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Introduction by the Organizers

This mini-workshop, organized by Guillaume Bossard (Paris), Axel Kleinschmidt
(Potsdam) and Hermann Nicolai (Potsdam), brought together 16 participants in
Oberwolfach as well as two online participants. The audience was mixed between
mathematicians and theoretical physicists who together explored topics associated
with Kac-Moody symmetries in supergravity. Emphasis was given to explaining
the topics in a way accessible to both communities as much as possible. All 18
participants gave presentations and in addition there was one open discussion
session as well as a session with the two other mini-workshops being held at the
same time.

A prominent topic, reflected in several talks, were hyperbolic Kac-Moody alge-
bras and their realizations using physical ideas. This concerned both the algebra
itself (using string theory operators) and their (fermionic) representation theory,
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covered in the talks of Damour, Malcha, Meissner and Nicolai and touched upon
by Ciceri and Feingold. Affine Kac-Moody algebras and their physical significance
were discussed by Cesaro, Inverso and König while Lorentzian algebras entered
in the talks of Bossard and Kleinschmidt. General results and theorems, covering
many algebras and groups at the same time were presented by Köhl, Lautenbacher,
Marquis and Palmkvist. Yet other realizations of other large physical symmetries
featured in the talks by Alonso-Serrano, Majumdar and Petrini.

The mini-workshop showed the breadth of the field and stimulated many in-
teresting discussions between the participants with different backgrounds. This
was particularly visible in the lively discussion session for which the organizers
had requested the participants in advance to send open questions and topics. The
unique setting of the MFO helped in making this a successful event.



Infinite-Dimensional Kac-Moody Lie Algebras 3057

Mini-Workshop: Infinite-Dimensional Kac-Moody Lie Algebras
in Supergravity and M Theory

Table of Contents

Ana Alonso-Serrano (joint with Luis J. Garay, Eduardo Mart́ın-Mart́ınez
and Erickson Tjoa)
Quantum field theory in multiply-connected spacetimes . . . . . . . . . . . . . . . 3059

Guillaume Bossard (joint with Axel Kleinschmidt and Ergin Sezgin)
Identities for Kac–Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3061
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Abstracts

Quantum field theory in multiply-connected spacetimes

Ana Alonso-Serrano

(joint work with Luis J. Garay, Eduardo Mart́ın-Mart́ınez and Erickson Tjoa)

The analysis of multiply-connected spacetimes in the framework of general rela-
tivity becomes relevant when we consider spacetimes which posses closed timelike
curves (CTCs) in a region of the (or the whole) spacetime. When the CTCS
are restricted to a region on the spacetime, they are protected by Cauchy hori-
zons, which causally disconnect those (problematic) regions from the rest of the
spacetime. The existence of these curves challenges our models (because of the
nontrivial topological and causal structure), but it also allows us to explore the
limits of the theory.

The construction of a quantum field theory in these spacetimes has been largely
considered in the literature mainly in relation to the analysis of the stability of
the mentioned Cauchy horizons. The main difficulties of the theory are due to the
nontrivial topology and that they are not globally hyperbolic. Thus, the general
construction of the theory has been studied using the framework of automorphic
fields [1, 2]. The strategy is to construct the quantum field theory in the corre-
sponding universal covering space, which has trivial topology. Then, we can trans-
late the resulting quantum field to the multiply-connected spacetime by imposing
some automorphic conditions on the field, given by the topological invariants in
the construction.

By the sake of simplicity, in this work we focus in 2-dimensional models, where
the powerful conformal techniques allow for relevant technical simplifications. We
start by constructing the most general 1 + 1-dimensional static simply connected
spacetime, M , given by the metric ds2 = −α(x)2dt2 + dx2, with t, x ∈ R. This
spacetime possesses a unique global timelike hypersurface-orthogonal Killing vec-
tor field, which allows to foliate M such that M = R × Σ, where Σ is a Cauchy
surface orthogonal to the Killing vector field. For the simplicity of the discussion,
and without lost of generality (due to a transformation between them encoded
in a smooth conformal factor), we focus in a particular case expressed by the
metric ds2 = −e2Wxdt2 + dx2, where W is a two-parameter constant given by
W = logA/L ≥ 0, with A ≥ 1 and L > 0.

In order to construct a multiply-connected spacetime, M̃ , we identify points
in the spacetime M by establishing the equivalence relation (t, x) ∼ (t′, x′), if
and only if t′/t = A and x′ − x = L. So one can understand the multiply-
connected spacetime as a strip identified at length L, and at a shifted time given
by a warp parameter A. In this way, when A > 1 there exists a region of the
spacetime, separated by future and past Cauchy horizons, which contain CTCs.
When considering the limiting case A → 1 (and so W → 0, provided that L is
kept constant), there is no time shift and one recovers the Einstein cylinder (the
flat spacetime limit).
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The multiply-connected spacetime M̃ is only locally static, i.e., it has a Killing
vector field for each simply connected region that cannot be globally extended. It
is then convenient to introduce the Killing trajectories, defined from the velocity
vector field associated to Killing observers. The velocity vector field, together
with the corresponding acceleration vector, can be globally extended throughout
M̃ (defining a new foliation in terms of the Killing trajectories [3]).

Once we have defined the classical structure of this spacetime, we need now to
define its universal covering spacetime. It fact, it turns that this spacetime results
to be the spacetime M already defined. Let me remark at this point also that
performing a simple change of coordinates, one can see that this spacetime corre-
sponds to the Poincaré patch of AdS2 [4]. The spacetime M̃ can be understood

as the quotient spacetime π1(M̃)\M , where π1(M̃) is the fundamental group of
M . The multiply connectedness of the spacetime is captured by the topological
invariants such as the fundamental group. In that way, the transformation of the
quantum field theory in the universal covering space to a quantum field theory in
the multiply-connected spacetime is given by imposing some automorphic condi-
tions on the field, that are defined in terms of the elements of the fundamental
group.

We first construct the quantization of a massless scalar field in the Einstein
cylinder to control the flat spacetime limit. One of the relevant features of the
modes in the Einstein cylinder is the Fourier mode decomposition sum a spa-
tially constant piece zero mode oscillator to the standard oscillator modes. Zero
modes can appear naturally in many situations and the issue with them is that
they have no Fock representation, so the ground state of this theory is nontrivial.
For this reason, they have been sometimes removed by hand in the literature or,
more recently, regularized ad hoc using squeezed vacuum of a quantum harmonic
oscillator [5].

We then construct the quantization of a massless scalar field in the universal
covering spacetime M [4]. We impose that the resulting quantum field has to be
automorphic under the action of the fundamental group to construct quantized
massless scalar field in a fundamental domain of the multiply-connected spacetime
M̃ . We obtain a Fourier mode decomposition in oscillator modes. Let me stress
here that the physical observables defined within this framework are going to be
restricted to the region of the spacetime free of CTCs. In this context we can
analyze several vacuum two-point functions and study their limit when A → 1,
where we consistently recover the Einstein cylinder case, with the corresponding
zero mode contribution. More interestingly, when using the two-point functions
to compute the renormalized stress-energy tensor, we find a prescription to select
the zero mode in a unique way for the limiting case of the Einstein cylinder from
the one-parameter, A, family of time-warp identified spacetimes [4].

For a more detailed analysis of the properties of the field, we introduce a local-
ized probe model as an Unruh-de Witt detector [6] to study, mainly, the possible
extraction of topological information. That is, to study if a local observer in the
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region that do not contain CTCs can distinguish the existence of them in a re-
gion protected by Cauchy horizons. The fact that the curvature W is regulated
by two independent parameters associated to the multiply connectedness, allows
to separate topological information from geometrical information and distinguish
periodic spacetimes without CTCs, curvature, and spacetimes with topological
identifications that enable the appearance of CTCs [7].
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Identities for Kac–Moody algebras

Guillaume Bossard

(joint work with Axel Kleinschmidt and Ergin Sezgin)

It has been proposed by West that it should be possible to write (the bosonic
part of) D = 11 supergravity in a way that utilises the infinite-dimensional Kac–
Moody group E11. The proposed construction involves a non-linear realisation
of E+

11/K
∗(E11) where K∗(E11) ⊂ E11 denotes a subgroup that generalises the

eleven-dimensional Lorentz group SO(1, 10), where E+
11 denotes the maximally

extended Kac–Moody group on the positive Borel. In a different, but not unre-
lated, strand of research, field theories with extended space-time symmetries and
exceptional symmetry groups have been constructed. These so-called exceptional
field theories possess fields in a non-linear realisation of En (for n ≤ 9) and these
fields depend on extended (internal) coordinates Y M involving representations of
En. In an effort to define an exceptional field theory for E11 we have proposed a
non-linear set of first-order duality equations that can be written as

ηIJF
J = ΩIJF

J ,(1)

where F I denotes an infinite collection of non-linear field strengths that transform
under E11 in a representation that is defined by its tensor hierarchy superalgebra.
This representation is neither highest nor lowest weight but can be shown to carry
a symplectic form that we write as ΩIJ and that generalises at the same time the
usual Levi–Civita symbol that appears in duality equations and the symplectic
form familiar from electric-magnetic duality relations in D = 4. The metric ηIJ
on the left-hand side is a conjectural K(E11)-invariant symmetric bilinear form.
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The existence of ηIJ is a key assumption in our construction. The definition of
the field strengths F I crucially involves an infinite set of constrained fields that go
beyond the E11 coset fields. These fields are necessary from the construction of the
tensor hierarchy algebra and sit in an indecomposable representation with the E11

coset fields. A similar feature was also observed in the context of E9 exceptional
field theory, for which the theory has been formulated with other authors without
involving any conjectural identities [1].

In this talk we emphasise in particular that the E11-covariance of F I and the
mere existence proof of the representation labelled by I depends on the tensor
hierarchy Z-graded superalgebra T (e11) introduced in [2]. The existence of this
superalgebra is based on a local superalgebra. For g0 a superalgebra, and g±1 two
distinct representations of g0 satisfying that

(2) g0 ⊂ g1 ⊗ g−1

as a representation, one can use the corresponding homomorphism φ0 to define
the local superalgebra such that for xi ∈ gi,

(3) [x0,x±1] = ρ±1(x0)x±1 , [x1,x−1] = φ0(x1,x−1) ∈ g0 .

From this local superalgebra one defines the freely generated superagebras

(4) n± =
⊕

n≥1

g±n = 〈g±1〉

and the big superalgebra

(5) ĝ =
⊕

n∈Z

gn .

The superalgebra g is defined by the quotient superalgebra of ĝ by its maximal
ideal not intersecting the local superalgebra g−1 ⊕ g0 ⊕ g0. Starting from g0 =
W11 the superlgebra of superdiffeomorphisms in eleven Grassmann variables in V ,
g−1 defined as a real scalar superfields and g1 by a specific combination of three
tensor superfields, in ∧3V , Sym2V and V , one gets g = T (e11). The restriction of
g0 = W11 to gl11, g−1 to ∧3R11 and ∧3V ⊂ g1 to ∧3R11 produces in the same way
the Kac–Moody algebra e11, proving that e11 ⊂ T (e11).

