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Introduction by the Organizers

The workshop Combinatorial Optimization, organized by Thomas Rothvoss (Seat-
tle), Laura Sanità (Milano) and Robert Weismantel (Zürich) continued a tradition
that the fruitful development of the field is advanced by Oberwolfach Workshops
each of which focuses on several specific areas. The focus areas of the workshop in
2024 were mixed integer optimization in high dimensions and algorithmic efficiency
in combinatorial and linear optimization.

This workshop aimed at bringing together the most active researchers in combi-
natorial optimization, and at the same time forging new connections by attracting
leading experts from adjacent areas, related to the focus topics of this proposal. It
was well attended with over 40 participants with broad geographic representation
from several continents. A considerable part of participants was from the younger
generation of researchers in the field.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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This workshop was a nice blend of researchers with various backgrounds in
mathematics and beyond. This breadth of interests of the participants was well
reflected by the wealth of topics presented in form of scientific talks or open prob-
lems. These topics address important questions in the field of combinatorial op-
timization that often also have an interface with other disciplines such as graph
theory, combinatorics, number theory, geometry of numbers or the design of al-
gorithms that itself is strongly linked with theoretical computer science. The
workshop demonstrated that the field is very active and generates surprising links
to other areas of mathematics and beyond.

During the workshop, a total of 31 talks were presented. We will provide an
overview over a small sample of invited talks, representing the variety of topics
presented at this workshop and demonstrating the progress made by the field since
the last workshop.

Vera Traub reported on spectacular progress on an important problem in com-
binatorial optimization called Steiner tree where given a graph G = (V,E) with
edge costs and terminals R, the goal is to connect the terminals at minimal cost.
The bidirected cut relaxation has long been seen as a promising tool to design
approximation algorithms that have a good approximation factor but are yet com-
putationally efficient. For several decades the best upper bound on its integrality
gap has been a factor of 2. Vera and co-authors finally managed to break this
barrier with a sophisticated algorithm and analysis.

Ola Svensson presented a new approximation algorithm for the k-median prob-
lem where a metric space and a parameter k is given and one has to open k facilities
that minimize the sum of distances of points to the nearest opened facility. The
main technical contribution of their work is a (2 + ε)-approximation which opens
just a few facilities – O(log n/ε2) many — more than allowed. Then using a sec-
ond algorithm for so called stable instances this can be turned into a polynomial
time algorithm that truly opens only k facilities. This makes significant progress
in understanding this important problem.

Lisa Sauermann reported on tremendous progress in additive combinatorics.
A classical question going back to Erdős and Turan (1936) is the following: what
is the maximum cardinality r3(N) of a set A ⊆ {1, . . . , N} that does not contain
a three-term arithmetic progression, i.e. there are no distinct x, y, z ∈ A with
x + z = 2y. A breakthrough by Kelley and Meka shows that

rn(N) ≤ N · exp(−c(logN)1/12)

On the other hand, a result by Behrend from 1946 shows a lower bound of

r3(N) ≥ N · 2−(2
√
2+o(1))

√
log2 N

Lisa and co-authors are the first after almost 80 years to improve the leading
constant of 2

√
2.

Zhuan Khye Koh presented some groundbreaking progress toward resolving
the long-standing open problem of finding a strongly polynomial algorithm for
linear programming. This work gives a strongly polynomial algorithm for the
minimum-cost generalized flow problem, which is equivalent to solving all LPs with
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at most two variables per inequality (2VPI). Their approach proves that a path-
following interior point method terminates in a strongly polynomial number of
iterations by bounding the so-called straight-line complexity, that is the minimum
number of pieces needed by any piecewise affine curve in order to approximate the
central path. This achievement goes beyond previous results, which were limited to
feasibility problems, marking a major step toward the aforementioned outstanding
open problem.

We conclude with mentioning that the workshop included an open problem
session, during which six problems were discussed and compiled in this report to
guide future research.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

The Bidirected Cut Relaxation for Steiner Tree has Integrality Gap
Smaller than 2

Vera Traub

(joint work with Jaros law Byrka, Fabrizio Grandoni)

The Steiner tree problem is one of the most prominent problems in network design,
with great practical and theoretical relevance. We are given an undirected graph
G = (V,E), with edge costs c : E → R≥0, and a subset of vertices R ⊆ V (the
terminals). The task is to compute a tree T of minimum cost c(T ) :=

∑

e∈E(T ) c(e)

which contains R (and possibly other vertices).
The best-known approximation algorithms for Steiner tree [1, 5] involve enu-

meration of a polynomial but very large number of candidate components and
are therefore slow in practice. A promising ingredient for the design of fast and
accurate approximation algorithms is the bidirected cut relaxation (BCR), which
is one of the oldest and best-studied linear programming relaxations for Steiner
tree, see for example [4].

To define BCR, we bidirect all the edges of the given graph G, i.e., we re-
place each undirected edge e = {u, v} ∈ E with two oppositely directed edges

(u, v), (v, u), both with cost c(e). Let
−→
E be this set of directed edges and choose

an arbitrary terminal r ∈ R as a root. For U ⊆ V , let δ+(U) = {(u, v) ∈ −→
E : u ∈

U, v /∈ U}. Then BCR is the following linear programming relaxation:

(BCR)

min
∑

e∈−→
E

c(e) · xe

s.t.
∑

e∈δ+(U)

xe ≥ 1 for all U ⊆ V \ {r} with R ∩ U 6= ∅

xe ≥ 0 for all e ∈ −→
E .

BCR is indeed a relaxation of the Steiner tree problem because we can orient
every Steiner tree towards the root r and then consider the incidence vector of
this oriented tree to obtain a feasible solution of BCR. Moreover, BCR is prov-
ably stronger than the natural undirected LP in several interesting special cases.
For example, a famous result by Edmonds [3] shows that BCR is integral in the
minimum spanning tree case, i.e., when R = V . Notice that, in contrast, already
on such instances the natural undirected LP has integrality gap 2.

For general Steiner tree instances, however, it was not known whether the in-
tegrality gap of BCR is better than the integrality gap of the natural undirected
relaxation, which is exactly 2. We resolve this question by proving an upper bound
of 1.9988 on the integrality gap of BCR [2].
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Ghost Value Augmentation for k-Edge-Connectivity

Rico Zenklusen

(joint work with D. Ellis Hershkowitz and Nathan Klein)

We give a poly-time algorithm for the k-edge-connected spanning subgraph (k-
ECSS) problem that returns a solution of cost no greater than the cheapest (k +
10)-ECSS on the same graph. Our approach enhances the iterative relaxation
framework with a new ingredient, which we call ghost values, that allows for high
sparsity in intermediate problems.

Our guarantees improve upon the best-known approximation factor of 2 for
k-ECSS whenever the optimal value of (k + 10)-ECSS is close to that of k-ECSS.
This is a property that holds for the closely related problem k-edge-connected
spanning multi-subgraph (k-ECSM), which is identical to k-ECSS except edges
can be selected multiple times at the same cost. As a consequence, we obtain a
(1 + O( 1

k ))-approximation algorithm for k-ECSM, which resolves a conjecture of

Pritchard [2] and improves upon a recent (1 + O( 1√
k

))-approximation algorithm

of Karlin, Klein, Oveis Gharan, and Zhang [1]. Moreover, we present a matching
lower bound for k-ECSM, showing that our approximation ratio is tight up to the
constant factor in O( 1

k ), unless P=NP.
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Almost-linear Time Algorithms for Partially Dynamic Graphs

Rasmus Kyng

(joint work with Brand, Chen, Liu, Meierhans, Probst, Sachdeva)

A partially dynamic graph is a graph that undergoes edge insertions or deletions,
but not both. In this talk, I present an unifying framework that yields the first
almost-optimal, almost-linear time algorithms for many well-studied problems on
partially dynamic graphs. These include cycle detection, strongly connected com-
ponents, s-t distances, transshipment, bipartite matching, maximum flow, and
minimum-cost flow. We achieve this unification by solving the partially dynamic
threshold minimum-cost flow problem. In this problem, one is given a fixed de-
mand vector and a threshold F, and tasked with reporting the first time a flow of
cost F exists or ceases to exist for insertions and deletions respectively. We give
separate algorithms for solving this problem in the edge insertion and deletion
cases. Both use extensions of the ℓ1-interior point method framework introduced
as part of the first almost-linear time minimum-cost flow algorithm [1]. For han-
dling edge insertions, we develop new powerful data structures [2] to solve the
central min-ratio cycle problem against a general adversary [3]. For handling edge
deletions, we take the dual perspective. This leads us to a min-ratio cut problem,
which we solve by constructing a dynamic tree that approximately preserves all
cuts [4].

References

[1] Chen, Li and Kyng, Rasmus and Liu, Yang P. and Peng, Richard and Gutenberg, Maximilian
Probst and Sachdeva, Sushant, Maximum Flow and Minimum-Cost Flow in Almost-Linear
Time, Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Sci-
ence (2022), 612–623.

[2] Kyng, Rasmus and Meierhans, Simon and Gutenberg, Maximilian Probst, A Dynamic Short-

est Paths Toolbox: Low-Congestion Vertex Sparsifiers and Their Applications, Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, 1174–1183.

[3] Chen, Li and Kyng, Rasmus and Liu, Yang P. and Meierhans, Simon and Gutenberg, Max-
imilian Probst, Almost-Linear Time Algorithms for Incremental Graphs: Cycle Detection,
SCCs, s-t Shortest Path, and Minimum-Cost Flow, Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, 1165–1173.

[4] Brand, Jan Van Den and Chen, Li and Kyng, Rasmus and Liu, Yang P. and Meierhans,
Simon and Gutenberg, Maximilian Probst and Sachdeva, Sushant Almost-Linear Time Al-
gorithms for Decremental Graphs: Min-Cost Flow and More via Duality, Proceedings of
the 65th IEEE Annual Symposium on Foundations of Computer Science (2024), 2010–2032.



