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Abstract. Critical phenomena represent a central theme in probability.
Research has been going on for many decades and remains very active to
date. Recently, models involving natural probabilistic objects such as ran-
dom walks, loop soups, random interlacements and the Gaussian free field
have witnessed exciting developments, both in two- and higher-dimensional
setups. The purpose of the workshop was to provide an overview of the state
of the art in this rapidly evolving research area. The workshop enabled par-
ticipants to communicate about the most recent advances in the field, and to
discuss propitious avenues for future research.
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Introduction by the Organizers

Critical phenomena and their associated random geometric objects constitute a
fascinating playground for mathematicians. Next to the continued significant
progress on short-range models (such as percolation and Ising models), an emer-
gent line of research has successfully exploited other natural probabilistic objects
such as the Gaussian free field (GFF) and related Poissonian ensembles of random
walks and loops, in order to exhibit interesting random geometric structures, both
in planar and higher-dimensional setups, that lead to a different (long-range) uni-
versality class. The mini-workshop brought together 14 researchers interested in
this and related topics, more than half of whom were at an “early career” stage.
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Following is a very brief overview of the topics covered. We refer to the extended
abstracts below for details. W. Werner gave a gentle introduction to some of
these topics and surveyed facts and conjectures concerning critical loop soup and
Gaussian free field clusters, their (possible) scaling limits, and their dependence
on dimension. A. Prévost, Z. Cai and A. Drewitz all reported on recent progress
concerning the critical behavior of metric-graph GFF clusters in dimensions three
and higher.

Y. Gao discussed percolation results concerning two-sided level sets of the dis-
crete GFF in dimension two. A. Sepúlveda reported on findings regarding the
extremal properties of two natural dynamics associated to the GFF.

Q. Vogel focused on loop soup representations of the Bose gas, the onset of
condensation in this language, and the validity of a variational principle in the
interacting case. P. Ferrari derived fluctuations for surface models associated
to random hard rod configurations, in terms of a multi-time (Lévy-Chentsov)
Brownian field.

J. Aru discussed characterisations of the free field, both in discrete and con-
tinuous setups. A. Jégo reported on results concerning thick points of branching
Brownian motion in four dimensions. S. Watanabe presented work on intrinsic
volume growth for the three-dimensional uniform spanning tree and on-diagonal
heat kernel bounds for the associated random walk.

Finally, X. Li reported on sharp asymptotics for favorite sites of the random
walk, both in two and in higher dimensions.

The mere role of the organizer(s) was to determine a propitious schedule of talks
and to make sure nobody got lost during the traditional Wednesday hike (to St. Ro-
man since the group included various first-timers). Each participant was given an
opportunity to present some piece of work. Notwithstanding, the format left ample
time for discussions.

The organizers and participants warmly thank the Mathematisches Forschungsin-
stitut Oberwolfach for enabling this event and for their unwavering support in all
aspects of its organization.
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Abstracts

Survey about loop-soup clusters and the Gaussian Free Field –

discrete, cable-graph and in the continuum

Wendelin Werner

As requested by the organizers, my two presentations were devoted mostly to a
(personal) survey of some aspects of critical loop-soup clusters and their relation
to the Gaussian Free Field and its square, with a special emphasis on the way in
which the spatial dimension impacts this relation.

So, the first part was more a general introduction to the objects involved [Gauss-
ian Free Field, Occupation times of loop-soups] in the different settings [discrete
graphs, cable-graphs, continuum], their definitions and the relation between them,
including the by now “classical” results of Le Jan and Lupu [3, 4, 5] and the ex-
cursion decomposition of Aru, Lupu and Sepulveda [1]. Among the topics then
covered:

• The relation between the resampling property of critical loop-soups from
[9] and the Markovian properties of the Gaussian Free Field and its square.
• How Dynkin’s key isomorphism theorem can be revisited using the loop-
soup construction of the GFF.
• The various predictions from [10] and some of the heuristics behind them.
In particular, why the scaling limits of the cable-graph loop-soup clusters
are deterministic functions of the continuum loop-soup in dimension d ≤ 4
and not in dimensions d ≥ 5, guided by CLE percolation ideas from [6] (i.e.
how critical percolation inside fractal-type random sets behaves depending
on the frequency of “almost-bottlenecks” in this fractal set).
• How the continuum SLE/CLE ideas and results from [8] are needed and
used in the derivation of the actual results about scaling limits of two-
dimensional discrete loop-soup clusters (say, in [5]).
• Some ideas of the papers [7, 2] where it is shown that some information
is missing in the occupation field in order to determine exactly where the
Brownian loops went.
• I also briefly mentioned the case of interacting loops as surveyed in [11].
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Volume critical exponents for the metric graph Gaussian free field

Alexis Prévost

(joint work with Alexander Drewitz and Pierre-François Rodriguez)

Computing the exact values of the critical exponents for a percolation model has
proved to be a very challenging problem, especially in transient dimensions below
the critical dimension, since it requires a deep understanding of the critical and
near-critical phase. I focus on a specific percolation model, for which the rigidity
induced by its strong long-range correlation let us derive explicitly some critical
exponents.

More precisely, consider the metric (or cable) graph G̃ associated to a transient
weighted graph G, that is the metric space where each edge of the graph is replaced
by a corresponding continuous interval, on which a natural diffusion X can be
defined, which can be seen as an equivalent of the Brownian motion on the metric
graph. The main object of interest, first introduced in [8], is the Gaussian free

field (ϕx)x∈G̃
on G̃, that is the centred Gaussian field with covariance

E[ϕxϕy] = g(x, y), x, y ∈ G̃.
Here g(x, y) denotes the Green function associated to the diffusion X, that is the

average time spent in y when X starts in x. Fixing some x0 ∈ G̃, we consider the
connected component of x0 in the level sets above level h

Kh = {x ∈ G̃ : x
≥h←→ x0}, h ∈ R,

where x
≥h←→ x0 means that x is connected to x0 by a continuous path π ⊂ G̃

along which ϕ ≥ h. One can ask the classical percolation question for this random

subset of G̃: for which values of h is Kh unbounded with positive probability? The
answer is that, if G is a massless vertex-transitive graph

P(Kh is unbounded) > 0 if and only if h < 0.
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This follows from combining results from [2] and [5], and highlights the interest of
this model, since it shows that the associated critical parameter is always equal to
0, and that there is never percolation at criticality.

Under further assumption on the graph G, one can also derive the critical ex-
ponents associated to the model. More precisely, let us from now on assume that
the weights on G are bounded, that

|B(x,R)| ≍ Rα for some α > 0,

and that

g(x, y) ≍ d(x, y)−ν for some ν ∈ (0, α− 2].

Then it was proved that if either ν < α/2, see [7], or G = Z
α, α < 6, see [4], then

(1) cN− ν
2 ≤ P(rad(K0) ≥ N) ≤ CN− ν

2 .

The lower bound in (1) is actually valid for any possible value of ν and α, see [6].
In other words, (1) proves that the critical exponent ρ associated to the one-arm
probability at criticality is equal to 2/ν. Given this result, we are interested in
obtaining the critical exponents associated to the volume of the critical clusters.
More precisely, we focus on the volume of the cluster K0 of x0, as well as on M0

r ,
the volume of the cluster in B(x0, r) with the largest volume.

