,σσ2(x)
exp

(
2

∫ x

0

b(y)

σ2(y)
dy

)
,

Cb,σ denoting a normalising constant. In particular, this density is needed to
compute the expected costs and payoffs for the (optimal) singular and impulse
control strategies. If ρ(x) is unknown, it can be estimated nonparametrically, e.g.,
using kernel or wavelet methods. Given a continuous observation of Xt≥0 over the
time interval [0, T ], a kernel estimator for ρ(x) is given by

ρ̂T (x) =
1√

T (logT )2

∫ T

0

K

(√
T (x−Xt)

(log T )2

)
dt,

where K is a compactly supported kernel function. The sup-norm risk of this
estimator can be controlled under the assumption of exponential ergodicity of the
process described by (1), leading to convergence rates of the form

E

[
‖ρ̂T − ρ‖pL∞(D)

]1/p
= O

(√
logT√
T

)
,

for any compact domainD. The estimated invariant density can be used to approx-
imate cost and reward functionals. For example, for the singular control problem
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sketched above, the estimated cost of a reflection strategy with boundaries ξ and
θ is given by

ĈT (ξ, θ) =
1

∫ θ
ξ
ρ̂T (x)dx

(∫ θ

ξ

c(x)ρ̂T (x)dx +
quσ

2(ξ)

2ρ̂T (ξ)
+
qdσ

2(θ)

2ρ̂T (θ)

)
.

The optimal boundaries are then obtained by minimising ĈT (ξ, θ), and it can be
shown that the regret (that is, the difference of the optimal reward rate and the

expected data-driven reward rate) decays as O(
√
logT/

√
T ).

Summary and outlook. In the talk, we discussed our previous research on
datadriven stochastic control, beginning with the study of the impulse control
problem in [1], and we presented a strategy that balances exploration and ex-
ploitation based on statistical convergence rates. The more recent preprint [2]
provides an in-depth analysis of the statistical performance of data-driven optimal
stopping rules, establishing minimax-optimal regret bounds. The singular con-
trol problem outlined above is investigated in [4], and we highlighted in our talk,
how such problems can be addressed by estimating key quantities related to the
invariant distribution, making use of general mixing properties.

While data-driven stochastic control has many potential applications, future
research should focus on extending these methods to high-dimensional (initiated
in [3]) and multi-agent systems. Moreover, integrating stochastic control principles
into reinforcement learning frameworks offers promising opportunities to develop
interpretable and robust algorithms for real-world problems.
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Balancing with covariance matrices

Clarence W. Rowley

(joint work with Samuel E. Otto and Alberto Padovan)

Balanced truncation is a method for constructing reduced-order models of linear
systems with an input (e.g., control actuator, or external forcing) and output (e.g.,
a sensor measurement, or a particular quantity of interest). Developed in the 1980s
in the control theory community [2], the method is now widely used, and has a
priori theoretical guarantees about the accuracy of the resulting reduced-order
models. It is also computationally tractable [1], even for systems with very large
state dimension (e.g., millions of states) [5]. However, a significant limitation is
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that the methods described above are applicable only to linear systems, and while
the ideas extend to nonlinear systems [6], the methods are far more computation-
ally intensive, for instance involving solution of a partial differential in which the
number of independent variables is the state dimension.

We present an extension of balanced truncation to nonlinear systems that re-
tains some of the key features and advantages of balancing, and remains compu-
tationally tractable. One of the main reasons that balancing outperforms other
model reduction methods (sucy as projection onto a subspace spanned by prin-
cipal components) is that dynamics can be sensitive along coordinates with low
variance, and these coordinates are often truncated; balancing addresses this dif-
ficulty in a natural way. In our work, we employ ideas from active subspaces to
find low-dimensional coordinate systems that balance these two criteria: variance
of the states along trajectories; and adjoint-based information about the system’s
sensitivity. The resulting method is analogous to balanced truncation, with the
controllability and observability Gramians replaced by state and gradient covari-
ance matrices.

In order to make the above statements more precise, consider a (discrete-time)
system with state vector x(t) ∈ Rn, where t ∈ {0, 1, 2, . . .}, and dynamics given by

x(t+ 1) = f(x(t))

y(t) = g(x(t)),

where y(t) ∈ R
m denotes a vector of outputs. Consider a map

F : x(0) 7→ (y(0), y(1), . . . , y(L)),

which maps an initial state vector x(0) to a sequence of outputs. We wish to
determine a (linear, but not necessarily orthogonal) projection P of fixed rank r
such that F (x) can be approximated by F (Px), at least for the states x that we
are likely to encounter.

Suppose we have a probability distribution over the state space Rn. Then we
would like the projection P to capture directions in which x has large variance.
These directions are determined by the eigenvectors of the state covariance matrix

E(xxT ),

where E denotes expectation. Finding these directions of maximum variance is
precisely what is done in principal component analysis, for instance.

However, there is another factor to be considered, namely the sensitivity of F to
perturbations in x. This sensitivity can be quantified by the gradient covariance
matrix

E
(
∇F (x)∇F (x)T

)
.

Like the state covariance matrix, this is a symmetric, positive-semidefinite n ×
n matrix, and its eigenvectors corresponding to the largest eigenvalues describe
the directions of largest sensitivity. Ideally, our projection should capture these
directions as well.
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The challenge is that these two directions (large variance and large sensitivity)
are often not aligned. The key idea of balancing is to determine a change of coor-
dinates in which these directions are aligned, so that the directions with greatest
variance also correspond to the directions with greatest sensitivity. One of the
key results of balancing is that, under mild assumptions, it is possible to find a
coordinate system in which these matrices are equal, and even diagonal. A good
choice of reduced-order coordinates is then to retain the r states corresponding to
the largest eigenvalues, and truncate the remaining states (i.e., set them equal to
zero).

In practice, both the state covariance matrix and the gradient covariance matrix
may be computed efficiently by sampling, where gradients are determined using
an adjoint method, as described in [4]. We illustrate the method on a number
of examples, including a simple (yet challenging) toy problem, as well as a more
realistic example consisting of a nonlinear jet flow simulation with 100,000 states.

