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Abstract. Let f 2 Sk.�1.N // be a primitive holomorphic form of arbitrary weight k and levelN .
We show that the completed L-function of f has �.T ı / simple zeros with imaginary part in
Œ�T; T �, for any ı < 2=27. This is the first power bound in this problem for f of non-trivial level,
where previously the best results were �.log log logT / for N odd, due to Booker, Milinovich, and
Ng, and infinitely many simple zeros for N even, due to Booker. In addition, for f of trivial level
(N D 1), we also improve an old result of Conrey and Ghosh on the number of simple zeros.
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1. Introduction

1.1. Discussion

Let � be a cuspidal automorphic representation of GL.n;AQ/ with completed L-func-
tion ƒ� . It is conjectured that all the zeros of ƒ�.s/ are on the critical line <.s/ D 1=2
and, apart from at most one multiple zero of algebraic origin, are all simple. For degree
nD 1 (Dirichlet L-functions), Levinson’s method [3,14,25,30] shows that a positive pro-
portion of the zeros are simultaneously simple and on the critical line. An adaptation of
that method for degree nD 2 also implies that a positive proportion of the zeros are on the
critical line [1], but cannot tackle simple zeros and only shows that a positive proportion
of the zeros are of order at most 3 [12].

In this paper we consider the problem of obtaining lower bounds for the number of
simple zeros in the case of degree n D 2. Let f 2 Sk.�1.N // be a primitive form (i.e. a
normalized Hecke newform) of arbitrary weight k and level N . The first challenge is to
show that ƒf has any simple zeros at all. While for a given f this can be checked com-
putationally, the problem was only completely solved in 2012, after a breakthrough of
Booker [5], who in fact showed that ƒf has infinitely many simple zeros. The argument
relies on simple zeros of local factors of ƒf , thus differentiating it from counterexam-
ples such as the square of a degree one L-function. Another key ingredient in Booker’s
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method is non-vanishing of automorphic L-functions on the line <.s/ D 1, more specifi-
cally applied to multiplicative twists of f , foreshadowing an important obstruction in the
method.

With Booker’s result in hand, the next challenge is to obtain quantitative bounds on
the number of simple zeros of ƒf . Here one runs into issues related to the level N that
are somewhat reminiscent of the difficulties in extending the Hecke converse theorem to
general level. As in Weil’s generalization of the converse theorem, an important tool is
the twists of f by multiplicative characters. However, in our case an obstruction remains.
It roughly lies in the possibility that ƒf .s/ has simple zeros arbitrarily close to the line
<.s/ D 1, and in addition that a certain conspiracy between additive twists of f happens
at those simple zeros – namely that (1.4) below does not have a pole at any of those simple
zeros, for any choice of ˛ 2 Q�.

Let
N s
f .T / WD j¹� 2 C W j=.�/j � T and � is a simple zero of ƒf ºj

denote the number of simple zeros of ƒf with imaginary part in Œ�T; T �. For the case of
full level (N D 1), it is easy to directly check that no widespread pole cancellation in (1.4)
can happen. In a paper from 1988 which introduced ideas used in most subsequent works
on this topic, Conrey and Ghosh [10] showed that if f D � is the Ramanujan function,
thenN s

f
.T /D�.T 1=6�"/ for any " > 0. Their method applies to any f of levelN D 1, as

long as one assumes the existence of at least one simple zero for ƒf (which they verified
for f D �, and is now known to hold in general due to Booker’s work).

For general level N , Booker, Milinovich, and Ng [8] recently showed that there exists
an unspecified Dirichlet character �, possibly depending on f , such that N s

f˝�
.T / D

�.T 1=6�"/ for any " > 0 (see also [11] for a strong result on simple zeros of twists of f ).
In the same paper, the authors also used the zero-free region ofƒf to slightly limit where
pole cancellations in (1.4) can happen. As a result, they made Booker’s result quantitative
for f of odd level, showing that N s

f
.T / D �.log log logT /. The restriction 2 − N comes

from the prominent role played by certain additive twists by 1=2 in their argument (the
use of such twists dates back to the work of Conrey and Ghosh), relying on the fact that
there are no non-trivial Dirichlet characters modulo 2.

1.2. Results

Our main result removes the parity restriction on the level, and rules out complete pole
cancellation in (1.4) on a wide strip, leading to the first power bound for the number of
simple zeros of ƒf when f has non-trivial level.

Theorem 1.1 (Power bound for arbitrary level). Let f 2 Sk.�0.N /; �/ be a primitive
holomorphic modular form of arbitrary weight k, level N , and nebentypus � . Then

N s
f .T / D �.T

ı/ for any ı < 2
27

.

We obtain a power bound by showing that the aforementioned complete pole cancel-
lation in (1.4) at a simple zero � ofƒf would imply thatƒf˝�.�/D 0 for a large number
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of characters �. Such an amount of vanishing can then be ruled out at points � close to
the line <.s/ D 1, using zero-density results. In order to remove the parity restriction on
the level, we get the method started by producing a pole for a certain Dirichlet series via
ideas of Booker [5], instead of relying on the special nature of twists by 1=2 to do so. See
Section 1.3 for a sketch of both arguments.

In Appendix A, we use standard Dirichlet polynomial methods [15,19,27,28] to obtain
a zero-density bound in degree 2 which is better in the twist aspect (hence for the appli-
cation at hand) than other general results from the literature [21, 24]. It is likely that the
exponent in Theorem 1.1 can be improved by refining this zero-density result, or better
yet by dealing directly with non-vanishing at an arbitrary (but fixed) point �. To be more
precise, the problem is to show that the number of primitive characters � .mod q/ with
q �Q such thatƒf˝�.�/D 0 is o.Q=logQ/. Using Proposition A.1 we obtain this result
as long as <.�/ > 7=9, and the challenge is to enlarge such a half-plane (for instance, the
density hypothesis for the family of twists of f would allow one to replace 7=9with 3=4).
This type of non-vanishing problem for families has received considerable attention at the
central point [17, 22, 29], but much less seems to be known in general, and we hope that
providing an application will lead to further study. An important feature is that we require
more than a 100% rate of non-vanishing, and in fact wish to rule out a thin set of zeros,
of size less than the square-root of the size of the family.

Finally, we also improve the exponent in the result of Conrey and Ghosh [10] from
1=6 to 1=5.

Theorem 1.2 (Improved exponent for full level). Let f 2 Sk.�0.1// be a primitive holo-
morphic modular form of arbitrary weight k for the full modular group. Then

N s
f .T / D �.T

�/ for any � < 1
5

.