Theorem 1. Assume that (1) is satisfied. Then for all n ≥ 1,

(2) cn− ν
2α−ν ≤ P(|K0| ≥ n) ≤ Cn− ν

2α−ν ,

and for all r, t ≥ 1 with r
d+2

2 ≥ Ct,

P
(
(1/t)rα−

ν
2 ≤M0

r ≤ trα−
ν
2

)
≥ 1− Ct−c.(3)

To be more concrete, if we focus on the case of G = Zd, d ≥ 3, one can
combine Theorem 1 with the results from [12, 3, 4] to obtain the critical exponents
associated to both the tail of the volume of the critical cluster of the origin, and
the largest cluster in a ball:

δ
def.
= lim

n→∞

ln(n)

ln(P(|K0| ≥ n))
=

{
d+2
d−2 if d ≤ 6,

2 if d ≥ 6,

and P-a.s.

df
def.
= lim

r→∞

ln(M0
r )

ln(r)
=

{
d+2
2 if d ≤ 6,

4 if d ≥ 6.

We will now explain the main ideas behind the proof of (3). The upper bound is
an easy consequence of the Cauchy-Schwarz inequality and the formula for the two-
point function from [8], and we will focus on the lower bound onM0

r . First using an
entropy bound originally used in [1], it is enough to prove that the largest cluster
in B(x0, r) at level −h (instead of 0) has volume at least crα−

ν
2 with constant

probability, where h = r−
ν
2 . The main interest to shift to a negative level is that
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one can then use the isomorphism [10, 8, 11, 5] with random interlacements [9].
This isomorphism implies in particular that for any u > 0

the union of the connected component of {x ∈ G̃ : |ϕx| > 0} which intersect Iu

is stochastically dominated by {x ∈ G̃ : ϕx ≥ −
√
2u},

where Iu denotes the interlacement set at level u. Hence taking u = h2/2 = r−ν/2,
it is enough to prove that in B(x0, r), with positive probability the union of the

connected component of {x ∈ G̃ : |ϕx| > 0} which intersect Iu has a connected
component with volume at least crα−

ν
2 = curα. Since the density of Iu is u, this is

not very hard to prove when Iu ∩B(x0, r) essentially contains a unique connected
component, which is the case [6] when ν < α/2. If ν ≥ α/2, one additionally
needs to prove that there is a giant cluster of {x ∈ B(x0, r) : |ϕx| > 0} which
connects together most of the connected component of Iu. This giant cluster will
have capacity crν , and the existence of such a cluster is proved by combining (1)
with the exact formula for the law of the capacity from [5].
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One-arm probabilities for metric graph Gaussian free fields

Zhenhao Cai

(joint work with Jian Ding)

The Gaussian free field (GFF) on the metric graph was introduced in [13] as a
natural extension of the discrete GFF. Referring to [13], such an extension is valid
for all transient graphs, where the Green’s function is well-defined. In this note,
we only focus on the integer lattice Zd for d ≥ 3. We denote the edge set of Zd by
Ld := {{x, y} : x, y ∈ Zd, |x− y| = 1}, where | · | is the Euclidean norm. For each
e = {x, y} ∈ Ld, consider a compact interval Ie of length d (where the length d
is chosen only for convenience and does not cause any difference on the geometry
of GFFs) whose two endpoints are identical to x and y respectively. The metric

graph of Zd (denoted by Z̃d) is defined as the union of all these intervals. The

GFF on Z̃d (denote by {φ̃v}v∈Z̃d) can be constructed in the following two steps:

(1) Restricted to Zd, {φ̃x}x∈Zd is distributed as a discrete GFF on Zd, i.e., a
family of mean-zero Gaussian random variables with covariance

(1) E
[
φ̃xφ̃y

]
= G(x, y), ∀x, y ∈ Z

d.

Here the Green’s function G(x, y) is the average of visits at y by a simple
random walk on Zd with starting point x.

(2) For every e = {x, y} ∈ Ld, the values of φ̃v for v ∈ Ie are sampled by an
independent bridge on Ie of a Brownian motion with variance 2 at time 1,

conditioned on the boundary values φ̃x at x and φ̃y at y.

Compared to the discrete GFF, the continuity of {φ̃v}v∈Z̃d provides a crucial
advantage in the analysis, particularly for exploration arguments. Two fundamen-

tal properties of the percolation of the level-set Ẽ≥h := {v ∈ Z̃d : φ̃v ≥ h} (h ∈ R)
were established in [13]:

• (critical level) For any h < 0, Ẽ≥h a.s. percolates (i.e., contains an infinite

connected component); for any h ≥ 0, Ẽ≥h a.s. does not percolate.
• (two-point function) For any x 6= y ∈ Zd,

(2) P
(
x

≥0←→ y
)
= π−1 arcsin

(
G(x, y)√

G(x, x)G(y, y)

)
≍ |x− y|2−d.

Here A1
≥h←→ A2 denotes the event that the level-set Ẽ≥h contains a path

connecting A1 and A2, and f ≍ g means that cg ≤ f ≤ Cg holds for some
constants c and C depending only on d.

A powerful coupling between the loop soup and the GFF on the metric graph
was also presented in [13], which enriches both models and allows one to derive
properties for one model from the other.

The (critical) one-arm probability θd(N) := P(0
≥0←→ ∂B(N)) has been exten-

sively studied, where 0 := (0, 0, ..., 0) is the origin of Zd, B(N) := [−N,N ]d ∩ Z
d,

and ∂A := {x ∈ A : ∃y ∈ Zd \ A such that {x, y} ∈ Ld}. Through the collective
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efforts from [6, 3, 7, 10, 4] (also see [9] on extensions to more general transient
graphs), it was finally established that

when 3 ≤ d < 6, θd(N) ≍ N−d
2
+1;(3)

when d = 6, cN−2 ≤ θ6(N) ≤ CN−2+ς(N), where ς(N) := ln ln(N)

ln1/2(N)
≪ 1;(4)

when d > 6, θd(N) ≍ N−2.(5)

Notably, it was conjectured in [4, Remark 1.5] that for d = 6,

(6) θ6(N) ≍ N−2 lnδ(N)

for some constant δ > 0.
This talk aims to present the proof idea of [4, Theorem 1.1], which establishes

the upper bounds in (3) and (4). The logic underlying this proof can be described

as follows: if θd(N) is large, the symmetry of φ̃· implies that the negative cluster

C−N := {v ∈ Z̃d : v
≤0←→ ∂B(N)} (where A1

≤0←→ A2 denotes the event that there is

a path connecting A1 and A2 on which the values of φ̃· are non-positive), which
has the same distribution as the positive one, has a significant probability of being
sizable and blocking the positive cluster containing 0, thereby in turn preventing
θd(N) from being large. This naturally leads us to employ a proof by contradiction.
Technically, the contradiction is achieved by the following two ingredients.

(1) Assuming the existence of a finite N∗ such that θd(N∗) > λN− d
2
+1 (where

λ is a large constant for 3 ≤ d ≤ 5, and is N ς(N) for d = 6), we can
find a large integer k∗ (which depends on N∗ and is implicit) and then
employ some coarse-graining methods (where the scale is determined by

k∗) to construct an event F (measurable with respect to φ̃·) with P(F) ≥
exp(−kC∗ ) on which the following two events happen:

(i) After sampling C−N∗

, the expected value of φ̃0 is at least cN
− d

2
+1

∗ .