2960 Oberwolfach Report 50/2024

Transitive covers

Stefan Weltge

(joint work with Daniel Dadush, Andrey Kupavskii)

Given a directed graph G, we say that a directed graph H is a transitive cover of
G if it satisfies

• V (G) ⊆ V (H) and
• for every s, t ∈ V (G): G has an s-t-path if and only if H has an s-t-path.

Thus, a transitive cover contains the complete reachability information of G. We
denote by tc(G) the smallest number of edges of a transitive cover of G. The idea
of using transitive covers to compress the reachability information of a graph has
been used in different algorithmic contexts [1, 3]. Here, we introduce a formal
study of the quantity tc(G). Using a result by Tuza [4] and a counting argument,
one can show

Theorem 1. max{tc(G) : |V (G)| = n} = Θ( n2

logn ).

As our main result, we prove the following.

Theorem 2. If t ∈ Z≥2 and Gt is the family of directed bipartite graphs1 that are

Kt,t-free, then supG∈Gt

|E(G)|
tc(G) = (t− 1)2.

Using a result by Füredi [2], we obtain the following consequence.

Corollary 3. There exist directed graphs G with |E(G)| = Ω(|V (G)|3/2) and
tc(G) = |E(G).

Moreover, we establish the following connection to extended formulations. Here,
for a polyhedron P , we denote by xc(P ) the extension complexity of P , i.e., the
smallest number of facets of a polyhedron that can be linearly projected onto
P . For a directed graph G, let I(G) ∈ {0,±1}V (G)×E(G) denote the node-edge
incidence matrix of G.

Proposition 4. Every directed graph G satisfies xc({I(G)x : x ∈ R
E
≥0}) ≤ tc(G).

Given many techniques for establishing lower bounds on extension complexities,
we wonder whether this result may provide interesting insights for proving lower
bounds on tc(G).

In our talk, we posed several open questions regarding transitive covers, in-
cluding the complexity of computing tc(G). In a subsequent discussion with Rico
Zenklusen we found an approximation-preserving reduction from the set cover
problem on instances where any two sets intersect in at most one element (con-
taining vertex cover as a special case).

1Here, we assume that all edges are directed from one side of the bipartition to the other side.
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Extending the Continuum of Six-Colorings

Sebastian Pokutta

(joint work with Konrad Mundinger, Christoph Spiegel, Max Zimmer)

We present two novel six-colorings of the Euclidean plane that avoid monochro-
matic pairs of points at unit distance in five colors and monochromatic pairs at
another specified distance d in the sixth color. Such colorings have previously
been known to exist for 0.414 ≈

√
2 − 1 ≤ d ≤ 1/

√
5 ≈ 0.447. Our results signifi-

cantly expand that range to 0.354 ≤ d ≤ 0.657, the first improvement in 30 years.
Notably, the constructions underlying this were derived by formalizing colorings
suggested by a custom machine learning approach.

The first coloring is valid for 0.354 ≤ d ≤ 0.553 and involves four different
polytopal shapes: equidiagonal pentagons, equilateral triangles, octagons, and
hexagons. These shapes are colored in a specific pattern to avoid monochromatic
pairs at both unit distance and the specified distance d. The coloring is parame-
terized by d.

The second coloring is valid for 0.418 ≤ d ≤ 0.657 and uses four polytopal
shapes: axisymmetric pentagons, squares, heptagons, and hexagons. Similar to the
first construction, these shapes are arranged and colored to avoid monochromatic
pairs at the specified distances. This coloring, independent of d, is valid for the
entire range 0.418 ≤ d ≤ 0.657.

These constructions were derived using a custom machine learning approach,
which we coined “deep annealing.” It allows us to explore and formalize new
colorings efficiently, resulting in somewhat “unexpected” and irregular patterns
compared to previously found colorings.
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Online Algorithms with a Sample

Anupam Gupta

(joint work with C.J. Argue, Alan M. Frieze, and Christopher Seiler)

We consider two central problems in combinatorial optimization: the restricted
assignment load-balancing problem, and the Steiner tree network design problem.
We consider the online setting, where the input arrives over time, and irrevocable
decisions must be made without knowledge of the future. For both these problems,
any online algorithm must incur a cost that is approximately log |I| times the
optimal cost in the worst-case, where |I| is the length of the input. But can we go
beyond the worst-case? In this talk we give algorithms that perform substantially
better when a p-fraction of the input is given as a sample: the algorithm use this
sample to learn a good strategy to use for the rest of the input. The talk is based
on work reported in [1].
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Cost Allocation for Set Covering: The Happy Nucleolus

Jens Vygen

(joint work with Jannis Blauth, Antonia Ellerbrock, Vera Traub)

We consider cost allocation for set covering problems. We allocate as much cost
to the elements (players) as possible without violating the group rationality con-
dition, and so that the excess vector is lexicographically maximized. This happy
nucleolus has several nice properties. In particular, we show that it can be com-
puted considering a small subset of “simple” coalitions only. While computing the
nucleolus for set covering is NP-hard, our results imply that the happy nucleolus
can be computed in polynomial time [1].

At the end, we briefly discuss applications to real-world logistics, in the context
of our vehicle routing heuristic [2].
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Non-distributive lattices, stable matchings, and linear optimization

Yuri Faenza

(joint work with Christopher En)

We show that all finite lattices, including non-distributive lattices, arise as sta-
ble matching lattices under standard assumptions on choice functions. Our result
proves the converse inclusion of [2] and extends results of [1, 3, 4] on distributive
lattices and stable matchings in marriage instances. In the process, we introduce
new tools to reason on general lattices for optimization purposes: the partial rep-
resentation of a lattice, which partially extends Birkhoff’s representation theorem
to non-distributive lattices; the distributive closure of a lattice, which gives such a
partial representation; and join constraints, which can be added to the distributive
closure to obtain a representation for the original lattice. Then, we use these tech-
niques to show that the minimum cost stable matching problem under the same
standard assumptions on choice functions is NP-hard, by establishing a connection
with antimatroid theory.
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Improving Behrend’s construction for sets without three-term
arithmetic progressions

Lisa Sauermann

(joint work with Christian Elsholtz, Zach Hunter, Laura Proske)

The questions of estimating the maximum possible sizes of subsets of {1, . . . , N}
and of Fn

p without three-term arithmetic progressions are among the most central
problems in additive combinatorics. Let us denote the maximum possible size
of such subsets by r3(N) and r3(Fn

p ), respectively. So, formally, r3(N) is the
maximum possible size of a subset A ⊆ {1, . . . , N} such that there do not exist
distinct x, y, z ∈ A with x+ z = 2y, and similarly r3(Fn

p ) is the maximum possible
size of a subset A ⊆ F

n
p such that there do not exist distinct x, y, z ∈ A with

x + z = 2y. The problem of estimating r3(N) was raised by Erdős and Turán [8]
in 1936, and has been intensively studied since then. It also has connections to
problems in communication complexity. The problem for Fn

p has also been studied
for several decades.

In a breakthrough result in 2017, Ellenberg and Gijswijt [6] proved that for any
prime p ≥ 3, there is an upper bound of the form

(1) r3(Fn
p ) ≤ (cpp)n

for some constant cp < 1 only depending on p (and their constant cp converges to
0.841 . . . for p → ∞, see [3, Eq. (4.11)]). In the integer setting, in a more recent
breakthrough Kelley and Meka [11] proved the upper bound

r3(N) ≤ N · exp(−c(logN)1/12)

for all N ≥ 3, for some absolute constant c > 0. This drastically improved upon
all the previous bounds, obtained in a long seriesoif works by many authors over
several decades. Afterwards, using a modification of the proof of Kelley and Meka,
this bound was improved to

r3(N) ≤ N · exp(−c(logN)1/9)

by Bloom and Sisask [4].
These upper bounds for r3(N) match the shape of a classical lower bound for

this problem due to Behrend [2] from 1946, which is of the form

(2) r3(N) ≥ N · 2−(2
√
2+o(1))

√
log2 N .

Over the past almost eighty years, only the o(1)-term in this bound has been im-
proved. In Behrend’s original bound, this o(1)-term in the exponent encapsulated

a factor of (log2 N)−1/4, so the bound was of the form r3(N) ≥ Ω(N ·2−2
√
2
√

log2 N ·
(log2 N)−1/4). In 2010, Elkin [5] improved this factor to (log2 N)1/4 instead, and
an alternative proof for the bound with this improved o(1)-term was found by
Green and Wolf [10].

This talk is based on recent work, giving the first improvement to Behrend’s
[2] classical lower bound beyond the o(1)-term in (2). As stated in the following

theorem, we show that the constant factor 2
√

2 ≈ 2.828 in the exponent can be
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improved to 2
√

log2(24/7) ≈ 2.667, proving that the classical bound (2) is not
tight.

Theorem 1. We have

r3(N) ≥ N · 2−(C+o(1))
√

log2 N

with C = 2
√

log2(24/7) < 2
√

2.

Our proof of Theorem 1 is motivated by studying three-term progression free
sets in F

n
p , for a fixed relatively large prime p and large n. In this setting, one can

adapt Behrend’s construction [2] (as noted by Tao and Vu in their book on additive
combinatorics [13, Exercise 10.1.3] and also observed by Alon, see [9, Lemma 17])
to show

(3) r3(Fn
p ) ≥

(p + 1

2

)n−o(n)

for any fixed prime p and large n. Alternatively, such a bound can also be shown
via an adaptation of an earlier construction in the integer setting due to Salem
and Spencer [12] from 1942 (see [1, Theorem 2.13]). The asymptotic notation o(n)
in the bound (3) is for n → ∞ with p fixed. The best quantitative bound for the
o(n)-term in this statement is due to Elsholtz and Pach [7, Theorem 3.10], but
beyond the o(n)-term, this bound has not been improved (except for specific small
primes p).

