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Bochner–Riesz means for the
twisted Laplacian in R2

Eunhee Jeong, Sanghyuk Lee and Jaehyeon Ryu

Abstract. We study the Bochner–Riesz problem for the twisted Laplacian L on R2.
For p 2 Œ1;1� n ¹2º, it has been conjectured that the Bochner–Riesz means Sı

�
.L/f

of order ı converge in Lp for every f 2Lp if and only if ı > max.0; j.p � 2/=pj �
1=2/. We prove the conjecture by obtaining uniform Lp bounds on Sı

�
.L/ up to the

sharp summability indices.

1. Introduction

The twisted Laplacian L on R2d is a second order differential operator given by
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The operator L is self-adjoint and it has a discrete spectrum, which is given by the set
2N0 C d WD

®
2k C d W k 2 N0

¯
. Here N0 denotes the set of all natural numbers includ-

ing 0. For �2 2N0 C d , let …� denote the spectral projection operator to the eigenspace
with the eigenvalue �. One important property of the projection operators …� is that they
allow a spectral decomposition of L2 ([19]). That is to say,

f D
X

�22N0Cd

…�f; for all f 2L2.R2d /:

Let ı � 0 and � > 0. By the spectral decomposition, the Bochner–Riesz mean Sı
�
.L/

for L is defined by

Sı�.L/f D
X

�22N0Cd

�
1 �

�

�

�ı
C
…�f:

The problem known as the Bochner–Riesz problem is to determine the optimal summab-
ility index ı for p 2 Œ1;1� such that Sı

�
.L/f converges to f in Lp for every f 2Lp .
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Of course, this kind of problem was considered first for the Laplacian �� on Rn, n � 2,
and the problem has been extensively studied by numerous authors. It has been conjec-
tured that the classical Bochner–Riesz mean Sı

�
.��/f converges inLp.Rn/ if and only if

ı > ıı.p; n/ WD max
�
0; n

ˇ̌̌1
2
�
1

p

ˇ̌̌
�
1

2

�
for p 2 Œ1;1� n ¹2º. (When p D 2, the convergence holds true if and only if ı � 0 by
Plancherel’s theorem.) The conjecture was verified in two dimensions by Carleson and
Sjölin [2]. However, in higher dimensions, it still remains open and partial results are
known. For the readers who are interested in recent progress on the conjecture, we refer
to [1, 4–6, 13, 21] and references therein.

After this brief digression, we turn back to the Bochner–Riesz problem for L. By the
uniform boundedness principle, the problem is equivalent to characterizing ı D ı.p/ such
that the estimate

(1.1) kSı�.L/f kLp.R2d / � Ckf kLp.R2d /

holds with a constant C independent of � and f 2 �.R2d /. In analogue with the classical
Bochner–Riesz problem, it is natural to conjecture that (1.1) holds if and only if ı >
ıı.p; 2d/ when p ¤ 2. The necessity part follows by a transplantation theorem due to
Kenig–Stanton–Tomas [11], and the necessary condition for Lp bound on the classical
Bochner–Riesz operator Sı

�
.��/.

Concerning the sufficiency part, it has been proved by Thangavelu (see [19]) and by
Ratnakumar–Rawat–Thangavelu (see [16]) that (1.1) holds if ı > ıı.p; 2d/ on a certain
range of p. The range of p was later extended by Stempak and Zienkiewicz [18] for
max.p;p0/ > p�.d/ WD 2.2d C 1/=.2d � 1/. All those previous works rely on a common
strategy due to Fefferman and Stein [3], which makes it possible to derive Lp bound
on Sı

�
.L/ (up to the sharp exponent ıı.p; 2d/) from the L2-Lp estimate for …�:

k…�f kLp.R2d / � C �
d.1=p�1=2/�1=2

kf kL2.R2d /:(1.2)

The estimate (1.2) is optimal in that the exponent on � cannot be improved. However, the
same strategy does not work any longer if max.p; p0/ < p�.d/. Koch and Ricci [12], in
fact, showed that the estimate (1.2) holds if and only if p�.d/ � p � 1. (See also [9]
for Lp-Lq bounds on …�.)

Other methodologies than the aforementioned have not been exploited until recently
in the context of Lp boundedness of Sı

�
.L/. The second and third named authors [15]

studied the problem in a local setting whereLp.R2d / is replaced byLp.K/ for a compact
set K � R2d , and extended the previously known range for the local Lp bound ([20])
to max.p; p0/ > 2.3d C 1/=.3d � 1/. Even though the results are local in their nature,
they are more involved than the global bounds on the classical operator Sı

�
.��/. The

local Lp bounds on Sı
�
.L/, in fact, imply the corresponding global bounds on Sı

�
.��/

(see [15,20]) by virtue of the transplantation theorem ([11]). Remarkably, in R2, the result
in [15] gives the local Lp bounds on the optimal range of p; ı, that is to say, it verifies the
Bochner–Riesz conjecture for L in a local setting. However, the conjecture without such
a local assumption has remained open.
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The objective of this article is to prove the Bochner–Riesz conjecture for L in R2 by
obtaining global Lp boundedness of Sı

�
.L/. For the rest of the article, fixing d D 1, we

denote ıı.p/ WD ıı.p; 2/.

Theorem 1.1. Let d D 1 and 1 � p � 1. If ı > ıı.p/, then the estimate (1.1) holds.

For a given operator T , we denote the kernel of T by T .z; z0/. To prove Theorem 1.1,
we basically follow the strategy in [15], that is based on kernel expressions of the asso-
ciated multiplier operators (for example, see (2.5) below). The local results in [15] were
obtained by combining asymptotic expansion of the kernel Sı

�
.L/.z; z0/ and estimates

for the oscillatory integral operator satisfying Carleson–Sjölin and ellipticity conditions
([6,14]). More precisely, it was shown that K�.z; z0/ WD Sı�.L/.�

1=2z; �1=2z0/ gives rise
to an oscillatory integral operator satisfying those conditions under the assumption that
jz � z0j < 2 � c for a constant c > 0. However, when .z; z0/ is near the set

S WD
®
.z; z0/ 2 R2 �R2 W jz � z0j D 2

¯
;

the kernel K� exhibits a different behavior since the critical points of the phase function
P . � ; z; z0/ (see (2.4)) are no longer nondegenerate if .z; z0/ 2 S.

To deal with the matter concerning the degeneracy, we take an approach inspired by the
authors’ recent work [10]. We make a dyadic decomposition of the kernel away from the
set S such that the consequent kernels are supported in the regions ¹.z; z0/ W jjz � z0j � 2j
� 2�j º. Then, we further break the kernels along the angle of .z � z0/=jz � z0j so that each
of the decomposed kernels is localized in a set where z � z0 is contained in a 2�j � 2�j=2

rectangle. Unexpectedly, it turns out that interactions between those angularly decom-
posed operators are not significant. After an appropriate change of variables, we observe
that the operators given by those kernels are the oscillatory integral operators satisfying
the Carleson–Sjölin condition. We combine this observation with the classical result due
to Carleson–Sjölin [2] to obtain the sharp estimates.