(ii) An independent Brownian motion on Z̃d reaches ∂B(N∗

10 ) before hit-

ting C−N∗

with probability at most exp(−kC′

∗ ).

These two events further imply that after sampling C−N∗

, the expectation

of the average of φ̃· on ∂B(N∗

4 ) will exceed exp(kC
′

∗ ) times the standard

deviation of this average. Combined with P(F) ≥ exp(−kC∗ ), it yields that
such an excess occurs with probability at least exp(−kC∗ ).

(2) From the tail estimate of the normal distribution, the probability that a

normal random variable exceeds exp(kC
′

∗ ) times its standard deviation is

at most exp(−c′e2kC′

∗ ). Since exp(−c′e2kC′

∗ ) ≪ exp(−kC∗ ), this leads to a
contradiction with Item (1).

The heart of this proof is to construct the event F and to show that it implies
Event (ii). Notably, during the derivation of the latter part, it surprisingly turns
out from a series of estimates that the phenomenon presented in Event (ii) (i.e.,

the Brownian motion on Z̃
d is typically blocked by the negative cluster) holds if

and only if 3 ≤ d < 6 (in other words, the 6−d term appears repeatedly and must
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be positive for these estimates to hold). We believe that much work remains to be
done to understand the information hidden in this proof.

In addition to the proof of [4, Theorem 1.1], this talk also introduces recent

developments on the incipient infinite cluster (IIC) of Ẽ≥0, established in [2, 5].
Precisely, [2, Theorem 1.1] shows that for any d ≥ 3 except d = 6, the following
four types of IICs (as four limiting probability measures) exist and are equivalent:

(7) P
(1)
d,IIC(·) := lim

N→∞
P
(
· | 0 ≥0←→ ∂B(N)

)
,

(8) P
(2)
d,IIC(·) := lim

h↑0
P
(
· | 0 ≥h←→∞

)
,

(9) P
(3)
d,IIC(·) := lim

x→∞
P
(
· | 0 ≥0←→ x

)
.

(10) P
(4)
d,IIC(·) := lim

T→∞
P
(
· | cap

(
C≥0(0)

)
≥ T

)
.

Here cap(·) is the capacity, and C≥0(0) := {v ∈ Z̃d : v
≥0←→ 0}. The proof of [2,

Theorem 1.1] is based on a robust framework in [1] for constructing IICs and a
fundamental property called quasi-multiplicativity, which is proved in [5, Theorem
1.1]. More precisely, quasi-multiplicativity implies that for any d ≥ 3 expect d = 6,

and any N ≥ 1, A1 ⊂ B(N [( d−4

2
)∨1]−1

) and A2 ⊂ [B(N ( d−4

2
)∨1)]c,

P
(
A1

≥0←→ A2

)
≍ N (6−d)∧0

P
(
A1

≥0←→ ∂B(N)
)
P
(
A2

≥0←→ ∂B(N)
)
.(11)

For Bernoulli percolation on Zd, it was conjectured in [1] that (11) holds for
3 ≤ d ≤ 5. In high dimensions (i.e., d ≥ 7), the similarity between the metric
graph GFF and Bernoulli percolation (see [3, 14]) makes it plausible to conjecture
that (11) also holds. Readers may refer to [11, 12] for recent progress on the

intrinsic geometry of the IIC of Ẽ≥0 in high dimensions (i.e., d > 6).
In [5], during the proof of quasi-multiplicativity, numerous regularity properties

of general connecting probabilities, which are interesting on their own right, were
also established. E.g., the probability of connecting a point and a general set, as a
function of the point, exhibits behaviors similar to harmonic functions, including
Harnack’s inequality, decay rate, stability on boundary conditions, etc.

It is proved in [2] that conditioned on {0 ≥0←→ ∂B(N)}, the volume within B(M)

of the cluster of Ẽ≥0 containing 0 is typically of order M (d
2
+1)∧4, regardless of how

large N is (provided with N ≫ M). This phenomenon indicates that the cluster

of Ẽ≥0 exhibits self-similarity, which supports the insightful conjecture in [14] that

such cluster has a scaling limit. Moreover, the exponent of the order M ( d
2
+1)∧4

matches the conjectured fractal dimension of the scaling limit presented in [14].
Similar estimates are also derived in a concurrent work [8].
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Percolation of GFF and random walk loop soup in dimension two

Yifan Gao

(joint work with Pierre Nolin, Wei Qian)

1. Main results

For N ≥ 1, let BN := [−N,N ]2 ∩ Z2 be the discrete box centered on 0 with side
length 2N . Let ϕN be a discrete GFF in BN with Dirichlet boundary conditions.
We are interested in the existence of large-scale paths, for instance crossing BN

from left to right, which are “low” for the field ϕN . That is, nearest-neighbor
paths along which |ϕN | remains smaller than some given level λ > 0. For any
0 < n ≤ N , and any subset A ⊆ BN , consider the crossing event

(1) Cn(A) := {there exists a path in A ∩Bn crossing from left to right in Bn} ,
where the left side of Bn is defined as the set of leftmost vertices in Bn, and the
right side is defined similarly (as well as the top and bottom sides). Our first main
result is the following.
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Theorem 1 ( [4]). There exists c0 > 0, such that for all ε > 0,

P(CN({z ∈ BN : |ϕN (z)| ≤ ε
√
logN})) = 1−O(N−c0ε

2

) as N →∞.(2)

Moreover, for all ε > 0,

lim inf
N≥1

P(CN/2({z ∈ BN : |ϕN (z)| ≤ ε
√
logN})) > 0.(3)

Let Xα
N be the occupation field of a random walk loop soup with intensity

α in BN . The well-known isomorphism theorem [7] states that 1
2 |ϕN |2 has the

same distribution as X
1/2
N . For any λ > 0, each vertex z ∈ BN is called λ-open

if Xα
N (z) ≤ λ. Let qαN (λ) be the probability that there exists a λ-open crossing

connecting the left and right sides of BN . Theorem 1 implies that for any ǫ > 0,
we have qαN (ǫ logN) = 1−O(N−c′0ǫ), for some universal c′0 > 0.

More generally, we prove in [4] that for any α ∈ (0, 1/2), there are constants
0 < λ1 < λ2 and c > 0 such that limN→∞ qαN (λ) = 0 if λ ≤ λ1 and qαN (λ) =
1 − O(N−c) if λ ≥ λ2. We also prove an exponential decay property for the
crossing probability of a box in the bulk, or of a macroscopic annulus. Finally,
we mention that analogous results also hold for loop soups and GFF on metric
graphs.

2. Summation argument

Consider α ∈ (0, 1/2). In order to show the existence of low horizontal cross-
ings of BN , where Xα

N ≤ λ, we use a Peierls’-type argument. Hence, we show
that blocking paths (on the matching graph (Z2)∗) cannot arise, that is, vertical
crossings where Xα

N remains above λ. This is done by considering the connected
components (clusters) of random walk loops, and following the “chain” of clusters
which are visited by such a potential high path. In particular, we use the passage

edges connecting any two successive clusters. Around each passage edge, the two
clusters originating from it produce a “four-arm” configuration locally. Moreover,
such edges have the additional property that the occupation field is high on both
their endpoints, which yields an extra cost.