Theorem 1.2 comes from a simple modification of the last step of the original argu-
ment (or its reformulated version in the language of this paper, as presented in Section 5).
Instead of using Weyl subconvexity for ƒf , we input Jutila’s sixth moment bound [20].
Analogous improvements in the exponent of Theorem 1.1 would also follow if one had a
similar moment bound for f of general level, which may be accessible with current tools
but we do not pursue it here.

It seems likely that the methods of this paper would apply to Maass forms as well,
along the lines of work of Booker, Cho, and Kim [6]. Indeed, while we do use the Ramanu-
jan conjecture for convenience, the argument only really requires information which is
already provided by Rankin–Selberg. We restrict ourselves to holomorphic forms for sim-
plicity.

1.3. Sketch of the argument

Let us describe the obstructions that arise when the level is non-trivial. First we must give
an overview of the general method, but we shall be somewhat imprecise and use standard
notations that will be familiar to the experts without further explanation, postponing the
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definitions until Section 2. The fundamental object is the Dirichlet series

Df .s/ WD Lf .s/

�
L0
f

Lf

�0
.s/ D

1X
nD1

cf .n/n
�s for <.s/ > 1; (1.1)

which has meromorphic continuation to C with poles exactly at the simple zeros ofLf .s/
(the incomplete L-function of f ), including the trivial ones at s D 1�k

2
� n for n 2 Z�0.

It is convenient to work with the completed version�f .s/ WD �C.sC
k�1
2
/Df .s/, which

satisfies a certain functional equation coming from that of ƒf .
The way we obtain information about simple zeros is using the inverse Mellin trans-

form

Ff .z/ WD 2

1X
nD1

cf .n/n
k�1
2 e.nz/ D

1

2�i

Z
<.s/D2

�f .s/.�iz/
�s� k�12 ds

for z 2H. Indeed, shifting the line of integration to the left of the critical strip and return-
ing to the right via the functional equation of �f , we pick up poles of �f and obtain a
relation of the form

Ff .z/ D .�/ � F xf

�
�
1

Nz

�
C Sf .z/C .��/ (1.2)

for certain terms .�/ and .��/ that we brush aside for now. Here the poles contribute

Sf .z/ WD �
X
�

ƒ0f .�/.�iz/
��� k�12 ; (1.3)

where � runs over the simple zeros of ƒf .
Understanding the size of Sf gives information about the simple zeros of ƒf . To do

so we apply a Mellin transform to (1.2) along the half-line <.z/ D ˛ 2 Q�. This gives
rise to additive twists of �f , and in the end one obtains a relation between the Mellin
transform of Sf and an expression of the form

�f .s; ˛/ � .���/ �� xf

�
s;�

1

N˛

�
(1.4)

for some non-vanishing factor .���/ which we ignore in this sketch.
The goal now becomes to show that (1.4) has a pole with large real part (i.e. at

least 1=2) for some ˛ 2 Q�, since then this pole gets transferred to the Mellin transform
of Sf and we get a lower bound for simple zeros. As an aside, the reason why the method
produces omega results is that we obtain only minimal information about the pole struc-
ture of the Mellin transform of Sf (which makes the application of Tauberian theorems
difficult), as opposed to bounds for Sf itself.

Since additive twists of �f are not so well-behaved, we expand them into multiplica-
tive twists instead to understand their poles. At least for ˛ D a=q with q − N a prime, we
obtain

�f .s; a=q/ D �f .s/C b�0;a ��f .s; �0/C
X

� .modq/
�6D�0

b�;a ��f˝�.s/ (1.5)
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for certain coefficients b�;a, where �0 .mod q/ denotes the trivial character. A key point
is that the term �f .s/C b�0;a ��f .s; �0/ has the same poles as �f .s/ in the interior of
the critical strip.

Here it becomes clear why the case N D 1 is special: one may simply plug ˛ D 1=2
into (1.4). Applying (1.5) and using the fact that there are no non-trivial characters mod-
ulo 2, one checks that (1.4) has the same poles as�f .s/ inside the critical strip (hence by
the aforementioned result of Booker [5] it has at least one pole with real part greater than
or equal to 1=2, and one recovers the bound of Conrey and Ghosh).

For non-trivial level, as pointed out in [8], one encounters obstacles that are reminis-
cent of the difficulties in extending Hecke’s converse theorem to arbitrary level. However,
Booker, Milinovich, and Ng are still able to obtain a result for N odd, not only using the
special nature of the choice ˛ D 1=2, but also adding an extra additive twist in the outset
of the problem and leveraging various choices of ˛ against each other.

The improvements of the present work are twofold, and in essentially disjoint parts
of the argument sketched above. To obtain a result for f of any level (without parity
restrictions), instead of using twists by 1=2 we provide in Section 3 a new unified way of
verifying that (1.4) has poles with real part greater than or equal to 1=2 for some choice of
˛ 2 Q�. The main point is that it is possible to construct a linear combination of certain
terms of the form (1.4) that equals

�f .s; 1=p/ ��f .s;� xN=p/ (1.6)

for a certain prime p. Then one may use ideas of Booker [5] to show that (1.6) has a pole
inside the critical strip, ultimately coming from the simple zeros of local factors of ƒf .
We refer to Section 3.1 for a more detailed discussion of this part of the argument, and to
[4, 7] and the references therein for striking uses of similar ideas.

To upgrade such a pole inside the critical strip to one with real part � 1=2, we use
the important feature that (1.6) was constructed specifically to satisfy a certain functional
equation relating s to 1 � s (reminiscent of Voronoi summation). Thus the poles of (1.6)
inside the critical strip are invariant under reflection through the central point, which gives
the desired pole with real part at least 1=2 and makes the method applicable to all N .

We now turn to the second improvement, which is what allows us to obtain a power
bound. Observe from (1.3) that the contribution to Sf of each simple zero � is weighted by
a factor that becomes larger with <.�/, so in its current form the result is poorer if ƒf .s/
has simple zeros close to <.s/ D 1. If all the simple zeros � satisfy <.�/ � 7=9, then
we simply use the argument above and obtain a power bound for the number of simple
zeros of ƒf . Otherwise, if � is a simple zero with <.�/ > 7=9, we will show that there
exists ˛ 2 Q� such that (1.4) also has a pole at � (in [8] the key to control this scenario
is using the zero-free region of ƒf to limit <.�/, which is why the resulting bound is of
logarithmic quality). The pole of (1.4) at � ultimately gives an even better power bound,
so either way we obtain the desired result.