We explained in this talk the identities we could prove, the two fact that re-
main conjectural and provided an idea of the proofs. The conjectural facts are the
existence of the bilinear form and the uniqueness of a certain homomorphism from
a highest weight module L(Λ2) tensor product with the non-highest weight repre-
sentation Rθ to the highest weight irreducible module R(Λ1). In our conventions
Λ2 and Λ1 are the fundamental weight defining the maximal parabolic subalge-
bras of respective Levi subalgebras e9 ⊕ sl2 and e10. The conjecture would follow
from the hypothesis that the highest weight module L(Λ2) and the non-highest
weight representation Rθ are both irreducible. Assuming the conjecture is true, I
explained how to write equations of motions invariant under E11 generalised diffeo-
morphisms, which reproduce the equations of motion of both eleven-dimensional
supergravity and type IIB supergravity for appropriate choices of sections [3].
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Integrable auxiliary field deformations of coset models

Mattia Cesàro

(joint work with Axel Kleinschmidt, David Osten)

Non-linear σ-models are ubiquitous in various branches of physics, with appear-
ances in statistical and condensed matter physics, for example as models for ran-
dom matrix ensembles or disordered metals. They also find important applications
in gravity and string theory.

Remarkably, despite being non-linear, interacting quantum field theories, in
two dimensions they can be classically integrable, with prime examples being the
principal chiral model or the symmetric space σ-model. In the latter case, the
theory is given by maps from the two-dimensional ‘world-sheet’ to a target space
G/K where G is a Lie group and K a subgroup fixed by an involution of G, for
example K can be the maximal compact subgroup of G. It is therefore interesting
to consider whether there are further, related integrable models. These are often
referred to as integrable deformations. So far, the focus in the literature lay
on deformations inside the class of σ-models, most prominently so-called Yang–
Baxter [3, 4] and λ-deformations [5].

Recently, another type of deformations has been introduced for principal chiral
models [6, 7]. These deformations are obtained by introducing an auxiliary field
and adding an arbitrary function of an invariant built from it to the Lagrangian.
In comparison with the above mentioned examples, one can identify two main
characteristics: First, these deformations leave the realm of σ-models since they
introduce additional fields. Second, they can still be considered to be quite mild
deformations of σ-models, as they still share some features. On the level of clas-
sical integrability, the latter can be understood by the fact that the original and
deformed level both have the same twist function.

In this presentation, I show how to extend these deformations from principal
chiral models to coset σ-models, where both the symmetric space cosets (with an
underlying Z2-automorphism) and their ZN -generalisation are considered, leading
to ZN -coset spaces. This is achieved first of all by finding a Lax connection
representation whose flatness is equivalent to the Euler-Lagrange equations of
the system: this ensures the existence of an infinite tower of conserved charges.
Subsequently, the charges are proven to be in involution by displaying that the
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Poisson brackets of the spatial components of the Lax connection assume the non-
ultralocal form of Maillet [8], [9]. This leads to the construction of an infinite
family of integrable models.

In the second part, I adopt a “reversed logic” approach that generalises the
method of [6]: I avoid to start from a Lagrangian deformation, but rather consider
a deformation of the Lax formulation of the dynamics. The latter is a less con-
straining option of which the Lagrangian deformation in [6] represents a subcase,
and its straightforward generalisations for coset spaces considered in the first part
of the talk are also a special case.

I conclude by speculating on possible extensions of this type of integrable defor-
mations to the Kaluza-Klein reduction of D = 4 general relativity down to D = 2
along two Killing isometries [2], and on the intriguing chance to construct their
uplift back to D = 4.
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Sphere reductions of gravity to low dimensions

Franz Ciceri

(joint work with Henning Samtleben)

Consistent reductions of higher-dimensional gravity theories have a long history
nourished by the emergence of extra compactified dimensions in supergravity and
string theory. In some cases, the infinite tower of massive Kaluza-Klein modes
associated to a compactification on a given internal space can be consistently
truncated to a finite set of modes. The term ‘consistent’ refers here to the require-
ment that the retained modes do not source those that have been discarded. In
other words, such a consistent reduction means that the compactified gravitational
theory can be truncated to a finite set of fields whose dynamics is described by a
lower-dimensional action, such that any solution of the lower-dimensional theory
can be uplifted to a solution of the original, higher-dimensional theory. In this
talk, we will importantly focus on consistent reductions that retain all the mass-
less Yang-Mills fields that gauge the isometry group of the internal space. These
are sometimes referred to as Pauli reductions.

Unlike for toroidal reductions, where the retained modes are all singlets under
the U(1)d isometry of the torus T d and whose consistency is guaranteed by a
simple group-theoretical argument, the question becomes much more involved for
non-trivial spaces such as spheres. In fact, the reduction of pure gravity on a
d-sphere Sd is known to be inconsistent for any d. The obstruction stems from
certain couplings in the Einstein-Hilbert action in which a quadratic product of
SO(d + 1) gauge fields act as a source for massive spin-2 fields. This triggers a
chain reaction which ultimately implies that an infinite number of massive fields
have to be retained.

Consistent sphere reductions become possible when the higher-dimensional
gravity theory is coupled to matter. In an important paper [1], Cvetič, Lü and
Pope have classified and explicitly constructed such reductions on Sd that retain
all the SO(d + 1) Yang-Mills fields. These classification includes well-known ex-
amples that have played an important role for the study of holography, such as
the reduction of type IIB supergravity on S5. A strong necessary condition for
the existence of such sphere reductions can be found from the toroidal reduction
of the relevant higher-dimensional theory. Its global symmetry group must ac-
commodate an SO(d + 1) subgroup such that gauging of the latter describes the
theory obtained from reduction on the sphere. In general, this requires some global
symmetry enhancement that only occurs for specific matter content and couplings
of the higher-dimensional theory.

In this talk I will discuss sphere reductions to two spacetime dimensions [2],
and emphasize the peculiarities of this case which had been left out from the
classification of [1]. More explicitly, I will present the consistent reduction on
Sd of Einstein-Maxwell-dilaton gravity in 2 + d dimensions. The resulting two-
dimensional theory is an SO(d + 1) gauged non-linear sigma model coupled to
dilaton gravity that possesses a non-trivial potential for the various scalars fields.
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Along the way, I will explain the role played by the unique symmetry enhancement
that occurs when reducing the relevant higher-dimensional theory on T d. In this
case the global symmetry group becomes the affine extension of SL(d + 1), and
allows for a non-trivial embedding of the sphere isometry group SO(d+ 1). I will
conclude by presenting preliminary results on the sphere truncation of matter-
coupled gravity theories to one time dimension.

References
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Hidden Hyperbolic Kac-Moody Structures in Supergravity

Thibault Damour

The various indications of the presence of hyperbolic Kac-Moody structures in
supergravity were reviewed.

After reminding the field actions that define Einsteinian gravity (General Rel-
ativity; GR), and its Supergravity (sugra) generalizations (notably in spacetime
dimensions D ≡ d + 1 = 4, 5 and 11), the talk started by recalling the Belinsky-
Khalatnikov-Lifshitz (BKL) approximate description of the structure of the space-
time metric near generic inhomogeneous spacelike singularities inD = 3+1 GR [1].
The main point is that, near a spacelike singularity, different spatial points be-
come causally disconnected, giving rise to a “Carollian structure”. This allows one
to set up an expansion in which spatial gradients are considered as being para-
metrically smaller than time derivatives (“gradient expansion”). At leading order
in the latter BKL gradient expansion, the dynamical evolution of the spacetime
metric near a spacelike singularity is captured by a “billiard description”, namely
the dynamics of a “massless particle” moving within an auxiliary d-dimensional
Lorentzian space and reflecting upon some hyperplanar “walls”. [See, e.g., Ref. [2]
for a review of cosmological billiards, and references to the literature.]

The first indication of the presence of hidden hyperbolic Kac-Moody struc-
tures in (super)gravity came from Ref. [3], which found that the billiard walls
describing a generic inhomogeneous spacelike singularities in D = 11 sugra (or
its D = 10 superstring-theory avatars) could be identified with the Weyl cham-
ber of the last hyperbolic Kac-Moody algebra, namely E10. Further work [4]
proved that the dynamics of the bosonic sector of D = 11-supergravity (consid-
ered in a BKL gradient expansion) was in precise mathematical correspondence
(up to the 30th order in root height) with the dynamics of a massless particle
moving on the infinite-dimensional coset space E10(R)/K(E10(R)). [The latter
infinite-dimensional coset space, where K(E10(R)) denotes the “maximal compact
subgroup” of E10(R), is endowed with a pseudo-Riemannian metric, of signature
−,+,+,+,+,+,+,+, · · ·.] This led Ref. [4] to conjecture the existence of a pu-
tative, exact gravity/Kac-Moody-coset correspondence. Further evidence for this
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conjecture came from the study of the fermionic sector of supergravity. Namely,
Refs. [5–7] found that the sugra-predicted dynamics of the gravitino (when neglect-
ing cubically nonlinear terms, and spatial gradients of the gravitino) was described
by a simple parallel transport (with a K(E10)-valued connection) of a coset analog
of the gravitino, along the null geodesic of the coset space E10/K(E10) describing
the bosonic sector. This led to conjecture that D = 11 supergravity (or, more
ambitiously, “M-theory”) was in correspondence with the motion of a massless
spinning particle on the infinite-dimensional coset space E10(R)/K(E10(R)).

Since then, the latter grand gravity/coset conjecture has received some further
partial confirmations (e.g. from the study of nonlinear-in-fermions effects [8–10]),
and some completions [11,12], but, as of today, the precise role, extent, and mean-
ing of the hyperbolic Kac-Moody structures in supergravity remain unclear: are
they the echo of a hidden, or broken, underlying Kac-Moody-related symmetry,
or a red herring linked to the well-established presence of Cremmer-Julia-type E7,
E8 and E9 symmetries in toroidally compactified supergravity [13–17]. Recently
developed new approaches to the role of Kac-Moody structures in supergravity,
such as Exceptional Field Theories [18–21], might shed a new light on the meaning
of the findings obtained by zooming (à la BKL) on the dynamical behavior near
cosmological singularities. See the abstracts of G. Bossard and A. Kleinschmidt.

While, from the physics point of view, the jury is still out, the work on the
gravity/coset conjecture has unearthed potentially interesting mathematical struc-
tures, notably the existence of finite-dimensional spinorial representations of
K(E10) (and other involutory subalgebras of Kac-Moody algebras) [5–7, 22–24],
and a corresponding “spinorial” generalization of the Weyl group, generated by
spinorial reflection operators of the form Ri = exp π

2 (ei − fi) [25]. [The lat-

ter (finite-dimensional) spinorial reflection operators satisfy R8
i = 1 and Kac-

Peterson-like braid relations [10].] See the abstracts of R. Köhl, and of R. Lauten-
bacher for more information. Let us finally mention that it would be interesting
to study the (mathematical) conjecture formulated in [11] that there exists an
hyperbolic Kac-Moody generalization of the Sugawara construction, and a corre-
sponding hyperbolic generalization of the Virasoro algebra: see Eqs (2.13), (2.14)
and (2.16) in Ref. [11]. The talk had started by citing the nice article “Missed
Opportunities” [26], in which Freeman Dyson mentions several cases where “math-
ematicians and physicists lost chances of making discoveries by neglecting to talk
to each other.” One can hope that the format, and framework, of this workshop, as
provided by the Mathematisches Forschungsinstitut Oberwolfach, has gone a long
way towards avoiding losing chances to make new discoveries related to hyperbolic
Kac-Moody algebras.
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Piecewise Isometry Groups of Tessellations from Weyl groups

Alex Feingold

(joint work with Robert Bieri, Daniel Studenmund)

Abstract
Weyl groups are Coxeter groups generated by reflections determined by a Cartan
matrix of a Kac-Moody (KM) Lie algebra. We study infinite Weyl groups acting
on a Euclidean or a hyperbolic space so that a fundamental domain tessellates
the space. In joint work with Robert Bieri and Daniel Studenmund, we are are
investigating the geometry of such tessellations in order to define groups of piece-
wise isometries of the tessellations. A known example is the tessellation of the
Poincaré disk by ideal triangles where the Weyl group is the hyperbolic triangle
group T (∞,∞,∞) and the piecewise isometry group is a Thompson group which
can be viewed as PPSL(2,Z). For an application in physics see [8].