Organization. In Section 2, we break down the proof of Theorem 1.1 to establishing Pro-
position 2.1, which contains the key L4 estimate. The subsequent sections are devoted to
proving Proposition 2.1. In Section 3 we further reduce the proof so that we only have
to deal with the oscillatory integral operators with kernels supported near S (Proposi-
tion 3.1). In Section 4, we complete the proof by proving Proposition 3.1 via angular
decomposition and scaling.

Notations. For given non-negative quantities A and B , by A ≲ B we means that there
exists a constant C > 0 such that A � CB . We occasionally write A ≲" B to indicate that
the implicit constant depends on " > 0. We write A � B if A ≳ B and A ≲ B . For an
operator T , kT kp!q denotes the norm of T from Lp to Lq .

2. Reduction to a key L4 estimate

In this section, we make several steps of reduction for the proof of Theorem 1.1 and single
out its core part which is Proposition 2.1 below.

To prove Theorem 1.1, it is sufficient to show the estimate (1.1) only for p D 4 and
ı > 0. Indeed, the estimate (1.1) for two cases p D 2, ı � 0 and p D 1, ı > ı.1/ are
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well known ([19]). Interpolation with the desired L4 estimate gives (1.1) for 2 � p � 1
and ı > ıı.p/. The case 1 � p < 2 follows by duality.

2.1. Dyadic decomposition

Let  2C1c .Œ1=4; 1�/ be such that
P
`2Z  .2

`t / D 1 for t > 0. For ı > 0 and ` � 1, set

 ı` .t/ D .2
�`t /ı .2�`t / and  ı0 .t/ D t

ı
C

X
`�0

 .2`t /;

so that
tıC D

X
1�2`�4�

2ı`  ı` .t/

if 0 < t � �. Since Sı
�
.L/ D ��ı.� �L/ıC, we have

Sı�.L/ D �
�ı

X
1�2`�4�

2ı`  ı` .� �L/:

Therefore, for the estimate (1.1) for p D 4 and ı > 0, it is sufficient to show

(2.1) k ı` .� �L/k4!4 ≲" .�2
�`/"; 8" > 0:

By the Fourier inversion, we note

 ı` .� �L/ D
1

2�

Z
y ı` .t/ e

it.��L/ dt:(2.2)

The kernel of the propagator e�itL is given by

(2.3) e�itL.z; z0/ D c.sin t /�1 ei.P .t;z;z
0 /�t/; z; z0 2 R2;

(see [9, 19]), where c is a complex number and

P .t; z; z0/ WD t C
jz � z0j2 cos t

4 sin t
C
z2 z
0
1 � z1 z

0
2

2
�(2.4)

For � 2 C1.R/, let Œ��� be the operator whose kernel is given by

(2.5) Œ���.z; z0/ D

Z
�.t/.sin t /�1 ei�P .t;z;z0 / dt:

From (2.2) and (2.3), note that

 ı` .� �L/.�1=2z; �1=2z0/ D c.2�/�1 Œ y ı` �
�.z; z0/:

By scaling, the estimate (2.1) is equivalent to

(2.6) kŒ y ı` �
�
k4!4 ≲" �

�1.�2�`/"; 8" > 0:

We reduce the proof of (2.6) to those of the following two propositions.
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Proposition 2.1. Let 0 < % < �=2. Suppose that � is a compactly supported smooth
function such that supp.�/ � Œ%; � � %�. Then, for any " > 0, there exists a constant
C D C."; %; k�kC 100.R// such that

kŒ���k4!4 � C�
�1C":

Proposition 2.2. Let 1 � 2` � 4� and � 2 C1c ..�2
�5; 2�5//. Then, for n 2 Z and " > 0,

we have

(2.7) kŒ� y ı` .� � n�/�
�
k4!4 ≲" �

�1.�2�`/" .1C 2` jnj/�9:

Proposition 2.1 is the main new contribution of this work, which we prove in the next
section, while Proposition 2.2 is a consequence of the local result in [15] (see Proposi-
tion 2.3 below). Assuming Proposition 2.1 and 2.2 for the moment, we prove (2.6).

Proof of (2.6). We choose �02C1c ..�2
�5;2�5// and �12C1c ..2

�6;� � 2�6// such that
both �0 and �1. � C �=2/ are symmetric with respect to t D 0, and

�0.t/C �1.t/C �0.t � �/ D 1 for t 2 Œ0; ��.

These functions allow us to decompose

Œ y ı` �
�
D

X
n2Z

�
Œ�0. � C n�/ y 

ı
` �
�
C Œ�1. � C n�/ y 

ı
` �
�
�
:(2.8)

Changing variables t ! t � n� gives

Œ��. � C n�/ y 
ı
` �
�
D cŒ�� y 

ı
` .� � n�/�

�; � D 0; 1;

with jcj D 1. By Proposition 2.2, we have

(2.9) kŒ�0. � C n�/ y 
ı
` �
�
k4!4 ≲" �

�1.�2�`/" .1C 2` jnj/�9:

Concerning Œ�1 y ı` . � � n�/�
�, we note that

supp.�1 y ı` . � � n�// � Œ%; � � %�;

with % D 2�6. Sinceˇ̌̌� d
dt

�k
y ı` .t/

ˇ̌̌
≲ 2`.1Ck/ .1C 2` jt j/�M for any M and k � 0,

we have k�1 y ı` . � � n�/kC 100.R/ � C0B with a constant C0, where B D 2�9`.%C jnj/�9.
Applying Proposition 2.1 to

� D B�1�1 y 
ı
` . � � n�/;

we obtain Œ�1. � C n�/ y ı` ��4!4 ≲";%;C0 ��1C"2�9` .%C jnj/�9
for any " > 0. By (2.8) and the triangle inequality, using this and the estimate (2.9), we
get (2.6).
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2.2. Proof of Proposition 2.2

We use the local estimates for Œ��� with a cut-off function � supported near the origin,
which were obtained in [15].

Proposition 2.3 (Theorem 3.3 in [15]). Let 0 < � < � � 2�5 and 0 < c0 < 2; and let
�� 2C

1
c .Œ2

�2�; �� [ Œ��;�2�2��/ satisfy j. d
dt
/m��j ≲ ��m for 0 � m � 100. Suppose

E;F � R2 are compact sets such that jz � z0j � 2� c0 for all .z; z0/ 2 E � F . Then for
p > 4, we have

(2.10) k�E Œ���
��F kp!p ≲ ��1�max

®
1; .��/ıı.p/

¯
Although the proposition does not include the case pD4, interpolation with an easyL2

estimate yields

k�E Œ���
��F k4!4 ≲" �

�1�max
®
1; .��/"

¯
(2.11)

for " > 0. In fact, we note that kŒ����k2!2 D ��1k
R
��.t/e

it.��L/dtk2!2. Thus, it fol-
lows that kŒ����k2!2 � ��1k��k1 ≲ ��1�: Therefore, k�E Œ�����F k2!2 ≲ ��1�: Thus,
interpolation with (2.10) gives (2.11) (taking p arbitrarily close to 4 when � > ��1).