We also mention an iterative algorithm for improving this projection further,
by choosing a projection that minimizes ‖F (x)−F (Px)‖. This method, described
in detail [3], involves gradient-based optimization on two copies of the Grassmann
manifold, consisting of r-dimensional subspaces of Rn.
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Nonlinear Balanced Truncation Model Reduction

Boris Krämer

(joint work with Nick Corbin, Serkan Gugercin, Jeff Borggaard)

1. Introduction

Balanced truncation (BT) model reduction is a system-theoretic framework to
construct reduced-order models (ROMs) of high-dimensional systems by retain-
ing important structures. It has been very successful used for open-loop forced
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systems, both for linear time invariant systems, and more recently for weakly non-
linear systems. The method first balances the system, in that it simultaneously
transforms the controllability and observability energies to diagonal form while
ordering the transformed states according to their input and output energy. Sec-
ond, BT then truncates the “hard to reach” and “hard to observe” states to get
a reduced-order model that retains the original models’ controllability, observabil-
ity, and stability properties. The method was first proposed for LTI systems by
Moore [1], and has been made computationally feasible for large-scale systems by
important developments for solving linear Lyapunov matrix equations in the 1990s
and 2000s. A comprehensive survey of its variants and extensions are discussed
in [2]. We discuss the general concept and recent developments in balanced trun-
cation for nonlinear systems. Scherpen’s seminal work [3] for the open-loop case,
and [4] for the closed-loop case. first formulated the nonlinear balancing problem.

2. Balancing for nonlinear systems

Consider a nonlinear control-affine system starting from initial state x(0) = x0:

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x),

The (open-loop) controllability and observability energy for stable systems are
defined as

Ec(x0) := min
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞

||u(t)||2dt,

Eo(x0) :=
1

2

∫ ∞

0

||y(t)||2dt, u(t) ≡ 0.

These energy functions (as well as their counterparts for the unstable case) can be
shown to obey high-dimensional Hamilton-Jacobi-Bellman equations [3, 4]. Un-
der certain conditions on a neighborhood W of zero, there exists a coordinate
transformation x = Φ(z) such that the energies in the new coordinate z are

Ec(x) := Ec(Φ(z)) =
1

2

n∑

i=1

z2i
σi(zi)

, Ec(x) := Eo(Φ(z)) =
1

2

n∑

i=1

σ2
i (zi)z

2
i(1)

where σ1(z) ≥ ... ≥ σm(z) are smooth singular value functions. The nonlinear bal-
ancing transformation Φ(z) creates balanced model states that are “hard-to-reach”
and “hard-to-observe”. Those can be easily removed in the ROM construction.

3. Computational approaches to nonlinear balanced truncation

While the theoretical foundation of nonlinear balancing has been worked out over
30 years ago, its application to moderate to high-dimensional systems has so far
been hampered by the need for (i) solving n-dimensional HJB PDEs, (ii) efficiently
and uniquely computing a balancing transformation Φ; (iii) constructing an effi-
cient ROM. We present several approaches to achieve computational feasibility for
nonlinear balanced truncation into the 1000s of states.
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3.1. Solving the associated HJB equations. In [5] we propose a scalable poly-
nomial ansatz for computing energy function approximations of the form

(2) E(x) = 1

2

(
x⊤V2x+ v⊤

3 x⊗ x⊗ x+ . . .
)

where⊗ denotes the Kronecker product of two vectors and vk ∈ Rn
k

are the Taylor
series coefficients in vectorized form. We derive algorithms to efficiently solve
block-structured equations in nk unknowns via L(M)vk = b. Here L(·) denotes
the k-way Kronecker sum and M is a stable (or stabilized) matrix. Computational
examples for semi-discretized PDEs illustrate favorable scalability of our approach
up to billions of unknowns in the right-hand side b.

3.2. Balancing the nonlinear energy functions. The computation of the non-
linear balancing transformation Φ(z) in equation (1) is nontrivial due to the dif-
ficulty of both achieving certain values (Hankel Singular Value Functions) along
the diagonal of the balanced system, as well as the requirement to set off-diagonal
entries to zero. While work in the 2000s by Fujimoto [8] and Krener [7] proposed
to approximate the nonlinear coordinate transformation as a Taylor series. Similar
to how the polynomial coefficients of the energy function can be computed degree-
by-degree using Al’brekht’s method, they show that the coordinate transformation
coefficients can also be computed degree-by-degree. However, the method is merely
outlined abstractly; conditions for the existence of the solutions to the coefficients,
details regarding the practical computation of the transformation coefficients, and
a scalable implementation as needed for model reduction are not provided.

Our work in [6] presents scalable approaches and concrete algorithms to com-
pute the nonlinear transformation

(3) x = Φ(z) = T1z+T2z⊗ z+ . . .

Therein, we derive two sets of structured linear systems to obtain the transfor-
mation’s coefficients degree-by-degree, followed by a symmetrization to achieve
unique solutions. We also highlight numerical challenges that continue to exist,
such as clustering of Hankel singular values which leads to ill-conditioned solutions.

3.3. Balanced reduced-order model construction. The third step of nonlin-
ear balanced truncation model reduction is to define a nonlinear ROM

żr(t) = fr(zr) + gr(zr)u(t), yr(t) = hr(zr),

such that the input-to-output map of the ROM approximates the input-to-output
map of the FOM well. Moreover, preservation of controllability, observability and
stability properties are important features of nonlinear balanced truncation model
reduction. In [9] we proposed a nonlinear ROM that achieves these properties,
and renders the controllability energy “input-normal” and the output energy ap-
proximately “output diagonal”. In [6], we presented a method for computing the
full transformation to put the system in input-normal/output-diagonal form; sim-
ilar to the linear case, we found that computing the full transformation is often
numerically ill-conditioned for large models due to the presence of small Han-
kel singular values. Hence, as in the linear case, we plan to develop a reduced
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transformation approach (sometimes referred to balance-and-reduce as opposed to
balance-then-reduce) for the nonlinear case.

4. Open Problems

In this talk, we will also highlight open problems that remain for nonlinear bal-
anced truncation. First, one needs to develop more efficient balanced nonlinear
ROMs and compare them with other nonlinear model reduction techniques. Sec-
ond, leveraging the proposed HJB solutions for nonlinear control-oriented ROMs
would enable real-time controller design for output-feedback problems. Third, so
far, we have used a direct solver to compute exact solutions for the energy func-
tion polynomial coefficients; the possibility of using iterative solvers as well as
other basis functions and approximations is of interest in order to a) speed up
the computations further, and b) reduce memory requirements. This can enable
computing energy functions and ultimately reduced-order models in even higher
state-space dimensions.