This leads to configurations consisting of sequences of such edges, around each
of which four arms can be observed. Summing over all such configurations is
challenging, but it can be achieved in a similar way as for another process called
self-destructive percolation (s.d.p.). That process was introduced by van den Berg
and Brouwer [1] in order to analyze the near-critical behavior of the Drossel-
Schwabl forest fire model. Roughly ten years later, it was explained in [6] how
to sum the “six-arm” configurations that arise in s.d.p., which has remarkable
consequences for that process. Even though the technical details are completely
different in our situation, we are able to adapt an induction argument for six-arms
in Bernoulli percolation, which was developed in [2], strengthening results from
[6]. For both s.d.p. and our own reasonings, the fact that the associated exponent
is > 2 plays a fundamental role. In addition, we need to make use of the extra
small probabilistic cost produced by each passage edge, coming from the condition
Xα

N > λ on its endpoints. This gives an extra factor, which can be made arbitrarily
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small by choosing λ large enough. Note that a completely analogous input in s.d.p.
was the cost of recovering vertices, i.e. vertices turning from vacant to occupied
during a small time window (that can be made arbitrarily short).

3. Arm events in the random walk loop soup

In order to carry out the summation argument, we need to devise a set of tools
to work with arm events in a random walk loop soup (RWLS) with intensity
α ∈ (0, 1/2]. For a bounded subset D of Z2, let LαD be the random walk loop soup
in D with intensity α. Suppose 1 ≤ d1 ≤ d2/2 and B2d2

⊂ D. Let Aα
D(d1, d2)

denote the (discrete) four-arm event that there are two outermost clusters in LαD
crossing Bd2

\Bd1
. We crucially rely on the following upper bound established in

[3]: For all α ∈ (0, 1/2] and all ǫ > 0, there exists c1 = c1(α, ǫ) > 0 such that for
all 1 ≤ d1 < d2 and D ⊇ B2d2

,

(4) P(Aα
D(d1, d2)) ≤ c1 (d2/d1)

−ξ(α)+ǫ,

where ξ(α) = η(κ) = (12− κ)(κ+ 4)/(8κ) and α(κ) = (3κ− 8)(6− κ)/(4κ). The
exponent η(κ) is the well-known four-arm exponent of SLEκ. The proof of (4)
relies on two inputs.

• The scaling limit of clusters in the random walk loop soup is given by
the clusters of the Brownian loop soup [10, 8]. It was shown in [9] that
the collection of outer boundaries of the outermost clusters in a Brownian
loop soup with intensity α(κ) is distributed as a CLEκ. Since a loop in
the CLEκ locally looks like an SLEκ curve, it is natural to expect that the
four-arm exponent ξ(α) for the CLEκ is the same as the one for SLEκ.
We establish rigorously this fact in [5], which relies on some non-trivial
separation lemma for the Brownian loop soup.
• We establish in [3] a useful quasi-multiplicativity upper bound: for any
α > 0, there is c2(α) > 0 such that for all 1 ≤ d1 ≤ d2/2 ≤ d3/16 and
D ⊇ B2d3

,

(5) P(Aα
D(d1, d3)) ≤ c2(α)P(Aα

B2d2
(d1, d2))P(Aα

D(4d2, d3)).

This is a key property to connect discrete arm events to the corresponding
arm events in the Brownian loop soup.

The upper bound (4), together with the fact that ξ(α) > 2 for α ∈ (0, 1/2), will
then allow us to apply the summation argument in Section 2. Finally, we are
able to adapt our proof to the critical intensity α = 1

2 , even though the four-arm
exponent turns out to be exactly 2 in this case. In order to do so, we let λ grow
with N as λN = ǫ logN , for any ǫ > 0 (and potentially C log logN , for a constant
C large enough, as we explain in [4]).
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One-arm probability for the percolation problem of the metric graph

Gaussian free field at criticality

Alexander Drewitz

(joint work with Alexis Prévost, Pierre-François Rodriguez)

Abstract: Percolation models have been playing a fundamental role in statistical
physics for several decades by now. They had initially been investigated in the
gelation of polymers during the 1940s by chemistry Nobel laureate Flory and
Stockmayer. From a mathematical point of view, the birth of percolation theory
was the introduction of Bernoulli percolation by Broadbent and Hammersley in
1957 [2], motivated by research on gas masks for coal miners. One of the key
features of this model is the inherent stochastic independence which simplifies
its investigation, and which has led to deep mathematical results. On the one
hand, this independence greatly simplifies the mathematical computations and as
a consequence, the results obtained are impressively profound. On the other hand,
this independence also poses a restriction prohibiting the investigation of more
realistic models. Thus, one is naturally led to consider percolation models with
correlations. While in the case of finite range or fast decaying correlations similar
phenomena as in the case of Bernoulli percolation are to be observed, the situation
changes drastically when considering models with stronger correlations, so-called
long-range correlations. Models with long-range dependence exhibit interesting
properties which sometimes are in stark contrast to what is observed in Bernoulli
percolation. The lack of independence entails further obstacles such as the absence
of the finite energy property. Even more dramatically, the BK inequality fails for
these models. As a result, many of the techniques which were most essential in the
investigation of Bernoulli percolation break down for percolation problems with
long-range correlations.

It should be mentioned here that not only are such models oftentimes more
realistic but they also lead to beautiful mathematics as well as interesting physics
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interpretations. Moreover, they sometimes exhibit certain integrability properties,
which, somewhat surprisingly, makes them easier to study for some problems than
their independent counterpart, and leads to deep results which are unknown for
Bernoulli percolation.

As we will elaborate, even though from a probabilistic perspective the strength
of correlations seems to make matters a priori only harder, they can also provide
certain integrability properties which facilitate their rigorous mathematical study.
This opens the door to the study of critical phenomena, notably in non-planar
setups, and gives access to questions which so far have remained largely elusive.

Arguably one of the most important stochastic processes giving rise to percolation
models with long-range correlations is the Gaussian Free Field (GFF). The GFF,
which also goes by the name massless harmonic crystal, has been a fundamental
model in statistical mechanics for over half a century, ever since the early days of
constructive field theory, for which it serves as a fundamental building block. More
recently, its intriguing geometric features have begun to be studied rigorously. One
way to think of the GFF is as a generalization of a random walk with Gaussian
increments to a process with d-dimensional time. For a long time already, the GFF
has had many important applications to other branches of mathematics, with links
in two dimensions to objects such as the Schramm-Loewner evolution [10], or to
cover times [5] and to theoretical physics (cf. [4, 7]). Literature is abundant,
however, and we content ourselves with referring to [12] and the references therein
for further details.

The metric graph. It has turned out that when endowing the discrete graphG with
a certain continuum structure, the investigation of percolation problems for the
GFF becomes in a loose sense more integrable. This continuous structure is the so-

called metric graph, also sometimes referred to as cable system, and denoted by G̃.

Heuristically, G̃ is obtained from G by adding line segments between neighboring
vertices of G so that one obtains a metric graph which is a continuum object.
While such a construction goes back to at least [14], it has been re-invigorated in
this setting by [9].