We are now ready to prove Proposition 2.2. Let �2C1c ..�2
�5;2�5// and let QD¹Qº

be a tiling of R2 such that Q 2Q is a square of side length 1=2. We say Q �Q0 if
dist.Q;Q0/ D 0, and Q≁Q0 otherwise. Thus, we have

Œ� y ı` . � � n�/�
�
D I1 C I2;

where

I1 D
X
Q�Q0

�Q Œ� y 
ı
` . � � n�/�

��Q0 and I2 D
X
Q≁Q0

�Q Œ� y 
ı
` . � � n�/�

��Q0 :

The desired estimate (2.7) follows if we show

kI1k4!4 ≲ ��1.�2�`/" .1C 2` jnj/�9;(2.12)

kI2k4!4 ≲ ��N .1C 2` jnj/�9:(2.13)

To show (2.12) and (2.13), we make an additional decomposition. For j � 3, we define

'j .t/ WD  .2
j t / and z'j .t/ WD  .2

j
jt j/:

Then we write
Œ� y ı` . � � n�/�

�
D

X
j�3

Œ� y ı` .� � n�/ z'j �
�:

By definition, we have that for m2N0 and any M ,ˇ̌̌� d
dt

�m
y ı` .t/

ˇ̌̌
≲ 2.mC1/` .1C 2`jt j/�M and

ˇ̌̌� d
dt

�m
z'j .t/

ˇ̌̌
≲ 2mj :

Using these bounds together with the chain rule gives

(2.14) j. d
dt
/m.� y ı` . � � n�/ z'j /j ≲

´
2`2max.`;j /m .2` jnj/�M ; n ¤ 0;

2`2max.`;j /m .1C 2`�j /�M ; n D 0:
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Note that jz � z0j �
p
2 if .z; z0/2Q �Q0 and Q�Q0. Now, we define

�n;j;` D

´
2�` .1C 2`jnj/9 2100.`�j /� y ı

`
. � � n�/ z'j ; ` > j;

2�` .1C 2`jnj/9� y ı
`
. � � n�/ z'j ; ` � j;

for j; n 2 Z, and ` 2 N0 such that j � 3, 1 � 2` � 4�. Using (2.14) with M chosen so
that M � 200, we have j. d

dt
/m�n;j;`j ≲ 2jm for all n; j; `, and 0 � m � 100. Moreover,

supp.�n;j;`/ � Œ2�2�; ��[ Œ��;�2�2�� with � D 2�j . Thus, applying the estimate (2.11)
to �n;j;` and considering the cases �� 2j , 2` � 2j < �, and 2j � 2` separately, we obtain

k�Q Œ� y 
ı
` . � � n�/ z'j �

��Q0k4!4 ≲
2`�j��1

.1C 2` jnj/9

8̂<̂
:

1; � � 2j ;

.�2�j /"; 2` � 2j < �;

.�2�j /" 2100.j�`/; 2j � 2`;

provided that Q�Q0. Summation over j yields

k�Q Œ� y 
ı
` .� � n�/�

��Q0k4!4 � C�
�1 .�2�`/" .1C 2` jnj/�9

with a constant C , independent of �; `; n, and Q; Q0 whenever Q �Q0. Hence, this
gives (2.12) because for each Q 2Q there are only nine Q0 2Q such that Q0�Q.

Now we consider (2.13). Recall (2.5). The kernel Œ� y ı
`
. � � n�/z'j �

�.z;z0/ is expressed
as an oscillatory integral with the phase P .t; z; z0/. Note that

(2.15) @tP .t; z; z
0/ D 1 �

jz � z0j2

4 sin2 t
,

and jz � z0j � 1=2 for .z; z0/2Q �Q0 if Q≁Q0. Thus, we have

j@tP .t; z; z
0/j � 22j jz � z0j2; .t; z; z0/2 supp.� z'j / �Q �Q0

if Q≁Q0. Moreover,

j@mC1t P .t; z; z0/j ≲ 2j.mC2/jz � z0j2 for any m2N0.

Now, let LP be a differential operator defined by

LPF.t/ D
@

@t

� F.t/

�i@tPı.t; z; z0/

�
;

where Pı D 2
�2j jz � z0j�2P . Denoting the adjoint of LP by L�

P
, we note that

L�P .e
i�P .t;z;z0 // D �ı e

i�P .t;z;z0 /;

with �ı D �22j jz � z0j2. Thus, repeated integration by parts based on LP yields the
expression

(2.16) Œ� y ı` . � � n�/ z'j �
�.z; z0/Dc��Nı Bn;j;`

Z
LNP

�
.sin t /�1�n;j;`.t/

�
ei�ıPı.t;z;z

0 /dt;
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where c 2C, and

Bn;j;` D

´
2` .1C 2` jnj/�9 2100.j�`/; ` > j;

2` .1C 2` jnj/�9; ` � j:

From the above inequalities for @tP and its derivatives, it immediately follows

j@tPı.t; z; z
0/j � 1 and j@mC1t Pı.t; z; z

0/j ≲ 1

for .t; z; z0/2 supp.� z'j / �Q �Q0, if Q ≁ Q0.

Combining this with j. d
dt
/m�n;j;`j ≲ 2jm in the above, we obtain

jLNP ..sin t /�1�n;j;`.t//j ≲ 2.NC1/j :

We also use that supp.�n;j;`/ � Œ2�j�2; 2�j � [ Œ�2�j ;�2�j�2�. Hence, the right-hand
side of (2.16) is bounded by

Kj .z; z
0/ WD

C2`

.1C 2` jnj/9

´
2100.j�`/ .�2j jz � z0j2/�N ; ` > j;

.�2j jz � z0j2/�N ; ` � j;

for any N and M if .z; z0/2Q �Q0 and Q≁Q0. Thus, applying Young’s inequality, we
get X
Q≁Q0

�Q Œ� y 
ı
` . � � n�/ z'j �

��Q0

4!4

≲
2`

.1C 2` jnj/9

´
2100.j�`/ .�2j /�N ; ` > j;

.�2j /�N ; ` � j:

for anyN andM . Here, we use the fact that jz � z0j � 1=2 if .z; z0/2Q�Q0 andQ≁Q0.
Hence, (2.13) follows by the triangle inequality and summation over j .

3. Dyadic decomposition away from S

In this section, we prove the key L4 estimate in Proposition 2.1. Throughout this section,
we assume that � 2 C1c .R/ satisfying supp.�/ 2 Œ%; � � %� with 0 < % < �=2. Since %
will be fixed throughout the rest of the article, we omit its dependence for simplicity. The
first step of the proof is to decompose the kernel of Œ��� near the set S dyadically.