References

[1] B. Moore, Principal component analysis in linear systems: Controllability, observability,
and model reduction, IEEE Transactions on Automatic Control 26(1) (1981), 17–32.

[2] S. Gugercin and A. Antoulas, A survey of model reduction by balanced truncation and some
new results, International Journal of Control 77(8) (2004), 748–766.

[3] J.M.A. Scherpen, Balancing for nonlinear systems, Systems & Control Letters 21(2) (1993),
143–153.

[4] J.M.A. Scherpen, H∞ balancing for nonlinear systems, International Journal of Robust and
Nonlinear Control 6(7) (1996), 645–668.

[5] N. Corbin and B. Kramer, Scalable computation of H-infinity energy functions for polyno-
mial control-affine systems IEEE Transactions of Automatic Control (to appear) (2025)

[6] N. Corbin, A. Sarkar, J.M.A. Scherpen, B. Kramer, Scalable computation of
input-normal/output-diagonal balanced realization for control-affine polynomial sys-
tems,arXiv:2410.22435 (2024)

[7] A.J. Krener, Reduced order modeling of nonlinear control systems, in: Analysis and Design
of Nonlinear Control Systems. Springer Berlin Heidelberg, (2008), 41–62.

[8] K. Fujimoto, D. Tsubakino, D., On computation of nonlinear balanced realization and model
reduction, in: 2006 American Control Conference, IEEE, 1655399.

[9] B. Kramer, S. Gugercin, J. Borggaard, Nonlinear Balanced Truncation: Part 2-Model Re-
duction on Manifolds arXiv:2302.02036

Can neural networks solve high dimensional optimal feedback

control problems?

Lars Grüne

(joint work with Dante Kalise, Luca Saluzzi, Mario Sperl)

Optimal feedback control. This talk concerns infinite horizon optimal control
problems, which in continuous time are given by

minimize
u∈U

J(x0, u) :=

∫ ∞

0

βtℓ(x(t), u(t)) dt
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with x(t) determined by

ẋ(t) :=
d

dt
x(t) = f(x(t), u(t)), x(0) = x0.

In discrete time, the problem is given by

minimize
u∈U

J(x0, u) :=

∞∑

t=0

βtℓ(x(t), u(t))

with x(t) satisfying

x+(t) := x(t+ 1) = f(x(t), u(t)), x(0) = x0.

Here x ∈ Rd is the state of the control system, β ∈ (0, 1] is a discount factor and
U are suitable spaces of control functions or control sequences. Infinite horizon
optimal control problems are typically used for tasks that need to be performed on
an indefinitely long time period. For these problems, the optimal control should
preferably be computed in feedback form u⋆(t) = F (x(t)), such that the control
can react to deviations caused by perturbations or modeling errors.

Under suitable regularity conditions, such an optimal feedback can be computed
from the optimal value function

V (x0) := inf
u∈U

J(x0, u),

which satisfies the Hamilton-Jacobi-Bellman equation

δV (x) = inf
u∈U

{DV (x)f(x, u) + ℓ(x, u)}

with δ = − lnβ in continuous time or the Bellman equation

V (x) = inf
u∈U

{βV (f(x, u)) + ℓ(x, u)}

in discrete time. The optimal feedback control is then given as the minimizer of
the respective right hand sides [2, 3].

Curse of dimensionality. Using the optimal value function for computing the
feedback law is known as the dynamic programming approach. This classical
approach is very successful if V can be computed exactly or approximately using a
numerical discretization. However, classical discretization techniques such as finite
elements or finite differences usually require a number of unknowns that grows
exponentially with the dimension d of the state x ∈ R

d, limiting this approach to
very low-dimensional problems.

One of the great promises of deep learning approaches is that they are able
to treat high-dimensional problems much more efficiently than classical numerical
techniques. For solving optimal control problems, deep learning is used in the
context of reinforcement learning in discrete time [1] and in the context of deep
learning approaches for solving PDEs (such as the Hamilton-Jacobi-Bellman PDE)
in continuous time [4]. In both cases, a deep neural network is used for storing an
approximation of the optimal value function V or a derivate thereof, such as the
function Q(x, u) = ℓ(x, u) + βV (f(x, u)) used in Q-learning in discrete time.
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Yet, it is known from [6] that also for deep neural networks the amount of
neurons needed for approximating a function in Rd with a given accuracy grows
exponentially in d. A better behavior for high-dimensional problems can only be
expected when the function V to be approximated has certain beneficial properties.
Here, we look at functions that can be approximates by functions of separable form,
i.e,

(1) V (x) ≈W (x) =

q∑

j=1

Wj(wj), wj =




xij,1
...

xij,dj


 .

For such functions W it was shown in [5] that if dj ≤ m is bounded independently
of d, q ≤ d, and all Wjs are uniformly bounded in the C1 norm, then the required
number of neurons grows only polynomially (with degree depending on m) with
d.

Distributed optimal control. In order to establish that V can be approximated
by a separable functionW as in (1), we consider optimal control problems in which
the control system consists of s ≤ d subsystems, given by

żi = fi(zi, z−i, ui), i = 1, . . . , s, z−i =




z1
...

zi−1

zi+1

...
zs




for i = 1, . . . , s. Correspondingly, the cost function is of the form

ℓ(x, u) =
s∑

i=1

ℓi(zi, z−i, ui).

We represent the interconnection between the subsystems by an undirected inter-
connection graph with nodes 1, . . . , s, in which an edge between nodes i and j is
present if and only if fi or li depends on zj or fj or lj depends on zi.

We emphasize that even in this distributed setting it is in general too optimistic
to assume that V itself is separable and that it is also too optimistic to expect
that we can get a good approximation in (1) for wj = zj. Rather, we need to
combine several zj which are close to each other in the distance induced by the
interconnection graph. For linear quadratic problems, in which the optimal value
function is of the form V (x) = xTPx for P ∈ Rd×d, one can then show that under
suitable uniform stabilizability and detectability conditions the blocks Pij of the
matrix P that multiply with xj and xi decrease exponentially with the graph
distance between node i and j. The proof can be found in [8] and is heavily based
on [7]. Under this condition, one can then construct a separable approximation of
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the form

V (x) ≈W (x) = V (0) +

q∑

k=1

Ψlk(zk, . . . , zk+l)

with

Ψlk(zk, . . . , zk+l) = V (0, . . . , 0, zk, zk+1, . . . , zk+l, 0, . . . , 0)

− V (0, . . . , 0, 0, zk+1, . . . , zk+l, 0, . . . , 0)

and q = s − l. Here l ∈ N is a parameter that determines the dimension of the
separable functions and the accuracy: for larger l, the approximation V (x) ≈W (x)
becomes more accurate and the dimension of the argument of the Ψlk increases.