Let � be a simple zero of ƒf (therefore a pole of �f ) with <.�/ > 7=9. To rule
out pole cancellations in (1.4) for every ˛ 2 Q�, we introduce a new number-theoretic
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input into the argument, namely a zero-density estimate for twists of f . This is done by
observing that for any prime p � 1 .mod N/ there is a linear combination of terms of the
form (1.4) that gives

p1�2s�f .s/ ��f .s; 1=p/: (1.7)

One can use (1.5) to understand (1.7), concluding that it is equal (modulo a term that is
holomorphic at s D �) to

bf;�0.s/ ��f .s/C
X

� .modp/
� 6D�0

b� ��f˝�.s/ (1.8)

for some factor bf;�0.s/ which is non-vanishing inside the critical strip (hence at s D �).
If (1.7) does not have a pole at s D �, then the pole of �f .s/ there must be cancelled

in (1.8), so �f˝�.s/ must have a pole at s D � for at least one non-trivial character �
.mod p/. This implies that ƒf˝�.�/ D 0 for at least one non-trivial character � modulo
every prime p � 1 .mod N/. However, since <.�/ > 7=9, we can rule this out via zero-
density estimates for twists of f . Therefore we show that (1.4) has a pole at s D � for
some ˛ 2 Q�, which implies a power bound for the number of simple zeros of ƒf .

2. The setup

2.1. Definitions and background

Let f 2 Sk.�0.N /; �/ be a primitive form (i.e. an arithmetically normalized holomor-
phic Hecke cusp newform) of arbitrary weight k, level N , and nebentypus character �
.mod N/. Writing the Fourier expansion

f .z/ D

1X
nD1

�f .n/n
k�1
2 e.nz/

for z 2 H, where �f .1/ D 1, we have Deligne’s bound j�f .n/j � d.n/. Associate to f
the usual completed L-function ƒf .s/ WD �C.s C

k�1
2
/Lf .s/, which is entire, where

�C.s/ WD 2.2�/
�s�.s/ and

Lf .s/ WD

1X
nD1

�f .n/n
�s
D

Y
p prime

.1 � �f .p/p
�s
C �.p/p�2s/�1 for <.s/ > 1:

Then we have the functional equation ƒf .s/ D �fN
1=2�sƒ xf .1 � s/, where xf 2

Sk.�0.N /; x�/ is the dual of f , with Fourier coefficients � xf .n/ D �f .n/, and �f 2 C
is the root number of f , with j�f j D 1.

Let Df be as in (1.1). For ˛ 2 Q�, � a Dirichlet character, and <.s/ > 1, we define
the additive twists

Lf .s; ˛/ WD

1X
nD1

�f .n/e.n˛/n
�s and Df .s; ˛/ WD

1X
nD1

cf .n/e.n˛/n
�s;
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and the multiplicative twists

Lf .s; �/ WD

1X
nD1

�f .n/�.n/n
�s and Df .s; �/ WD

1X
nD1

cf .n/�.n/n
�s :

Denote
Q.N/ WD ¹1º [ ¹p prime W p − N º:

For each Dirichlet character � .mod q/, there is a unique primitive form f ˝ � such that
�f˝�.n/D �f .n/�.n/ for every nwith .n; q/D 1, by [2, Theorem 3.2]. If q 2Q.N/ and
� is non-trivial, then in factLf .s;�/DLf˝�.s/ and therefore this multiplicative twist has

analytic continuation to C. This shows that Df .s; �/ D Lf .s; �/.
L0
f
.s;�/

Lf .s;�/
/0 D Df˝�.s/

has meromorphic continuation to C.
Similar results hold for the additive twists as well. Indeed, if q 2 Q.N/, then we can

expand our additive characters into multiplicative ones using

e

�
n

q

�
D
q � 1

�.q/
C

q

�.q/
�.�0/�0.n/C

1

�.q/

X
� .modq/
�6D�0

�.x�/�.n/; (2.1)

where �0 .mod q/ is the trivial character, the sum ranges over all non-trivial � .mod q/,
and � denotes the Gauss sum (observe that �.�0/ D 1 if q D 1 and �.�0/ D �1 oth-
erwise). For any a 2 Z, this implies that Lf .s; a=q/ is entire, and Df .s; a=q/ extends
meromorphically to C.

To be more precise, for q 2 Q.N/, consider the rational functions

Pf;q.x/ WD

´
1 if q D 1;

1 � �f .q/x C �.q/x
2 otherwise;

and

Rf;q.x/ WD

8̂<̂
:
0 if q D 1;

q log2 q
�.q/

x.�f .q/ � 4�.q/x C �f .q/�.q/x
2/

Pf;q.x/
otherwise:

Then (2.1) gives

Df .s; a=q/ D
q � 1

�.q/
Df .s/C

q

�.q/
�.�0/�0.a/Df .s; �0/

C
1

�.q/

X
� .modq/
�6D�0

�.x�/�.a/Df .s; �/: (2.2)

We have seen before that if � .mod q/ is non-trivial then Df .s; �/ D Df˝�.s/ extends

meromorphically to C, but also fromDf .s; �0/D Lf .s; �0/.
L0
f
.s;�0/

Lf .s;�0/
/0 and Lf .s; �0/D

Pf;q.q
�s/Lf .s/ (coming from the Euler product of Lf ) we get

Df .s; �0/ D Pf;q.q
�s/Df .s/ �

�.q/

q
Rf;q.q

�s/Lf .s/; (2.3)
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and this provides the meromorphic continuation ofDf .s; a=q/ to C. The analytic contin-
uation of Lf .s; a=q/ to C follows in the same way.

For .a; q/ D 1, it will be convenient to work with

Df;a;q.s/ WD Df .s; a=q/ �Rf;q.q
�s/Lf .s/ D

1X
nD1

cf;a;q.n/n
�s for <.s/ > 1;

where the Dirichlet series expansion follows from (2.2), (2.3), and (1.1). Clearly
Df;a;q.s/ extends meromorphically to C. We then define additive and multiplicative twists
of Df;a;q.s/. Namely, if � is a Dirichlet character and ˛ 2 Q�, then for <.s/ > 1 we let

Df;a;q.s; �/ WD

1X
nD1

cf;a;q.n/�.n/n
�s and Df;a;q.s; ˛/ WD

1X
nD1

cf;a;q.n/e.n˛/n
�s :

Finally, associate to each of Lf ; Df ; Df;a;q and their (additive or multiplicative)
twists the completed versions ƒf ; �f ; �f;a;q , respectively, obtained by multiplying by
�C.s C

k�1
2
/.