Recall 'j D  .2j �/. For j 2Z satisfying 0 � j � j0 WD Œlog�2=3�, we define

�j .z; z
0/ D 'j�2.2 � jz � z

0
j/;

�ı.z; z0/ D
X
j>j0

z'j�2.2 � jz � z
0
j/:

Thus, �ı.z; z0/C
P
0�j�j0

�j .z; z
0/ D 1 if jz � z0j � 2. We also set

�e.z; z0/ WD 1 �
� X
0�j�j0

�j .z; z
0/C �ı.z; z0/

�
:
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Consequently, �ı C �e C
P
0�j�j0

�j D 1 on R4. Thus,

Œ��� D
X

0�j�j0

Œ���j C Œ��
�;ı
C Œ���;e;(3.1)

where Œ���j , Œ���;ı, and Œ���;e are the operators whose kernels are given by

Œ���j .z; z
0/ D Œ���.z; z0/�j .z; z

0/ and Œ���;�.z; z0/ D Œ���.z; z0/��.z; z0/; � 2 ¹ı; eº:

As will be seen later, the operators Œ���;ı and Œ���;e are much easier to handle.
We first prove k

P
0�j�j0

Œ���j k4!4 ≲" �
�1C", while the bounds on the other operators

are to be shown near the end of this section. Since j0 ≲ log �, it suffices to show, for
0 � j � j0,

(3.2) kŒ���j k4!4 ≲" �
�1C":

3.1. Estimate for Œ���
j

When j < C for a constant C , the desired estimate (3.2) is easy to show by using Propos-
ition 2.3. Indeed, we decompose

Œ���j D
X
�2�k

Œ�'k �
�
j C

X
�2�k

Œ�'k.� � �/�
�
j C Œ�'ı�

�
j ;

where
'ı D 1 �

X
�2�k

�
'k C 'k.� � �/

�
:

Since j < C , jz � z0j � 2 � c0 for a constant c0 > 0 if .z; z0/2 supp�j . To proceed, we
claim that

kŒ�'k �
�
j k4!4 ≲ sup

B;B 0
k�B Œ�'k �

�
j �B 0k4!4;

where the supremum is taken over the balls B and B 0 of radius c0=4 satisfying that
dist.B; B 0/ � 2 � c0=2. This is not hard to prove. For n D .n1; n2/ 2 Z2, let Bn be a
ball of radius c0=4 centered at .c0n1=4; c0n2=4/. Clearly, B D .Bn/ is a cover of R2 with
each ball having at most 4 overlap. For each n 2 Z2, let

zBn D ¹B
0
2 B W dist.Bn; B

0/ � 2 � c0=2º:

Note that j zBnj �C with a constantC DC.c0/ > 0 for all n2Z2. By the above discussion,
�Bn Œ�'k �

�
j �B 0 � 0 if B 0 … Bn. Thus,

kŒ�'k �
�
j f k

4
L4
�

� X
n2Z2

�Bi

�
Œ�'k �

�
j f

4
L4
� C

X
n2Z2

�Bi Œ�'k ��j � X
B 02Bn

�B 0f
�4
L4

� C sup
B;B 02B

k�B Œ�'k �
�
j �B 0k

4
4!4

X
n2Z2

X
B 02Bn

k�B 0f k
4
L4

� C sup
B;B 02B

k�B Œ�'k �
�
j �B 0k

4
4!4 kf k

4
L4

for a constant C > 0. We use that the balls Bn have finite overlap. This proves the claim.
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Thus, by (2.11) we have kŒ�'k ��j k4!4 ≲" �
�1C". Moreover, Œ�'k ��j � 0 if 2k � %�1.

Therefore, we obtain

(3.3)
 X
�2�k

Œ�'k �
�
j


4!4

≲" �
�1C":

The same argument shows kŒ�'ı��j k4!4 ≲" ��1C". To handle Œ�'k.� � �/��j , we use a
symmetric property. Considering

Lz WD 2�1=2.z1 C z2; z1 � z2/;

we observe that
P .� � t;Lz;Lz0/ D � �P .t; z; z0/:

Recalling (2.5) and changing variables t ! � � t , we see

Œ�'k.� � �/�
�
j .Lz;Lz

0/ D C Œ�.� � �/'k �
�
j .z; z

0/

for a constant C with jC j D 1. Thus,

kŒ�'k.� � �//�
�
j k4!4 D kŒ�.� � �/'k �

�
j k4!4:

Repeating the previous argument used for (3.3), we see kŒ�'k.� � �/��j k4!4 ≲ ��1C".
Combining all the estimates, we get the bound (3.2) for j < C .

Therefore, it is reduced to proving (3.2) for j � C with a large constant C . For the
rest of this subsection, we assume j � C .

Further decomposition of the kernel. Note that sin % � sin t � 1 for t 2 supp �. Thus,
from (2.15) we have

(3.4) j@tP .t; z; z
0/j � j.2 � jz � z0j/.2C jz � z0j/ � 4 cos2 t j

for .t; z; z0/2 supp�� supp�j . Thus, we are naturally led to decompose dyadically (in t )
away from �=2.

Let C0 be a constant large enough. Recalling z'l D  .2l j � j/ and .2� jz � z0j/ � 2�l ,
we decompose

Œ���j D Œ��
�
j;0 C Œ��

�
j;1

where

Œ���j;0 D
X

j2l�j j�C0

Œ� z'l .�=2 � �/�
�
j and Œ���j;1 D

X
j2l�j j>C0

Œ� z'l .�=2 � �/�
�
j :

Estimate for Œ���
j;1

. The estimate kŒ���j;1k4!4 ≲" ��1C" is easy to obtain. Indeed, we

show this by estimating for the kernel of Œ� z'l .�=2 � �/��j . Note that

Œ� z'l .�=2 � �/�
�.z; z0/ D

Z
A.t/ ei�P .t;z;z0 / dt;
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where
A.t/ D C�.t/ z'l .�=2 � t /.sin t /�1:

Since j2l � j j > C0 for a large C0, by (3.4) we get

j�@tP .t; z; z
0/j ≳ �max.2�j ; 2�2l /

for t 2 supp A and .z; z0/2 supp�j . It is clear that j.d=dt/nA.t/j ≲ 2nl for any n 2 N0.
Thus, repeated integration by parts yields

jŒ� z'l .�=2 � �/�
�
j .z; z

0/j ≲ bl WD 2
�l .1C �2�l max.2�j ; 2�2l //�N

for any N 2 N. Consequently, we see

sup
z

Œ� z'l .�=2 � �/��j .z; �/1; sup
z0

Œ� z'l .�=2 � �/��j . � ; z0/1 ≲ 2�j bl :

Young’s inequality and the triangle inequality give

kŒ���j;1k4!4 ≲
X

j2l�j j>C0

2�j bl ≲ ��1C":

Estimate for Œ���
j;0

. To complete the proof of (3.2), it remains to show

kŒ� z'l .�=2 � �/�
�
j k4!4 ≲ ��1C" for 1� 2j � �2=3 and 2l � 2j=2.