For nonlinear problems, the same construction works under appropriate bounds
on the Lipschitz constants of suitable auxiliary functions derived from V . An
important topic of current research is to find conditions on the fi and ℓi ensuring
these bounds.

For details on the resulting estimates and the proofs we refer to [8] and the
forthcoming paper [9].
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Real-time Bayesian Inference and Prediction of Tsunamis

Omar Ghattas

We are interested in developing an early warning system for tsunamis generated
from subduction zone earthquakes. This results in a large-scale inverse problem
followed by a prediction, in which the data come from sea floor pressure sensors,
the parameter is the sea floor spatial-temporal motion, and the forward problem
is the coupled hydro-acoustic gravity wave propagation problem. We show that by
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exploiting the shift-invariance (in time) of the parameter-to-observable map, along
with fast block-Toeplitz solvers, we can solve such inverse problems and quantify
the uncertainties in predictions in the Bayesian sense, in a fraction of a second,
even with O(108) inversion parameters and a forward model with O(109) states.

Traffic flow models under uncertainty

Thomas Schillinger

(joint work with Simone Göttlich)

We consider traffic flow dynamics and accident modeling using the Hawkes process
[5], a self-exciting stochastic model. Traffic flow is modeled using hyperbolic partial
differential equations (PDEs), while the Hawkes process captures clustering effects
where one accident increases the likelihood of subsequent accidents in proximity.

Traffic density ρ(x, t) on a road is described by the Lighthill-Whitham-Richards
(LWR) model [6, 7]:

∂tρ+ ∂xF (x, t, ρ) = 0, ρ(x, 0) = ρ0(x),

where ρ0 is an initial density and F (x, t, ρ) is the flux function:

F (x, t, ρ) = ca(x, t)croad(x)f(ρ),

with f(ρ) = ρ(1 − ρ). Accidents influence traffic through the term ca(x, t), which
accounts for capacity reductions caused by accidents, whereas croad models the
road capacity, influenced e.g. by a speed limit. This way of including traffic ac-
cidents into traffic flow models was first presented in [1] and further discussed in
[2].

An accident with index j ∈ N is characterized by the position pj, the size sj > 0,
the capacity reduction of the accident on the road cj ∈ [0, 1) and temporal param-
eters for the time of an accident tj and its duration dj . The capacity reduction
function is given by:

ca(x, t) =

J∏

j=1

(
1− cj1[pj−sj/2,pj+sj/2](x)

)
,

where J is the number of accidents. This choice models a reduction of cj of the
road capacity on the section where the accident is located.

Apart from including traffic accidents into traffic models, we also use the traffic
model to describe the evolution of traffic accidents and follow two main ideas. On
the one hand accidents should be more likely when the flux of traffic is larger, and
on the other hand we want to take the idea of multiple collisions into account. To
do so, we employ the Hawkes process N(t) to model the times of accidents. It was
first introduced to model the after shock behaviour of earthquakes in the 1980s.
To model the jump probability of the self-exciting point process we introduce the
conditional intensity function:

λ∗(t) = λ(t) +

∫ t

0

µ(t− s)dN(s),
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where:

• λ(t): background accident rate, related to traffic density and velocity.
• µ(t − s) = αe−β(t−s): excitation function, modeling increased accident
likelihood after a primary accident.

One can observe that the second term is directly connected with the accident
process itsself and weighs previous accidents exponentially decaying in time. The
probability of a jump in some time interval [t, t+∆t] is given by

P (N(t+∆t)−N(t) = m | Ft) =





o(∆t), m > 1

∆tλ∗(t) + o(∆t), m = 1

1−∆tλ∗(t) + o(∆t), m = 0.

To prevent an explosion of accidents, α/β < 1 is required.
The background intensity is linked to traffic flow by:

λ(ρ(·, t)) = γ

∫ b

a

F (x, ρ(x, t))dx.

We refer to the work [3] for an extension on networks, a data validation and
numerical examples for the traffic accident model. Apart from this model which
rather captures short-term phenomena of traffic accident, in the work [4] we present
a traffic accident model that is inspired by the one presented here, but describes
accident characteristics on a longer time scale.
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[1] S. Göttlich and S. Knapp, Modeling random traffic accidents by conservation laws, Mathe-
matical Biosciences and Engineering 17 (2020), 1677–1701
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Sample Size Estimates for Nonconvex PDE-constrained Optimization

under Uncertainty

Michael Ulbrich

(joint work with Johannes Milz)

We summarize some of the main results of our recent paper [1], in which sample
size estimates for risk-neutral semilinear optimal control problems are developed.
The abstract form of the problem is

(1) min
u∈U

1
2E[‖S(u, ξ)− yd‖2U ] + α

2 ‖u‖2U + ψ(u),

where D ⊂ Rd, d ∈ N, is a bounded Lipschitz domain, u ∈ U = L2(D) is the
control, ξ ∈ Ξ is a random input to the PDE, u 7→ S(u, ξ) ∈ H1

0 (D) is the control-
to-state operator of the PDE constraint given ξ, yd ∈ L2(D) is the target state,
α > 0 is a parameter, and ψ : U → R ∪ {∞} is convex, closed, and proper with
a bounded domain. Details on the underlying semilinear PDE and the required
assumptions can be found in [1]. The results sketched in the following rely on
these assumptions. Since the PDE is nonlinear, u 7→ S(u, ξ) is nonlinear and thus
(1) is nonconvex.

We abbreviate J(u, ξ) = 1
2‖S(u, ξ) − yd‖2U and F (u) = E[J(u, ξ)]. As an ap-

proximation to the in general computationally intractable expectation in F , we
use Monte Carlo sampling, also called sample size approximation (SAA) FN (u) =
1
N

∑N
j=1 J(u, ξ

j), where the samples ξj are iid realizations of ξ. The SAA problem

for (1) then is obtained by replacing F with FN :

(2) min
u∈U

FN (u) + α
2 ‖u‖2U + ψ(u).

The goal is to give lower bounds on the number of samples that guarantee that, in
expectation taken over the probability distribution of the samples, any stationary
point of the SAA-problem (2) is ε-stationary for (1); and, to also give such bounds
that ensure that all stationary points of (2) are ε-stationary for (1) with high
probability. We give a rough sketch how these results are obtained, all details can
be found in [1].