Comparing the upper and lower bounds for r3(Fn
p ) for a fixed (reasonably large)

prime p and large n in (1) and (3), there is still a large gap. Both of these
bounds are roughly of the form (cp)n with 0 < c < 1, but with different values
of c. For the upper bound, the best known constant due to Ellenberg–Gijswijt
[6] is c ≈ 0.85 (when the fixed prime is large enough). For the lower bound
the constant c = 1/2 from Behrend’s construction [2] or alternatively the Salem–
Spencer construction [12] has not been improved in more than eighty years despite
a lot of attention, especially after the upper bound of Ellenberg–Gijswijt appeared.
This work improves this constant in the lower bound to be strictly larger than 1/2.

Theorem 2. There is a constant c > 1/2 such that for every prime p and ev-
ery sufficiently large positive integer n (sufficiently large in terms of p), we have
r3(Fn

p ) ≥ (cp)n.

Breaking the barrier of 1/2 in this result for r3(Fn
p ) relies on the same key

insights as our lower bounds for r3(N) in Theorem 1 improving Behrend’s con-

struction. Our proof of Theorem 2 shows that one can take any c <
√

7/24, for
example c = 0.54. Even though this may not seem like a large improvement over
1/2, it is the first qualitative improvement over the constant 1/2 from the construc-
tions of Salem–Spencer and Behrend from the 1940’s. Both of these constructions
lead to three-term progression free subsets of Fn

p only consisting of vectors with all
entries in {0, 1, . . . , (p− 1)/2}, i.e. they only use roughly half of the available ele-
ments in Fp in each coordinate. The restriction of all entries to {0, 1, . . . , (p−1)/2}
is crucial in these constructions, as it ensures that there is no “wrap-around” over
Fp. However, such an approach cannot be used to obtain three-term progression



2966 Oberwolfach Report 50/2024

free subset A ⊆ F
n
p of size |A| > ((p + 1)/2)n, so c = 1/2 is a significant barrier

for this problem. In light of this, it may actually be considered a surprise that it
is possible to obtain a constant c > 1/2.

It is plausible that by slight modifications of our method, one can obtain better
numerical bounds in our results above. In particular, our construction relies on
certain explicit two-dimensional building blocks of area close to 7/24, defined as
the union of certain polygons. An improved construction for these building blocks
with larger area would automatically carry over to numerical improvements of the
constant C = 2

√

log2(24/7) in Theorem 1 and the constant c in Theorem 2. We
see the main contribution of this work as introducing this method, and using it to
break the lower bounds for r3(N) and r3(Fn

p ) in (2) and (3) originating from the
1940’s.
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A strongly polynomial algorithm for the minimum cost generalized
flow problem

Zhuan Khye Koh

(joint work with Daniel Dadush, Bento Natura, Neil Olver, László A. Végh)

Linear programs (LPs) can be solved in polynomial time using the ellipsoid method
[4] or interior point methods [3, 6]. However, it is an outstanding open prob-
lem whether there exists a strongly polynomial algorithm for linear programming.
Given an LP with m constraints, n variables and bit encoding length L, a strongly
polynomial algorithm can only use poly(m,n) elementary arithmetic operations
(+,−,×,÷, <?), and must run in poly(m,n, L) space. This question was first
posed by Megiddo [5], and is often referred to as Smale’s 9th problem [7].

In this talk, we focus on the class of LPs with at most 2 variables per inequal-
ity (2VPI). By a reduction of Hochbaum [2], this class is strongly polynomially
equivalent to the minimum-cost generalized flow problem. Given a directed graph
G = (V,E) with node demands b ∈ R

V , arc costs c ∈ R
E and gain factors γ ∈ R

E
>0,

the latter problem can be formulated as the following LP

(1)

min
∑

e∈E

cexe

s.t.
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = bv ∀v ∈ V

xe ≥ 0 ∀e ∈ E.

This is a generalization of the classic minimum cost flow problem, by allowing flow
traversing an arc e to be scaled by the corresponding gain factor γe > 0.

We give a strongly polynomial algorithm for solving (1), and consequently all
2VPI LPs. Previously, strongly polynomial algorithms were only known for the
primal and dual feasibility problems [8, 5]. Our approach is to show that the path-
following interior point method of [1] terminates in a strongly polynomial number
of iterations for (1). We achieve this by bounding the straight line complexity,
which is the minimum number of pieces required by a piecewise affine curve to
multiplicatively approximate the central path.
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Exponential Lower Bounds for Many Pivot Rules for the Simplex
Method

Alexander E. Black

The existence of a pivot rule for the simplex method that guarantees a polyno-
mial run-time is a longstanding, fundamental open problem in the theory of linear
programming. The most popular pivot rule for theoretical analysis is the shadow
pivot rule, which solves a linear program by projecting the feasible region onto a
polygon. It has been shown to perform in expected strongly polynomial time on
uniformly random instances and in smoothed analysis. In practice, the pivot rule
of choice is the steepest edge rule, which normalizes the set of improving neighbors
and then chooses a maximally improving normalized neighbor. Exponential lower
bounds are known for both rules in worst-case analysis [1, 2]. However, for the
shadow simplex method, all exponential examples were only proven for one choice
of projection, and for the steepest edge rule, the lower bounds were only proven for
the Euclidean norm. We construct linear programs for which any choice of projec-
tion for shadow rule variants will lead to an exponential run-time and exponential
examples for any choice of norm for a steepest edge variant.
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Machine learning augmented MILP

Karen Aardal

(joint work with Lara Scavuzzo, Andrea Lodi, Neil Yorke-Smith)

In the first part of our talk [1] we give a short introduction to how machine learning
(ML) is used to solve the so-called variable selection problem within the Branch-
and-Bound (B&B) algorithm, i.e., the problem of selecting which of the candidate
variables to branch on. Most ML-algorithms are trained to approximate strong
branching, but we also mention Reinforcement Learning as a tool to learn how to
branch when strong branching is not an appropriate expert.

In the second part [2], we discuss two new ML-based methods for estimating
the optimal value of a mixed integer linear program (MILP) once the root node
of the B&B-tree has been solved. This estimate is one of the inputs to a classifier
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that estimates whether the current best known feasible solution is optimal even
if no certificate of optimality has yet been found. If we, with high probability,
would know that the current best feasible solution is in fact optimal, then the
effort of the B&B algorithm can be redirected to more aggressively work on the
dual bound. We show computational results from three different problem classes;
set cover, combinatorial auctions, and generalized independent set, and observe
that our estimates are quite accurate and, compared to other estimates proposed
in the literature, they are more well-balanced, in terms of false positives and false
negatives.
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Integer and Unsplittable Multiflows in Series-Parallel Digraphs

Martin Skutella

(joint work with Mohammed Majthoub Almoghrabi, Philipp Warode)

For a given digraph with k source-sink pairs, an unsplittable multiflow sends the
given demand di of every commodity i ∈ [k] := {1, . . . , k} along a single path Pi

from its source si to its sink ti. Unsplittable flow problems represent a compelling
extension of disjoint path problems and have received considerable attention in
the literature. Even in the apparently straightforward case of a (series-parallel)
digraph consisting of one common source and one common sink connected by
parallel arcs, determining the existence of a feasible unsplittable multiflow (i.e.,
one that adheres to given arc capacities) is NP-complete. In fact, several classical
problems in combinatorial optimization, such as, e.g., Bin Packing, Partition, or
parallel machine scheduling with makespan objective occur as special cases; for
more details we refer to Kleinberg’s PhD thesis [2].

Integer multiflows. When every commodity i ∈ [k] has unit demand di := 1, un-
splittable multiflows precisely correspond to integer multiflows, which have been
extensively studied in the literature. In fact, in unit-capacity networks, feasible
integer multiflows model arc-disjoint paths, and therefore cannot be computed
efficiently, unless P=NP. For example, Vygen [11] shows that the arc-disjoint
paths problems is NP-complete even in acyclic and planar digraphs; see [8, Chap-
ter 70.13b+c] for further related complexity results. On the other hand, single-
commodity network flows (i.e., k = 1) are well-known to feature strong integrality
properties. In particular, the network flow polytope is integral, that is, any single-
commodity flow (xe)e∈E on a digraph G = (V,E) with integer excess at every



2970 Oberwolfach Report 50/2024

node, is a convex combination of integer flows (ye)e∈E that maintain the same
excesses, such that

⌊xe⌋ ≤ ye ≤ ⌈xe⌉ for every arc e ∈ E.(1)

Arguably, the most important tool for proving the existence of integer multiflows
in special graph classes is the Nagamochi-Ibaraki Theorem [6], which relies on
the sufficiency of the cut condition. This (necessary) condition requires that the
capacity of every cut exceeds the total demand of commodities that must cross it.
The concept of cut-sufficiency is of interest in its own right and is an active research
topic; see, e.g., the recent work of Poremba and Shepherd [7] and references therein.
For a fixed digraph, the Nagamochi-Ibaraki Theorem asserts that if, for any integer
arc capacities and demands, the cut condition guarantees the existence of a feasible
multiflow, it also guarantees the existence of a feasible integer multiflow. For
most classes of digraphs in which the existence of a feasible multiflow implies
the existence of a feasible integer multiflow, the cut condition is indeed sufficient.
However, the multiflow instance in Fig. 1 illustrates that the cut condition is
generally not sufficient for the class of series-parallel digraphs studied in this paper.

s1 s2 t1 t2

Figure 1. Infeasible multiflow instance with unit-demand com-
modities and unit arc capacities satisfying the cut condition.

Single-source unsplittable flows. Even though our results hold for general multi-
flow instances in series-parallel digraphs, where each commodity is routed from a
distinct source to a distinct sink, our main result is primarily inspired by prior
research on single-source unsplittable flows, which we review next. We refer to [3]
for a comprehensive overview of results on general unsplittable multiflows.