2.2. Functional equations

If q 2 Q.N/ and � .mod q/ is non-trivial, the functional equation for f ˝ � gives

ƒf .s; �/ D �f � �.q/�.N /
�.�/2

q
.Nq2/1=2�sƒ xf .1 � s; x�/;

and as a consequence we obtain the corresponding functional equation for �f .s; �/ D
�f˝�.s/, given by

�f .s; �/ � �f � �.q/�.N /
�.�/2

q
.Nq2/1=2�s� xf .1 � s; x�/

D ƒf .s; �/

�
 0
�
k C 1

2
� s

�
�  0

�
s C

k � 1

2

��
;

where  .s/ WD �0

�
.s/. Combining that with the relation

�f;a;q.s/ D

�
q � 1

�.q/
C

q

�.q/
�.�0/Pf;q.q

�s/

�
�f .s/ C

1

�.q/

X
� .modq/
�6D�0

�.x�/�.a/�f .s; �/

(2.4)

for q 2 Q.N/ and .a; q/ D 1, which follows from (2.2) and (2.3), we obtain a functional
equation for additive twists of �f .

Proposition 2.1 (Functional equation for �f;a;q [8, Proposition 2.1]). Let f 2

Sk.�0.N /; �/ be a primitive form, q 2 Q.N/, and a 2 Z coprime to q. Then

�f;a;q.s/ � �f � �.q/.Nq
2/1=2�s� xf ;�Na;q.1 � s/

D ƒf .s; a=q/

�
 0
�
k C 1

2
� s

�
�  0

�
s C

k � 1

2

��
:
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2.3. The detection mechanism for simple zeros

We give a brief account of the techniques of [8], since they will be relevant in what fol-
lows, but refer to that paper for details. The main idea originates in [10], and is developed
in greater generality in [5]. The starting point is to study the poles of�f by relating them
to the inverse Mellin transform of �f via a contour integral. We develop the notation in
the more general case of �f;a;q for future reference. For z 2 H, let

Ff;a;q.z/ WD 2

1X
nD1

cf;a;q.n/n
k�1
2 e.nz/;

Sf;a;q.z/ WD
X

<.�/2.0;1/

Res
sD�

�f;a;q.s/.�iz/
�s� k�12 ;

Af;a;q.z/ WD
1

2�i

Z
<.s/Dk=2

ƒf .s; a=q/

�
 0
�
s C

k � 1

2

�
C  0

�
s �

k � 1

2

��
� .�iz/�s�

k�1
2 ds;

Bf;a;q.z/ WD
1

2�i

Z
<.s/Dk=2

ƒf .s; a=q/
�2

sin2
�
�
�
s C k�1

2

�� .�iz/�s� k�12 ds;

where .�iz/�s�
k�1
2 is defined in terms of the principal branch of log.�iz/.

Taking the inverse Mellin transform of �f;a;q (evaluated at �iz), shifting the line of
integration to the left of the critical strip – where we pick up the factor Sf;a;q correspond-
ing to the poles – and using the functional equation (Proposition 2.1) to return to the right
of the critical strip, we obtain (see [8, Lemma 2.3] for details) the relation

Sf;a;q.z/ D Ff;a;q.z/ �
�f � �.q/

.�i
p
Nqz/k

F xf ;�Na;q

�
�

1

Nq2z

�
C Af;a;q.z/ � Bf;a;q.z/:

The next step is to take the Mellin transform for z 2 H along a vertical line in the
relation above. Such a procedure along the line <.z/D 0 would essentially bring us back
to the previous step, but we instead integrate along<.z/D ˛ for some ˛ 2Q� and obtain
additive twists. The final result is the following.

Proposition 2.2 (Detecting poles of�f;a;q via further additive twists [8, Proposition 2.2]).
Define

Hf;a;q;˛.s/ WD �f;a;q.s; ˛/� �f � �.q/.i sgn.˛//k.Nq2˛2/s�1=2� xf ;�Na;q

�
s;�

1

Nq2˛

�
and

If;a;q;˛.s/ WD

Z j˛j=4
0

Sf;a;q.˛ C iy/y
sC k�12

dy

y
:

Then If;a;q;˛.s/ �Hf;a;q;˛.s/ has analytic continuation to <.s/ > 0. Therefore, ifZ j˛j=4
0

jSf;a;q.˛ C iy/jy
�C k�12

dy

y
<1 (2.5)

for some � � 0, then Hf;a;q;˛.s/ is holomorphic for <.s/ > � .
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We will use only the special case aD qD 1 (i.e. detecting poles of�f , or equivalently
simple zeros of Lf ) of Proposition 2.2, but the method of proof used for the general case
�f;a;q will be the key to showing that Hf;1;1;˛ has a pole in the critical strip for some
˛ 2 Q�. For convenience, from now on we denote Hf;˛ WD Hf;1;1;˛ .

3. Existence of poles of Hf;˛

3.1. Outline of the method

To establish an abundance of simple zeros of Lf (i.e. poles of �f ), we will use the poles
of Hf;˛ in the critical strip, since through (2.5) their existence would imply that Sf;1;1
cannot be always small. However, showing that even a single such pole of Hf;˛ exists
turns out to be difficult, since one needs to rule out a cancellation of poles between the
two terms of Hf;˛ . The purpose of this section is to establish such a result.

In [8] the authors circumvent this issue in the case 2 − N by exploiting the relations
between the Hf;a;q;˛ for various choices of parameters .a; q; ˛/. The limitation on the
level N comes from the key role played by twists by 1=2 (which also play an important
role in [10]), since the poles of �f;1;2 are easily understood in terms of those of �f , due
to (2.4) and the fact that there are no non-trivial characters modulo 2. The issue is that this
line of argument requires the case q D 2 of Proposition 2.2, which is not available if 2 jN
since the functional equation in Proposition 2.1 no longer holds, as the local factor for a
prime dividing the level has different, more problematic properties.

We will follow a different approach based on the methods of [5], where a signifi-
cant difficulty is showing that �f has even a single pole in the critical strip, and this is
reminiscent of our situation for Hf;˛ . The argument in the reference proceeds by con-
tradiction, using a refined version of Proposition 2.2 with lower order terms to obtain a
relation between �f .s; ˛/ and �f .s C 1; ˛i / for certain ˛i , in the absence of poles. This
would give a holomorphic continuation of�f .s;˛/ to the line<.s/D 0, where for certain
˛ it plainly has poles coming from simple zeros of local factors of Lf at primes divid-
ing the denominator of ˛. We apply this argument for a certain difference of L-functions
related to Hf;˛ , instead of �f , and our issue of ruling out cancellations of poles in Hf;˛
at unknown locations inside the critical strip reduces to the simpler task of ruling out such
cancellations at the simple zeros of certain local factors, where this can be explicitly done.