The first order optimality condition for (1) is

(3) 0 ∈ ∇F (ū) + αū + ∂ψ(ū),

where ∂ψ is the convex subdifferential of ψ. For rewriting it suitably, we use
two important tools of nonsmooth analysis, (a) the proximal operator and (b) the
normal map. As for the tutorial parts presented at the blackboard, I provide a
more detailed explanation here. Given a convex, proper, closed function ϕ : U →
R ∪ {∞}, the proximal operator proxϕ : U → dom(ϕ) ⊂ U is defined as

(4) proxϕ(û) = argmin
u∈U

ϕ(u) + 1
2‖u− û‖2U .

The solution ū = proxϕ(û) of the strongly convex proximal subproblem (4) is
characterized by the optimality condition

(5) 0 ∈ ∂ϕ(ū) + ū− û.
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Substituting ϕ = ψ/α and û = −∇F (ū)/α into (5), we can write (3) as an instance
of (5). Hence,

(3) ⇔ (5)|ϕ=ψ/α
û=−∇F (ū)/α

⇔ [ū = proxϕ(û)]ϕ=ψ/α
û=−∇F (ū)/α

⇔ ū = proxψ/α(−∇F (ū)/α).

We conclude that (3) is equivalent to

(6) ū− proxψ/α(−∇F (ū)/α) = 0.

In our analysis, we rewrite the optimality conditions using the normal map Φ as

(7) Φ(v̄) := αv̄ +∇F (proxψ/α(v̄)) = 0,

where v̄ ∈ U . In fact, the following are equivalent:

1. ū solves (6) and v̄ = −∇F (ū)/α.
2. v̄ solves (7) and ū = proxψ/α(v̄).

We prove this equivalence. Let 1 hold. Then (6) gives ū=proxψ/α(−∇F (ū)/α)
= proxψ/α(v̄). Inserting this v̄-representation of ū into v̄=−∇F (ū)/α yields (7).

Now let 2 hold. Inserting ū=proxψ/α(v̄) into (7) gives v̄ = −∇F (proxψ/α(v̄))/α
= −∇F (ū)/α. Substituting this ū-representation of v̄ into ū = proxψ/α(v̄) yields

(6).
We thus can work with the optimality condition (7), where v̄ = −∇F (ū)/α.
In the same way, we can write the first order optimality conditions of (2) in one

of the following two equivalent forms

ūN − proxψ/α(−∇FN (ūN )/α) = 0,

ΦN (v̄N ) := αv̄N +∇F (proxψ/α(v̄N )) = 0, where v̄N = −∇F (ūN )/α.

In the setting of [1], Φ,ΦN : U → U are L-Lipschitz.
We now consider a stationary point ūN of (2) and write the optimality condition

as ΦN(v̄N ) = 0, where v̄N = −∇F (ūN )/α.
Returning to our initial goal, we are interested in sample size bounds CE(ε) and

CP(δ, ε) such that

E[‖Φ(v̄N )‖U ] ≤ ε for all N ≥ CE(ε),(8)

P({v̄N ; ΦN(v̄N ) = 0} ⊂ {v; ‖Φ(v)‖U ≤ ε}) ≥ 1− δ for all N ≥ CP(δ, ε).(9)

Here, expectations and probabilities are taken over the random samples (ξ1, ..., ξN ).
A key step in obtaining these estimates is the construction of a deterministic

set M that is bounded in H1(D) for which there holds v̄N ∈ M for all N almost
surely. This is done as follows: Using the state and the adjoint equations, we can
show that, ξ-almost surely, there holds

‖∇uJ(u, ξ)‖H1(D) ≤ C ∀ u ∈ dom(ψ),

with a deterministic constant C > 0. Note that, since u ∈ U , a priori only
∇uJ(u, ξ) ∈ U = L2(D) would be known. Now, there holds
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v̄N = − 1
α∇FN (proxψ/α(v̄N )) = − 1

Nα

N∑

j=1

∇uJ(ūn, ξ
j),

hence ‖v̄N‖H1(D) ≤ C/α and we can choose M = {v ∈ H1(D); ‖v‖H1(D) ≤ C/α}.
For any ν > 0, one then can find a ν-covering {vk}Kk=1 in U of M. The smallest

such number K = K(ν) is called the covering number of M. Upper bounds for
K(ν) are given in [3]. There now holds

‖Φ(v̄N )‖U = ‖ΦN(v̄N )− Φ(v̄N )‖U ≤ sup
v∈M

‖ΦN(v) − Φ(v)‖U .

Fix v ∈ M and let k = k(v) be such that ‖v − vk‖ ≤ ν. Then

‖ΦN(v) − Φ(v)‖U ≤ ‖ΦN (vk)− Φ(vk)‖U + ‖ΦN(v) − ΦN (vk)‖U
+ ‖Φ(vk)− Φ(v)‖U ≤ ‖ΦN(vk)− Φ(vk)‖U + 2Lν.

We arrive at

‖Φ(v̄N )‖U ≤ sup
v∈M

‖ΦN(v)− Φ(v)‖U ≤ max
1≤k≤K

‖ΦN (vk)− Φ(vk)‖U + 2Lν.

Finally, setting uk = proxψ/α(v
k), we can write

ΦN (vk)− Φ(vk) =
1

N

N∑

j=1

(
∇uJ(u

k, ξj)) − E[∇uJ(u
k, ξ)]

)
=:

1

N

N∑

j=1

Wk,j =: Zk,

where the Wk,j have mean zero and, for any k, {Wk,j}Nj=1 are independent. Also,
a uniform bound ‖Wk,j‖L2(D) ≤ B a.s. for all k and j can be shown. Using these
abbreviations, there holds

(10) ‖Φ(v̄N )‖U ≤ max
1≤k≤K(ν)

‖Zk‖U + 2Lν.