Introduction
Combinatorial group theory is a very active subject involving ideas from geom-
etry, topology and algebra. Thompson groups of piecewise linear maps on the
unit interval or the circle give examples with interesting properties. For any geo-
metric object, A, the group Isom(A) can have a piecewise extension, PIsom(A).
For example, the Poincaré disk tessellated by ideal triangles has isometry group,
PSL(2,Z), whose piecewise extension was studied by several people (Thurston,
Penner, Schneps, Lochak, Kontsevich) and seen to be isomorphic to a Thomp-
son group. An application of that example in physics was found by Osborne and
Stiegemann [8]. But PSL(2,Z) is the even subgroup of the hyperbolic Weyl group,

PGL(2,Z) ∼= T (2, 3,∞)

of a rank 3 hyperbolic KM algebra, F = AE3 = A++
1 , studied by Feingold and

Frenkel [3].
Weyl groups of two rank 4 hyperbolic KM algebras contain finite index sub-

groups PSL(2, E) and PSL(2,Z[i]), where E = Z[eπi/3] is the ring of Eisenstein
integers and Z[i] is the ring of Gaussian integers. These Weyl groups were studied
by Feingold-Kleinschmidt-Nicolai [4–6] in relation to normed division algebras, and
by Feingold-Vallières [7] in relation to Clifford algebras. They are arithmetic sub-
groups of PSL(2,C) which act properly discontinuously on hyperbolic 3-space,
H3, and have fundamental domains studied long ago. We wish to find piece-
wise isometry groups acting on the tessellations of H3 by these hyperbolic Weyl
groups, giving us mathematical definitions of new groups which could be called
PPSL(2, E) and PPSL(2,Z[i]).

On a grand scale, we envision the study of a wide class of piecewise isometry
groups defined for all infinite Coxeter groups. For now we focus on the Weyl groups
of affine and hyperbolic KM algebras where the geometry of the tessellation allows
us to define finite decompositions into convex pieces which can be permuted by
piecewise local isometries. This talk is a glimpse into a work in progress.



3070 Oberwolfach Report 53/2024

The boundary of H3 is the 2-sphere in the Poincaré ball model, and is C∪{∞}
in the upper half-space model. The rank 4 hyperbolic Weyl groups mentioned
above have parabolic subgroups fixing the “north pole” (∞), and are isomorphic
to affine Weyl groups of type A+

2 or B+
2 whose tessellations are easy to visualize

in R2.
We have details about piecewise isometries of the A+

2 tessellation whose funda-
mental domain is an equilateral triangle, as well as that of A+

3 whose fundamental
domain is a tetrahedron, T , with a pair of opposite edges of length 1 and four other
edges of length

√
3/2, so that 24 copies of T fill up a rhombic dodecahedron.

The example of A+
1 is just the infinite dihedral group, D∞, which acts on the

tessellation of R into unit intervals. The piecewise isometries of that tessellation
are an example of a Houghton group.

The most important source of ideas in our project has come from the work of
Bieri and Sach [1, 2]. They set up the ground work for general study of piecewise
defined groups. In particular, they did the Euclidean cases where Rn is tessellated
by a generalized cube, [0, 1]n, so the associated affine Weyl group would be the
direct product of n copies of the infinite dihedral group, D∞.

A first goal in the affine case is to study the group of piecewise isometries of
the tessellation of Rn coming from the Weyl group of type A+

n for n ≥ 1.
In H3 we are studying its tessellation by an ideal tetrahedron whose vertices

are all in the boundary. That tessellation comes from the hyperbolic Weyl group
whose Dynkin diagram is a tetrahedron, the complete graph on four vertices. We
have learned a lot about the geometry of that tessellation, and can show some
beautiful pictures and a 3D printed model, but we are not yet prepared to present
theorems about the hyperbolic case.

Coxeter Groups and piecewise isometries of their tessellations
The Coxeter group G = G(M) associated with an n × n Coxeter matrix, M =
[mij ], is the group generated by reflections,

〈r1, · · · , rn | (rirj)mij = 1, 1 ≤ i ≤ j ≤ n〉
WhenG acts as isometries on a Euclidean or hyperbolic space,X , each reflection

ri has a hyperplane hi of fixed points which divides X into two half-spaces,
h±
i . A fundamental domain for G acting on X is the intersection

D =

n⋂

i=1

h+
i such that X =

⋃

g∈G

g(D)

is the tessellation, Tess(D), of X into tiles, g(D). Let X̄ be the union of the
interiors of all tiles in Tess(D). For any g ∈ G the conjugates grig

−1, 1 ≤ i ≤ n,
are reflections with associated fixed hyperplanes. A piece of Tess(D) is a tiled
intersection of a finite number of open half-spaces bounded by such hyperplanes.
A finite decomposition of Tess(D) is a disjoint union of finitely many pieces
(finite or infinite) which equals X̄ .

A piecewise isometry of Tess(D) is a bijective map f : X̄ → X̄ such that:
(1) there is a finite decomposition and on each of its pieces f is the restriction of a
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global isometry of Tess(D), (2) the images of the pieces are a finite decomposition
of Tess(D).

Example: Let R2 be tessellated by unit squares whose vertices have integral
coordinates, Z × Z. Then D = [0, 1] × [0, 1] and the reflection hyperplanes of
Tess(D) are the vertical and horizontal lines, x = m and y = n for all m,n ∈ Z.
Below is a finite decomposition of R2 into five pieces, one half-space, two strips
and two quadrants. An example of a piecewise isometry is shown.

Outline of this talk
(1) Affine Weyl Group W (A+

1 )
(2) Piecewise isometries of Tess(I)
(3) Affine Weyl Group W (B+

2 )
(4) Hyperbolic Weyl Group W (A++

1 ) and PPSL(2,Z)
(5) Affine Weyl Group W (A+

2 ) and piecewise isometries
(6) Affine Weyl Group W (A+

3 )
(7) Rank 4 Ideal Hyperbolic Weyl Group in W (A++

2 )
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E9 and two-dimensional supergravity

Gianluca Inverso

(joint work with Guillaume Bossard, Franz Ciceri, Axel Kleinschmidt)

Gauged supergravities are strictly related to brane solutions and their near horizon
geometries. The two-dimensional case is peculiar in many ways. Two-dimensional
gauged supergravities are the realm of (near) AdS2 solutions and hence one can
expect that many such models arise from near-horizon geometries of extremal
black-hole configurations. A concrete example for this talk will be the physics
of D0 branes in IIA supergravity. The near horizon geometry of concident D0
branes is conformal to AdS2 × S8 (with a running dilaton) and the system is
described by a matrix model [1–3] holographically dual to the above geometry [4].
A consistent truncation of IIA supergravity on S8, leading to a two-dimensional
maximal supergravity with SO(9) gauge group [5] was long expected to exist, and
one of the aims of this talk is to describe the tools and structures that lead to the
explicit proof of such truncation.

The properties of two-dimensional supergravities, and of the maximally super-
symmetric one in particular, are quite interesting per-se. The theory is classically
integrable, which is reflected in its global symmetries which form the affine Kac–
Moody group E9. This is the maximally supersymmetric version of the Geroch
group of axisymmetric solutions of General Relativity and is conveniently captured
by the Bretenlohner–Maison linear system or its extension to maximal supersym-
metry [6, 7]. Such formulation relies on a fixed K(E9) gauge to parametrise the
infinity of selfdual scalar fields. For applications to gauged supergravity and di-
mensional reductions a covariant formulation is necessary, and we present it in
the talk based on [8–10]. An Hermitian current P is defined based on the coset

space Ê8⋊Vir−

K(E9)
which involves half a Virasoro algebra. Then a twisted self-duality

constraint can be imposed of the form ⋆P = S1(P) +χ1 with an operator shifting
the loop number of generators and an auxiliary one-form along the central ele-
ment. This is covariant and equivalent to the original linear system. An invariant
pseudoaction is constructed by combining the integrability of the current P with a
shift operator. Physical actions are extracted by making a choice of K(E9) gauge
(akin to a choice of duality frame) and rewriting the pseudoaction as a physical
one plus squares of the selfduality constraint.

In contrast with higher-dimensional models, a systematic construction of gauged
supergravity lagrangians based on the embedding tensor formalism [11] has long
been beyond reach, because of the complicated representation theory of K(E9).
This makes it impossible to construct supergravity actions by completing the su-
persymmetry transformations of fermions, which would require to decompose the
embedding tensor intoK(E9) modules. The general structure of the bosonic sector
of D = 2 gauged supergravities was first described in [12] relying on the BM linear
system, but without control over supersymmetry the scalar potential of such the-
ories could not be identified. The only complete and supersymmetric construction
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has been achieved (bypassing a duality covariant formulation) for SO(9) gauged
supergravity (and its analytic continuations) [5, 13, 14]. This model arises from
consistent truncation of IIA supergravity on S8 and includes a 1/2 BPS solution
lifting to the near-horizon limit of the D0 brane (or its 11d uplift) [15, 16].

In this talk it is first presented how the structure of twisted selfduality and pseu-
doaction lends itself immediately to gauging, by covaraintsation of the same struc-
tures. It is then explained how the very same system can be applied to formulate
the dynamics of E9 exceptional field theory [10, 17, 18] – a rewriting of 11d and
IIB supergravity in a formally E9 covariant way, apt at carrying out consistent
Kaluza–Klein truncations. Fields depend on ten or eleven coordinates but are ar-
ranged as the fields of 2d supergravity. Gauge symmetries along the internal space
are captured in this formalism by a generalised Lie derivative, and consistent trun-
cations are based on factorising the internal dependence in terms of an E9 valued
twist matrix, subject to a differential constraint based on the generalised Lie deriv-
ative. These so-called generalised Scherk–Schwarz reductions capture truncations
to gauged maximal supergravities in higher dimensions as well [19, 20] and have
only recently been formulated for reductions to D = 2 [21, 22]. With these tools,
one can bypass the supersymmetry analysis and compute the scalar potential of
any D = 2 gauged maximal supergravity admitting a geometric uplift. The em-
bedding tensor is an element θM in the basic representation of E9 [12] and one
arrives at the deceivingly simple expression

(1) V =
1

2ρ3
θMθN MMN +

1

2ρ
[η−2]

M
P
N

Q θMθN MPQ

with [η−2]
M

P
N

Q (proportional to) the level 2 coset Virasoro generator Lcoset
−2 ,

MMN a ‘generalised metric’ parametrising the scalar manifold and ρ the 2d dila-
ton.