The reasons for this model being particularly amenable for a detailed investi-
gation of its percolation are multiple, including among others its Gaussian and
continuous character as well as the understanding of the law of the capacity of
its level sets and its amenability to advanced isomorphism theorems connecting
it to the model of random interlacements (see [6] for the latter two items). The
model of Random Interlacements (RI) has been introduced in 2007 by Sznitman,
see the article [13]. It has been motivated by investigations in mathematics and
theoretical physics on the disconnection [1] and covering [3] of tori and boxes by
simple random walk trajectories. In addition, RI serves as a mathematical model
for corrosion, and it has found its way into the theoretical physics community
also, see [11, 8]. In the context of level set percolation for the GFF it turns out
particularly useful as it is supercritical in its entire range of parameters, thereby
providing suitable connectivity properties for certain level sets of the GFF also by
means of the isomorphism theorems.
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We report on the progress in the understanding of the one-arm probability
for the level set percolation of the GFF on the metric graph for rather general
transient graphs, in low transient dimensions. In particular, we provide the first
proof of up-to-constant upper and lower bounds for the previously mentioned one-
arm probability on the metric graph pertaining to the Euclidean lattice Z3. This
improves on previous results by Ding and Wirth, as well as by ourselves, where
multiplicative logarithmic corrections were present in the respective bounds.

While the lower bound on the one-arm probability follows essentially immedi-
ately from the law of the capacity of the cluster of the origin, established previously
in joint work together with Prévost and Rodriguez. The main obstacle is the proof
of the upper bound. It starts by partitioning the event of connecting the origin
and the boundary of a ball into the cluster of the origin having either small or
large capacity. The case of large capacity can be conveniently treated by the rather
explicit formula for the law of the capacity of that cluster. The probability of the
cluster having small capacity (but spanning to the boundary of the ball neverthe-
less) is then upper bounded by the probability of a random walk not hitting large
(in terms of capacity) loops is negligible.

From a technical point of view, this is obtained by invoking, among others, a
generalization of Lupu’s formula for the two-point function in this model and also
the isomorphism theorem between loop soups and the Gaussian free field.
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Dynamics on the thick points of the Gaussian free field

Avelio Sepúlveda

(joint work with Felipe Espinosa)

This work explores the geometric properties of natural dynamics that have the two-
dimensional Gaussian Free Field (GFF) as their stationary distribution. Specifi-
cally, we study the behaviour of thick points in two key dynamics: the stationary
solution of the additive stochastic heat equation and the Ornstein-Uhlenbeck GFF.

The GFF corresponds to the standard Gaussian of the Hilbert space H1
0 (D),

where D ⊆ C is an open domain. While the GFF is not a function but rather a
Schwartz distribution, its geometric properties have been central to the progress
in two-dimensional conformally invariant probability theory in recent decades.
Among these properties, the behaviour of thick points is particularly fundamental.

Thick points of the GFF. Let Φ is a GFF and νz,ǫ the uniform measure on
∂B(z, ǫ). The ǫ-average of φ is defined as

φǫ(z) := 〈φ, νz,ǫ〉“ = ”

∫

D

φ(y)νz,ǫ(dy).

Then, the set of γ-thick points is

Tγ :=

{
z ∈ D : lim

φǫ(z)

log(1/ǫ)
= γ

}
.

In a seminal result, Hu, Miller, and Peres (2010) demonstrated that as long as
|γ| ≤ 2, Tγ is not empty and its Hausdorff dimension is 2 − γ2/2. Thick points
provide insights into the extreme values of the GFF and play a critical role in
Liouville Quantum Gravity.

In this work, we extend the study of thick points to the context of dynamics
that have the GFF as its stationary distribution.

The Orstein Uhlenbeck GFF and its thick points. The first of such dynam-
ics is the so-called OU-GFF. That can be constructed as follows. Start by defining
the GFF valued Brownian motion X as the unique process such that

• Xt has the law of a GFF times
√
t.

• X has independent and stationary increments.

The Orstein-Uhlenbeck GFF Ψ is then equal to e−t/2Xet for any t ∈ R. The
thickness of a point z at a time t is

T+
z (t) = lim sup

Ψǫ(z, t)

log(1/ǫ)
, Tz(t) = lim

Ψǫ(z, t)

log(1/ǫ)
.
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We show that a.s. for any z the function t 7→ T+
z (t) is continuous and its behaviour

is characterised via the energy functional

E(f) =
∫ ∞

−∞

∣∣∣∣f
′ +

1

2
f

∣∣∣∣ , for f ∈ H1
0 (R).

in the following way:

(1) Almost surely, there is no z such that E(Tz(t)) > 4.
(2) For any f ∈ H1

0 (D) such that E(f) < 4 a.s. there exists z such that for all
t, f(t) = Tz(t). Additionally, the dimension of all such z ∈ D is 2−E(f)/2.

Stochastic Heat Equation. The second dynamic we study is the Stochastic
Heat Equation Field (SHEF) ϕ, given by the stationary solution of the Stochastic
Heat Equation

∂tϕ =
1

2
∆ϕ+ ξ,

where ξ is a white noise and ϕ(0) is a GFF independent of ξ.
In this setting, we show that the thickness function is completely discontinuous.

This allow the existence of points that are more than 2-thick, as shown by:

(1) If γ2 > 8, a.s. there are no z ∈ D, t ∈ R with T+
z (t) = γ.

(2) If γ2 < 8, a.s. there are points z ∈ D, t ∈ R with Tz(t) = γ. Additionally
the space-time dimension of such (z, t) is equal to min{4−γ2/2, 3−γ2/4}.

Then, we concentrate in the exceptional times. For N ∈ N, we define the set of
N -exceptional time for γ as

Eγ
N . = {t ∈ R : there are z1, ..., zN different points with Tz1(t) = ... = TzN (T ) = γ}.

We show that these sets generate infinitely many phase transitions for the middle

(1) If γ2 > 4 + 4/N , a.s. Eγ
N is empty.

(2) If γ2 < 4 + 4/N , a.s. Eγ
N is not empty.

Probabilistic representation of the Bose gas

Quirin Vogel

The Bose gas is a system in quantum statistical mechanics that undergoes a phase
transition called Bose–Einstein Condensation (BEC, for short). More precisely,
if one considers a gas of bosons at temperature β > 0 and density ρ > 0, it is
predicted to undergo a phase transition in the thermodynamic limit as ρ increases:
for sufficiently large ρ, a macroscopic fraction of the particles should occupy the
same quantum state.

Probabilistic representations of the Bose gas were introduced in [Fe53] and are
based on the relationship between differential operators and stochastic processes.
See [G71] for a rigorous mathematical reference, where the Bosonic loop process
PΛ,β,ρ is constructed for bounded subsets Λ of Rd. The measure PΛ,β,ρ is a condi-
tioned Poisson point process of Brownian bridges (each of duration in βN) in the
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domain Λ with total duration βρ|Λ|. To model the forces between atoms, these
bridges interact via a spatial potential V : Rd → R ∪ {+∞}.

It was long conjectured that in the absence of interaction, for d ≥ 3 and ρ > ρc
(with ρc = (4πβ)−d/2ζ(d/2)), “infinite loops” appear in the limit Λ ↑ Rd. Owing
to the seminal work of Sznitman, infinite loops can nowadays be interpreted as
random interlacements. Indeed, in [V23], it is shown that for ρ > ρc, the canonical
representation PΛ,β,ρ of the Bose gas converges to the independent superposition
of the free Bose gas with zero chemical potential and the (beaded) random inter-
lacements at density ρ − ρc (see [AFY21] for a definition of this latter process).
This result was then extended to a (non-spatially) interacting model; see [DV24].
However, while it is generally expected that infinite loops appear at sufficiently
high densities, it is not expected that the law of these paths follows the beaded
interlacement process. It remains an open question for which class of interactions
infinite paths appear in the limit.