Based on [2], cf. [1, Prop. B.1] for details, we can estimate

E[ max
1≤k≤K

‖Zk‖U ] ≤ B

√
3 ln(2K)

N
,(11)

P

(
max

1≤k≤K
‖Zk‖U ≥ η

)
≤ 2K exp(−η2N/(3B2)) (η ≥ 0).(12)

Now let ε > 0 be given. Applying expectation to (10), using (11)|K=K(ν), choos-
ing ν = ε/(4L), and then lower bounding N such that the right hand side of
(11)|K=K(ν) is ≤ ε/2, we get a formula for CE(ε) such that (8) holds. Similarly,
given δ ∈ (0, 1), ε > 0 and choosing ν as before, we can lower bound N such that
the right hand side of (12)|K=K(ν), η=ε/2 is at most δ. This then yields a formula
for CP(δ, ε) such that (9) holds. The results can be transferred to the stationarity
measure ‖u− proxψ/α(−∇F (u)/α)‖U instead of ‖Φ(u)‖U , cf. [1, Cor. 6.3].
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Control and Machine Learning: Representation and attention.

Enrique Zuazua

In this lecture, we discussed recent results from our group that explore the re-
lationship between control theory and machine learning, specifically supervised
learning and attention mechanisms of transformers.

First, we will consider the simultaneous control of systems of Residual Neural
Networks (ResNets). Each item to be classified corresponds to a different initial
datum for the ResNet’s Cauchy problem, resulting in an ensemble of solutions to
be guided to their respective targets using the same control.

We will introduce a nonlinear and constructive method that demonstrates the
attainability of this ambitious goal, while also estimating the complexity of the
control strategies. This achievement is uncommon in classical dynamical systems
in mechanics, and it is largely due to the highly nonlinear nature of the activation
function that governs the ResNet dynamics.

This provides a rigorous and constructive proof of the representation capacity
of ResNets.

Furthermore, we will analyze the attention mechanism of transformers from a
dynamic perspective and prove asymptotic clustering properties.
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Koopman Data-Driven Spectral Problems: A Classification Theory

Matthew J. Colbrook

(joint work with Igor Mezić, Alexei Stepanenko)

Consider a discrete-time dynamical system:

xn+1 = F (xn), n = 0, 1, 2, . . . .

Here, x ∈ X denotes the state of the system, and the metric space (X , dX ) de-
notes the statespace. We assume that the function F : X → X is unknown and
continuous. Our goal is to learn the properties of the system from snapshot data,
i.e., trajectory data of the form:

{
x(m), y(m) = F (x(m)) : m = 1, . . . ,M

}
.

A recent flurry of interest has been in performing this task using linear operators.
A Koopman operator [1, 2] is defined via the composition formula:

[Kg](x) = [g ◦ F ](x) = g(F (x)), g ∈ D(K),

These operators have been used with great success in applications ranging from
climate science and neuroscience to machine learning. Many of these studies aim
to compute spectral properties of K, which can be thought of as providing a
diagonalisation of the original nonlinear system.

Despite its promise, approximating Koopman spectra in infinite-dimensional
spaces often leads to instability, non-convergence, and closure issues, even with
perfect data [3, 4, 5]. In particular, the popular method extended dynamic mode
decomposition [6] does not generally converge when computing spectral properties
of K on L2 spaces. The issue here is that truncating an infinite operator to a
finite matrix and computing the latter’s eigenvalues can fail spectacularly when we
move beyond compact self-adjoint operators or self-adjoint operators with compact
resolvent.

In this talk, we will show three things:

• Upper bounds: How to provide convergent universal algorithms for
Koopman spectral properties using the residual dynamic mode decom-
position framework [7, 8].

• Lower bounds: How to prove impossibility results in data-driven systems
using the method of adversarial systems. These results show that some
problems cannot be solved by any algorithm, even randomised and with
unlimed data, with a probability of success greater than 50% [9].

• Classification: How these upper and lower bounds lead to a sharp classi-
fication theory, telling us how complex problems are, what exactly we can
learn from data, and proving the optimality of algorithms [9].

These results form part of a broader classification programme on infinite-dimen-
sional spectral problems [11, 12, 13, 14, 15] and computational mathematics [10,
16].
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Nonlocal conservation laws: an example

Simone Göttlich

(joint work with Jan Friedrich)

Nonlocal conservation laws have gained increased attention over the last decades
for a wide field of applications in fluid dynamics. In general, space-dependent
nonlocality is intended to macroscopically cover the interplay of nonlocal inter-
actions occurring at the particle level, and is typically characterized by nonlinear
flux functions depending on space-integrals of the unknowns. The class of nonlocal
equations we are interested in can be written in the very general form of a system
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of multidimensional nonlocal conservation laws

(1) ∂tU + divx F (t, x, U,W ) = 0

with time t ∈ R+, space x ∈ Rd, U ∈ RN and W ∈ RN . In particular, the
nonlocal character of the equation is induced by the integral term W . These are
integral evaluations of the state variable U over the underlying space. Thereby,
F : R+ × Rd × RN × RN → RN is called the nonlocal and nonlinear flux.

From a data-driven modeling point of view, scalar nonlocal conservation laws
have become very popular in terms of traffic [1, 3] and material flows [4, 6]. Both
applications are driven by a nonlocal flux where the integral term is a convolution.

Let us consider a prototype example of nonlocal fluid dynamic equations in line
with (1). The one-dimensional scalar nonlocal Burger’s equation [2, 5] is given by

∂tU + ∂x(UW ) = 0,

where the integral term is defined by

W (t, x) :=

∫

R

wη(y)U(t, x+ y)dy, with wη ∈ C∞
c (R),

∫

R

wη(y)dy = 1

including a fixed nonlocal range η > 0. Hence, we deal with a convolution, and
depending on the support of the kernel function wη with an integration around x.
If the nonlocal term is replaced by its local variable by some limit procedure, we
recover the commonly known hyperbolic Burger’s equation

∂tU + ∂x(U
2) = 0.

In principle, a local conservation law corresponding to (1) including hyperbolic
transport is typically given by

(2) ∂tU + divx F̃ (t,x, U) = 0,

where F̃ is given by its nonlocal equivalents by plugging in the corresponding
local variable. This already displays an interesting model hierarchy for nonlocal
problems that is induced by the nonlocal range η.

Due to their broad fields of applications, the well-posedness of (1) is typically
shown for each application individually, cf. [1, 3, 5, 6]. However, general solution
concepts, as they are available for local problems (2) to prove the well-posedness
of (1), are still missing.
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Time averages, polynomial optimization and Koopman

Giovanni Fantuzzi

(joint work with Jason Bramburger)

Estimating the average behaviour of chaotic dynamical systems like turbulent
flows without running expensive long simulations is a long-standing challenge.
This talk described how bounds on time averages, rather than precise values, can
be derived using polynomial optimization in a model-based settings. Then, it
explained how this approach can be augmented with data thanks to a connection
with the Koopman operator and a technique for its approximation called extended
dynamic mode decomposition (EDMD) [6].