With these tools at hand, the consistent truncation of IIA supergravity in S8 (or
11d supergravity on S8×S1) to SO(9) gauged supergravity is proved explicitly and
complete uplift formulæ presented [21,23]. Furthermore a plethora of new gauged
supergravities and their associated uplift geometries can now be analysed. In fact,
a full analysis is still missing of the conditions for a given 2d gauging to admit
an uplift. However it can be reasonably expected to work along the same lines as
their higher dimensional counterparts [24, 25] and this is also briefly sketched in
the talk, showing that the uplift requirements reduce to algebraic conditions on
the embedding tensor itself.
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Spinors, bilinears and dualities

Axel Kleinschmidt

(joint work with Guillaume Bossard and Ergin Sezgin)

Maximal supergravity or M-theory has been conjectured to exhibit infinite-dim-
ensional Kac–Moody symmetries. This has been shown for the toroidal reduction
of D = 11 supergravity to D = 2 dimensions where an affine E9 (affine Kac–
Moody extension of the split real Lie group E8) appears as a global symmetry [1,2].
The much more far-reaching conjectures of [3] and [4] concern the potential role
that the hyperbolic E10 or the Lorentzian E11 may play, respectively, in the full,
uncompactified theory. In a related development, called Exceptional Field Theory
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(ExFT) [5, 6] such symmetries have been used to derive families of theories that
are written with an action of the En symmetries but without the claim that a
given theory on its own (like D = 11 supergravity) is invariant under En. Such
theories have been constructed in particular for E9 and E11 [7, 8].

As the more fundamental conjectures and ExFT concern supersymmetric the-
ories, it is necessary to include spinor fields into the construction. The way the
symmetries are thought to be realised, the group acting on spinors is a cover of the
subgroup K(En) of the exceptional group En, where K(En) is defined using an
anti-involution on En that derives from a Cartan–Chevalley type involution at the
level of the Lie algebra. The analogy to keep in mind is that for SL(n,R) has the
maximal subgroup K(SL(n,R)) = SO(n) defined using transposition and spinors
are known to transform in representations of the spin cover Spin(n) of SO(n).

In the Kac–Moody case, the Lie algebra k = LieK(En) for n ≥ 9 is an infinite-
dimensional Lie algebra, however, it falls outside the class of Kac–Moody algebras,
thus making many of the standard tools for studying its representation theory
unavailable. It has been shown that finite-dimensional spinorial (a.k.a. fermionic)
representations of k exist [9–11], including the lifting to the covering group [12,13].
The existence of such unfaithful representations means that the Lie algebra k is
not simple but has Lie algebra ideals of finite co-dimension.

In this talk, based loosely on [14], representation-theoretic constraints implied
by the way the spinorial representations have to appear in a supersymmetric the-
ory with En symmetry are discussed. There are three principal constraints on
tensor products of spinorial representations, where two different types of spinor
representations play a role. The first one, called spin-1/2 and denoted ǫ, is as-
sociated with the supersymmetry parameter of the theory, while the second one,
called spin-3/2 and denoted Ψ, is associated with the propagating fermionic fields
of the theory.

Since supersymmetry relates bosons and fermions, we also have to consider the
representations carried by the bosonic fields. There are bosonic fields associated
with the orthogonal complement p of k in LieEn and the first constraint, arising
from their supersymmetry transformation, is that

ǫ ⊗Ψ must be a quotient of p or representation extension of it(RC I)

The extension is relevant and associated with Virasoro-type generators [15,16]. It
has only been proved for the affine case E9.

The second constraint, arising from closure of supersymmetry into (generalised)
diffeomorphisms, is

ǫ⊗ ǫ must be a quotient of R(Λ1),(RC II)

where R(Λ1) is a highest-weight representation of LieEn associated with a certain
fundamental weight. This has been shown in the affine case [17] with evidence in
the Kac–Moody case [14, 18].
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The third constraint, arising from the structure of the twisted self-duality equa-
tions, is

Ψ⊗Ψ must be a quotient of FS,(RC III)

where FS denotes the field-strength representation of the bosonic fields con-
structed for E11 in [19]. It is neither highest nor lowest weight and evidence
for the fulfilment of this constraint was given in [14].

General proofs that these constraints can be satisfied are open problems and
their investigation can also lead to new insights into representations of k.
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The spin and string groups in the Kac–Moody context

Ralf Köhl

The spin group in the Kac–Moody context has been postulated by Damour–
Hillmann [3], constructed by Ghatei–Horn–K.–Weiß [5], and for simply-laced di-
agrams (and, more generally, diagrams in which edges only admit odd entries in
the generalized Cartan matrix) observed to be topologically simply connected by
Harring–K. [6].

This is the group to which the various spin representations constructed in [1], [2],
[8], [9] integrate; see also the report by Robin Lautenbacher.

Techniques involving homotopy exact sequences based on Palais’ slice theorem [11]
as used in [6] allow to prove the following theorem:

Theorem 1. Let G be a simply-laced split real Kac–Moody group and let G =
KAN be the Iwasawa decomposition. Then G and K admit a Whitehead tower
which in the case of type En for K can be chosen as

· · · → String → Spin → K.

Proof. By [6, Proposition 4.9] the two-fold cover

Spin → K

is universal with respect to τ . Hence by [12, Proposition 1.14] and [12, Theo-
rem 2.13] it suffices to observe that K has countable homotopy groups. In case of
type En, additionally Theorem 4 below applies. �

A recurring theme in this note will be fibrations of the form

KJ → K → K/KJ

where KJ := K ∩ PJ for a spherical J-parabolic subgroup PJ of G.

Proposition 2. K and Spin both admit a CW decomposition.

Proof. By [6, Proposition 3.7] the building admits a CW decomposition

K/(T ∩K) ∼= G/P∅ = G/B =
⊔

w∈W

BwB/B,

where the homeomorphism K/(T ∩K) ∼= G/B follows from [6, Lemma 4.1]. Since
T ∩K is finite ( [4, Lemma 3.26]), the surjections Spin → K → K/(T ∩K) in fact
are coverings onto a CW complex, yielding CW decompositions ofK and Spin. �

Theorem 3. Let n ≥ 8 and let K(En) be the maximal compact subgroup of type
En. Then for 1 ≤ k ≤ 6 one has

πk(K(En)) = πk(SO(16)).
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Proof. One has SO(9)/SO(8) ∼= S8. Considering SO(n) as the maximal compact
subgroup of SL(n,R), one obtains K(A8)/K(A7) ∼= S8. Comparing cells as in [10,
p. 173] yields identical cell decompositions in K(E9)/K(E8) in low dimension (in
the sense of [6, Proposition 3.7]); hence in low dimensions one has

πk(K(E9)/K(E8)) = πk(S
8) = {1}.

Palais’ slice theorem [11] yields the homotopy exact sequence

{1}= πk+1(K(E9)/K(E8))→ πk(K(E8))→ πk(K(E9))→ πk(K(E9)/K(E8)) = {1}
from which the assertion of the theorem follows for n = 9. A straightforward
induction on n finishes the proof. �

Theorem 4. For n ≥ 8 there exists a topological group String(En) with vanishing
homotopy up to and including dimension 6 and homotopy identical to Spin(En)
beyond that admitting a quotient map String(En) → Spin(En).

The proof follows the strategy of [13, Proof of Theorem 5.1], reproduced here
for the reader’s convenience as a series of the following results:

Proposition 5. Let H be an infinite-dimensional separable complex Hilbert space
and define PU(H) := U(H)/{λ · id | λ ∈ U1(C)} with respect to the norm topology
on the unitary group U(H). Then U1(C) → U(H) → PU(H) is locally trivial, and
the homotopy of PU(H) is trivial with the exception of π2(PU(H)) = Z.

Proof. The norm topology turns U(H) into a contractible group (sinceH is infinite-
dimensional). The embedded circle group U1(C) carries the Lie topology, and
hence has trivial homotopy with the exception of π1(U1(C)) = Z. By Palais’ slice
theorem [11] the fiber bundle U1(C) → U(H) → PU(H) is locally trivial. The
resulting homotopy exact sequence

{1} = π2(U(H)) → π2(PU(H)) → π1(U1(C)) → π1(U(H)) = {1}
completes the proof. �

Corollary 6. Let EPU(H) → BPU(H) be a universal PU(H)-bundle (in the
sense of, e.g., [7, Theorem 4.11.2]). Then BPU(H) is an Eilenberg–MacLane
space K(Z, 3).

Proof. The locally trivial fiber bundle PU(H) → EPU(H) → BPU(H) induces
the homotopy exact sequence

{1} = π3(EPU(H)) → π3(BPU(H)) → π2(PU(H)) → π2(EPU(H)) = {1},
and the claim follows from Proposition 5. �

Corollary 7. The isomorphism classes of principal PU(H)-bundles over Spin(En)
are in one-to-one correspondence to the elements of H3(Spin(En),Z) (the so-called
characteristic classes).
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Proof. This follows from the classification theorem of principal bundles (see [14,
Theorem 14.4.1], also [7, Theorem 4.13.1]) combined with the interplay between
Eilenberg–MacLane spaces and cohomology (see [14, Theorem 17.5.1]). Note here
that Spin(En) is paracompact (finite covers of kω-spaces are kω) and admits a
CW decomposition by Proposition 2; moreover, BPU(H) is an Eilenberg–Maclane
space K(Z, 3) by the preceding corollary. �

Proof of Theorem 4. We follow [13, Proof of Theorem 5.1]. Consider the principal
PU(H)-bundle P → Spin(En) corresponding to a generator of H3(Spin(En),Z) ∼=
Z. Moreover, let Aut(P ) be the group of PU(H)-equivariant homeomorphisms
P → P . Each equivariant homeomorphism f of P induces a homeomorphism
f̃ of the base space Spin(En), yielding a continuous group homomorphism π :
Aut(P ) → Homeo(Spin(En)). Define

String(En) := {f ∈ Aut(P ) : π(f) ∈ Spin(En) ⊂ Homeo(Spin(En))},
considering the embedding Spin(En) ⊂ Homeo(Spin(En)) given by right multipli-
cation g 7→ {x 7→ xg}. This yields the gauge bundle

{1} → Gauge(P ) → String(En) → Spin(En) → {1},
killing π3 by [13, Lemma 5.6]. �
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k-structure of basic representation of affine algebras

Benedikt König

Kac-Moody algebras are by definition complex, but allow for different real slices
from real forms. One of these real forms is the split real form in which the
Chevalley-Serre generators are real. The split real Kac-Moody algebra is equipped
with a Cartan-Chevalley involution that defines the maximal compact subalgebra
of the Kac-Moody algebra as its fixed point subalgebra. For finite split real Kac-
Moody algebras the maximal compact subalgebra is also a Kac-Moody algebra
and its representation theory is very well understood. However, for infinite dimen-
sional Kac-Moody algebras, the maximal compact subalgebra is not of Kac-Moody
type and the construction of its representations requires novel methods.

The (split real) Kac-Moody algebras posses standard highest weight representa-
tions and it is a natural question how these representations ‘decompose’ under the
maximal compact subalgebra. While this is very well known for finite Kac-Moody
algebras, this was a longstanding problem for infinite dimensional algebras, due to
the much more complicated structure of the maximal Kac-Moody algebra.

In this presentation we achieve the first result in this direction: we develop
a novel relation between the basic representation of split real simply-laced affine
Kac-Moody algebras and finite dimensional representations of its maximal compact
subalgebra k. We provide infinitely many k-subrepresentations of the basic repre-
sentation and we prove that these are all the finite dimensional k-subrepresentations
of the basic representation, such that the quotient of the basic representation by
the subrepresentation is a finite dimensional representation of a certain parabolic
algebra and of the maximal compact subalgebra. By this result we provide an
infinite composition series with a cosocle filtration of the basic representation.
Finally, we present examples of the results and applications to supergravity.