Feynman already conjectured that the appearance of infinite paths is an order
parameter for BEC. However, to this day, no proof exists for a spatially interacting
gas of bosons. Previous works in probability were limited to the subcritical regime,
where no infinite or open paths are present (see, for example, [ACK11]).

In [BDM24], the authors developed a new tool that simplifies the study of
infinite interacting paths. The idea is to consider a reference Poisson point process
of Brownian paths (not loops) and then enforce consistency (i.e., that the paths
either form loops or escape to infinity) via an additional energy term. The change
of measure between the original process and this new process can be explicitly
calculated. The locality of this new reference process allows the authors to use
many tools from classical point process theory. They show the existence of Gibbs
measures for any density, although they cannot prove or disprove the existence of
long loops.

Together with G. Bellot, I have extended this technique to prove the existence
of the free energy of an interacting gas of bosons at any density. Moreover, we can
write it as the following variational problem:

− inf {SFE(P ) |P ∈ M} ,

whereM denotes the translation-invariant probability measures on collections of
loops and infinite paths, and SFE is the specific free energy of P , defined as the
limit of the average specific free energy (entropy plus energy) in finite boxes. Our
proof uses the decomposition of infinite paths into finite paths, which can then be
glued together at sufficiently small cost for the specific free energy. This hinges
delicately on the interplay between energy and the surface scale occupied by the
infinite paths.

The above result is significant because it covers the case where BEC is expected
to occur. A proof of the existence of infinite paths in the limit can then be carried
out by showing that minimizers of the above variational problem assign positive
mass to infinite paths—a project we aim to pursue in future investigations.
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Multi-time random walks and Brownian fields, and hard rod

hydrodynamics

Pablo A. Ferrari

(joint work with Stefano Olla)

Inspired by Buffon needle problem, Crofton proposed in 1868 a method to compute
the length of a planar curve, involving randomly drawing straight lines within a
plane [3], [5]. Let ℓ(θ, p) be the line that has a distance of p from the origin, and
whose perpendicular, drawn from the origin of R2, makes an angle θ with the
x-axis. This map and the Lebesgue measure ν on the strip R+ × [0, 2π) induce a
measure on the set of lines contained in R2 that is invariant by isometries.

In 1945 Lévy proposes a random surface η : R
2 → R called Brownian mo-

tion with several (time) parameters, a centered Gaussian process with covariances
Cov(η(a), η(b)) = 1

2 (|a| + |b| − |a − b|), where | · | is the Euclidean norm. The
one-dimensional trajectory obtained by cutting the surface with a vertical plane
is one dimensional Brownian motion, explaining the name [11, 12, 13].

White noise in Rd with control measure µ is a centered Gaussian process ω
indexed by Borel sets, with covariances Cov(ω(A), ω(B)) = µ(A ∩ B). Chentsov
describes the Lévy’s multi-time Brownian field as the surface η(b) := ω(ob), where
ob is the set of points (θ, p) mapped to lines crossing the segment ob; o is the origin
of R2, and ω is white noise with control measure ν [4].

In 1975 Mandelbrot defined M(b) := N1(ob) :=
∑

(θ,p,r)∈X r 1{(θ, p) ∈ ob},
where X is a marked Poisson process with intensity ν and iid marks r, and proved
that the rescaled version of M converges to the multi-time Brownian field [14, 15].
Related results were obtained by Ossiander and Pyke [16] and Lantuejoul [9, 10].
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Franceschini, Grevino, Spohn and the first author introduced a surface H , as
a function of a non homogeneous marked Poisson process, and applied it to show
hydrodynamics of hard rods [7]. We review the approach and extend the diffusive
limits of Olla and the first author to the non-homogeneous case [8].

To better match the relation with hard rods, we map points in the space-velocity
R

2 to lines contained in the space-time R
2, by defining ℓ(x, v) = {(x + vt, t) :

t ∈ R}, the line intersecting the x-axis at the point x and having inclination
α(v) := arctan(1/v). To incorporate marks, we add a dimension to our space. A
point (x, v, r) in the space-velocity-markR3 represents the line ℓ(x, v) with mark r.
For a, b in the space-time plane R2, denote by ab the set of points (x, v, r) such
that the line ℓ(x, v) intersects the segment ab. Orient the lines in the positive
direction of time and denote the half-planes to the left and right of the line ℓ(x, v)
by left(x, v) and right(x, v), respectively. Each line in ab belongs to one of the sets

ab+ :=
{
(x, v, r) ∈ R

3 : a ∈ left(x, v), b ∈ right(x, v)
}
,(1)

ab− :=
{
(x, v, r) ∈ R

3 : a ∈ right(x, v), b ∈ left(x, v)
}
.(2)

The marked line associated to the point (x, v, r) induces a surface hx,v,r : R
2 → R

which is constant in each half-plane determined by ℓ(x, r). The height difference
between the right and left half-planes is r, and the height of the half-plane con-
taining the origin o is zero,

hx,v,r(b) := r
(
1{(x, v) ∈ ob+} − 1{(x, v) ∈ ob−}

)
.(3)

Let N be the empirical measure of a point configuration X and define

HN (b) :=
∑

(x,v,r)∈X

hx,v,r(b) = N1(ob+)−N1(ob−),(4)

where Nk :=
∑

(x,v,r)∈X rk δ(x,v,r), N0 = N . HN is well defined for N ∈M,

M :=
{
µ on B(R3) : µ(ab) + µ2(ab) <∞, for all a, b ∈ R

2
}
.(5)

where dµk(x, v, r) := rk dµ(x, v, r), µ0 = µ. For µ ∈ M define

Hµ(b) :=

∫∫∫
hx,v,r(b) dµ(x, v, r) = µ1(ob+)− µ1(ob−).(6)

The discrete field HN in (4) is a particular case of (6).
Let µ ∈ M and consider a Poisson process X with intensity measure µ, and

empirical measure N = N [X ]. We have EHN = Hµ and Cov(HN (a), HN (b)) =
µ2(oa∩ob) = 1

2 (µ2(oa)+µ2(ob)−µ2(ab)). The fieldHN is called multi time random
walk field, because the one dimensional marginals consist of non homogeneous
continuous time random walks.

Fix a rescaling parameter ε > 0, later tending to 0, and consider a Poisson
process Xε with intensity measure ε−1µ, and rescaled empirical measure

Nεϕ := ε
∑

(x,v,r)∈Xε

ϕ(x, v, r), Nε(A) := Nε
1A.(7)



Geometry of random fields and random walk clusters 3201

Notice that ENε
1 (ob±) = µ1(ob±) for all ε, which implies EHNε(b) = Hµ(b). Define

the empirical fluctuation fields

ηε(b) := ε−1
(
HNε2 (b)−Hµ(b)

)
,(8)

η̂ε(b) := ε−1/2
(
HNε2 (εb)−Hµ(εb)

)
,(9)

The processes ηε and η̂ε are functions of the same Xε2 . Denote by dµ(v, r|z) the
conditioned law of µ given the space coordinate z.