Precisely, consider a dynamical system governed by a nonliner ODE ẋ = f(x)
with a smooth vector field f . Assume the system has a compact absorbing set
X ⊂ Rn and, for every t ≥ 0, let Φt : X → X be the flow map associated to the
ODE. The infinite-time average of an observable g ∈ C(X) associated to an initial
condition x0 ∈ X is

g(x0) = lim sup
T→∞

1

T

∫ T

0

g(Φtx0) dt.

The maximum time average as x0 is varied can be calculated by solving a convex
optimization problem over continuously differentiable “auxiliary functions” [5],

max
x0∈X

g(x0) = inf
U∈R

v∈C1(X)

U s.t. U − g(x) − f(x) · ∇v(x) ≥ 0 ∀x ∈ X.(1)

In particular, every feasible pair (U, v) for the minimization problem on the right-
hand side gives an upper bound on the maximal time average [3, 4].

When the functions f , g are polynomial and the set X is described by poly-
nomial constraints, “sum-of-squares” certificates of polynomial nonnegativity and
algorithms for semidefinite programming can be used to optimize polynomial v of
finite degree [3, 4]. But what if the model is not known and one has access only
to data points {(xn, yn)}Nn=1 where yn = Φτxn for a small timestep τ > 0? Can
one estimate maximal time averages in this case?

To make progress in this data-driven setting, we observe that the Lie derivative
operator f · ∇ is the infinitesimal generator of the Koopman semigroup {Kt}t≥0

associated to the ODE dynamics. Precisely, since the Koopman operator Kτ acts
on a function v via Kτv = v ◦ Φt, we have that

f(x) · ∇v(x) = lim
τ→0

v(Φτx) − v(x)

τ
= lim

τ→0

(Kτv)(x) − v(x)

τ
.



3292 Oberwolfach Report 57/2024

This observation suggests that one should apply EDMD to approximate the Koop-
man operator from the given data and replace the exact Lie derivative f · ∇v in
the optimization problem (1) with a data-driven approximation.

Specifically, let b(x) and Ψ(x) be basis vectors for the spaces of polynomials
with indeterminate x and degree d ad m ≥ d, respectively. First, we approximate

Kτ b ≈ Kτ
mNΨ

where the matrix Kτ
mN solves the least-squares problem

min
K

1

N

N∑

n=1

‖b(yn)−KΨ(xn)‖2.

Then, we approximate the Lie derivative of any polynomial v(x) = c · b(x) as

f · ∇v ≈
(
Kτ
mNΨ− b

τ

)
· c =: LτmNv.

Finally, we compute approximate upper bounds on the maximal time average of
an observable g by replacing the minimization problem in (1) with

(2) inf
U, v

U s.t. U − g(x)− LτmNv(x) ≥ 0 ∀x ∈ X.

Numerical experiments on data gathered from the van der Pol oscillator and
from the Rössler attractor show that the optimal value of this approximate opti-
mization problem is very close to the upper bound one obtains from (1) if τ ≪ 1
and both the number N of data points and the degree m of the dictionary Ψ are
large enough. This can be justified theoretically because, as proven in [1],

lim
τ→0

lim
m→∞

lim
N→∞

‖LτmNv − f · ∇v‖L2
µ
= 0

if the datapoints xi are iid samples of a random variable distributed according to a
probability measure µ. This result can be leveraged to prove that the optimal value
of (2) converges to that of (1) if the data comes from a polynomial ODE, which is
the case in our numerical experiments, and other mild technical conditions hold [2].
However, a general theory for non-polynomial dynamics remains to be developed.
Another key open problem is to derive explicit estimates for the difference between
the optimal values of problems (2) and (1) as a function of the number N of data
points, the degree m of the approximating dictionary Ψ, and the data sampling
step τ . We wonder if recent advances in the quantitative error analysis for EDMD
can allow for progress in this direction.
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State-constrained optimal control problems under uncertainty: a

stochastic optimization perspective

Caroline Geiersbach

The field of stochastic optimization offers a helpful framework for understand-
ing optimal control problems with random (“almost sure”) state constraints. A
random state appears in applications, for instance, as a solution to a partial dif-
ferential equation (PDE) containing uncertain parameters or inputs. With the
help of a parametrized control-to-state map, the problem class in question can be
expressed in reduced form as

(1) min
u∈Uad

∫

Ω

J(u, ξ(ω)) dP(ω) subject to G(u, ξ) ∈ K almost surely.

Here, the control u is to be contained in an admissible set Uad in a Banach space,
and we consider K to be a cone in a separable Banach space R. The uncertainty
is captured in the random vector ξ defined on the probability space (Ω,F ,P). The
function G may correspond to the state y or some transformation of it.

If the state is interpreted as a recourse (wait-and-see) decision variable, then
optimality conditions for convex problems of the form (1) can be derived in the
style of Rockafellar and Wets; see [1, 2]. The main workhorse is conjugate duality
with a function space that is strong enough to handle a constraint qualification.
For this, G(u, ξ(·)) is understood as an element of the Bochner space L∞

P
(Ω, R),

which can be paired with L1
P
(Ω, R∗) or L∞

P
(Ω, R)∗. The existence of Lagrange

multipliers belonging to the former space hinges on the assumption of relatively
complete recourse, a desirable structure in stochastic programs. This assumption
demands that any feasible control u yields a feasible state y. If the state is the
solution to a PDE, any further constraint on it would need to be trivially satisifed
in order for this assumption to be satisfied. For this reason, Lagrange multipliers
generally belong to the latter space L∞

P
(Ω, R)∗ and may contain singular parts

according to a Yosida–Hewitt-type decomposition.
Under mild assumptions, one can equivalently write the constraints in problem

(1) in the robust form

G(u, ξ) ∈ K for all ξ ∈ Ξ

so that the image of G is in the space C(Ξ, R), Ξ ⊂ Rm being the (compact)
support of the random vector ξ. If a realization of the state belongs to R = C(D̄),
with D̄ ⊂ R

d also being compact, then Lagrange multipliers can be identified in
the set of regular Borel measures supported on Ξ × D̄. Further, one can derive
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equivalent optimality conditions for the corresponding semi-infinite formulation.
These developments can be found in [3].