These results find fascinating applications in mathematics and physics. In
physics, the results solve the representation theoretical difficulties underlying
gauged two dimensional supergravity. In mathematics, this work is a starting
point for further considerations. First, we expect the construction and results to
extend to the basic representation of non-simply-laced affine Kac-Moody algebras.
Second, in a more sophisticated development, the construction may be generalized
to all highest-weight representations of affine Kac-Moody algebras. Third, un-
derstanding the k-subrepresentations of highest weight representations of an affine
Kac-Moody algebra paves the way to understand hyperbolic Kac-Moody algebras
under the action of its maximal compact subalgebra. This is of particular interest
since hyperbolic Kac-Moody algebras are expected to be the underlying mathe-
matical structure of spacetime.
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A Weyl group-based perspective on the higher spin
representations of k

Robin Lautenbacher

(joint work with Ralf Köhl)

The involutory subalgebra k(A) w.r.t. the Chevalley involution of a split-real
Kac-Moody algebra g(A) (cp. [7]) is typically referred to as its maximal compact
subalgebra. If A is a generalized Cartan matrix of finite type, g(A) is a semi-
simple Lie algebra and k(A) is indeed its maximal compact subalgebra. If A is not
of finite type, then both g(A) and k(A) are infinite-dimensional and k(A) admits
an invariant, negative definite bilinear form, but it is not compact in a topological
sense, i.e., it is not the Lie algebra of a compact Lie group. There are at least three
reasons to study the representations of k(A): First, its representations and among
these in particular the finite-dimensional ones reveal parts of the structure theory
of k(A). Second, its finite-dimensional representations occur as a symmetry in
theories of quantum gravity and therefore a well-developed representation theory
of k(A) is required there. Third, the representation theory of k(A) is expected
to be important to the theory of Kac-Moody symmetric spaces, similar to the
finite-dimensional case.

An early result concerning the structure theory of k(A) is a presentation by
generators and relations given in [1]. The major challenge in the study of k(A) is
that it is in general not graded by a root system as g(A) is, but only admits a
filtered structure w.r.t. the roots of g(A). In particular, k(A) is not a simple Kac-
Moody algebra or sum thereof if A is not of finite type, and as a consequence the
standard tools of representation theory such as highest weight representations and
character formulas are not applicable. It was observed in [10] that the k(En)-series
can be characterized as the quotient of a generalized intersection matrix algebra
(cp. [14]) but the representation theory of these is also rather poorly understood.
It is not obvious that k(A) even possesses finite-dimensional representations if A
is not of finite type, but of course, these provide interesting ideals of k(A). At
some point it may be possible to characterize k(A) as the co-limit of ideals of
finite-dimensional representations. For the affine case, this has been shown in [10]
and the ideal structure of affine k(A) has been used in [11] to construct a cosocle
filtration for the basic representation of g(A) restricted to k(A).

Concerning the case that A is an indefinite generalized Cartan matrix, there
are currently four elementary representations known which are the talk’s subject.
The basic one has been first described in the physics literature ( [3] and [2]) under
the name of the K(E10)-Dirac spinor. It has been studied in a mathematical
setting and generalized to arbitrary symmetrizable types A in [6], where they were
referred to as generalized spin representations. Both names, Dirac spinor as well
as generalized spin representation, stem from the fact that the first and most
important example is the representation of k(E10) which extends the standard
spinor representation of its naturally contained so(10)-subalgebra.
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The so-called higher spin representations S 3
2
, S 5

2
, and S 7

2
of k(A) with the

exception of S 3
2
were introduced first in [8], again in a physics setting. In [12], we

had derived a coordinate-free formulation of S 3
2
and S 5

2
in the setting of simply-

laced A but a similar formulation for S 7
2
remained elusive back then. However,

it became apparent that the Weyl group plays a central role in this construction,
which builds these representations on top of the generalized spin representation
S 1

2
from [3] and [2]. We provide a detailed construction and description of all these

representations including S 7
2
and spell out the importance of the Weyl group in

this construction as clearly as possible using a mathematical and coordinate-free
formulation.

Afterwards, the Weyl group-based perspective is used to analyze these repre-
sentations. It is shown that S 3

2
is irreducible if A is indecomposable, regular and

simply-laced and that the image of k(A) under this representation is a semi-simple
Lie-algebra. Concerning S 5

2
it is shown to be completely reducible, to always con-

tain an invariant submodule isomorphic to S 1
2
and that its other invariant factors

are controlled by the representation theory of W (A), namely how the symmetric
product Sym2(h∗) of the dual Cartan subalgebra decomposes as a W (A)-module.
As for S 3

2
, we show that the image of k(A) under this representation is semi-simple.

We also show that the kernels of some of these representations are not contained in
each other and that their tensor product has a smaller kernel than the individual
representations.

Eventually, we study the spin representations’ lift to the group level. We confirm
the common belief (cp. [2,3,8,9,12]) that these representations are spinorial in the
sense that they do not lift to the involutory subgroup K(A) = G(A)θ , where G(A)
is the minimal split-real Kac-Moody group of type A and θ is its Chevalley invo-
lution, but instead lift only to its spin cover Spin(A) introduced in [5]. This belief
is plausible if one compares the one-parameter subgroups induced by exp(φσ(Xi))
and exp(φad(Xi)), where σ is a spin representation and Xi is a so-called Berman
generator of k(A). We show that it indeed suffices to look at these one-parameter
subgroups. Afterwards, we demonstrate that the spin representations’ lift realizes
an action of the spin-extended Weyl group from [5] on the modules Sn

2
. Using

that the action of Spin(A) on k(A) factors through the adjoint action of K(A) on
k(A), one is able to derive the representation matrices up to sign of all elements in
the W ext(A)-orbit of the Berman generators (introduced in [1]), where W ext(A) is
the extended Weyl group. This amounts to providing the representation matrices
up to sign of all x ∈ kα = k(A) ∩ gα ⊕ g−α for α a positive real root.

A point for further research is uniqueness of these representations which has
not been studied systematically yet. Another open question is, if there exists a
substitute for the Casimir element within the universal enveloping algebra of k(A)
or a completion thereof. The occurrence of mass terms that are quartic in fermion
fields (cp. [4]) could be an indicator that such an element needs to be fourth order
in a basis of k(A).
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A string-like realization of hyperbolic Kac-Moody algebras

Hannes Malcha and Hermann Nicolai

(joint work with Saverio Capolongo, Axel Kleinschmidt)

The two talks are based on the paper [1]. This is their joint summary.
We propose a new approach to study hyperbolic Kac-Moody algebras, focussing

on the rank-3 algebra F first studied by Feingold and Frenkel [2]. F ≡ g(A) is
associated with the indefinite Cartan matrix of rank three

(Aij) =




2 −1 0
−1 2 −2
0 −2 2


 .(1)

The Kac-Moody algebra based on the Cartan matrix (1) is the simplest hyperbolic
Kac-Moody algebra with a null root, and thus admits a distinguished affine subal-

gebra A
(1)
1 ≡ A+

1 . Although not much is known about F, the following facts have

https://arxiv.org/abs/2407.12748
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been established [2]. The ‘germ’ of the algebra F resides in the beginnings of its
graded decomposition w.r.t. its distinguished affine subalgebra for levels |ℓ| ≤ 1

V ⊕ F(0) ⊕ V ,(2)

where at the center we have the affine subalgebra F(0) ≡ A
(1)
1 ⊂ F. At level one,

V ≡ F(1) = L(Λ0+2δ) is the basic representation, while V ≡ F(−1) is the conjugate
representation. The algebra F can then be generated by multiply commuting V
and V. This task is, however, complicated enormously by the need to divide out
ideals generated by the Serre relations. At level 2, this is still relatively simple,
and we have [2]

F(2) ∼= V ∧ V
/
J2 ≡ F(1) ∧ F(1)

/
J2 ,(3)

where J2 is the ideal generated by the Serre relation involving the over-extended
root with index −1 and J2 carries an action of the affine algebra F(0). The above
formula (2) is only the beginning of an infinite string of vector subspaces F(ℓ)

extending in both directions with ℓ ∈ Z, where each subspace F(ℓ) consists of
an infinite sum of affine representation spaces for |ℓ| > 1. Consequently, the
main obstacle towards a more ‘global’ understanding of F is that the procedure
of dividing out Serre relations gets more and more cumbersome with higher levels
already for levels ℓ = 3 and ℓ = 4 [3, 4].

As for products of affine representations, it has long been known that [5]

L(Λ0 + 2δ) ∧ L(Λ0 + 2δ) = Vir(12 ,
1
2 )⊗ L(2Λ1 + 3δ) ,(4)

where Vir(12 ,
1
2 ) is the minimal representation of the coset Virasoro algebra with

central charge c = 1
2 and h = 1

2 ; we recall that such a coset Virasoro algebra always
accompanies the product of affine representations [6]. However, in the algebra F

the nice product structure of the r.h.s. is lost because one has to remove the top
state associated with the Serre relation, and thus one whole affine representation
L(2Λ1+3δ), so that by (3) the level-2 sector of F has the vector space structure [2]

F(2) =
(
Vir(12 ,

1
2 )⊖ Rv0

)
⊗ L(2Λ1 + 3δ) ,(5)

where v0 is the vacuum state of the Vir(12 ,
1
2 ) representation. Taking out the

subspace Rv0 leaves a ‘hole’ in the coset Virasoro representation space Vir(12 ,
1
2 ),

as a result of which the level-2 sector of the KMA is not a representation of the
coset Virasoro algebra anymore. Indeed the Virasoro algebra is no longer obeyed
on the truncated representation space, a statement which extends to all levels of
the Lie algebra F.

As a consequence, there is no ‘easy’ way to construct the algebra by simply
multiplying affine representations as in (4), and to obtain the Lie algebra elements
of a given level-ℓ sector by application of the affine and coset Virasoro raising
generators to a given set of ground states that belong to F. In order to circumvent
this difficulty, one main new tool we employ in [1] is to fill the ‘holes’ by introducing
‘virtual states’ which belong to the relevant tensor products (corresponding to the
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l.h.s. of (4)), but vanish as elements of the Lie algebra, in this way restoring the
full coset Virasoro representation.

At least for levels |ℓ| ≤ 2 this trick enables us to generate the whole level-ℓ
sector by acting with the coset Virasoro algebra and the affine algebra on a finite
set of states that we will refer to as ‘maximal ground states’. For levels ℓ > 2
we encounter a vector space structure similar to (5) but with a ‘pile-up’ of coset
Virasoro representations stemming from calculations similar to (4). This pile-up
generates infinitely many copies of the finitely many maximal ground states. We
call these copies ‘Virasoro ground states’. The application of only affine and coset
Virasoro raising generators does not allow us to generate these additional Virasoro
ground states from the maximal ground states. Hence for level ℓ = 3 we propose
yet another set of operators that does exactly this. We conjecture that there exists
a generalization of this operator for all ℓ > 3. Together with the affine and coset
Virasoro raising operators these operators would allow us to generate any level-
ℓ sector F(ℓ) of F from the finite set of maximal ground states. An interactive
visualization of the associated root systems is presented in [7].