3.2. Implementation

Observe that
Hf;1.s/ D �f .s/ � �f � i

kN s�1=2� xf .s;�1=N/;

and if p is a prime satisfying p � 1 .mod N/ then � xf .s;�p=N/ D � xf .s;�1=N/, so

Hf;1=p.s/ D �f .s; 1=p/ � �f � i
k.N=p2/s�1=2� xf .s;�1=N/:
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Therefore,

p1�2sHf;1.s/ �Hf;1=p.s/ D p
1�2s�f .s/ ��f .s; 1=p/

D p1�2s�f .s/ ��f;1;p.s/CRf;p.p
�s/ƒf .s/: (3.1)

Similarly, if we let d WD p�1
N
2 Z>0 then

Hf;d .s/ D �f .s/ � �f � i
k.Nd2/s�1=2� xf

�
s;�

1

Nd

�
;

and � xf .s;�
p
Nd
/ D � xf .s;�

1
Nd
/, so

Hf;d=p.s/ D �f .s; d=p/ � �f � i
k.Nd2=p2/s�1=2� xf

�
s;�

1

Nd

�
:

Therefore, since d � � xN .mod p/,

p1�2sHf;d .s/ �Hf;d=p.s/ D p
1�2s�f .s/ ��f .s; d=p/

D p1�2s�f .s/ ��f;� xN;p.s/CRf;p.p
�s/ƒf .s/: (3.2)

Subtracting (3.1) from (3.2), we conclude that

p1�2sHf;d .s/ �Hf;d=p.s/ � p
1�2sHf;1.s/CHf;1=p.s/

D �f;1;p.s/ ��f;� xN;p.s/: (3.3)

We will be able to show the existence of useful poles for at least one ofHf;1.s/,Hf;1=p.s/,
Hf;d .s/, or Hf;d=p.s/ using the key proposition below.

Proposition 3.1 (Ruling out complete cancellation of poles). For any prime p 6D N C 1
such that p � 1 .mod N/, the meromorphic function

Gf;p.s/ WD �f;1;p.s/ ��f;� xN;p.s/

has at least one pole in <.s/ 2 .0; 1/.

Remark 3.2. Our proof of Proposition 3.1 can easily be adapted to obtain infinitely many
poles of Gf;p.s/ in <.s/ 2 .0; 1/. Such a result has the same strength for our application
as the existence of a single pole, so for simplicity we stick with the current statement.

Assuming Proposition 3.1, we have the following consequence which will be the start-
ing point in the course of our subsequent analysis.

Proposition 3.3 (Existence of poles with large real part). There exists f̨ 2Q� such that
at least one of Hf; f̨ .s/ or H xf ; f̨ .s/ has a pole in <.s/ 2 Œ1=2; 1/.

Proof. For any prime p 6D N C 1 such that p � 1 .modN/, from the functional equation
in Proposition 2.1 we have
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Gf;p.s/C �f � .Np
2/1=2�sG xf ;p.1 � s/

D .ƒf .s; 1=p/ �ƒf .s;� xN=p// �

�
 0
�
k C 1

2
� s

�
�  0

�
s C

k � 1

2

��
;

as �.p/ D 1. Since ƒf .s; 1=p/ and ƒf .s;� xN=p/ are both entire, as easily follows from
expanding into characters (see (3.4) below for details), and the poles of  0.s/ coincide
with the poles of �.s/, we conclude that Gf;p.s/ and G xf ;p.1� s/ have the same poles in
<.s/ 2 .0; 1/, because the RHS of the equation above is holomorphic in that region.

Combining this with Proposition 3.1, we find that at least one of Gf;p.s/ or G xf ;p.s/
has a pole in <.s/ 2 Œ1=2; 1/, so (3.3) shows that the desired result holds for some f̨ 2

¹d; d=p; 1; 1=pº, where d D p�1
N

as before.

3.3. Preliminary results

Before proceeding to the proof of Proposition 3.1, we take note of certain computations
essentially contained in [8] that will be relevant for our argument. Those are reproduced
in the auxiliary results below for ease of reference.

Lemma 3.4 (Inverse Mellin transform computations). Let 0 < � < 1=2. Then for z 2 H
we have

IRf;a;q.z/ WD
1

2�i

Z
<.s/D1C�

�f;a;q.s/.�iz/
�s� k�12 ds D Ff;a;q.z/

and

ILf;a;q.z/ WD
1

2�i

Z
<.s/D��

�f;a;q.s/.�iz/
�s� k�12 ds

D
�f � �.q/

.�i
p
Nqz/k

F xf ;�Na;q

�
�

1

Nq2z

�
� Af;a;q.z/C Bf;a;q.z/ � Res

sD0
�f;a;q.s/:

Proof. This follows from the functional equation in Proposition 2.1 (for the case of
IL
f;a;q

.z/) and a computation of inverse Mellin transforms. The details are contained in
[8, proof of Lemma 2.3] – see in particular equations .2:9/ and .2:12/ there, and keep in
mind that the residue at s D 0 only contributes if k D 1. Our statement above corrects a
small typo in the computation of this residue at the last display of page 382 of the ref-
erence, where the term �f;a;q.s; a=q/ should be replaced by �f;a;q.s/, according to the
functional equation.

Lemma 3.5 (Auxiliary analytic continuations). Let ˛ 2 Q�. Then for any M 2 Z�0,Z j˛j=4
0

.�i
p
Nq.˛ C iy//�kF xf ;�Na;q

�
�

1

Nq2.˛ C iy/

�
ysC

k�1
2
dy

y

�.i sgn.˛//k
M�1X
mD0

.�i˛/�m
�
sCm�kC1

2

m

�
.Nq2˛2/s�1=2Cm� xf ;�Na;q

�
sCm;�

1

Nq2˛

�
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continues to a holomorphic function in ¹s 2 C W <.s/ > 1 �M º. Furthermore, each ofZ j˛j=4
0

Ff;a;q.˛ C iy/y
sC k�12

dy

y
��f;a;q.s; ˛/;

�C.s/
�1

Z j˛j=4
0

Af;a;q.˛ C iy/y
s dy

y
;

and

�C.s/
�1

Z j˛j=4
0

Bf;a;q.˛ C iy/y
s dy

y

continues to an entire function of s.

Proof. Those are precisely [8, Lemmas 2.4–2.7] in our notation. The first result is the
hardest to establish, and it follows from Taylor expanding the phases in F xf ;�Na;q and
carefully analyzing the ensuing Mellin transforms. The idea is that as z WD ˛ C iy 2

H ranges over the vertical half-line <.z/ D ˛, w WD � 1
Nq2z

2 H ranges over a semi-

circle centered on the x-axis with an endpoint at � 1
Nq2˛

, so to a first approximation the
input w of F xf ;�Na;q in the first integral can be considered to range over the vertical
half-line <.w/ D � 1

Nq2˛
, which by Mellin inversion gives rise to a term of the form

� xf ;�Na;q.s;�
1

Nq2˛
/. The other terms arise from lower order components of the afore-

mentioned Taylor expansion.