Single-source unsplittable flows, where all commodities share a common source
node s, have first been studied by Kleinberg [2]. Dinitz, Garg, and Goemans [1]
prove that a given fractional flow (xe)e∈E can always be turned into an unsplittable
flow (ye)e∈E (given by s-ti-paths Pi with ye :=

∑

i:e∈Pi
di) such that

ye ≤ xe + dmax for every arc e ∈ E,(2)

where dmax := maxi∈[k] di. A famous conjecture of Goemans says that flow (xe)e∈E

can even be expressed as a convex combination of unsplittable flows (ye)e∈E that
satisfy (2). Skutella [9] proves that Goemans’ Conjecture is valid when the de-
mands of the commodities are multiples of one another. For acyclic digraphs,
Morell and Skutella [5] show that any fractional flow (xe)e∈E can be turned into
an unsplittable flow (ye)e∈E that satisfies the lower bound

ye ≥ xe − dmax for every arc e ∈ E.(3)

Furthermore, they conjecture the existence of an unsplittable flow that satisfies
both the upper bounds (2) and the lower bounds (3). Only recently, for the
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special case of acyclic and planar digraphs, this conjecture has been proved by
Traub, Vargas Koch, and Zenklusen [10]. Morell and Skutella also propose the
following strengthening to Goemans’ conjecture.

Conjecture 1 (Morell and Skutella [5]). For the single-source unsplittable flow
problem on acyclic digraphs, any fractional flow (xe)e∈E can be expressed as a
convex combination of unsplittable flows (ye)e∈E that satisfy both (2) and (3).

Using techniques of Martens, Salazar, and Skutella [4], they show that their
Conjecture 1 is valid when the demands of the commodities are multiples of one
another. Moreover, for the special case of acyclic and planar digraphs, and under
the slightly relaxed lower and upper bounds xe−2dmax ≤ ye ≤ xe+2dmax for e ∈ E,
Conjecture 1 is proved by Traub, Vargas Koch, and Zenklusen [10].

Our contributions. We present the following observations on integer multiflows.

Theorem 1. Consider a multiflow instance on a series-parallel digraph.
(a) For integer demands, the total arc flows (xe)e∈E of any multiflow can be ex-

pressed as a convex combination of total arc flows (ye)e∈E of integer multiflows
that satisfy (1).

(b) For (integer) arc capacities, a feasible (integer) multiflow, if one exists, can
be efficiently found through a single-commodity flow computation.

In light of the fact that multiflow instances on series-parallel digraphs generally
do not satisfy the assumptions of the Nagamochi-Ibaraki Theorem (i.e., the cut
condition is not sufficient; see Figure 1), the strong integrality property in Theo-
rem 1(a) might seem surprising. On the other hand, the proof of Theorem 1 relies
on the simple observation that, by carefully subdividing commodities, multiflow
instances on series-parallel digraphs can be efficiently reduced to a certain sub-
class of instances which can be solved by single-commodity flow techniques. The
integrality property in Theorem 1(a) is then inherited from the integrality of the
network flow polytope. To the best of our knowledge, and somewhat surprisingly,
these observations have not appeared in the literature before.

Our main result generalizes the strong integrality result in Theorem 1(a) to-
wards unsplittable multiflows.

Theorem 2. The total arc flows (xe)e∈E of a fractional multiflow in a series-
parallel digraph can be expressed as a convex combination of total arc flows (ye)e∈E

of unsplittable multiflows that satisfy

xe − dmax < ye < xe + dmax for every arc e ∈ E.

This result implies, in particular, that Conjecture 1 holds for series-parallel
digraphs, even for general multiflow instances where commodities have individual
source and sink nodes. Even for the weaker conjecture of Goemans, Theorem 2
provides the first proof for a non-trivial class of digraphs.
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Popular Arborescences and Their Matroid Generalization

Yu Yokoi

(joint work with Telikepalli Kavitha, Kazuhisa Makino, Ildikó Schlotter)

Let G = (V ∪ {r}, E) be a rooted digraph where each vertex in V has a partial
order over its incoming edges. An arborescence is popular if it does not lose a head-
to-head election against any other arborescence, where vertices in V are voters.
The popular arborescence problem is to decide whether a given instance admits a
popular arborescence or not (and to find one if it exists).

We present a polynomial-time algorithm to solve this problem. In fact, our algo-
rithm solves the more general popular common base problem in the intersection of
two matroids, where one matroid is a partition matroid with a partial order on each
partition class, and the other is an arbitrary matroid. This problem is a common
generalization of the previously studied popular matching problem [1], popular
assignment problem [2], and popular branching problem [3]. Our algorithm is
combinatorial and can be regarded as a primal-dual algorithm. It searches for a
solution along with its dual certificate, a chain of subsets of the ground set E,
witnessing its popularity.
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A Better-Than-1.6-Approximation for Prize-Collecting TSP

Nathan Klein

(joint work with Jannis Blauth, Martin Nägele)

Prize-Collecting TSP is a variant of the traveling salesperson problem where one
may drop vertices from the tour at the cost of vertex-dependent penalties. The
quality of a solution is then measured by adding the length of the tour and the
sum of all penalties of vertices that are not visited. We present a polynomial-
time approximation algorithm with an approximation guarantee slightly below 1.6,
where the guarantee is with respect to the natural linear programming relaxation
of the problem. This improves upon the previous best-known approximation ratio
of 1.774 [1]. Our approach is based on a known decomposition for solutions of
this linear relaxation into rooted trees. Our algorithm takes a tree from this
decomposition and then performs a pruning step before doing parity correction on
the remainder. Using a simple analysis, we bound the approximation guarantee
of the proposed algorithm by (1 +

√
5)/2 ≈ 1.618, the golden ratio. With some

additional technical care we further improve it to 1.599.
We also consider the Prize-Collecting Stroll (PCS) problem, in which we want to

compute an s-t walk minimizing the cost of the walk plus the cost of the penalties
of the unvisited vertices. Here we improve the best known approximation from
1.926 (due to An, Kleinberg, and Shmoys [2]) to 1.6662.
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A modified greedy algorithm for submodular cover

Britta Peis

(joint work with Niklas Rieken, and José Verschae)

Submodular cover is a common generalisation of set cover, integer cover, and the
minimum weight spanning tree problem. In the submodular cover problem, we
are given a submodular, nonnegative, and monotone non-decreasing function f
defined on all subsets of a finite ground set E, and the task is to find a subset S
satisfying f(S) = f(E) of minimum cost for some given cost function on E. It is
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known that a naive greedy heuristic, which starts with the empty set, and iter-
atively adds elements of optimal ratio between cost and marginal coverage has a
performance ratio of of 1+ ln k, where k is the maximum f -value of a singleton [1]
This performance guarantee is nearly best possible, even in the special case of set
cover [2]. We propose and discuss a modification of the greedy algorithm where re-
dundant elements are deleted in each iteration. We show that this modified greedy
algorithm is guaranteed to terminate with an optimal solution to the submodular
cover problem in case of submodular systems satisfying certain properties which
are easily seen to be fulfilled by e.g. laminar set cover and weighted matroid rank
functions.
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A (2+ε)-Approximation Algorithm for Metric k-Median

Ola Svensson

(joint work with Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee,
Chris Schwiegelshohn)

In the classical NP-hard (metric) k-median problem, we are given a set of n clients
and centers with metric distances between them, along with an integer parameter
k ≥ 1. The objective is to select a subset of k open centers that minimizes the
total distance from each client to its closest open center.

In their seminal work [1], Jain, Mahdian, Markakis, Saberi, and Vazirani pre-
sented the Greedy algorithm for facility location, which implies a 2-approximation
algorithm for k-median that opens k centers in expectation. Since then, substan-
tial research has aimed at narrowing the gap between their algorithm and the best
achievable approximation by an algorithm guaranteed to open exactly k centers, as
required in the k-median problem. During the last decade, all improvements have
been achieved by leveraging their algorithm (or a small improvement thereof),
followed by a second step called bi-point rounding, which inherently adds an ad-
ditional factor to the approximation guarantee.

Our main result closes this gap [2]: for any ε > 0, we present a (2 + ε)-
approximation algorithm for the k-median problem, improving the previous best-
known approximation factor of 2.613. Our approach builds on a combination of
two key algorithms. First, we present a non-trivial modification of the Greedy algo-
rithm that operates with only O(log n/ε2) adaptive phases. Through a novel walk-
between-solutions approach, this enables us to construct a (2 + ε)-approximation
algorithm for k-median that consistently opens at most k+O(log n/ε2) centers: via
known results, this already implies a (2 + ε)-approximation algorithm that runs in
quasi-polynomial time. Second, we develop a novel (2+ε)-approximation algorithm
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tailored for stable instances, where removing any center from an optimal solution
increases the cost by at least an Ω(ε3/ logn) fraction. Achieving this involves sev-
eral ideas, including a sampling approach inspired by the k-means++ algorithm
and a reduction to submodular optimization subject to a partition matroid. This
allows us to convert the previous result into a polynomial time algorithm that
opens exactly k centers while maintaining the (2 + ε)-approximation guarantee.
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Sensitivity, Proximity and FPT Algorithms for Exact
Matroid Problems

Lars Rohwedder

(joint work with Friedrich Eisenbrand, Karol Węgrzycki)

We consider the problem of finding a basis of a matroid with weight exactly equal
to a given target. Here weights can be discrete values from {−∆, . . . ,∆} or more
generally m-dimensional vectors of such discrete values. We resolve the parameter-
ized complexity completely, by presenting an FPT algorithm parameterized by ∆
and m for arbitrary matroids. Prior to our work, no such algorithms were known
even when weights are in {0, 1}, or arbitrary ∆ and m = 1. Our main technical
contributions are new proximity and sensitivity bounds for matroid problems, in-
dependent of the number of elements. These bounds imply FPT algorithms via
matroid intersection.