Moreover, as before, we note

kŒ�'l .�=2 � �/�
�
j k4!4 D kŒ�'l . � � �=2/�

�
j k4!4

from the symmetric property of the kernel. Therefore, the matter is reduced to showing

kŒ�'l .�=2 � �/�
�
j k4!4 ≲" �

�1C"(3.5)

when 1� 2j � �2=3 and 2l � 2j=2. For the purpose, we now consider the stationary point
Sc.z; z

0/ 2 .0; �=2/ of the phase function t ! P .t; z; z0/, which is given by

(3.6) sinSc.z; z0/ D
jz � z0j

2
�

Note that sin.�=2/ � sin Sc.z; z0/ � 2�j if .z; z0/2 supp�j . Thus, we have Sc.z; z0/ 2
Œ�=2 � c22

�j=2; �=2 � c12
�j=2� for some c1 < c2 if .z; z0/2 supp�j .

To prove (3.5), we make further decomposition of the kernel Œ�'l .�=2 � �/��j so that
Sc.z; z

0/ lies within an interval of length � 2�j=2 and the integral for the associated
kernel (for example, (2.5)) is also taken over a small interval of length� 2�j=2. This can
be easily achieved by finite decomposition and discarding some part of the operator which
has an acceptable L4 bound.

Let "0 > 0 be a sufficiently small constant, which we choose later. Recall �j .z; z0/ D
 .2j .2� jz � z0j//. Breaking  .2j �/ into smooth functions supported in finitely overlap-
ping intervals of length c "021�j with a small constant c > 0, we write �j D

P
Q�, where

(3.7) Q�.z; z0/ D  .2j .2 � jz � z0j// �
�a � jz � z0j

c"0 2�j

�
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for some a satisfying 2� a 2 .2�2�j ; 2�j /; and � 2C1c ..�1; 1//. Consequently, taking c
small enough, we have

(3.8) Sc.z; z
0/ 2 J.t0; "0 2

�j=2� WD Œt0 � "0 2
�j=2; t0 C "0 2

�j=2�

for some t0 with �=2� t0 � 2�j=2 if .z; z0/2 supp Q�. Let �2C1c ..�2;2// such that �D 1
on the interval Œ�1; 1�. Set

�0.t/ D �.2
j=2 .t � t0/="0/:

Write

Œ�'l .�=2 � �/�
�
Q� D Œ�0�'l .�=2 � �/�

�
Q�C Œ.1 � �0/�'l .�=2 � �/�

�
Q�:

Here, as before, Œ�'l .�=2� �/�� Q� denotes the operator whose kernel is given by a product
of the kernel Œ�'l .�=2 � �/�� and the function Q�. The other operators are also defined in
the same manner. The operator Œ.1 � �0/�'l .�=2 � �/�� Q� can be easily handled. Indeed,
note from (3.4) that

j@tP .t; z; z
0/j � j sinSc.z; z0/ � sin t j �"0 2

�j if .t; z; z0/2 supp.1 � �0/ � supp�.

Since 22l � 2j , by the same argument as before, we have

jŒ.1 � �0/�'l .�=2 � �/�
�
Q�j ≲ 2�j=2 .��123j=2/N :

Young’s inequality yields

kŒ.1 � �0/�'l .�=2 � �/�
�
Q�k4!4 ≲ ��1:

Therefore, since there are only as many as O.1="0/ of these Q�, the desired estimate
follows if we show

kŒ�0�'l .�=2 � �/�
�
Q�k4!4 ≲" �

�1C":

More generally, we prove

(3.9) kŒ��� Q�k4!4 ≲ ��1C"

under the following assumption:

j.d=dt/m�j ≲ 2mj=2; 8mI(3.10)

supp � � J.t0; "0 21�j=2�;(3.11)

for some t0 such that �=2 � t0 � 2�j=2.

Asymptotic expansion of the kernel. We make a change of variables in order that the
t -derivatives of � and P are bounded uniformly in � and j . Let us set

�.t; z; z0/ D Sc.z; z
0/C 2�j=2 t

and

Q�.t; z; z0/ D �.�.t; z; z0//.sin �.t; z; z0//�1; QP .t; z; z0/ D 23j=2P .�.t; z; z0/; z; z0/:
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Changing variables t ! �.t; z; z0/, we have

.Œ��� Q�/.z; z0/ D 2�j=2 Q�.z; z0/

Z
Q�.t; z; z0/ ei�2

�3j=2 QP .t;z;z0 / dt:

Note that supp Q�.�; z; z0/ is contained in a small interval of length ≲ "0 containing the zero.
We also have

j@mt Q�.t; z; z
0/j � Cm and j@mt

�
QP .t; z; z0/ � QP .0; z; z0/

�
j � Cm

for any m 2 N0 if .t; z; z0/ 2 supp. Q� ˝ Q�/. The former inequality follows from (3.10).
The latter inequality for m � 3 is clear, and one can show the inequality for m D 1; 2

using (3.4) and

(3.12) @2tP .t; z; z
0/ D

jz � z0j2 cos t
2 sin3 t

�

The case m D 0 follows from that for m D 1 via the mean value theorem. Furthermore,
since

@2t
QP .t; z; z0/ D 2j=2 @2tP .Sc.z; z

0/C 2�j=2 t; z; z0/;

from (3.12) and (3.8) we also note that

@2t
QP .t; z; z0/ � 1; .t; z; z0/2 supp. Q�˝ Q�/:

Since @t QP .0; z; z0/ D 0, the function t ! QP .t; z; z0/ has a nondegenerate critical point
at 0. Taking "0 small enough, we apply the stationary phase method (Theorem 7.7.5 in [8])
to obtain the following:

.Œ��� Q�/.z; z0/ D ��1=2 2j=4
Q�.z; z0/ Q�.0; z; z0/

.@2t
QP .0; z; z0/=2�/1=2

ei�2
�3j=2 QP .0;z;z0 /

CE.z; z0/(3.13)

where jE.z; z0/j ≲ ��3=2 27j=4 j Q�.z; z0/j. Note

kE. � ; z0/k1; kE.z; �/k1 ≲ ��3=2 23j=4 ≲ ��1;

since 2j ≲ �2=3. Thus, Young’s inequality shows kEk4!4 ≲ ��1:

Using (3.12) and (3.6), we get

@2t
QP .0; z; z0/ D 21Cj=2

cosSc.z; z0/
sinSc.z; z0/

�

Additionally, note that

Q�.0; z; z0/D �.Sc.z; z
0//.sinSc.z; z0//�1 and 2�3j=2 QP .0; z; z0/DP .Sc.z; z

0/; z; z0/:

We set

ˆ.z; z0/ D P .Sc.z; z
0/; z; z0/;(3.14)

A.z; z0/ D 2�j=4 Q�.z; z0/ �.Sc.z; z
0//.sinSc.z; z0/ cosSc.z; z0//�1=2:(3.15)
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For p2C1.R4/ and a2C1c .R
4/, we denote

T�Œp; a�f .z/ D

Z
ei�p.z;z0 / a.z; z0/ f .z0/ dz0:

Now, by (3.13) the estimate (3.9) follows if we show the next proposition.