Let µ ∈ M and ω be white noise with control measure µ2. The Gaussian process
η(b) := ω(ob) is called multi-time nonhomogeneous Brownian field associated to
the distance d(a, b) := µ2(ab). The covariances are given by Cov(η(a), η(b)) =
µ2(oa ∩ ob) = 1

2 (µ2(oa) + µ2(ob)− µ2(ab)).

Theorem 1 (Scaling limits for multi-time fields). Assume µ ∈M, then, as ε→ 0,

HNε(b)
a.s.−→ Hµ(b),(10)

(ηε(a), η̂ε(b))
law−→ (η(a), η̂(b)),(11)

where η and η̂ are the multi-time Brownian fields associated to the distance d(a, b) =

µ2(ab) and d̂(a, b) = µ̂2(ab), respectively. Furthermore, the processes η and η̂ are

independent.

Ideal gas and hard rod dynamics. We describe the hard rod dynamics in
function of the multi-time random walk. A point (x, v, r) codifies a length zero
particle sitting at x at time zero travelling at speed v, and carring a mark r. The
ideal gas dynamics of a configuration X is defined by

TtX := {(x+ vt, v, r) : (x, v, t) ∈ X}, t ∈ R.(12)

There is no interaction between particles. The trajectory (TtX)t∈R coincides with
the set of lines ℓ(x, v) carrying the mark r. The ideal gas conserves Poisson pro-
cesses. If µ is space translation invariant, the Poisson process with intensity mea-
sure µ is invariant for the ideal gas.

To a given a point (y, v, r) associate a rod, the interval (y, y + r), carrying a
velocity v. A hard rod configuration is a set Y ⊂ R3 satisfying that distinct rods
do not intersect. The set of hard rod configurations is denoted

Y := {Y ⊂ R
3 : (y, y + r) ∩ (ỹ, ỹ + r̃) = ∅ if (y, v, r) 6= (ỹ, ṽ, r̃) ∈ Y }.(13)

Starting with an Y ∈ Y, each rod travels deterministically with its velocity, until
collision with another, faster or slower, rod. Just before collision time, the right
extreme of the fast rod coincides with the left extreme of the slow one. At collision
time the rods swap positions, the left extreme of the updated slow rod goes to the
left extreme of the fast rod, and the right extreme of the updated fast rod goes
to right extreme of the slow rod. After collision, each rod continues moving at its
original velocity. Given a hard rod configuration Y ∈ Y, the hard rod configuration
at time t is denoted UtY . The set Y, is conserved by the dynamics, Y ∈ Y if and
only if UtY ∈ Y.
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Theorem 2 (Surface representation of the hard rod evolution [7]). Let X be a

point configuration with empirical measure N ∈ M. Define

D0X :=
{
(x+HN (x, 0), v, r) : (x, v, r) ∈ X

}
.(14)

Then, Y = D0X is a hard rod configuration, Y ∈ Y, and UtY is given by

UtY =
{
(x+ vt+HN (x+ vt, t), v, r) : (x, v, r) ∈ X

}
.(15)

The configuration D0X is the dilation of X with respect to the origin. We
prove known and new theorems for the length and fluctuation fields of hard rods,
by combining Theorems 1 and 2.

The results extend previous results by Boldrighini, Dobrushin and Suhov [2]
and Presutti and Wick [17]. See the hard rod section of the classical book of
Spohn [18] and the monograph on generalized hydrodynamics by Doyon [6].
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[8] Pablo A. Ferrari and Stefano Olla. Macroscopic diffusive fluctuations for generalized hard
rods dynamics, 2024. To appear, Ann. Appl. Probab.
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Where is the soul of the GFF, or how to characterise the

Gaussian free field?

Juhan Aru

(joint work with W. Werner, G. Woessner)

The Gaussian free field on a graph or a subdomain of Rd is the Gaussian process
with the covariance given by the Green’s function of the Laplacian / the simple
random walk. In the case of subdomains of Rd with d ≥ 2, the covariance blows
up on the diagonal and thus this Gaussian process is defined only as a generalized
function. In this talk we discussed which simple properties one might use to
characterise the free field both in the continuous and the discrete set-up.

As a first example or analogy one can think of the characterisation theorems of
Brownian motion, which is actually just the Gaussian free field on the half-line.
In this case there are many characterisations:

• Brownian motion (with drift) is the only continuous process with station-
ary independent increments
• Brownian motion is the only continuous local martingale with quadratic
variation equal to t.

The crux is that in both cases the Gaussianity of the process is a byproduct of
other properties. It is this type of characterisation we are looking for also for the
GFF.

The discrete case

In the discrete case we presented the following slightly surprising result (joint with
W. Werner). To state this consider G = (V,E) be a finite graph and suppose in
addition that Vi contains no isolated vertices, i.e. that each connected compo-
nent of Vi contains at least two vertices. Then the following resampling property
identifies the random process Γ(x) (up to scaling and a deterministic drift) as the
GFF:

• For every x ∈ Vi, the random variable Γ(x) − Γ(x) is independent of
(Γ(y), y 6= x).

This condition can be restated as follows: it is possible to find a law Lx on R,
such that if a random variable Zx has this law and is independent of Γ, then the
process (Γ̃(y), y ∈ V ) defined by Γ̃(y) = Γ(y) when y 6= x and Γ̃(x) = Γ(x) + Zx

has the same law as Γ.
This might sound a bit surprising to begin with, as compared to the usual

DLR condition for the GFF, it does not presume any Gaussianity. Notice that
importantly each connected component of Vi has to contain at least two vertices.
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On the other hand, as explained in the talk, a posteriori it is a very simple
result and such a characterisation works much more generally for a large family
of discrete Gaussian processes and as such maybe does not touch upon the soul of
the GFF.

The continuous case

In the continuous case there have been several characterisation theorems:

• In [3, 4] the authors characterised the 2D continuum GFF on simply-
connected domains using conformal invariance and a certain domain
Markov property.
• In [1] the authors characterised the continuum GFF on any n-dimensional
ball using just a domain Markov property with the right scaling. This can
be seen as a generalization of the stationary independent increments type
of characterisation of the Brownian motion.

In this talk we discussed what can be seen as an analogue of the Lévy type of
characterisation, based on joint work with G. Woessner [2]. This result charac-
terises the GFF on any multiply-connected domains in any dimensions using a
martingale-type of resampling property.

I leave the interested reader to check-out the precise formulation of this martin-
gale-type of resampling property, but roughly it says that inside any ball we can
resample the field by taking the harmonic extension from the outside field and
adding some field with right variance and zero conditional mean. Importantly we
do not assume any independence in the resampling property nor anything very
detailed on the law. In comparison to previous results, this allows us to treat the
case of multiple-connected domains. Moreover, the proof via dynamics is quite
robust, working also for example for the fractional Gaussian free fields.

Importantly, no Gaussianity is presumed in none of these works, it is again just
a consequence of the other properties. Still, all the proofs separate the two steps of
Gaussianity and the covariance kernel, making one doubt if the soul has escaped
our grasp again...but maybe GFF really has these two sides - being Gaussian
and having the covariance given by the Green’s function of the random walk - as
explained in the very beginning?