Lemma 3.6 (Analytic continuation of Mellin transforms). Let ˛ 2 Q� and M 2 Z�0.
Then Z j˛j=4

0

IRf;a;q.˛ C iy/y
sC k�12

dy

y
��f;a;q.s; ˛/

continues to an entire function of s, andZ j˛j=4
0

�
ILf;a;q.˛ C iy/C Res

sD0
�f;a;q.s/

�
ysC

k�1
2
dy

y

� �f �.q/.i sgn.˛//k
M�1X
mD0

.�i˛/�m
�
s Cm � k C 1=2

m

�
.Nq2˛2/s�1=2Cm

�� xf ;�Na;q

�
s Cm;�

1

Nq2˛

�
continues to a meromorphic function in ¹s 2 C W <.s/ > 1 �M º whose only possible
poles in that region must be at s D 1�k

2
� n for n 2 Z�0.

Proof. This follows directly from plugging the equations in Lemma 3.4 into the integrals
above and using Lemma 3.5 for each term that arises. The only possible poles come
from the integral terms corresponding to Af;a;q and Bf;a;q , whose poles must be poles of
�C.s C

k�1
2
/.
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The next two results determine the locations of the poles of �f;a;q.s/ and some of its
additive twists. Lemma 3.7 is essentially contained in [8, Proposition 2.2], while Lem-
ma 3.8 requires a more careful analysis.

Lemma 3.7 (No exotic poles for �f;a;q). The poles of �f;a;q.s/ satisfy <.s/ 2 .0; 1/ or
s D 1�k

2
� n for some n 2 Z�0.

Proof. First observe that �f;a;q.s/ has no poles with <.s/ � 1. Indeed, this follows from
(2.4) and the fact that for non-trivial � .mod q/ the poles of �f .s/ and �f .s; �/ D
�f˝�.s/ are at simple zeros of Lf .s/ and Lf˝�.s/, respectively, but there are no such
zeros with <.s/ � 1 by non-vanishing for automorphic L-functions [18]. As a conse-
quence, we can also determine the poles of�f;a;q.s/with<.s/� 0, through the functional
equation. Using (2.1) and ƒf .s; �0/ D Pf;q.q�s/ƒf .s/, since .a; q/ D 1 we get

ƒf .s; a=q/ D

�
q � 1

�.q/
C

q

�.q/
�.�0/Pf;q.q

�s/

�
ƒf .s/

C
1

�.q/

X
� .modq/
�6D�0

�.x�/�.a/ƒf˝�.s/; (3.4)

so ƒf .s; a=q/ is entire. The poles of  0.s/ coincide with the poles of �.s/, so Proposi-
tion 2.1 shows that�f;a;q.s/ has no poles with<.s/� 0, except possibly for s D 1�k

2
� n

for some n 2 Z�0.

Lemma 3.8 (Location of exotic poles for additive twists of �f;a;p). Let p; q 2 Q.N/
with p 6D q, and let a; b 2 Z with .a; p/ D .b; q/ D 1. Let �0 .mod q/ and  0 .mod p/
denote the trivial characters. Then

�f;a;p.s; b=q/C �.�0/

�
p � 1

�.p/
C

p

�.p/
�. 0/Pf;p.p

�s/

�
Rf;q.q

�s/ƒf .s/

C
�.�0/

�.p/

X
 .modp/
 6D 0

�. x / .a/Rf˝ ;q.q
�s/ƒf˝ .s/

continues to a holomorphic function in ¹s 2 C W <.s/ � 0º n 1
2
Z.

Proof. By (2.1) we have

�f;a;p.s; b=q/ D
q � 1

�.q/
�f;a;p.s/C

q

�.q/
�.�0/�f;a;p.s; �0/

C
1

�.q/

X
� .modq/
�6D�0

�.x�/�.b/�f;a;p.s; �/:

For non-trivial � .mod q/, we can twist (2.4) by � to get



Simple zeros of GL.2/ L-functions 2999

�f;a;p.s; �/ D

�
p � 1

�.p/
C

p

�.p/
�. 0/Pf;p.p

�s�.p//

�
�f .s; �/

C
1

�.p/

X
 .modp/
 6D 0

�. x / .a/�f .s;  �/

D

�
p � 1

�.p/
C

p

�.p/
�. 0/Pf˝�;p.p

�s/

�
�f˝�.s/

C
1

�.p/

X
 .modp/
 6D 0

�. x / .a/�f˝ �.s/;

as � .mod q/ and  � .mod pq/ are primitive characters. This shows that �f;a;p.s; �/ is
holomorphic in ¹s 2 C W <.s/ � 0º n 1

2
Z, since this is the case for each of �f˝�.s/ and

�f˝ �.s/ due to Lemma 3.7. The same property also holds for �f;a;p.s/ by the same
lemma, so we are left with analyzing�f;a;p.s; �0/. Since �0.p/D 1, once again by (2.4)
we have

�f;a;p.s; �0/ D

�
p � 1

�.p/
C

p

�.p/
�. 0/Pf;p.p

�s/

�
�f .s; �0/

C
1

�.p/

X
 .modp/
 6D 0

�. x / .a/�f˝ .s; �0/:

Now, (2.3) gives

�f .s; �0/ D Pf;q.q
�s/�f .s/ �

�.q/

q
Rf;q.q

�s/ƒf .s/;

and analogously, since for non-trivial  .mod p/ the primitive form f ˝ has levelNp2

and q 2 Q.Np2/,

�f˝ .s; �0/ D Pf˝ ;q.q
�s/�f˝ .s/ �

�.q/

q
Rf˝ ;q.q

�s/ƒf˝ .s/:

However, �f .s/ and �f˝ .s/ are both holomorphic in ¹s 2 C W <.s/ � 0º n 1
2
Z, so the

only remaining terms are the ones with the factors Rf;q.q�s/ and Rf˝ ;q.q�s/. Plugging
those back along our sequence of equations, we obtain the desired result.

3.4. Producing poles

We are ready for the proof of the main result in this section. The first step is to show
that the lack of poles for Gf;p leads to a paradoxical analytic continuation for some of its
additive twists. We compartmentalize this claim in the next lemma, which very closely
follows the argument of [5].
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Lemma 3.9 (No poles for Gf;p implies continuation of additive twists). Let p �
1 .mod N/ be prime, and assume that Gf;p.s/ has no poles in <.s/ 2 .0; 1/. Then for
any prime q − Np,

�f;1;p.s; 1=q/ ��f;� xN;p.s; 1=q/ (3.5)

continues to a holomorphic function in C n 1
2
Z.