A second new tool we rely on is the vertex operator formalism in the specific
version developed in [8, 9], which builds on the seminal work of [10–12]. In this
formalism, the Lie algebra is realized as a subspace of a certain Hilbert space
of physical string states, such that the elements of the Lie algebra are explicitly
given in terms of DDF states built on certain tachyonic ground states, rather
than in terms of multi-commutators (the DDF formalism [13] is a well known and
convenient tool to generate physical states in string theory). A key feature first
pointed out in [8] is that for all levels |ℓ| > 1, there also appear longitudinal DDF
states in the algebra, in addition to the transversal DDF states familiar from the
critical string. One main advantage of the vertex operator algebra formalism is
that we do not have to worry about Jacobi identities and the Serre relations as
these are automatically taken care of. That is, unlike in [2,14,15] there is no need
to take out affine representations ‘by hand’, subtracting sub-representations and
compensating for over-subtractions. Here, we will give explicit expressions for the
maximal ground states for ℓ ≤ 4 in terms of the DDF basis. In this way, we seek to
develop a perspective on hyperbolic KMAs different from the one usually taken in
the mathematics literature, with the aim of gaining a more ‘global’ understanding
of its structure, as well as a more concrete realization of the algebra itself (as
opposed to merely counting root multiplicities).

The Virasoro ground states are here determined by imposing the suitable vac-
uum conditions on a given ansatz in terms of DDF states. With increasing level
this method becomes more and more unwieldy. Therefore it would be desirable to
determine the maximal ground states by independent and more efficient means. If
this can be done, we would have an efficient tool to explore higher levels. On top
of unbounded pile-up of coset Virasoro representations described above, there is
the added difficulty that in the final product for general level ℓ certain subspaces
of affine representations must be taken out, in analogy with (5). The real compli-
cation is therefore not so much with products of affine representations but with
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the ‘holes’ in the coset Virasoro representations, which become more and more
difficult to deal with as the level is increased. This proliferation of complications
is reminiscent of the fractal structure of a Mandelbrot set, although we know of
no Lie algebra analog of the self-similarity features.

Our approach is based on the concrete realization of this Lie algebra in terms
of a Hilbert space of transverse and longitudinal physical string states, which are
expressed in a basis using DDF operators. When decomposed under its affine

subalgebra A
(1)
1 , the algebra F decomposes into an infinite sum of affine represen-

tation spaces of A
(1)
1 for all levels ℓ ∈ Z. For |ℓ| > 1 there appear in addition coset

Virasoro representations for all minimal models of central charge c < 1, but the
different level-ℓ sectors of F do not form proper representations of these because
they are incompletely realized in F. To get around this problem, we propose to
nevertheless exploit the coset Virasoro algebra for each level by identifying for each
level a finite set of ‘maximal ground states’ that are not necessarily elements of
F (in which case we refer to them as ‘virtual’), but from which the level-ℓ sectors
of F can be fully generated by the joint action of affine and coset Virasoro raising
operators.

Our results hint at an intriguing but so far elusive secret behind Einstein’s
theory of gravity, with possibly important implications for quantum cosmology.
More specifically, from the Cartan matrix (1) we see that F possesses two distin-
guished rank-two subalgebras, both of which appear in the dimensional reduction
of Einstein’s theory to lower dimensions. Namely, the upper 2-by-2 submatrix
corresponding to a sl(3) subalgebra is associated with the Matzner-Misner SL(3)
(actually GL(3)) group obtained by reducing Einstein gravity from four to one
dimension.

On the other hand, the lower 2-by-2 submatrix is associated with an A
(1)
1 affine

symmetry, which is just the Lie algebra underlying the Geroch group of general
relativity, obtained by reducing Einstein’s theory to two dimensions [16, 17]. The
lower-most diagonal entry corresponds to the Ehlers sl(2) symmetry obtained by
dualizing the Kaluza-Klein vector in three dimensions. The Geroch algebra and the
Matzner-Misner sl(3) intersect in the middle entry corresponding to the Matzner-
Misner SL(2), which likewise has been known for a long time in general relativity.

All this suggests that one might try to find a concrete physical realization of
F by simply combining the Matzner-Misner SL(3) and the Geroch symmetry [18].
However, it turns out that a simple dimensional reduction to one dimension cannot
accomplish this because to realize the Geroch group, we need two coordinates for
the duality transformations ( [18] tried to circumvent this problem by means of
a null reduction, but again finds that the bulk of F is realized only trivially; see
also [19] for a recent related investigation). The conclusion is that we cannot find
a non-trivial realization of F by sticking with Einstein’s theory and standard no-
tions of space-time based field theory, but need an extension from which standard
general relativity ‘emerges’ only in a specific limit. Hints of such a theory have
emerged from the study of cosmological billiards [20]. In particular, the celebrated
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BKL analysis [21] of cosmological singularities can be rephrased in terms of a cos-
mological billiard that takes place in the Weyl chamber of the Weyl group of F (it
is a main result of [2] that the even part of the Weyl group for F is the modular
group PSL2(Z)).

In view of the compelling links with Einstein gravity on the one hand [20] and
the horrendous complexity of F on the other, one may also ask about possible
implications for Big Bang cosmology. From a physics perspective, the pile-up of
truncated Virasoro modules with increasing level may indicate that more and more
degrees of freedom ‘open up’ in the approach towards the cosmological singularity.
It is for this reason that [22] conjectured the emergence of a mathematically well-
defined notion of non-computability towards the singularity which may thwart
attempts at mathematically understanding the beginning of time, unless a more
‘global’ description of F can be found. At the very least this shows that the
restriction to finitely many degrees of freedom that underlies most investigations
in quantum cosmology (e.g. by means of a mini-superspace approximation, where
keeping only diagonal metric degrees of freedom would correspond to restricting F

to its Cartan subalgebra) may be far too näıve to understand the quantum origin
of our universe.
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Kinematical Lie algebras on the light front

Sucheta Majumdar

Kinematical Lie algebras describe the algebraic structures of symmetry trans-
formations that govern spacetime kinematics and evolution of physical systems.
Starting with basic assumptions of isotropy of space, rotational and translational
invariance, and invariance under inertial transformations, one can classify all possi-
ble kinematical algebras relevant to various physical systems, such as the Poincaré
algebra for spacetimes with zero curvature [1]. Of particular interest are the kine-
matical Lie algebras arising from an Inönü-Wigner contraction of the Poincaré
algebra − the Galilei algebra obtained from a ‘non-relativistic’ speed of light,
c → ∞ limit of Poincaré algebra and the Carroll algebra which follows from the
‘ultra-relativistic’ c → 0 limit . More generally, a (n+ 1)-dimensional kinematical
Lie algebra is characterized by the generators K = {Lab, Ba, Pa, H}, where Lab

spans an so(n) algebra, Pa and Ba are vectors under so(n), and H is a scalar.
The specific kinematical Lie algebras are defined through their commutation rela-
tions [2]. For example, the Galilei algebra, which governs spacetime symmetries
in non-relativistic systems, is defined by [Ba, Bb] = 0 and [Ba, H ] = −Pa. The
Carroll algebra, on the other hand, defined by the relations [Ba, Bb] = 0 and
[Ba, Pb] = δabH , has been linked to symmetries of null hypersurfaces, the BMS
symmetry of gravity, and spacelike singularities in cosmology, among other inter-
esting physical systems

The Galilei algebra admits a central extension, called the Bargmann algebra,
featuring an additional commutation relation [Ba, Pb] = δabZ, with Z being the
central element. Although not derived through the group contraction method, the
Bargmann algebra plays a crucial role in unifying the Carroll and Galilei algebras,
as this algebra may also be obtained through an extension-by-derivation of the
Carroll algebra [3]. These Lie algebras may be promoted to Lie groups and as-
sociated with homogeneous spaces, leading to interesting kinematical spacetimes,
often referred to as ‘non-Lorentzian spacetimes’. Geometrically, Bargmann space-
times encompass both Galilean and Carrollian spacetimes: the former emerges via
null reduction à la Kaluza-Klein, while the latter may be viewed as an embedded
null hyperplane [4].
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Motivated by recent advances in non-Lorentzian physics, we revisit the light-
cone or light-front formulation of quantum field theories and its connections to
non-Lorentzian symmetries of the Bargmann, Galilei and Carroll types. Dirac,
in his pioneering work on Hamiltonian dynamics [5], proposed treating one of
the null directions, x± ∼ (t ± z) along the light-cone as the time coordinate
for describing the evolution of relativistic theories. The double-null nature of
the light-cone coordinates corresponds to a Rd−1 × R × R split of the (d + 1)
Minkowski spacetime. In this framework, the Minkowski spacetime exhibits a flat
Bargmann structure, which combined with the choice of light-cone time, gives rise
to a rich array of interesting kinematical Lie algebras within its Poincaré algebra.
Depending on which light-cone coordinate is taken to be the ‘Newtonian’ time, one
can identify two distinct sets of Galilei, Carroll, and Bargmann subalgebras within
the Poincaré algebra [6]. Thus, in a (d+ 1)-dimensional spacetime, the light-cone

Poincaré algebra p, with dim(p) = (d+1)(d+2)
2 generators, contains d-dimensional

subalgebras (b±, c±, g±), which are mapped into one another upon exchanging

x+ with x−. The group dimensions are dim(b±) = d(d+1)
2 + 1 and dim(g±) =

dim(c±) =
d(d+1)

2 . We further explore certain aspects of field theories defined on a
light front, emphasizing their connections to the hypersurface deformation algebra
associated with Carrollian geometries [7].
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From Kac–Moody algebras to Kac–Moody groups and back again

Timothée Marquis

The purpose of this talk is to explain how one can construct a Kac–Moody
group attached to a Kac–Moody algebra and, once this is done, how one can
“parametrise” the elements of the group.

The setting is as follows. Let A = (aij)i,j∈I be a generalised Cartan matrix
(say for simplicity of the presentation that detAneq0, although this does not play
any fundamental role in what follows), and fix a base field K of characteristic zero,
say K = R or C. Let gA,K be the Kac-Moody algebra of type A over K, with
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Chevalley generators ei, fi (i ∈ I) and simple coroots hi := [ei, fi]. Then gA,K has
a root space decomposition

gA,K = h⊕
⊕

α∈∆

gα

with respect to the adjoint action of the Cartan subalgebra h =
∑

i∈I Khi, with

set of roots ∆ ⊆ h∗. We write n+ (resp. n−) for the subalgebra of gA,K generated
by the ei (resp. fi), corresponding to the set ∆+ of positive roots (resp. ∆− of
negative roots). We let Π = {αi | i ∈ I} be the set of simple roots, defined by
αj(hi) = aij . Let also

W = 〈si : h∗ → h∗ : λ 7→ λ− λ(hi)αi | i ∈ I〉 ≤ GL(h∗)

be the Weyl group of A. Finally, let ∆re := WΠ be the set of real roots and set
∆re+ := ∆re ∩∆+.

Consider a representation π : gA,K → End(V π) of gA,K on a K-vector space V π

such that π is integrable, in the sense that for every v ∈ V π, there exists N ∈ N

such that π(ei)
Nv = 0 = π(fi)

Nv for all i ∈ I. This is for instance the case for
the adjoint representation (π, V π) = (ad, gA,K), or for irreducible highest-weight
representations (π, V π) = (πλ, V

λ) with highest weight λ satisfying λ(hi) ∈ N for
all i ∈ I, or for direct sums of such representations.

In case A is of type An−1, the algebra gA,K is isomorphic to sln(K); letting
π : gA,K → End(Kn) denote the corresponding matrix representation, we then
obtain a corresponding group Gπ

A(K) = SLn(K) as the group

Gπ
A(K) =

〈
exp(π(x)) =

∑

r≥0

π(x)n/n!
∣∣∣ x ∈ gA,K

〉
≤ Aut(Kn).