Integer Points of Convex (non-polyhedral!) Cones

Jesús A. De Loera

(joint work with Greg Blekherman, Brittney Marsters, Luze Xu, Shixuan Zhang)

Convex cones play an important role in optimization (e.g., the cone of positive
semidefinite matrices is crucial to semidefinite optimization). Given a convex
cone C ⊆ R

N , the integer points SC := C ∩ Z
N form a semigroup which we

call the conical semigroup of C. Understanding conical semigroups is relevant to
the theory of integer conical optimization, specially for extending Hilbert bases
techniques used for rational polyhedral cones to a more general setting.

Here I report on two papers (one published in IPCO and another to in progress)
that explore the structure of conical semigroups beyond the well-studied case of
pointed rational polyhedral cones [2], where we understand there are always unique
(finite) Hilbert bases.
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In what follows, we denote GL(N,Z) := {U ∈ Z
N×N : | det(U)| = 1}. Here is

our new key definition of finite generation for conical semigroups:

Definition. Given a conical semigroup SC ⊂ Z
N , we call it (R,G)-finitely

generated if there is a finite subset R ⊆ SC and a finitely generated subgroup
G ⊆ GL(N,Z) acting on C linearly such that

(1) both the cone C and the semigroup SC are invariant under the group
action, i.e., G · C = C and G · SC = SC , and

(2) every element s ∈ SC can be represented as

s =
∑

i∈K

λiTi · ri

for some ri ∈ R, Ti ∈ G, and λi ∈ Z≥0, and where K is a finite index set.

Note that when C is a (pointed) rational polyhedral cone, then the conical
semigroup SC = C ∩ Z

N is (R,G)-finitely generated by R, its Hilbert basis, and
G, the trivial group {IN}.

While a non-polyhedral cone cannot be finitely generated in the old usual sense,
we showed using a finitely generated group of matrices G allows us to extend our
understanding beyond the polyhedral case. Because the possibly infinite genera-
tors for SC can be obtained by group action G on a finite set R and G is finitely
generated, this allows for the possibility of algorithmic methods.

In [1] we proved the following two main results pertaining to integer points in
the PSD cone Sn

+(Z), and those in the second order cone SOC(n) ∩ Z
n.

Theorem. The conical semigroup of the cone of n × n positive semidefinite
matrices, Sn

+(Z), is (R,G)-finitely generated by G ∼= GL(n,Z) where G acts on

X ∈ Sn
+(Z) by X 7→ UXUT for each U ∈ GL(n,Z), and by R, the union of any

single rank-one matrix and a finite subset of the sporadic points. Moreover,

(1) If n ≤ 5, then there are no sporadic points. Thus, one single rank one
PSD matrix suffices.

(2) If n = 6, then R, contains one rank one PSD matrix and the matrix

M =













2 0 1 1 1 1
0 2 0 1 1 1
1 0 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2













with det(M) = 3.

Theorem. For dimension 3 ≤ n ≤ 10, the conical semigroup SOC(n) ∩ Z
n is

(R,G)-finitely generated (we avoid describing the generators here but they are
available in paper).

In a forthcoming second paper, we investigated the natural question which 2-
dimensional cones are (R,G)-finitely generated? We have fully answered this and
of course the only interesting case is when the rays of the cone are irrational
vectors. It turns out that it is a necessary and sufficient condition for this vectors
to be eigenvectors of an integer unimodular matrix.
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Irrational polyhedral cones in dimensions three and higher are very interesting
too. We provided a necessary condition for irrational polyhedral cones to be
(R,G)-finitely generated, interesting as a corollary we showed that the even Fermat
cones defined by x2k + y2k = z2k are not (R,G)-finitely generated.
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Strongly connected orientations and integer lattices

Ahmad Abdi

(joint work with Gérard Cornuéjols, Siyue Liu, Olha Silina)

Let D = (V,A) be a digraph whose underlying graph is 2-edge-connected, and let
SCR(D) be the polytope whose vertices are the incidence vectors of strengthening
sets, i.e., arc sets whose reversal makes D strongly connected. We study the lattice
theoretic properties of the integer points contained in a proper face SCR(D) not
contained in {x : xa = i} for any a ∈ A, i ∈ {0, 1}.

It is known that SCR(D) is described by capacity constraints x ≥ 0, x ≤ 1,
and cut inequalities, which are of the form x(δ+(U)) − x(δ−(U)) ≥ 1 − |δ−(U)|
for U a nonempty proper vertex subset. Let F be a face of SCR(D) obtained by
setting some cut inequalities to equality, where at least one right-hand side value
is nonzero; let g be the greatest common divisor of these right-hand side values.
Denote by L the lattice generated by the integer linear combinations of F ∩ Z

A.
In [1], we prove that

(1) L has a lattice basis contained among the generators F ∩ Z
A; and

(2) gx ∈ L for all integral vectors x in the linear hull of F .
(3) Subsequently, if g = 1, then F ∩Z

A contains an integral basis B, i.e., B is
linearly independent, and any integral vector in the linear hull of F is an
integral linear combination of B.

The last result is surprising as the integer points in F do not necessarily contain
a (minimal) Hilbert basis. In proving these results, we develop a theory similar to
Matching Theory for degree-constrained dijoins in digraphs where every vertex is
a source or a sink.

Our results have several consequences, including to a famous conjecture by
Woodall [3] that the minimum size of a dicut of D, say τ , is equal to the maximum
number of disjoint dijoins. We prove a relaxation of this conjecture, by finding
for any prime number p ≥ 2, a p-adic packing y of dijoins of value τ and of
support size at most 2|A|. That is, yJ is a nonnegative rational of the form
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a/pb, a, b ∈ Z for every dijoin J ,
∑

J∋a yJ ≤ 1 for every a ∈ A,
∑

J yJ = τ , and
|{J : yJ 6= 0}| ≤ 2|A|.

Schrijver [2] conjectures that A can always be partitioned into τ strengthening
sets (each of which must intersect every minimum dicut exactly once). As a step
towards this, we prove that the all-ones vector belongs to the lattice generated by
F ∩ZA, where F is the face of SCR(D) satisfying x(δ+(U)) = 1 for every minimum
dicut δ+(U).

Finally, let H = (V, E) be a τ -uniform hypergraph such that every nonempty
proper vertex subset is crossed by at least τ hyperedges. A strong orientation is
a mapping O : E → V that designates to each hyperedge E ∈ E a head O(E) ∈ E
inside the hyperedge, where every nonempty proper vertex subset X has a crossing
hyperedge whose head is inside X . It has been conjectured by Kristóf Bérczi and
Karthik Chandrasekaran (personal communication) that H has τ pairwise head-
disjoint strong orientations. That is, there exists an assignment λO ∈ Z≥0 to every
strongly connected orientation O : E → V such that

∑

O(E)=v

λO = 1 ∀E ∈ E , ∀v ∈ E.

We prove this if the nonnegativity requirement on the λO’s is dropped.
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On integer feasibility of polyhedra with bounded subdeterminants

Stefan Kuhlmann

(joint work with Marcel Celaya, Martin Henk, Joseph Paat, Robert Weismantel)

Consider a polyhedron P given by the inequality system Ax ≤ b, where A and b
have integer entries, and the absolute values of the full rank subdeterminants of
A are bounded by some constant. Our objective is to determine in polynomial
time whether P contains an integer vector. When ∆ = 1, this problem simplifies
to deciding the feasibility of Ax ≤ b. For ∆ = 2, there exists a one-dimensional
certificate for integer feasibility [5]. We provide an example demonstrating that a
natural extension of this result to ∆ = 3 does not hold, despite existing randomized
algorithms for integer feasibility when the subdeterminants are in ±{0,∆} when
∆ ≤ 4 [3, 4]. It remains an open problem whether one can determine in polynomial
time if P contains an integer vector for general values of ∆ ≥ 3. To advance
the understanding of this problem, we investigate structural properties of P that
guarantee the existence of integer vectors. This leads naturally to the notion of
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lattice width. A first insight is that the lattice width can be approximated in
polynomial time within a factor of ∆ by considering only the facet-defining rows
of A [2]. The minimum width among the facet-defining rows of A is known as the
facet width of P . Building on this, we present state-of-the-art bounds in terms
of ∆ for the facet width [1]. Unlike much of the existing literature, some of these
bounds do not depend on the dimension of P . A key technique involves linking
the facet width to the proximity between solutions of linear programs and integer
solutions of their corresponding integer linear programs.
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Cyclic Transversal Polytopes

Volker Kaibel

(joint work with Jonas Frede, Maximilian Merkert, Jannik Trappe)

We introduce the class of cyclic transversal polytopes (CTP’s) and the class of
lifted odd set (LOS) inequalities for CTP’s [1] that are generalizations of Jeroslow’s
odd set inequalities for parity polytopes [2]. It turns out that several well-known
polytopes that are relevant in Combinatorial Optimization are special cases of
CTP’s, among them matching polytopes, stable set polytopes, and cut polytopes.
We then show that the LOS inequalities are a common generalization of Edmonds’
inequalities for matching polytopes, the odd hole inequalities for stable set poly-
topes, and the cycle inequalities for cut polytopes. We furthermore discuss possi-
bilities for generating relaxation hierarchies via CTP’s, where the first level is the
relaxation obtained from the LOS inequalities.
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From Incremental Transitive Cover to Strongly Polynomial
Maximum Flow

László A. Végh

(joint work with Daniel Dadush, James B. Orlin, Aaron Sidford, László A. Végh)

We provide faster strongly polynomial time algorithms solving maximum flow in
structured n-node m-arc networks. Our results imply an an nω+o(1)-time strongly
polynomial time algorithms for computing a maximum bipartite b-matching where
ω is the matrix multiplication constant. Additionally, they imply an m1+o(1)W -
time algorithm for solving the problem on graphs with a given tree decomposition
of width W .