Proof. IfGf;p.s/ has no poles in<.s/ 2 .0; 1/, then by Lemma 3.7 the only possible pole
of Gf;p.s/ with <.s/ > �1=2 is s D 0, which can only occur if k D 1.

Let 0 < � < 1=2. For z 2 H, define

IR.z/ WD
1

2�i

Z
<.s/D1C�

Gf;p.s/.�iz/
�s� k�12 ds;

IL.z/ WD
1

2�i

Z
<.s/D��

Gf;p.s/.�iz/
�s� k�12 ds:

By Stirling’s formula, the decomposition (2.4), and the Phragmén–Lindelöf principle, we
see that Gf;p.s/ is rapidly decaying in vertical strips, so we can shift contours. Since we
are assuming that Gf;p.s/ has no poles in <.s/ 2 .0; 1/, and it has a pole at s D 0 only if
k D 1, we get

IL.z/C Res
sD0

Gf;p.s/ D IR.z/: (3.6)

Observe that

IR.z/ D
1

2�i

Z
<.s/D1C�

�
�f;1;p.s/ ��f;� xN;p.s/

�
.�iz/�s�

k�1
2 ds

D IRf;1;p.z/ � I
R

f;� xN;p
.z/

in the notation of Lemma 3.4. Similarly, we have

IL.z/C Res
sD0

Gf;p.s/

D
1

2�i

Z
<.s/D��

�
�f;1;p.s/ ��f;� xN;p.s/

�
.�iz/�s�

k�1
2 ds C Res

sD0
Gf;p.s/

D

�
ILf;1;p.z/C Res

sD0
�f;1;p.s/

�
�

�
IL
f;� xN;p

.z/C Res
sD0

�f;� xN;p.s/
�
:

Therefore, (3.6) becomes�
ILf;1;p.z/C Res

sD0
�f;1;p.s/

�
�

�
IL
f;� xN;p

.z/C Res
sD0

�f;� xN;p.s/
�

D IRf;1;p.z/ � I
R

f;� xN;p
.z/: (3.7)

We now set z D ˛ C iy with ˛ 2 Q� and y > 0, and perform a truncated Mellin
transform along y. More precisely, consider

R.s/ WD

Z j˛j=4
0

�
IRf;1;p.˛ C iy/ � I

R

f;� xN;p
.˛ C iy/

�
ysC

k�1
2
dy

y
:
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Applying Lemma 3.6 we conclude that

R.s/ �
�
�f;1;p.s; ˛/ ��f;� xN;p.s; ˛/

�
(3.8)

continues to an entire function of s. Similarly, let

L.s/ WD

Z j˛j=4
0

�
ILf;1;p.˛ C iy/C Res

sD0
�f;1;p.s/

�
ysC

k�1
2
dy

y

�

Z j˛j=4
0

�
IL
f;� xN;p

.˛ C iy/C Res
sD0

�f;� xN;p.s/
�
ysC

k�1
2
dy

y
:

By Lemma 3.6 we conclude that, for any M 2 Z�0,

L.s/ � �f � .i sgn.˛//k.Np2˛2/s�1=2
M�1X
mD0

.iNp2˛/m
�
s Cm � kC1

2

m

�
�

�
� xf ;� xN;p

�
s Cm;�

1

Np2˛

�
�� xf ;1;p

�
s Cm;�

1

Np2˛

��
(3.9)

continues to a meromorphic function in ¹s 2 C W <.s/ > 1 �M º whose poles in that
region can only be at s D 1�k

2
� n for n 2 Z�0. Here we have used the fact that �.p/D 1,

as p � 1 .mod N/.
Since L.s/ D R.s/ due to (3.7), we conclude from (3.8) and (3.9) that

�f;1;p.s; ˛/ ��f;� xN;p.s; ˛/ � �f � .i sgn.˛//k.Np2˛2/s�1=2
M�1X
mD0

.iNp2˛/m

�

�
sCm� kC1

2

m

��
� xf ;� xN;p

�
sCm;�

1

Np2˛

�
�� xf ;1;p

�
sCm;�

1

Np2˛

��
(3.10)

continues to a holomorphic function in ¹s 2 C W <.s/ > 1 �M º n 1
2
Z.

Fix b 2 .Z=Np2Z/�. Let q1; : : : ; qM be distinct primes satisfying qj � b .modNp2/
for all 1� j �M , and letm0 be an integer satisfying 0�m0 �M � 1. Setting ˛D 1=qj ,
(3.10) shows that�
Np2

q2j

�1=2�s�
�f;1;p.s; 1=qj / ��f;� xN;p.s; 1=qj /

�
� �f � i

k

M�1X
mD0

�
iNp2

qj

�m
�

�
s Cm � kC1

2

m

��
� xf ;� xN;p

�
s Cm;�

b

Np2

�
�� xf ;1;p

�
s Cm;�

b

Np2

��
(3.11)

continues to a holomorphic function in ¹s 2 C W <.s/ > 1 �M º n 1
2
Z. By the Van-

dermonde determinant, we can find c1; : : : ; cM 2 Q such that for every m 2 Z with
0 � m �M � 1,

MX
jD1

cj q
�m
j D

´
1 if m D m0;

0 if m 6D m0:
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Summing (3.11) for each qj with weight cj , for 1 � j �M , it follows that

�f � i
k.iNp2/m0

�
s Cm0 �

kC1
2

m0

�
�

�
� xf ;� xN;p

�
s Cm0;�

b

Np2

�
�� xf ;1;p

�
s Cm0;�

b

Np2

��
�

MX
jD1

cj

�
Np2

q2j

�1=2�s�
�f;1;p.s; 1=qj / ��f;� xN;p.s; 1=qj /

�
(3.12)

continues to a holomorphic function in ¹s 2 C W <.s/ > 1 �M º n 1
2
Z.

Now, observe that both�f;1;p.s; 1=qj / and�f;� xN;p.s; 1=qj / are holomorphic in ¹s 2
C W <.s/ < 0º n 1

2
Z. Indeed, this follows from Lemma 3.8 and the fact that for a non-

trivial character  .mod p/, the poles of Rf;qj .q
�s
j / and Rf˝ ;qj .q

�s
j / satisfy <.s/D 0,

since �f˝ .qj / D �f .qj / .qj / and j�f .qj /j � 2 by Deligne’s bound. Therefore, (3.12)
implies that

� xf ;� xN;p

�
s;�

b

Np2

�
�� xf ;1;p

�
s;�

b

Np2

�
continues to a holomorphic function in

¹s 2 C W 1 �M Cm0 < <.s/ < m0º n
1
2
Z:

Since M 2 Z�0 and 0 � m0 �M � 1 are arbitrary, we conclude that it indeed continues
to a holomorphic function in C n 1

2
Z. Finally, this in conjunction with (3.11) shows that

the desired function (3.5) continues to a holomorphic function in C n 1
2
Z, for any prime

q � b .modNp2/. Since we can choose the congruence class b 2 .Z=Np2Z/� arbitrarily,
the result holds for any prime q − Np.