We conclude with a discussion on the numerical solution of problems with al-
most sure state constraints. After regularization of the state constraints, we obtain
a problem of the form

(2) min
u∈Uad

E[Jγ(u, ξ)],

with Jγ having the property that the solutions uγ to (2) are consistent with the
solutions to the original problem as γ → ∞. Sample average approximation (SAA)
and stochastic approximation (SA) offer two competing approaches for solving (2).

In SAA, a sample {ξ̂1, . . . , ξ̂N} is drawn and the problem

min
u∈Uad

1

N

N∑

i=1

Jγ(u, ξ̂i) ≈ E[Jγ(u, ξ)]

can be solved, for instance, using the semismooth Newton method. In SA, sam-
pling is performed as part of the optimization procedure. The projected stochastic
gradient method is an example with iterations of the form

un+1 := πUad
(un − tnG

γn(un, ξn)), Gγn(un, ξn) ≈ ∇uE[J
γn(un, ξ)].

Both approaches offer opportunities for further research, as demonstrated by nu-
merical examples from [4].
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[4] C. Geiersbach, R. Henrion, P. Pérez-Aros. Numerical solution of an optimal control problem
with probabilistic and almost sure state constraints. J. Optim. Theory Appl. 204:7 (2025),
1–30.

Quasi-Monte Carlo Methods for Bayesian Optimal

Experimental Design

Claudia Schillings

(joint work with Vesa Kaarnioja, Björn Sprungk, Philipp Wacker)

Uncertainty quantification (UQ) has become an essential component of many ap-
plications, from transportation to healthcare, from defense to manufacturing, from
energy to microelectronics, from civil infrastructure to aerospace. The purpose of
UQ is to evaluate how uncertainties in input data, parameters, or the model itself
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influence the mathematical model’s outputs and contribute to the overall uncer-
tainty in predictions. This is crucial because many real-world systems involve
inherent variability or imprecision in their parameters, and a comprehensive un-
derstanding of the impact of these uncertainties is essential for making informed
decisions. In order to reduce the uncertainty and improve the accuracy of pre-
dictions or the reliability of decisions, the Bayesian approach to incorporate data
has become very popular and is a mainstay paradigm in UQ practice and research
[6, 11, 10, 12]. Given that data acquisition is often expensive and the incorporation
of entire datasets can be computationally prohibitive, there is growing interest in
optimizing the use of information, i.e., to design the experiments such that the in-
formation (w.r.t. a certain measure) is optimized. This is the goal of experimental
design. Assuming a measurement model of the form

y = G(θ, ξ) + η,

where G : Θ×Ξ → Y is the mapping depending on the unknown parameters θ ∈ Θ
and design parameter ξ ∈ Ξ. Here, y ∈ Y is the measurement data and η ∈ Y
denotes the measurement noise. The forward solution map G is in our setting the
solution operator of a differential equation, which is in most of the cases not known
analytically, but needs to be approximated by a numerical scheme. In Bayesian
optimal experimental design (BOED), the goal is to recover the design parameter
ξ for the Bayesian inference of θ, where a typical measure of information for a
given design ξ and data y is given by the Kullback–Leibler divergence

DKL(π(·|y, ξ)‖π(·)) :=
∫

Θ

log

(
π(θ|y, ξ)
π(θ)

)
π(θ|y, ξ) dθ

with π(θ) being the prior and π(θ|y, ξ) denoting the posterior, cp. [1, 4]. The
optimization problem is thus given by

(EIG) max
ξ∈Ξ

EY [DKL(π(·|y, ξ)‖π(·))] .

The mean w.r.t. the data corresponds to the risk-neutral case. Nevertheless, in
numerous applications, merely minimizing the “average”performance is not con-
servative enough. Instead, one can enhance the risk-neutral objective function
by incorporating quantifications of disutility or deviation, thereby leading to risk-
averse optimization (cp. [9, 3]). The double integral resulting from the composition
of the risk measure and utility function results in roughly halving the convergence
order for any sampling or cubature scheme, cp. [2]. To overcome this effect, we
will consider a sparse coupling of the inner and outer integral approximation.
The double integral can be rewritten in the form

I(f) =
∫

Y

g

(∫

Θ

f(θ,y) dθ

)
dy

for nonlinear functions f : Θ × Y → R and g : Y → R. Introducing for given

cubature operators (Q
(1)
ℓ ), (Q

(2)
ℓ ) the following difference operators
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Figure 1. The root-mean-square
(R.M.S.) cubature errors of the full
tensor product (FTP) method and
sparse tensor product (STP)
method for an elliptic test problem
with unknown diffusion coefficient.

∆
(1)
ℓ F :=

{
Q

(1)
ℓ F −Q

(1)
ℓ−1F if ℓ ≥ 1

Q
(1)
0 F if ℓ = 0

∆
(2)
ℓ (F ) :=

{
g(Q

(2)
ℓ F )− g(Q

(2)
ℓ−1F ) if ℓ ≥ 1

g(Q
(2)
0 F ) if ℓ = 0

,

we define the generalized level-L sparse grid cu-

bature operator

QL,σ(f) =
∑

σℓ1+
ℓ2
σ ≤L

∆
(1)
ℓ1

∆
(2)
ℓ2

(f)

with σ controlling the anisotropy. In a first
study focusing on quasi-Monte Carlo methods
for forward problems satisfying certain regular-
ity assumptions w.r.t. the unknown parameter,
we could bound the error for the expected in-
formation gain (EIG), and prove similar convergence rates to the linear sparse grid
case for quasi-Monte Carlo methods, cp. Fig. 1. Please see [7] for more details.

Figure 2. Laplace
based preconditioning
for an elliptic test
problem with unknown
diffusion coefficient.

However, since BOED aims to find a design such that
the utility is maximized, i.e., the distance between prior
and posterior (in a suitable metric) is maximized, numer-
ical approximation schemes often show numerical insta-
bilities in the sense that the constants in the convergence
proofs grow tremendously fast w.r.t. the size of the noise
and number of observation points. Preconditioners, to
improve the prior knowledge, such that the proposal sam-
ples are moved towards regions of high posterior, cp. Fig
2, can improve the conditioning of the problem [8]. How-
ever, analysis in the context of BOED for complex sys-
tems is still at its infancy. Stability results and analy-
ses of concentration effects are lacking, although initial
steps have been taken to establish stability estimates for
likelihood approximations in the context of expected KL
divergence [5]. A comprehensive framework with well-
posedness and stability results remains an open area for
future research.
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