We obtain these results by strengthening and efficiently implementing an ap-
proach in Orlin’s [1] the state-of-the-art O(mn) time maximum flow algorithm. We
develop a general framework that reduces solving maximum flow with arbitrary
capacities to (1) solving a sequence of maximum flow problems with polynomial
bounded capacities and (2) dynamically maintaining a size-bounded supersets of
the transitive closure under edge additions; we call this incremental transitive
cover. Our applications follow by leveraging recent weakly polynomial, almost lin-
ear time algorithms for maximum flow due to Chen, Kyng, Liu, Peng, Gutenberg,
Sachdeva [2] and Brand, Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva, Sidford
[3], and by developing new incremental transitive cover data structures for special
cases.

References

[1] J. B. Orlin. Max flows in O(nm) time, or better, Proceedings of the 45th annual ACM
Symposium on Theory of Computing (2013), 765–774.

[2] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva. Maximum flow
and minimum-cost flow in almost-linear time, Proceedings of the 63rd Annual Symposium
on Foundations of Computer Science (2022), 612–623.

[3] J. Van Den Brand, L. Chen, R. Peng, R. Kyng, Y. P. Liu, M. P. Gutenberg, S. Sachdeva, and
A. Sidford. A deterministic almost-linear time algorithm for minimum-cost flow Proceed-
ings of the 64th Annual Symposium on Foundations of Computer Science (2023), 503–514.

Poly-logaritmic Approximations for Directed Steiner Tree and Forest
in Planar Digraphs

Chandra Chekuri

(joint work with Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, Weihao Zhu)

In Directed Steiner Tree (DST) the input is a directed graph G = (V,E) with
edge costs, a root r and a set of k terminals T ⊆ V . The goal is to find a
min-cost arborescence rooted at r that contains all the terminals. There is a
quasi-polynomial time O(log2 k/ log log k)-approximation and essentially matching
hardness. Obtaining a poly-time poly-logarithmic approximation for DST is a
long-standing open problem. The natural LP has a polynomial factor integrality
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gap. In 2023, Friggstad and Mousavi [3] obtained a simple and elegant O(log k)-
approximation in planar digraphs. We show that the ideas in [3] can be used to
obtain poly-log approximations for related rooted connectivity problems in planar
digraphs [1]. Moreover, we show that the natural LP has an integrality gap of

O(log2 k).
Subsequently, we address the Directed Steiner Forest (DSF) problem where the

goal is to find a min-cost subgraph that connects a given sets of source-destination
pairs (s1, t1), . . . , (sk, tk). In general digraphs there is an almost poly-factor hard-
ness for DSF. In contrast, we obtain a poly-logarithmic approximation for planar
digraphs [2]. This is based on the junction tree technique and the LP result for
DSF. The key to the preceding results are insights on planar graph reachability and
separators from Thorup’s work on shortest path data structure in planar digraphs
[4].
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New Bounds for the Integer Carathéodory Rank

Timm Oertel

(joint work with Iskander Aliev, Martin Henk, Mark Hogan and
Stefan Kuhlmann)

Let C ⊂ R
n be a pointed rational polyhedral cone. A classical result by Cara-

théodory states that each point of C is a non-negative combination of at most n
vectors which lie on extreme rays of C. To derive an integral analogue, consider
the inclusion minimal generating set H ⊂ C ∩ Z

n, called the Hilbert basis of
C, such that any vector in C ∩ Z

n can be expressed as a non-negative integer
combination of vectors in H . As the cone C is rational and pointed, this set is
finite and unique. Now, analog to Carathéodory’s Theorem, one can ask what
is the minimum number k of Hilbert basis elements needed to express any given
integer vector in the cone C? We will refer to k as the integer Carathéodory
rank of C, and denote it with CR(C). In 1986, Cook, Fonlupt, and Schrijver
showed that the integer Carathéodory rank can be bounded solely in terms of
the dimension n. More precisely they showed CR(C) ≤ 2n − 1 [4]. Four years
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latter Sebő improved this bound by one [5]. It was conjectured that CR(C) ≤ n.
However, this conjecture was disproven by Bruns et al. in [3], where it was shown
that for every n there exists an n-dimensional cone C with CR(C) ≥ ⌊ 7

6n⌋. Since
then little improvement has been made. In particular, the ‘correct’ bound remains
unknown.

In this talk, we present new parametric and asymptotic bounds. In particular
in an asymptotic setting, where we only consider ‘almost all’ integer vectors in C,
we are able to improve the upper bound significantly [1]. Bruns and Gubeladze
introduced first in [2] the asymptotic integer Carathéodory rank of C, denoted by
CRa(C), which is the smallest integer k such that there exists a set D ⊆ C ∩ Z

n

such that:

(i) one has

lim
δ→∞

#D ∩ [−δ, δ]n

#C ∩ Zn ∩ [−δ, δ]n
= 1 and

(ii) any point in D can be expressed as a non-negative integer combination of
at most k Hilbert basis elements.

Bruns and Gubeladze were able to show that CRa(C) ≤ 2n − 3 and that there
exist cones C for which CRa(C) > n [2]. First we were able to extend the work of
[2] and [3] and show that for every n there exists an n-dimensional cone Cn such
that

CRa(Cn) ≥ ⌊ 7
6n⌋.

Secondly and more importantly, we were able to improve the leading coefficient of
the upper-bound of asymptotic integer Carathéodory rank significantly, namely

CRa(C) ≤ ⌊ 3
2n⌋.

While closing the gap between the best upper bound and worst case examples for
the asymptotic integer Carathéodory rank, the ‘correct’ bound remains unknown.
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[5] A. Sebő. Hilbert bases, Carathéodory’s theorem and combinatorial optimization. Proceedings
of the 1st Integer Programming and Combinatorial Optimization Conference, 1990.



Combinatorial Optimization 2983

Determinant Maximization and Matroid Intersection Problems

Mohit Singh

(joint work with Adam Brown, Aditi Laddha, Madhusudan Pittu, Prasad Tetali)

Representing data via vectors and matrices and optimizing spectral objectives such
as determinants, and traces of naturally associated matrices is a standard para-
digm that is utilized in multiple areas including machine learning, statistics, convex
geometry, location problems, allocation problems, and network design problems.
In this talk, we will look at many of these applications with a focus on the deter-
minant objective. We will then give algorithms for these problems that build on
classical matroid intersection algorithms [1].
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Lagrangian dual with zero duality gap that admits decomposition

Santanu S. Dey

(joint work with Diego Cifuentes, Jingye Xu)

Consider a two-block mixed integer program (MIP) with coupling constraints of
the following form:

OPT := min
(x,y)

∑

i∈{1,2}

〈

c(i),x(i)
〉

+
〈

d(i),y(i)
〉

(1a)

s.t. (x(i),y(i)) ∈ X (i), ∀i ∈ {1, 2},(1b)

x(1) = x(2) ∈ {0, 1}n.(1c)

where X (i) :=







(x(i),y(i))

∣

∣

∣

∣

∣

∣

A(i)x(i) + B(i)y(i) ≤ b(i),

y(i) is nonnegative and mixed-integer,

x(i) ∈ {0, 1}n







with A(i),

B(i), b(i), c(i), d(i) being rational data of suitable dimension for each i ∈ {1, 2}.
If the coupling constraints (1c) are ignored, then the remaining problem can

be decomposed into independent optimization tasks over each X (i). One classic
approach that exploits this structure to obtain dual bounds for (1) is that of
Lagrangian relaxation. Specifically, by dualizing (1c), we obtain:
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(2)
L(λ) := min

(x,y)





∑

i∈{1,2}

〈

c(i),x(i)
〉

+
〈

d(i),y(i)
〉



 +
〈

λ,x(1) − x(2)
〉

s.t. (x(i),y(i)) ∈ X (i), ∀i ∈ {1, 2},
and

(3) DUAL := max
λ

L(λ).

It is well-known that L(λ) is a non-smooth concave function and sub-gradients
for L(λ) can be obtained by solving (2), which is a collection of independent
optimization tasks over X (i) that could be solved in parallel. Using these sub-
gradients, one can solve (3) via non-smooth optimization methods.

Even though weak duality always holds, due to non-convexity, strong duality
generally fails, that is, OPT > DUAL. On the other hand, one can solve (1)
directly without exploiting decomposability, trivially obtaining zero duality gap.
We obtain the following results:

(1) Obtaining zero duality gap and decomposability simultaneously: We de-
sign a reformulation of (1) (called M-Lagrangian) whose Lagrangian dual,
achieve the twin goal of zero duality gap and decomposability. The M-
Lagrangian method is a hierarchy of reformulations of (1) similar to the
Reformulation-Linearization-Technique (RLT) but not the same, whose
Lagrangian duals achieve zero duality gap in the last step of the hierarchy,
while simultaneously each level admits decomposition into sub-problems.

(2) Analysis of bounds: We present multiplicative bounds on the duality gap
at different levels of the M-Lagrangian hierarchy for packing and covering
problems.

(3) Generalization to arbitrary MIPs: Consider a loosely coupled general
MIP where the block structure is revealed using a tree-decomposition of
the intersection graphof the constraint matrix. Here, the blocks corre-
spond to smaller problems defined over variables in the bags of the tree-
decomposition. We show how to generalize the above results: simulta-
neously achieving decomposability and strong duality, and multiplicative
bounds for packing and covering instances, for the M-Lagrangian dual to
this setting.

(4) Preliminary computational results: We illustrate how the proposed La-
grangian duals can outperform classical Lagrangian relaxation and a com-
mercial solver in terms of dual bounds achieved.
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Faster Lattice Basis Computation via a Natural Generalization of the
Euclidean Algorithm

Kim-Manuel Klein

(joint work with Janina Reuter)

The Euclidean algorithm is one of the oldest algorithms known to mankind. Given
two integral numbers a1 and a2, it computes the greatest common divisor (gcd) of
a1 and a2 in a very elegant way. From a lattice perspective, it computes a basis
of the lattice generated by a1 and a2 as gcd(a1, a2)Z = a1Z + a2Z. In this work,
we show that the classical Euclidean algorithm can be adapted in a very natural
way to compute a basis of a lattice that is generated by vectors A1, . . . , An ∈ Z

d

with n > rank(A1, . . . , An). Similar to the Euclidean algorithm, our algorithm is
easy to describe and implement and can be written within 12 lines of pseudocode.