If we try to apply the same procedure with an integrable representation (π, V π)
of a general gA,K, say (π, V π) = (ad, gA,K), we run into the following prob-
lem: given a nonzero element x ∈ gα for some α ∈ ∆, the sum exp(ad(x))y =∑

n≥0
ad(x)n

n! y is finite for every y ∈ gA,K if and only if α is a real root. In

other words, exp(ad(x)) is a well-defined automorphism of gA,K if and only if
α ∈ ∆re. Note that the Cartan subalgebra can also be integrated to a torus
T := Homgr(h

∗,K×) acting diagonally on V π: for instance, in the adjoint repre-
sentation, t · xα = t(α)xα for all t ∈ T and xα ∈ gα (α ∈ ∆ ∪ {0}), and for h ∈ h

the exponential exp(adh) corresponds to the torus element t mapping α to eα(h).
For an integrable representation (π, V π) of gA,K, we then define the associated
(minimal) Kac–Moody group

Gπ
A(K) := 〈T, exp(π(x)) | x ∈ gα, α ∈ ∆re〉 ≤ Aut(V π)

over K. Note that one can show that the group Gπ
A(K) is in fact independent of

the choice of representation π (up to a difference in the torus, and with obvious
nontriviality assumptions on π).

Now that we constructed a Kac–Moody group G = Gπ
A(K), the next question we

will address is whether we can write any element g of G in a unique, standard
way. For this, we need additional notations. For each α ∈ ∆re, define the root
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group Uα := exp(π(gα)) ∼= (K,+), and set U+ := 〈Uα | α ∈ ∆re+〉 ≤ G and
B+ := TU+. For each i ∈ I, set s̃i := exp(π(fi)) exp(−π(ei)) exp(π(fi)) ∈ G and
N := 〈T, s̃i | i ∈ I〉 ≤ G. [For instance, if G = SLn(K), then T is the subgroup
of diagonal matrices, U+ is the subgroup of upper triangular matrices with 1′s on
the diagonal, B+ is the subgroup of upper triangular matrices, N the subgroup
of monomial matrices and W ∼= Sym(n) can be identified with the permutation
matrices.]

Recall that we have a surjective group morphism p : N → W : s̃i 7→ si with
kernel T . In particular, W ∼= N/T , and for each w ∈ W it makes sense to define
the subset wT := nT of G for some choice of n ∈ p−1(w). Then G has a Bruhat
decomposition

(1) G =
∐

w∈W

B+wB+ =
∐

w∈W

UwwTU
+

where each element uw of the group Uw := 〈Uα | α ∈ Φw〉 can be uniquely written
as a product

(2) uw =
∏

α∈Φw

uα (uα ∈ Uα)

parametrised by the finite set of real roots Φw = {α ∈ ∆+ | w−1α ∈ ∆−} (on
which some total order is fixed). Moreover, there is uniqueness of writing on the
right-hand side of (1): each element g ∈ G can be written in a unique way as a
product

(3) g = uwwtu+ for some uw ∈ Uw, w ∈ W , t ∈ T and u+ ∈ U+.

In view of (3) and (2), our initial question then boils down to finding “standard”
decompositions for the elements of U+. To this latter question, we propose two
different answers.

First, we can go to a completion of U+: allowing infinite sums on the positive side
of gA,K by considering its positive completion ĝA,K = n− ⊕ h⊕∏

α∈∆+ gα, we can
also exponentiate the positive imaginary root spaces of gA,K. More precisely, we
fix a basis B of n+ consisting of homogeneous elements xα ∈ gα (α ∈ ∆+) and we
set nxα

:= ht(α). Fix a total order on B such that nx < ny =⇒ x < y, and set

Uma+
A (K) :=

{ ∏

x∈B

exp(ad(λxx))
∣∣∣ λx ∈ K

}
⊆ Aut(ĝA,K),

where the products are given in the prescribed order on B. Then one can show
that Uma+

A (K) is a subgroup (thus containing U+: it is actually the completion of
U+ with respect to the topology with basis of identity neighbourhoods of 1G the
subgroups Uma

n := {∏nx≥n exp(ad(λxx)) | λx ∈ K} for n ∈ N). Moreover, each

u ∈ Uma+
A (K) can be written in a unique way as a product

(4) u =
∏

x∈B

exp(ad(λxx)) for some λx ∈ K.

We refer to [2] for more details.
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For the second answer we propose, we have to assume that K = Q and that aijaji ≤
3 for all i 6= j. In this case, let (Γn)n≥1 denote the lower central series of U+, that
is, Γn is the subgroup of U+ generated by n-fold commutators [u1, [u2, . . . , uk]..]
of elements ui ∈ U+ (where [g, h] := g−1h−1gh). Then each quotient Γn/Γn+1

is an abelian group, hence a Z-module. One can then show (see [1]) that the Z-
module L(U+) :=

⊕
n≥1 Γn/Γn+1 admits a natural Q-Lie algebra structure, with

Lie bracket [gΓm+1, hΓn+1] := [g, h]Γm+n+1 for all g ∈ Γm and h ∈ Γn, and with
scalar multiplication

λ · [xi1(r1), [xi2 (r2), . . . , xin(rn)]..]Γn+1 = [xi1 (λr1), [xi2 (r2), . . . , xin(rn)]..]Γn+1

for all λ, ri ∈ Q, n ∈ N and ij ∈ I, where we set xi(r) := exp(rπ(ei)) ∈ Uαi
.

Moreover, the map n+ → L(U+) : [ei1 , . . . , ein ] 7→ [xi1(1), . . . , xin(1)]Γn+1 de-
fines a Q-Lie algebra isomorphism. We now rephrase this in terms of stan-
dard forms for the elements of U+: choose a basis B of n+ consisting of ele-
ments of the form x = [ei1 , [ei2 , . . . , ein ]..] (we then set nx := n and ux(λ) :=
[xi1 (λ), [xi2 (1), . . . , xin(1)]..] ∈ U+ for all λ ∈ Q). Order as before B so that
nx < ny =⇒ x < y. Then each element u ∈ U+ can be written in a unique way
as a product

(5) u =
∏

x∈B

ux(λx) for some λx ∈ Q.

The advantage of the writing (5) compared to (4) is that it is “intrinsic” to U+:
for each n ≥ 1, the partial product

∏
nx≥n ux(λx) belongs to Γn ⊆ U+, and there

is a clear algorithm on how to transform the expression of u as a (finite) product
of elements ui(r) (i ∈ I, r ∈ Q) into the standard form (5), namely using the

isomorphism n+
∼→ L(U+).
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Dark Matter and E(10)

Krzysztof A. Meissner

(joint work with Hermann Nicolai)

Dark Matter remains a very mysterious component of the Universe. The argu-
ments for its existence are very compelling, starting from the observations of Fritz
Zwicky in 1933 (too fast rotations of edge galaxies in clusters of galaxies) and
Vera Rubin in 1970 (too fast rotations of edge stars in Andromeda Galaxy) up
to modern observations: flat rotation curves of hydrogen outside visible parts of
almost all galaxies, Bullet Cluster (collision of galaxies) and indirect argument
from LIGO/Virgo result combined with the other observations that the Universe
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is composed of 33% of matter, 5% luminous, 28% dark, with the rest most probably
cosmological constant.

In 1982 Murray Gell-Mann conjectured [1] that N = 8 supergravity can be
relevant for the connection with the Standard Model (the conjecture was extended
by Nicolai and Warner [2]). It has shown that the breaking of SO(8) into SU(3)×
U(1) gives proper group assignments for both quarks and leptons, and there are 6
and only 6 quarks and leptons in this scheme, but the electric charges are shifted
by ±1/6 with respect to the SM. The required correction was found in [3] and
turned out to be very natural. However, it is outside of SU(8) (as R-symmetry of
N = 8 SUGRA) but it was proven in [4] that it is inside K(E10) what points out
to the crucial role of this group in this scheme.

In this scheme there are also 8 gravitini – 6 strongly interacting with electric
charge ± 1

3 and 2 interacting only electromagnetically with charge ± 2
3 . All of these

gravitini should have masses of the order of the Planck mass and they cannot decay
since there are no Standard Model particles they could decay to. Therefore we
proposed that charge ± 2

3 gravitini can be Dark matter candidates even though
they are charged. Electric charge of particles as candidates for Dark Matter up
to TeV mass range is very strongly constrained by data. and the DM candidates
usually discussed (axion-like or WIMP-like) assumed to have masses < O(1) TeV
the allowed charges are extremely small. However, if we extrapolate this formula
to the Planck scale then the bound does not forbid charges of order 1. Planck mass
gravitinos of charge ± 2

3 can be DM particles bound to the Solar System (v ∼ 30
km/s) or our Galaxy (v ∼ 400 km/s).

Estimated mass density of DM in the proximity of the Solar System is ∼ 0.3·106
GeV/m −3 (it is million times larger than the average DM density in the Universe).
For velocity ∼ 400 km/s we arrive at a flux estimate Φ ∼ 10−9 m−2s−1sr−1 ∼
0.03 m−2yr−1sr−1 Being charged and extremely massive they can go through any
medium along straight lines exciting and ionizing but with Planck mass they can
cross the Earth without significant change in kinetic energy.

Since these gravitini are charged (in distinction to other proposals for Dark Mat-
ter candidates) they can eventually be discovered in deep underground neutrino
experiments. There are two such experiments presently built: JUNO experiment
in China, starting next year with 20 kt with oil as liquid scintillator and DUNE
experiment in USA starting presumably in 2026 with 70 kt of liquid argon. In
both the signal for the charged gravitino traversing the detector should be clearly
visible by thousands of emitted photons with the emissions lasting many microsec-
onds. If this proposal is true K(E10) would play a crucial role in the description
of the Standard Model and moreover Dark Matter should change name to Rare
Matter...
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Non-associative structures in extended geometry

Jakob Palmkvist

(joint work with Martin Cederwall)

Let A be the Weyl–Clifford superalgebra with 2n even generators Ẽa, F̃
a and 2n

odd generators Ea, F
a (a = 1, . . . , n) satisfying the commutation relations

[Ẽa, F̃
b] = [Ea, F

b] = δa
b ,(1)

and otherwise commuting. A polynomial vector field on Rn can be considered as
an element in A of the form U = UaEa where Ua ∈ R[F̃ b] ⊂ A. Define an odd

differential d (derivation that squares to zero) on A by dEa = Ẽa and dF̃ a = F a.
The Lie derivative of a vector field V parameterised by another U can then be
written as a derived bracket [1]

LUV = [dU, V ] = [dUaEa, V
bEb] + [UadEa, V

bEb]

= [∂cU
aF cEa, V

bEb] + [UadEa, V
bEb]

= ∂cU
aV b[F cEa, Eb] + Ua[dEa, V

b]Eb

= ∂cU
aV b(−δb

cEa) + Ua∂aV
bEb

= (−V a∂aU
b + Ua∂aV

b)Eb .(2)

It follows that

LU (LV W ) = [dU, [dV,W ]] = [[dU, dV ],W ] + [dV, [dU,W ]]

= [d[dU, V ]] + [dV, [dU,W ]] = LLUV W + LV (LUW )(3)

and

LUV = [dU, V ] = d[U, V ] + [U, dV ] = −[dV, U ] = −LV U .(4)

Thus the set of all vector fields form a Lie algebra with the bracket JU, V K = LUV .
The elements F aEb can be considered as basis elementsKa

b of gl(n) = sl(n)⊕R,
where sl(n) is the split real form of the finite Kac–Moody algebra ar, with r = n−1.
The generators are basis elements of n-dimensional modules over ar with highest
weight Λ1 or lowest weight −Λ1.