Proposition 3.1. Let 1� 2j ≲ �2=3 and let � satisfy (3.10) and (3.11). Then,

kT�Œˆ;A�k4!4 ≲" �
"�1=2 2�j=4; for any " > 0.

We postpone the proof of Proposition 3.1 until the next section. Before closing this
section, we obtain the desired bounds on the operators Œ���;ı and Œ���;e (see (3.1)).

3.2. Estimates for Œ���;ı and Œ���;e

In this subsection, we show

kŒ���;ık4!4 ≲ ��1 and kŒ���;ek4!4 ≲ ��1:

To obtain the above bounds, we use estimates for the kernels.
We first consider Œ���;ı. Setting

'� D
X

2�l�C��1=3

z'l .�=2 � �/

for a large positive constant C , we decompose

Œ���;ı D
X

2�l>C��1=3

Œ� z'l .�=2 � �/�
�;ı
C Œ�'��

�;ı:(3.16)

The operator Œ�'���;ı is easy to handle. Since jŒ�'���;ı.z; z0/j ≲ ��1=3, it follows that

kŒ�'��
�;ı. � ; z0/k1; kŒ�'��

�;ı.z; �/k1 ≲ ��1:

Consequently,
kŒ�'��

�;ı
k4!4 ≲ ��1:

As for
P
2�l>C��1=3 Œ� z'l .�=2 � �/�

�;ı, we recall (2.5). Since 2�l > C��1=3, note
from (3.4) that

j@tP .t; z; z
0/
ˇ̌
≳ 2�2l if .t; z; z0/2 supp z'l .�=2 � �/ � supp�ı.

We also have ˇ̌̌� d
dt

�n
.�.t/ z'l .�=2 � t /.sin t /�1/

ˇ̌̌
≲ 2nl for any n.

Hence, routine integration by parts gives

jŒ� z'l .�=2 � �/�
�;ı.z; z0/j ≲ 2�l .��123l /N :
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Thus, we obtain

kŒ� z'l .�=2 � �/�
�;ı
k4!4 ≲ ��2=32�l .��123l /N

by the same argument as before. Taking sum over l gives X
2�l>C��1=3

Œ� z'l .�=2 � �/�
�;ı

4!4

≲ ��1:

We now turn to Œ���;e . Note jz � z0j > 2 for .z; z0/ 2 supp �e . Thus, from (3.4) we
have

j@tP .t; z; z
0/j ≳ jz � z0j2 � 4 for .t; z; z0/2 supp � � supp�e .

Recalling (2.5), by integration by parts we obtain

jŒ���;e.z; z0/j ≲
�
1C �.jz � z0j2 � 4/

��N
�e.z; z0/

for any N 2N. Hence, we obtain

kŒ���;e. � ; z0/k1; kŒ��
�;e.z; �/k1 ≲ ��1:

Therefore, we see
kŒ���;e k4!4 ≲ ��1

by Young’s inequality.

4. L4 bounds near the set S

In this section, we prove Proposition 3.1. We begin by decomposing T�Œˆ;A� by breaking
the amplitude function A along the angle of .z � z0/=jz � z0j.

For each positive integer j , let ƒj � S1 be a collection of "02�j=2-separated points
such that S1 �

S
�2ƒj

B.�; "0 2
1�j=2/. Let ¹ Q%�j º�2ƒj be a partition of unity on S1 subor-

dinated to ¹B.�; "021�j=2/ \ S1º�2ƒj . Let

(4.1) A�.z; z0/ D A.z; z0/%�.z; z0/; with %�.z; z0/ D Q%�j

� z � z0
jz � z0j

�
:

Consequently, we have
T�Œˆ;A� D

X
�2ƒj

T�Œˆ;A
� �:

Since jƒj j ≲ 2j=2, Proposition 3.1 follows once we prove the next.

Proposition 4.1. Let 1� 2j � �2=3. Then, for � 2ƒj we have that for every " > 0,

(4.2) kT�Œˆ;A
� �k4!4 ≲" �

"�1=2 2�3j=4:
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4.1. Reduction

We first make some observations about the operator T�Œˆ;A�. Note Sc.z; z0/D h.jz � z0j/
for a function h, soA.z; z0/D a.jz � z0j/ for a function a. Thus, the amplitude functionA
is invariant under simultaneous rotation (i.e.,A.z;z0/DA.Rz;Rz0/ for any rotationR). It
is easy to see the phase ˆ is also invariant under simultaneous rotation. Indeed, by (3.14)
and (2.4) we have

(4.3) ˆ.z; z0/ D Sc.z; z
0/C cosSc.z; z0/ sinSc.z; z0/C S.z; z0/;

where S.z; z0/ D 2�1 .z2 z01 � z1 z
0
2/. Note S.z; z0/ D S.Rz;Rz0/ for any rotation R.

Therefore, changing variables, it is clear that

kT�Œˆ;A
� �k4!4 D kT�Œˆ.R �; R �/; A

�.R �; R �/�k4!4:

As a result, to prove (4.2) we may assume

� D e1:

However, due to the term S.z; z0/ in (4.3),ˆ.z; z0/ is not invariant under simultaneous
translation, .z; z0/! .z C v; z0 C v/. Nevertheless, this does not cause any problem in
the perspective of the operator norm. Indeed, note that

S.z C v; z0 C v0/ D S.z; z0/C S.v; z0/C S.z; v0/C S.v; v0/:

The second, third, and fourth terms in the phase functions can be disregarded since they
do not have any effect on the operator norm. More generally, we denote

ˆ1.z; z
0/ ' ˆ2.z; z

0/

if ˆ1.z; z0/ D ˆ2.z; z
0/ C a.z/ C b.z0/ for some functions a and b. It is clear that

kT�Œˆ1; A
e1 �k4!4 D kT�Œˆ2; A

e1 �k4!4 if ˆ1.z; z0/ ' ˆ2.z; z0/. Using this observation
and a standard argument, we can reduce the estimate (4.2) to a local estimate.

Let # 2 C1c ..�1; 1/
2/ such that

P
k2Z2 #. � � k/ D 1, and set

#k.z/ D #."
�1
0 2jC3 z1 � k1; "

�1
0 2.jC3/=2 z2 � k2/ for each k D .k1; k2/.