As our main result, we obtain an algorithm to compute a lattice basis for given
vectors A1, . . . , An ∈ Z

d in time (counting bit operations) LS + Õ((n − d)d2 ·
log(||A||), where LS is the time required to obtain the exact fractional solution
of a certain system of linear equalities. The analysis of the running time of our
algorithms relies on fundamental statements on the fractionality of solutions of
linear systems of equations.

So far, the fastest algorithm for lattice basis computation was due to Storjo-
hann and Labahn (ISSAC 1996) having a running time of Õ(ndω log ||A||), where
ω denotes the matrix multiplication exponent. We can improve upon their run-
ning time as our algorithm requires at most Õ(max{n− d, d2}dω(2)−1 log ||A||) bit
operations, where ω(2) denotes the exponent for multiplying a n× n matrix with
an n × n2 matrix. For current values of ω and ω(2), our algorithm improves the
running time therefore by a factor of at least d0.12 (since n > d) providing the first
general runtime improvement for lattice basis computation in nearly 30 years. In
the cases of either few additional vectors, e.g. n−d ∈ do(1), or a very large number
of additional vectors, e.g. n − d ∈ Ω(dk) and k > 1, the run time improves even
further in comparison.

At last, we present a postprocessing procedure which yields an improved size
bound of

√
d||A|| for vectors of the resulting basis matrix. The procedure only

requires Õ(d3 log ||A||) bit operations. By this we improve upon the running time
of previous results by a factor of at least d0.74.

Recent Progress for Correlation Clustering

Alantha Newman

(joint work with Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li,
Lukas Vogl)

In the correlation clustering problem, we are given a complete graph with each
edge labeled as + (similar) or − (dissimilar). The goal is to find a clustering (a
partition) of the vertices that minimizes the number of disagreements, which are
dissimilar intracluster edges and similar intercluster edges. The approximability
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of this problem has been studied [1, 2, 3], culminating in a 2.06-approximation
algorithm, based on a modification of the natural LP-based pivot algorithm [4].
Until recently, this was the best-known approximation factor; since the integrality
gap for the natural LP formulation is at least 2, it had remained a tantalizing
open question to determine if the approximation factor of 2 can be reached or
even breached.

We now know how to go below 1.5 using various new relaxations and rounding
tools [5, 6, 7]. Our new contributions include: the use of the correlated rounding
procedure for rounding a solution for relaxations based on the Sherali-Adams hier-
archy, which bypasses the limitations of the previous independent rounding of the
natural LP formulation; a preclustering subroutine to absorb the rounding error
from the correlated rounding; and the formulation of the cluster LP, which is a
new relaxation, solvable via an intermediate Sherali-Adams relaxation, that pro-
vides a clean framework in which to study rounding algorithms for the correlation
clustering problem. In order to analyze our algorithms for rounding the cluster LP,
we introduce additional tools such as budget functions for edges, allowing for an
edge-by-edge analysis (as opposed to previous triangle-by-triangle analysis). To go
below the approximation ratio of 1.5, we use a global triangle charging argument.
In this talk, we give an overview of these contributions and discussed some of the
open questions.
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A characterization of unimodular hypergraphs with disjoint
hyperedges

Joseph Paat

(joint work with Marco Caoduro, Meike Neuwohner)

Grossman et al. [1] show that the subdeterminants of the incidence matrix of
a graph can be characterized using the graph’s odd cycle packing number. In
particular, a graph’s incidence matrix is totally unimodular if and only if the graph
is bipartite. We extend the characterization of total unimodularity to disjoint
hypergraphs, i.e., hypergraphs whose hyperedges of size at least four are pairwise
disjoint. Disjoint hypergraphs interpolate between graphs and hypergraphs, which
correspond to arbitrary {0, 1}-matrices. We prove that total unimodularity for
disjoint hypergraphs is equivalent to forbidding both odd cycles and a structure
we call an odd tree house. The following figure, which comes from S83.3 in [2],
provides an example of an odd tree house.

r ℓ1

ℓ2ℓ3

Our result extends to disjoint directed hypergraphs, i.e., those whose incidence
matrices allow for {0,±1}-entries. As a corollary, we resolve a conjecture on
almost totally unimodular matrices, formulated by Padberg [3] and Cornuéjols &
Zuluaga [4], in the special case where columns with at least four non-zero elements
have pairwise disjoint supports.
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Thin trees for laminar families

Neil Olver

(joint work with Nathan Klein)

In the laminar-constrained spanning tree problem, the goal is to find a minimum-
cost spanning tree which respects upper bounds on the number of times each cut in
a given laminar family is crossed. This generalizes the well-studied degree-bounded
spanning tree problem [1, 4], as well as a previously studied setting where a chain
of cuts is given [3]. We give the first constant-factor approximation algorithm; in
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particular we show how to obtain a multiplicative violation of the crossing bounds
of less than 22 while losing less than a factor of 5 in terms of cost.

Our result compares to the natural LP relaxation. That is, given a point x in
the spanning tree polytope of G, and a laminar family L, we produce a spanning
tree T such that |δ(S)∩T | = O(x(δ(S)) and c(T ) = O(c(x)). As a consequence (by
exploiting that in a k-edge-connected graph, the point x ∈ R

E defined by xe = 2/k
for each e is in the dominant of the spanning tree polytope), our results show that
given a k-edge-connected graph and a laminar family L ⊆ 2V of cuts, there exists
a spanning tree which contains only an O(1/k) fraction of the edges across every
cut in L. This can be viewed as progress towards the Thin Tree Conjecture [2],
which (in a strong form) states that this guarantee can be obtained for all cuts
simultaneously.

Our approach is based on linear programming relaxation. In this approach,
a version of the LP relaxation is repeatedly solved, and a basic optimal solution
is found. Using sparsity properties of this solution, we need to argue that a cut
constraint can be removed in a “safe” way, where we can guarantee that the
violation of this cut by the end of the algorithm is within the claimed multiplicative
factor. As long as a constraint can be safely dropped, progress is made; a new LP
is obtained, with a new basic optimal solution, and the process continues.

In order to succesfully apply this method, a crucial first step was required. We
show that the problem can be reduced to a special case that we call L-aligned.
Here, the initial fractional solution x has the property that its restriction to every
set S ∈ L is itself in the spanning tree polytope of G[S].
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Open Problem: Is Zonotope Containment fixed-parameter tractable
with respect to the dimension d?

Martin Skutella

A zonotope is a Minkowski sum of line segments, i.e., given a matrix G ∈ R
d×n,

the corresponding zonotope is given by

Z(G) :=
n
∑

i=1

conv{0,gi},

where g1, . . . ,gn ∈ R
d are the columns of G. We are interested in the following

Zonotope Containment Problem: Given two matrices G ∈ R
d×n and H ∈ R

d×m,

https://www.sfu.ca/~goddyn/Problems/problems.html


Combinatorial Optimization 2989

decide whether or not Z(G) ⊆ Z(H). It is known that the Zonotope Containment
Problem is coNP-complete [1]. We ask if the Zonotope Containment Problem is
fixed-parameter tractable with respect to the dimension d. In other words:

Is there an algorithm that decides Zonotope Containment with
running time poly(n + m) · f(d) for an arbitrary function f?

We are interested in this problem as it comes up in the mathematical study of
neural networks with rectified linear units (ReLUs), a widely used model in deep
learning. More details can be found in our recent manuscript [2], where the prob-
lem is stated.
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Open Problem: The δ-distance Game

Sophie Huiberts

We say that a full-dimensional simplex conv(a1, . . . , ad+1) ⊂ R
d has the δ-distance

property if for each i = 1, . . . , d + 1 the Euclidean distance between vertex ai and
the supporting hyperplane of the opposite face affhull(a1, . . . , ai−1, ai+1, . . . , ad+1)
is at least δ.

The δ-distance game is played between two players, Peter Pivot and Ronald
Ratio. We start with a set of points in the unit ball A0 ⊂ B

d, |A| = d + 1, whose
convex hull satisfies the δ-distance property. In round k ∈ N Peter will first pick
some leaving point l ∈ A0, after which Ronald may pick some entering point e ∈ B

d

and set Ak+1 = Ak ∪ {e} \ {l}. In his choice, Roland must satisfy two rules:

(1) the convex hull of Ak+1 must once again satisfy the δ-distance property,
and

(2) e and l must be on opposite sides of the remaining face, i.e.,

conv(Ak) ∩ conv(Ak+1) = conv(Ak \ {l}).

The game ends as soon as the simplex contains the origin 0 ∈ conv(Ak+1). Peter
wants to finish as soon as possible, while Roland aims to delay this. Does Peter
have a finite strategy? And if so, does Peter have a strategy that finishes in
poly(d, δ−1) rounds?

The δ-distance game is a model for the simplex method, where Peter is a model
for the pivot rule and Roland for the ratio test. In the case where the feasible
region of a linear program is non-degenerate then the ratio test always has a single
eligible choice, in which case there is a pivot rule that makes the simplex method
run in expected time O(dδ−1 log(d/δ)). This can be found in the first reference.
The idea behind the δ-distance is to identify if a similar type of result may exist
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when the ratio test is a more unpredictable algorithm, such as proposed by Paula
Harris in the second reference.
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Open Problem: Maximum balanced independent sets in the
boolean cube

Monique Laurent

(joint work with Sven Polak, Luis Felipe Vargas)

Given a bipartite graph G = (V = U ∪ W,E), an independent (a.k.a. stable)
set S ⊆ V is called balanced if |S ∩ U | = |S ∩ W | holds. Then, α(G) denotes
the maximum cardinality of an independent set in G and we let αbal(G) denote
the maximum cardinality of a balanced independent set. As is well-known, one
can compute the parameter α(G) in polynomial time for bipartite graphs. On
the other hand, computing the balanced parameter is hard: given G bipartite
and an integer k ∈ N, deciding whether αbal(G) ≥ k is an NP-complete problem
[5]. Approximating the balanced parameter is also known to be hard (under well-
known complexity assumptions); see, e.g., [1, 3, 7].