In extended geometry, the idea is to generalise geometrical concepts such as
vector fields and Lie derivatives from ar and Λ1 to any Kac–Moody algebra g of
rank r and any dominant integral weight λ of g, with corresponding irreducible

highest- and lowest-weight modules R(λ) and R(λ) [2]. We require that in the case
of exceptional geometry (where g = en and λ is the fundamental weight associated
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to the vertex to which we attach another one in the extension to en+1), the trans-
formation of a generalised vielbein one-form under a generalised Lie derivative
unifies n of the eleven diffeomorphisms in eleven-dimensional supergravity with
gauge transformations associated to the three-form gauge field [3–7]. It turns out
that the generalised vector fields in general do not form a Lie algebra with respect
to a bracket JU, V K = LUV . The question that we aim to answer is whether the
generalised Lie derivative nevertheless can be written as a derived bracket [dU, V ].
If so, d can no longer be an odd differential on an associative algebra.

Let the Cartan matrix of g be of co-rank at most 1 and symmetrisable, so that,
for some non-zero numbers di, multiplication from the left with D = diag(di)

yields a symmetric matrix. Let λ̂ be the weight with Dynkin labels λ̂i = diλi.
Extend the derived algebra g′ of g to B0 = g′ ⊕ R by adding a basis element h0

such that [h0, ei] = −λ̂iei and [h0, ei] = λ̂ifi. Let B±1 be g
′-modules, B−1 ≃ R(λ)

with highest-weight vector q, and B1 ≃ R(λ) with lowest-weight vector p. Extend
B±1 to modules over B0 by h0 · p = h0 · q = 0. Let k be a linear combination of
h0, h1, . . . , hr commuting with g′ and such that k · p = p and k · q = −q.

Let C be the Z-graded superalgebra with B±1 as odd subspaces of C±1 and B0

as an even subspace of C0, generated by B±1 and B0 modulo the relations

(i) [x, y] = [x, y]g and [x, z] = x · z for all x, y ∈ B0 and z ∈ B±1 ,
(ii) (xy)z = x(yz) for all x, y, z ∈ C such that x, y ∈ C0⊕C± or y, z ∈ C0⊕C±,
(iii) [p, q] = 1 and pq = 1 + k − h0,

where [−,−] denotes the (graded) commutator and [−,−]g the bracket in g.
The existence of the algebra C was proven in refs. [8, 9]. It is in general not

associative, and not even Lie admissible, so we do not get a Lie superalgebra
directly from it as its commutator algebra. However, since the relations (ii) hold,
the subspace C−1⊕C0⊕C1 forms what is called a local Lie superalgebra, and from
it, we can get a Lie superalgebra [10].

It follows from the relations that the universal enveloping algebra U (B0) can
be identified with C0, and that the tensor algebra T (B±1) can be considered as a
subalgebra of

⊕∞
k=0 C±k. For each k ≥ 0, the subspace C±k is then equal to both

U (B0)T (B±1)|k| and T (B±1)|k|U (B0) with the natural Z-grading of T (B±1).

Let B̃±1 be g-modules isomorphic to B±1 with an isomorphism x 7→ x̃ for any
x ∈ B±1. Let W be the associative even superalgebra generated by the subspaces

B̃±1 modulo the relations [B̃±1, B̃±1] = 0 and [x, y] = 〈x|y〉 for x ∈ B̃1 and

y ∈ B̃−1, where 〈−|−〉 is the natural pairing between the conjugate g′-modules
given by 〈p̃|q̃〉 = 1 and invariance under g′. Thus W is a Weyl algebra with a
number of generators equal to twice the dimension of R(λ).

Set A = W ⊗ C . We consider W and C as subalgebras of A and write
an element x ⊗ y in W ⊗ C simply as xy = yx. We define a linear map d :
W T (B1) + W T (B−1) → W ⊗ C in three steps. First, on B±1 and B̃±1 by

dx̃ =

{
x if x̃ ∈ B̃−1 ,

0 if x̃ ∈ B̃1 ,
dx =

{
0 if x ∈ B−1 ,

x̃ if x ∈ B1 .
(5)
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Second, as an odd derivation on the subspaces W and T (B1) +T (B−1). Third,
by d(xy) = (dx)y + x(dy) for x ∈ W and y ∈ T (B1) + T (B−1).

We can now define a (generalised) vector field as an element in S (B̃−1)B1 ⊂ A

and the (generalised) Lie derivative of a vector field V with respect to another one
U as LUV = [dU, V ]. This reproduces the known expressions in exceptional
geometry, also in infinite-dimensional cases.

In the cases where g is finite-dimensional with highest root θ and (λ, θ) = 1,
where (−,−) is the inner product induced by the invariant symmetric bilinear
form κ(ei, fi) = δij/di, we then have LULV W = LLUV W +LV (LUW ) up to the
section condition, which in a g-covariant way reduces the coordinate dependence to
an n-dimensional subspace of R(λ). In all other cases, the commutator of two Lie
derivatives yields not only another Lie derivative, but also an additional ancillary
g-transformation.

Let V be the commutator algebra generated by p, qB0,B0 ∈ C . Its local part
is a local Lie superalgebra. Then there is a unique Z-graded Lie superalgebra
W which is bitransitive (meaning that no Z-graded ideal of W is included in
W≥0 or W≤0) with a surjective local Lie superalgebra homomorphism from the
local part of V to the local part of W . In the non-ancillary cases (λ, θ) = 1,
the Lie superalgebra W agrees with the tensor hierarchy algebra associated to
the pair (g, λ), previously defined in different ways (along with the related tensor
hierarchy algebra S), also for infinite-dimensional g [11–13]. Apart from intriguing
mathematical features, the tensor hierarchy algebras seem to play a fundamental
role in extended geometry by encoding the gauge structure of the generalised Lie
derivatives [14]. The construction of the latter as derived brackets will hopefully
lead to a better understanding of this role.
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Gauged Supergravities, Consistent Truncations and Generalised
Geometry

Michela Petrini

(joint work with D. Cassani, G. Josse, E. Malek, D. Waldram)

Supergravity theories are field theories of matter and gauge fields coupled to grav-
ity in a supersymmetric way. Even if they are non-renormalisable, they are of
interest as effective theories. Of particular interest are 10 and 11-dimensional
supergravities, as they correspond to the low energy limit of string or M-theory.

In many applications of string theory, such as the construction of four dimen-
sional theories to be compared with the Standard Model or in the context of
the AdS/CFT correspondence, we are interested in configurations of 10 and 11-
dimensional supergravities where the space time is the product

(1) X10/11 = XD ×Md

where XD is the external non-compact space-time and M is a compact space
spanning the extra space dimensions.

Since M is compact, the full 10/11-dimensional theory can be reinterpreted as
D-dimensional theory with an infinite number of fields organised into representa-
tions of GL(d), the structure group of M . They are the so-called Kaluza-Klein
modes. A finite set of such modes is massless while the massive ones have masses
proportional to the inverse size of the internal manifold M .

If the size of the internal manifold can be made arbitrarily small with respect to
the size of the physical space XD, the massive states become very heavy and can
be truncated away to obtain an effective field theory for the massless ones. This
is the case for Calabi-Yau and flux compactifications to Minkowski space-time,
which are used to construct effective models of phenomenological interest.

However for compactifications to Anti de Sitter space, which are relevant for the
AdS/CFT correspondence, there is no such separation of scales and the truncated
theory is obtained via a consistent truncation.

A consistent truncation is a procedure to truncate the theory to a finite set of
modes in such a way that all truncated modes decouple form the lower-dimensional
equations of motion and that no dependence on the internal manifold is left. If
the truncation is consistent any solution of the truncated theory can be uplifted
to a solution of the hight-dimensional theory.

The main difficulty in constructing consistent truncations is to find a principle
to select the set of modes to be kept in the truncated theory. In our work we
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show that the general principle underlying consistent truncations of supergravity
theories is that of generalised GS-structures in Exceptional Generalised Geometry
(EGG).

EGG is a reformulation of supergravity that treats in a geometric way the gauge
transformations of the supergravity potentials on the internal manifold Md [1, 2].
The idea is to replace the tangent bundle of Md in (1) with a generalised tangent
bundle E, which is an extension of TM by appropriate exterior powers of the
cotangent bundle and has as structure group the exceptional group Ed(d). The
full set of diffeomorphisms on Md and p-form gauge transformations is generated
by an extension of the usual Lie derivative, called generalised Lie derivative or
Dorfman derivative.

All ordinary notions of tensors, connections, G-structure and intrinsic torsion
are naturally extended to E. In particular, generalised tensors are constructed as
appropriate products of E and its dual E∗, while a generalised GS-structure on
Md is defined as a reduction of the structure group Ed(d) to a subgroup GS .

More precisely, a generalised GS-structure defines a GS-principal sub-bundle P
of the Ed(d) frame bundle. In most cases, this is equivalent to the existence of a set
of GS-invariant, nowhere vanishing tensors {Ξi}. For instance, an Hd structure,
with Hd the maximally compact subgroup of Ed(d), is associated to existence of a
globally defined generalised metric G.

A given GS-structure is characterised by its intrinsic torsion Wint, which is de-
fined as the part of the torsion of a GS-compatible connection D (D{Ξi} = 0) that
cannot be changed by varying the choice of connection. In other words, it is the
obstruction to finding a generalised connection which is torsion-free and compati-
ble with the GS-structure. When Wint vanishes, the GS-structure is integrable or
torsion-free.

The intrinsic torsion can be decomposed into representations of the structure
group GS . For consistent truncations we are interested in manifolds that admit
GS structures whose intrinsic torsion only contains the singlet representation and
is constant.

The main result is the following theorem [3]:
Let M be a d-dimensional (respectively (d - 1)-dimensional) manifold with a gen-

eralised GS ⊆ Hd-structure defining a set of invariant tensors {Ξi} and only con-
stant, singlet intrinsic torsion. Then there is a consistent truncation of eleven- di-
mensional (respectively type II) supergravity on M defined by expanding all bosonic

fields in terms of the invariant tensors. If H̃d is the double cover of Hd, acting on
fermions the structure group lifts to G̃S ⊆ H̃d and the truncation extends to the
fermionic sector, provided again one expands the spinor fermion fields in terms of
G̃S singlets.

The data of the generalised GS-structure fully determine the truncated lower di-
mensional theory, namely field content, gauge group and supersymmetry

Different amounts of supersymmetry correspond to different choices of of struc-
ture group GS .
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All maximally supersymmetric truncations are associated to generalised identity
structure and therefore can be seen as generalised Scherk-Schwarz reductions [4,
5]. All maximally supersymmetric truncations of sphere are unified in this class:
truncations of 11-dimensional supergravity on S7 and S4, and IIB supergravity on
S5 [4, 6] and massive IIA on spheres [7, 8].

Similar classifications can be given for lower supersymmetry by considering
larger generalised structure groups [3,9–12]. It turns out the number of supergrav-
ity theories that can be obtained as consistent truncations of 11 and 10-dimensional
supergravity is very limited.

For instance, half-maximal truncations to 5-dimensional supergravity with no
matter fields correspond to SO(5) structures, while only theories with up to 4
vector multiplets can be obtained and they correspond to SO(5 − n)-structures
with n = 1, . . . , 4 [3]. Similarly, truncations to pure N = 2 supergravities in
5-dimensions correspond to Usp(6) structures, while allowing for GS ⊂ Usp(6)
gives supergravities with hyper and/or vector multiplets. The number of allowed
truncations is larger than for the half-maximal ones, but still covers a very limited
subset of the 5-dimensional N = 2 supergravities that one can construct from a
purely 5-dimensional point of view.
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