Consequently, we have

T�Œˆ;A
e1 �f D

X
k;k0

#kT�Œˆ;A
e1 � #k0f:

We also note that

(4.4) suppAe1 �
®
.z1; z2/ W jz1 � z

0
1 � aj < c"0 2

1�j ; jz2 � z
0
2j < "

2
0 2
�j=2

¯
with a constant a satisfying 2� a 2 .2�2�j ;2�j /. Thus, we see that #kT�Œˆ;A

e1 �#k0 D 0 if
jk2 � k

0
2j > 3 and jk1 � k01 � "

�1
0 2jC3aj > 3. Similarly as in the proof of Proposition 2.2,

the estimate (4.2) follows if we show

k#kT�Œˆ;A
e1 �#k0f k4 ≲" �

"�1=2 2�3j=4 kf k4

for each pair .k;k0/ satisfying jk2 � k02j � 2 and jk1 � k01 � "
�1
0 2jC3aj � 2.
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To prove the estimate, thanks to the above discussion, we may use translation .z;z0/!
.zC v;z0C v/ for some v. Therefore, we may replace, respectively, #k and #k0 with cutoff
functions a and a0 such that

(4.5)
supp a � ¹.z1; z2/ W jz1 � aj < "0 2

�j ; jz2j < "0 2
�j=2
º;

supp a0 � ¹.z1; z2/ W jz1j < "0 2
�j ; jz2j < "0 2

�j=2
º;

and @˛a, @˛a0 D O.2˛1j 2˛2j=2/. Let us set

A.z; z0/ D a.z/Ae1.z; z0/a0.z0/:

Therefore, the estimate (4.2) follows from the next result.

Proposition 4.2. Let 1� 2j � �2=3. Then, kT�Œˆ;A�k4!4 ≲" �"�1=2 2�3j=4.

Note that A is supported in a product of two rectangle of dimension 2�j � 2�j=2. We
perform change of variables. Set

Lj .z; z
0/ D .2�j z1 C 2; 2

�j=2 z2; 2
�j z01; 2

�j=2 z02/;

and ĵ D ˆ ı Lj and Aj D A ı Lj . Changing variables .z; z0/! Lj .z; z
0/, we have

(4.6) kT�Œˆ;A�k4!4 D 2
�3j=2

kT2�3j=2� Œ2
3j=2

ĵ ;Aj �k4!4:

Let b D 2j .2 � a/ so that b 2 .2�2; 1/. From (4.5), note that

(4.7) supp Aj � U WD ¹.z; z
0/ W jz1 C bj; jz

0
1j < "0; jz2j; jz

0
2j < "0º:

4.2. Scaling

To obtain an estimate for T2�3j=2�Œ2
3j=2

ĵ ;Aj �, we use the known estimate for the oscil-
latory integral operator satisfying Carleson–Sjölin condition [2, 7]. For the purpose, we
need to take a close look at the scaled functions Aj and ĵ . Recalling (3.14) and (3.15),
we first consider Sc and jz � z0j under Lj .

Note that 1� cos� D g.�2/ for an analytic function g with g.0/D 0 and g0.0/ D 1=2,
so g has an analytic inverse function near the origin. Consequently, we may write g�1.t/D
2t.1C 2tE.2t// for an analytic function E on a neighborhood of the origin. Let us set

QS.z; z0/ D
�

2
� Sc.z; z

0/ and Qt .z; z0/ D 2 � jz � z0j:

From (3.6) we have 1 � cos QS.z; z0/ D Qt .z; z0/=2. Now, recalling that j QS.z; z0/j ≲ 2�j=2,
Qt .z; z0/ � 2�j , and j > C for a large C , from the discussion above we have QS2.z; z0/ D
g�1.Qt .z; z0/=2/. Thus, we obtain

(4.8) QS.z; z0/ D

q
Qt .z; z0/.1C Qt .z; z0/E.Qt .z; z0///:

This shows that QS becomes singular on the set ¹.z; z0/ W Qt .z; z0/D 0º. However, the singu-
larity does not appear thanks to our decomposition. In fact, changing variables .z; z0/!
Lj .z;z

0/, we can show the consequent scaled function 2j=2 QS ıLj has bounded derivatives
on U .



E. Jeong, S. Lee and J. Ryu 18

Indeed, writing

jz � z0j D .z1 � z
0
1/
�
1C

.z2 � z
0
2/
2

.z1 � z
0
1/
2

�1=2
for .z; z0/2 supp a � supp a0 and using power series expansion, we have

Qt .z; z0/ D 2 � .z1 � z
0
1/ �

.z2 � z
0
2/
2

2.z1 � z
0
1/
.1CO.jz2 � z

0
2j
2//; .z; z0/2 supp A:

Thus, it follows that

(4.9) Qtj .z; z
0/ WD 2j Qt .Lj .z; z

0// D P.z; z0/CO.2�j jz2 � z
0
2j
4/

for .z; z0/ 2 U , where

(4.10) P.z; z0/ D z01 � z1 �
.z2 � z

0
2/
2

2.2C 2�j .z1 � z
0
1//
�

In particular, we note Qtj � 1 and P � 1 on U . Combining (4.9) and (4.8) gives

(4.11) QSj .z; z
0/ WD 2j=2 QS.Lj .z; z

0// D P1=2.z; z0/C E.z; z0/;

where E is an analytic function satisfying

(4.12) sup
.z;z0 /2U

j@˛z;z0E.z; z
0/j ≲˛ 2

�j :

We now claim that

(4.13) sup
.z;z0 /2U

j@˛z;z0Aj j � C˛:

For this, it is sufficient to show that the same bound holds for Ae1 ı Lj , a1 ı Lj , and
a2 ı Lj . Those for a1 ı Lj and a2 ı Lj are clear. By (4.1) and (3.15), we need only to
show uniform bounds on the derivatives of %e1 ı Lj ;

Q� ı Lj ; b0 WD .� sin�1=2/ ı Sc ı Lj ; and b1 WD 2
�j=4 cos�1=2 ıSc ı Lj

over the set U . The bounds on %e1 ı Lj are easy. To handle @˛ Q� ı Lj , we note from (4.9)
that sup.z;z0 /2U j@

˛ Qtj .z; z
0/j ≲˛ 1 for any ˛. Thus, from this and (3.7) the desired bounds

follow. For the bounds on @˛b0 and @˛b1, by (4.11) we observe that

(4.14) sup
.z;z0 /2U

j@˛ QSj .z; z
0/j ≲˛ 1:

Thus, using (3.10), (3.11), and the fact j sinSc ı Lj .z; z0/j � 1, one can easily see

sup
.z;z0 /2U

j@˛b0.z; z
0/j ≲˛ 1:

Finally, for b1, we write b1 D 2
�j=4 sin�1=2. QS ı Lj / using an elementary trigonometric

identity. Denote κ.s/ D .s= sin s/1=2, which is analytic on .��; �/. We write

b1 D 2
�j=4 sin�1=2.2�j=2 QSj / D QS

�1=2
j κ.2�j=2 QSj /:
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By (4.11) we see QSj � 1 on U . Therefore,

sup
.z;z0 /2U

j@˛b1.z; z
0/j ≲˛ 1:

This proves the claim (4.13).
We now consider

p.z; z0/ WD Sc C cosSc sinSc :

Note that p.z; z0/ D �=2 � QS C 2�1 sin 2 QS . Expanding in power series gives

p.z; z0/ D
�

2
�
2

3
QS3.1CO. QS2//:

By (4.11), we get

(4.15)
�

2
� p.Lj .z; z

0// D
2

3
2�3j=2

�
P3=2.z; z0/C E.z; z0/

�
;

where E is an analytic error satisfying (4.12). Note

S ı Lj .z; z0/ D 2�3j=2 S.z; z0/ � 2�j=2 z02:

By (4.3) we see

(4.16) 23j=2 ĵ .z; z
0/ ' ˆ�j .z; z

0/ WD �
2

3
P3=2.z; z0/C S.z; z0/C E.z; z0/;

where E is a smooth function satisfying condition (4.12). From (4.16), it is easy to see
that sup.z;z0 /2U j@

˛
z;z0ˆ

�
j j � C˛ .

4.3. Carleson–Sjölin argument

To estimate the right-hand side of (4.6), we follow the classic argument due to Carleson
and Sjölin [2]. Similarly as before, for p0 2C1.R3/ and a0 2C1c .R

3/, we denote

C�Œp
0; a0�g.z/ D

Z
ei�p0.z;s/ a0.z; s/g.s/ ds; .z; s/ 2 R2 �R:

Setting ˆ�; z
0
1

j .z; s/ D ˆ�j .z; z
0
1; s/ and A

z01
j .z; s/ D Aj .z; z

0
1; s/, we observe

T2�3j=2�Œˆ
�
j ;Aj �f D

Z
C2�3j=2�Œˆ

�; z01
j ;A

z01
j � f .z

0
1; �/ dz

0
1:

Since 2j � �2=3, thanks to (4.6), the desired estimate in Proposition 4.2 follows via the
Minkowski inequality if we show kC�Œˆ

�; z01
j ;A

z01
j �k4!4 ≲" �

"�1=2 for � � 1.
For simplicity, we make an additional harmless change of variables z1 ! z01 � z1, so

that we can replace ˆ�j .z; z
0
1; s/ and Aj .z; z

0
1; s/ with

ˆ�
j;z01

.z; s/ WD ˆ�j .z
0
1 � z1; z2; z

0
1; s/ and Aj;z01.z; s/ WD Aj .z

0
1 � z1; z2; z

0
1; s/;
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respectively. Recalling (4.7), we note that

(4.17) supp Aj;z01 �
QU WD ¹.z; s/ W jz1 � bj � 2"0; jz2j; jsj � "0º:

The matter is reduced to showing the uniform bound, for � � 1,

(4.18) kC�Œˆ
�

j;z01
;Aj;z01 �k4!4 ≲" �

"�1=2:

We are now ready to complete the proof of Proposition 4.2 by obtaining the estim-
ate (4.18). As already mentioned, we use the well-known result regarding the oscillatory
integral operator satisfying the Carleson–Sjölin condition [2, 7]. The derivatives of Aj;z01
and ˆ�

j;z01
are, as seen above, uniformly bounded. Thus, for the purpose we only have

to show that the phase ˆ�
j;z01

satisfies the Carleson–Sjölin condition in a uniform manner
provided that "0 is small enough and j is large enough.

We set e.z; s/ D .z2 � s/2=.2z1.2 � 2�j z1//. Since b 2 .2�2; 1/, recalling (4.17) we
note that e D O..z2 � s/2/ D O."20/ on supp Aj;z01 . We also note from (4.10) that

P3=2.z01 � z1; z2; z
0
1; s/ D z

3=2
1 .1 � e.z; s//3=2:

Expending .1 � e/3=2 in power series gives

P3=2.z01 � z1; z2; z
0
1; s/ ' �

3

2
z
3=2
1 e.z; s/CO.jz2 � sj

4/:

Consequently, since e.z; s/ D .z2 � s/2=.4z1/CO.2�j jz2 � sj2/, we obtain

�
2

3
P3=2.z01 � z1; z2; z

0
1; s/ '

1

4
z
1=2
1 .z2 � s/

2
C Ej .z; s/;

where Ej is a smooth function on supp Aj;z01 such that

Ej .z; s/ D O.jz2 � sj
4/CO.2�j jz2 � sj

2/:

As for S.z; z01; s/ D 2
�1.z2z

0
1 � z1s/, discarding the harmless term, we only need to con-

sider �z1s=2. Therefore, recalling (4.16), to obtain (4.18) we only have to consider

(4.19) Q̂ �
j;z01

.z; s/ D �.z; s/C E.z; z01; s/C Ej .z; s/

instead of ˆ�
j;z01

(here we slightly abuse the notation') where

�.z; s/ D 4�1.2.z01 � z1/C 2z
1=2
1 z2; z

1=2
1 / � .�s; s2/:

To show the uniform bound (4.18), we use the Carleson–Sjölin estimate [2] for the
oscillatory integral operator C�Œ Q̂

�

j;z01
;Aj;z01 � (also see [7] and [17], pp. 412–414) and its

stability under small smooth perturbation of the phases and amplitude functions.
For a function .z; s/ 7! �.z; s/, we denote

M.�/.z; s/ D

�
rz@s�.z; s/

rz@
2
s �.z; s/

�
:
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A computation shows that

M.�/.z; s/ D
1

4

�
�1 2s

0 2

��
�2C z

�1=2
1 z2 2z

1=2
1

z
�1=2
1 =2 0

�
so det M.�/ D 1=8. Therefore, by the Carleson–Sjölin estimate (see [2]), it follows that
kC�Œ�;Ak4!4 ≲" �"�1=2 for a smooth function A supported in QU .

We now recall (4.19). Since jz2 � sj � 2"0 and j > C for a large positive con-
stant C and E satisfies (4.12), taking "0 small enough and j > C large enough, we may
regard Q̂ �

j;z01
as a small smooth perturbation of �. Note that

M. Q̂ �
j;z01

/.z; s/ DM.�/.z; s/CO.2�j /CO.jz2 � sj
3/:

Therefore,
M. Q̂ �

j;z01
/ �M.�/.z; s/ D O.2�j C "0/:

Combining this with the fact that Q̂ �
j;z01

;Aj;z01 has uniformly bounded derivatives, we
conclude that the uniform bound (4.18) holds if "0 is small enough and j is large enough.

Under the above circumstance, uniformity of the estimates (i.e., stability of Lp bound
on) for the oscillatory integral operator of Carleson–Sjölin type in R2 �R is evident in its
proof [2] (also see [7] and [17], pp. 412–414).
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