In [6] we investigate the parameter αbal(G) and some close relatives, relevant
to bi-independent pairs and to bicliques in general graphs. In particular, we show
the following sharper hardness result: given a bipartite graph G, it is NP-complete
to decide whether αbal(G) = α(G). We also show that this implies hardness of the
following parameters:

g(G) = max{|A| · |B| : A ⊆ U,B ⊆ W,A ∪B is independent},

h(G) = max

{ |A| · |B|
|A ∪B| : A ⊆ U,B ⊆ W,A ∪B is independent

}

.

Hardness of g(·) was shown earlier in [9] in terms of the maximum edge biclique
problem. The parameter h(·) is relevant, in particular, to work by Gowers dealing
with maximum product-free sets in groups (see [6] for details).

Semidefinite bounds and eigenvalue bounds are given in [6] for the parameters
αbal(G) and its relatives. In particular, if G is a bipartite r-regular graph, then

αbal(G) ≤ |V | λ2

r + λ2
,(1)

where λ2 is the second largest eigenvalue of the adjacency matrix of G.
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Maximum balanced independent sets in the boolean cube Qr. Let Qr

denote the boolean cube, whose vertex set is V = {0, 1}r and whose edges are the
pairs {x, y} ⊆ V where x and y are at Hamming distance 1. So, the bipartition is
given by

U = Ev(r) = {x ∈ {0, 1}r : |x| is even}, W = Odd(r) = {y ∈ {0, 1}r : |y| is odd}.
Here, |x| denotes the Hamming weight of x ∈ V . The boolean cube Qr is r-regular
and its second largest eigenvalue is λ2 = r − 2. Hence, the eigenvalue bound (1)
reads:

αbal(Qr) ≤ 2r−1 r − 2

r − 1
.(2)

On the other hand, the following lower bound is shown in [6]:

αbal(Qr) ≥ a(r − 1),(3)

where the sequence a(r)r≥1 is defined iteratively by

a(1) = 0, a(2r) = 22r −
(

2r

r

)

, a(2r + 1) = 2 · a(2r) for r ≥ 1.(4)

To see this, consider the subsets of {0, 1}2r:
S = {x ∈ {0, 1}2r : |x| ≤ r − 1}, T = {y ∈ {0, 1}2r : |y| ≥ r + 1}.

Then, |S| = |T | and |S ∪T | = 22r −
(

2r
r

)

= a(2r). Define the subsets of {0, 1}2r+1:

Seven = {(x, |x| mod 2) : x ∈ S} ⊆ Ev(2r + 1),

Todd = {(y, |y| + 1 mod 2) : y ∈ T } ⊆ Odd(2r + 1).

Then, the set Seven ∪ Todd is balanced and independent in Q2r+1, which shows
αbal(Q2r+1) ≥ a(2r). Next, set S′ = S × {0, 1}, T ′ = T × {0, 1} ⊆ {0, 1}2r+1, and
define analogously the subsets of {0, 1}2r+2:

S′
even = {{(x, |x| mod 2) : x ∈ S′} ⊆ Ev(2r + 2),

T ′
odd = {(y, |y| + 1 mod 2) : y ∈ T ′} ⊆ Odd(2r + 2).

Then, |S′
even| = 2|S|, |T ′

odd| = 2|T |, the set S′
even∪T ′

odd is balanced and independent
in Q2r+2, which shows αbal(Q2r+2) ≥ 2 ·a(2r) = a(2r+1). Hence, the lower bound
(3) holds. Using the upper bound (2) one can show that

lim
r→∞

αbal(Qr)

a(r − 1)
= 1.

This indicates that the lower bound (3) might be tight and motivates the following
conjecture of [6], which has been verified (numerically) for r ≤ 13.

Conjecture. For any r ≥ 1, we have αbal(Qr) = a(r − 1).

It is interesting to note that the sequence a(r) in (4) corresponds to the sequence
A307768 in OEIS Foundation Inc. [8]. This sequence counts the number of walks
of length r along the line, starting at the origin and returning to it at least once,
where at each step one may walk left or right. The sequence a(r) is also related
to other combinatorial counting problems (see, e.g., [2], [4]). Settling the above
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conjecture about the balanced independence number of the boolean cube would
also establish a new interesting combinatorial interpretation for the sequence a(r).
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Open Problem: Fare Zone Assignment

Britta Peis

(joint work with Britta Peis, Philipp Pabst, Lennart Kauther, and Sam Fiorini)

We are given a tree G = (V,E) and a set of commodities (Pi, wi, ui), where each
Pi ⊆ E is a path in G, wi denotes the weight of Pi and ui denotes the “maximum
number of allowed cuts on Pi”. We want to solve the following problem:

max
∑

e∈E

ye · we

s.t.
∑

e∈Pi

ye ≤ ui ∀i

ye ∈ {0, 1} ∀e
where we =

∑

{i | e∈Pi} wi.

This problem is polytime solvable when G is a path and strongly NP-hard
when G is a star. There is a 2-approximation when all ui are even (implying a
3-approximation when all ui ≥ 2). What else can we say about approximation
results on trees? In particulare, we would like to understand the approximability
of the problem when the “congestion”, i.e., the maximum number of paths that
share the same edge, is bounded by some parameter k.

http://oeis.org/A307768
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Open Problem: Complexity of 2-coloring light tournaments

Alantha Newman

(joint work with Felix Klingehoefer)

A tournament T = (V,A) is an orientation of a complete graph: for each pair
of vertices u, v ∈ V , either arc (u, v) or arc (v, u) belongs to the arc set A. The
neighborhood of an arc (u, v), denoted by N(u, v), contains all vertices w ∈ V such
that u, v and w form a directed triangle. If N(u, v) contains no directed triangles
(i.e., it is acyclic), then we say that the arc (u, v) is light. If all arcs of a tournament
T are light, then we say that T is a light tournament.

A k-coloring of a tournament is a partition of its vertex set into k acyclic sets
(i.e., sets whose induced subgraph contains no directed cycle). The problem of
deciding if a given tournament is 2-colorable is NP-hard [1], and it is even hard to
color a 2-colorable tournament with three colors [2, 3]. There are polynomial-time
algorithms to color 2-colorable tournaments with ten colors and to color 2-colorable
light tournaments with five colors [2, 3]. The open question is to determine the
complexity of 2-coloring light tournaments: Is there a polynomial-time algorithm
to color a 2-colorable light tournament with two colors? Or is it NP-hard to decide
if a light tournament is 2-colorable?
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Open Problem: Rounding Algorithms for Feedback Vertex Set and
Subset Feedback Vertex Set

Chandra Chekuri

The Feedback Vertex Set problem (FVS) in undirected graphs is the following:
given a graph G = (V,E) with vertex weights w : V → Z+, find a min-weight
vertex subset S ⊆ V such that G−S is acyclic. In Oberwolfach 2021 workshop on
Combinatorial Optimization, Sam Fiorini raised an open question about extreme
point solution to an LP formulation for FVS suggested by Chudak, Goemans,
Hochbaum and Williamson [10] who established an integrality gap of 2 for that
formulation via the primal-dual method (inspired by the local-ratio based algo-
rithm and analysis from [6, 7]). The LP from [10] is not known to be solvable in
polynomial-time. Fiorini asked if every basic feasible solution to the LP formula-
tion in [10] has a variable with value at least 1/2 (for non-trivial instances). That
open problem led to a collaboration and to a paper on polyhedral formulations for
FVS and related problems — see [9]. In particular, [9] obtained polynomial-time
solvable LP relaxations for FVS with an upper bound of 2 on their integrality gap.
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The paper also showed that a previous LP relaxation suggested by Chekuri and
Madan [4] also has integrality gap of 2 and this resolved an open problem. How-
ever, the integrality gap bounds for the new LP formulations are shown indirectly
by proving that the new LP formulations are at least as strong as the one in [10].
We do not know primal rounding proofs that yield a 2-approximation for the LP
formulations. In particular, the original question of Fiorini is not yet resolved.
Some machinery towards answering this question has been developed in [9]. Not
only is the question technically interesting on its own right but it is also relevant to
the Subset Feedback Vertex Set problem (SFVS) which generalizes FVS. In SFVS
the input is a vertex-weighted graph G = (V,E) and a set of terminal vertices
T ⊆ V , and the goal is to remove a min-weight subset of the vertices S ⊆ V such
that G − S does not have any cycles containing a terminal. For SFVS the best
known approximation is 8 [5] while the known lower bound is only 2. Chekuri and
Madan [4] proposed the first LP relaxation for SFVS and proved that its integral-
ity gap is at most 13 via a primal-rounding algorithm. No integrality gap example
with a ratio worse than 2 is known for this LP relaxation. Although we now know
that the LP in [4] has gap at most 2 for the special case of FVS (via [9]), as we
mentioned earlier, we do not know a direct primal rounding algorithm to achieve
the tight bound. We hope that progress on these questions can lead to improved
approximation for SFVS via the LP in [4] (or via other techniques) and also other
useful insights on FVS and related problems.
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SWITZERLAND

Prof. Dr. Monique Laurent

Centrum Wiskunde & Informatica
(CWI)
Postbus 94079
1090 GB Amsterdam
NETHERLANDS

Prof. Dr. Nicole Megow

FB 3 – Mathematik/Informatik
Universität Bremen
Bibliothekstraße 5
28359 Bremen
GERMANY

Prof. Dr. Joseph Naor

Computer Science Department
TECHNION
Israel Institute of Technology
Haifa 32000
ISRAEL

Dr. Bento Natura

Columbia Engineering
Mudd Building, MC 4714
500 West 120th Street
New York, NY 10027
UNITED STATES



2998 Oberwolfach Report 50/2024

Dr. Alantha Newman
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