References

[1] J. Aru and E. Powell: A characterisation of the continuum Gaussian free field in arbitrary
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Thick points of 4D critical branching Brownian motion

Antoine Jego

(joint work with Nathanaël Berestycki, Tom Hutchcroft)

I will describe a recent work in which we prove that branching Brownian motion in
dimension four is governed by a nontrivial multifractal geometry and compute the
associated exponents. As a part of this, we establish very precise estimates on the
probability that a ball is hit by an unusually large number of particles, sharpening
earlier works by Angel, Hutchcroft, and Járai [1] and Asselah and Schapira [2] and
allowing us to compute the Hausdorff dimension of the set of “a-thick” points for
each a > 0. Surprisingly, we find that the exponent for the probability of a unit
ball to be “a-thick” has a phase transition where it is differentiable but not twice
differentiable at a = 2, while the dimension of the set of thick points is positive
until a = 4. If time permits, we will also discuss a new strong coupling theorem for
branching random walk that allows us to prove analogues of some of our results
in the discrete case.
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Volume and heat kernel fluctuations for the three-dimensional uniform

spanning tree

Satomi Watanabe

(joint work with Daisuke Shiraishi)

The uniform spanning tree (UST) of a connected graph is defined as a uniformly
chosen random spanning tree of the graph. A spanning tree is a subtree containing
all the vertices of the original graph, while a forest satisfying the same condition is
called a spanning forest. UST was first defined on finite graphs and was discovered
to be related to harmonic analysis on graphs. Pemantle [6] extended the notion of
spanning tree to Zd as the weak limit of the uniform spanning tree on sequences
of finite subgraphs that exhaust Zd, with the known result that the limit measure
concentrates on the set of spanning trees for d ≤ 4 and spanning forests for d ≥
5. In this talk, we discuss the asymptotic behavior of the volume of the three-
dimensional UST and the heat kernel of the simple random walk on it.

Several algorithms have been developed to investigate the structure of UST.
Wilson’s algorithm was introduced by Wilson [10] and later extended to transient
graphs by Benjamini, Lyons, Peres and Schramm [4]. Using Wilson’s algorithm,
UST can be constructed with loop-erased random walk (LERW) paths, allowing
for applying LERW estimates in the analysis of UST. Consequently, UST is one of
the few probabilistic models of critical phenomena originating in statistical physics
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that have been analyzed precisely and rigorously even in three dimensions, which
is considered the most challenging setting.

The aim of this talk is to examine the volume and heat kernel fluctuations of the
three-dimensional UST. Such fluctuation results are known for the simple random
walk on the critical Galton-Watson tree [3, 5] and the two-dimensional UST [2].
On the other hand, tail estimates of the volume of the three-dimensional uniform
spanning tree and the spectral dimension for the simple random walk on the graph
were obtained in [1].

We now introduce the notation that we need to state our main result. Let
U be the uniform spanning tree on Z3. We write BU(0, r) be the intrinsic ball
(with respect to the graph distance) in U of radius r centered at the origin and
write pUn (x, y) for the heat kernel of the simple random walk on U . We also let
β ∈ (1, 5/3] be the growth exponent that governs the time-space scaling of the
three-dimensional LERW, see [8, 9] for details.

Our main result consists of two theorems: volume and heat kernel fluctuations.

Theorem 1. There exist deterministic constants a1, a2 > 0 such that one has

(1) lim inf
r→∞

(log log r)a1 r−
3
β |BU (0, r)| = 0,

and also

(2) lim sup
r→∞

(log log r)−a2 r−
3
β |BU (0, r)| =∞,

almost surely, where |A| stands for the cardinality of the set A.

Theorem 2. There exist deterministic constants a3, a4 > 0 such that one has

(3) lim inf
n→∞

(log logn)a3n
3

3+β pU2n(0, 0) = 0,

and also

(4) lim sup
n→∞

(log logn)−a4n
3

3+β pU2n(0, 0) =∞,

almost surely.

The idea of the proof is inspired by [2], which constructs via Wilson’s algorithm
the atypical events where either a large or small volume of the UST is observed
to prove volume fluctuations. Heat kernel fluctuations follow from the volume
fluctuations and some basic estimates of the heat kernel. In contrast to the two-
dimensional case, it is essential to control the hitting probability of the partially
constructed subtree at each step of Wilson’s algorithm. We address this issue by
applying Beurling-type estimates for the three-dimensional LERW given in [7].
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Favorite sites for simple random walk in two and more dimensions

Xinyi Li

(joint work with Chenxu Hao, Izumi Okada, Yushu Zheng)

Let (Sn)n≥0 be a discrete-time simple random walk on the integer lattice Zd for
d ≥ 1. We write

ξ(x, n) = #{0 ≤ j ≤ n : Sj = x}; ξ∗(n) := sup
y∈Zd

ξ(y, n)

for the local time of site x at time n and maximal local time at time n, respectively.
There is a considerable amount of interest and a huge literature on the asymp-

totics of ξ∗(n) and the distribution of thick points. Erdős and Taylor [5] gave
sharp bounds on ξ∗(n) for d ≥ 3 and derived up-to-constants bounds for d = 2,
with upper bound conjectured to be appropriate. Nearly forty years later, the
seminal work [1] by Dembo, Peres, Rosen and Zeitouni confirmed this conjecture
and also established the growth exponent of thick points.

For any n ≥ 0, we denote by

K(d)(n) :=
{
x ∈ Z

d : ξ(x, n) = ξ∗(n)
}

the set of favorite sites at time n. A major direction of research is the cardinality
of K(d)(n). A classical question of Erdős and Révész [3] reads as follows:

(1) Can #K(d)(n) = r occur infinitely often for r ≥ 3 and d ≥ 1?

For d ≥ 3, Erdős and Révész themselves gave a positive answer in [4]. For d = 1,
it was proved [7, 6] that a.s. #K(1)(n) ≤ 3 eventually and it remained open for
a long time whether #K(1)(n) = 3 i.o. Much later, Ding and Shen showed in [2]
that this is indeed the case.
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In this talk, I will discuss our recent preprint that gives a complete answer to
the open question (1) of Erdős and Révész.

For d = 2, the number of favorite sites has the same behavior as the d = 1 case:
almost surely,

lim sup
n→∞

#K(2)(n) = 3.

For d ≥ 3, the following sharp asymptotics of #K(d)(n) are obtained: almost
surely,

lim sup
n→∞

#K(d)(n)

log logn
= − 1

log γd
,

where γd := P [Sn 6= S0, ∀n ≥ 1], which is the probability that a simple random
walk never returns to the starting point.
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GERMANY

Prof. Dr. Pablo A. Ferrari

Departamento de Matematica - FCEN

Universidad de Buenos Aires

Ciudad Universitaria

Pabellon 1

Buenos Aires C 1428 EGA

ARGENTINA

Dr. Yifan Gao

Department of Mathematics

City University of Hong Kong

83 Tat Chee Avenue, Kowloon

Hong Kong 518057

CHINA

Dr. Antoine Jego

Institute of Mathematics

EPFL

1015 Lausanne

SWITZERLAND

Dr. Xinyi Li

Beijing International Center for

Mathematical Research

Peking University

Beijing 100 871

CHINA

Dr. Alexis Prévost

University of Geneva

Section de Mathématiques
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Matemáticas
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