To finish, we produce poles for some choice of twists from the previous lemma. Some
extra care must be taken compared with [5], since instead of �f we have a linear combi-
nation Gf;p of such terms. Fortunately at this point we can rule out complete cancellation
of the poles due to their explicit nature, arising from simple zeros of local factors.

Proof of Proposition 3.1. Towards a contradiction, assume that Gf;p.s/ has no poles in
<.s/ 2 .0; 1/. Then Lemma 3.9 shows that for each prime q − Np, (3.5) continues to a
holomorphic function in C n 1

2
Z.

Let �0 .mod q/ and 0 .mod p/ denote the trivial characters, and observe that �.�0/D
�. 0/ D �1. Applying Lemma 3.8 to each term of (3.5) we verify that

1

p � 1

X
 .modp/
 6D 0

�. x /. .1/ �  .� xN//Rf˝ ;q.q
�s/ƒf˝ .s/ (3.13)

continues to a holomorphic function in ¹s 2 C W <.s/ � 0º n 1
2
Z, so in particular it has no

poles s 6D 0 with <.s/ D 0.
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Observe that for any c 2 .Z=pZ/� we haveX
r�x prime
r�c .modp/

j�f .r/j
2
�

1

�.p/

x

log x
as x !1 (3.14)

by Rankin–Selberg (see for instance [23, Lemma 1] for details when f has trivial neben-
typus), as f ˝ is orthogonal to f for each non-trivial  .mod p/, since it is a primitive
form of level Np2. From now on we assume that

q 2 Qf;p WD ¹r prime W r � 1 .mod p/; r − N; and j�f .r/j < 2º:

Observe that Qf;p is an infinite set, by (3.14).
Since q � 1 .mod p/, for any non-trivial  .mod p/ we have

Rf˝ ;q.q
�s/ D Rf;q.q

�s .q// D Rf;q.q
�s/:

But

Rf;q.q
�s/ D �

q

�.q/
Pf;q.q

�s/

�
.Pf;q.q

�s//0

Pf;q.q�s/

�0
; (3.15)

where the derivatives are with respect to s, so the poles of Rf;q.q�s/ are precisely at the
simple zeros ofPf;q.q�s/D 1��f .q/q�sC�.q/q�2sDW .1� f̨ .q/q

�s/.1� f̌ .q/q
�s/.

We chose q with j�f .q/j < 2, so j f̨ .q/j D j f̌ .q/j D 1 and f̨ .q/ 6D f̌ .q/. Therefore,
all the zeros of Pf;q.q�s/ are simple and satisfy <.s/ D 0.

Choose t 2 R� such that qit D f̨ .q/, so Pf;q.q�it / D 0 and (3.15) gives

Res
sDit

Rf;q.q
�s/ D

q

�.q/
.Pf;q.q

�s//0
ˇ̌̌̌
sDit

D
q1�it log q
q � 1

.�f .q/ � 2�.q/q
�it /

D
q log q
q � 1

f̨ .q/. f̨ .q/ � f̌ .q// 6D 0;

as f̨ .q/ f̌ .q/ D �.q/. We now take residues of (3.13) at s D i t 6D 0 to obtain

1

p � 1

X
 .modp/
 6D 0

�. x /. .1/ �  .� xN//ƒf˝ .i t/ � Res
sDit

Rf;q.q
�s/ D 0:

But RessDit Rf;q.q�s/ 6D 0 as we saw above, so in fact using (3.4) we get

0 D
1

p � 1

X
 .modp/
 6D 0

�. x /. .1/ �  .� xN//ƒf˝ .i t/

D ƒf .i t; 1=p/ �ƒf .i t;� xN=p/ (3.16)

for any t 2 Tf;q WD ¹
�f .q/C2�n

logq W n2Zº n ¹0º, where �f .q/2 Œ0;2�/ is defined by f̨ .q/D

ei�f .q/. Since this holds for any q 2 Qf;p and
S
q2Qf;p

Tf;q is dense in R (as Qf;p is
infinite), we conclude by analytic continuation that

ƒf .s; 1=p/ D ƒf .s;� xN=p/
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for every s 2 C. This is a contradiction, as we can compare the coefficients of the respec-
tive Dirichlet series expansions in <.s/ > 1 and they do not match. For instance, (3.14)
shows that there is a prime r � 1 .mod p/ such that �f .r/ 6D 0, hence the r-th coefficients
in the corresponding Dirichlet series expansions are �f .r/e.1=p/ and �f .r/e.� xN=p/,
which are distinct since � xN 6� 1 .mod p/, as p > N C 1 by hypothesis. A standard argu-
ment using Perron’s formula then gives the desired contradiction, so we conclude that
Gf;p.s/ has at least one pole in <.s/ 2 .0; 1/, as desired.

4. Location of poles of Hf;˛

In this section we will show that ifHf;˛.s/ has a pole in<.s/ 2 Œ1=2; 1/ for some ˛ 2Q�,
then ƒf must have many simple zeros. This will be enough to prove our main results,
since Proposition 3.3 guarantees the existence of such a pole for some ˛ in the case of
either f or xf , but ƒf and ƒ xf have the same number of simple zeros, by the functional
equation.

4.1. From poles of Hf;˛ to simple zeros of ƒf

Denote Sf .z/ WD Sf;1;1.z/ for z 2 H, as in the introduction. As described before, the
basic mechanism uses (2.5) to show that Sf cannot be always small if Hf;˛ has a pole of
large real part. The next lemma provides a more direct link between the quantity in (2.5)
and simple zeros ofƒf (i.e. poles of�f in the critical strip). It is essentially contained in
[8, Lemma 3.2], but we provide a proof for completeness.

Lemma 4.1 (Bounding the truncated Mellin transform of Sf ). Let � > 0 be fixed. For any
� 2 Œ�; 2� and ˛ 2 Q�,Z j˛j=4

0

jSf .˛ C iy/jy
�C k�12

dy

y
�f;˛;�

X
�DˇCi


a pole of�f
with ˇ>0

jƒ0f .�/j e
�j
 j=2.1C j
 j/���

k�1
2 :

Proof. We haveZ j˛j=4
0

jSf .˛ C iy/jy
�C k�12

dy

y

�

X
<.�/2.0;1/

Z j˛j=4
0

ˇ̌̌
Res
sD�

�f .s/
ˇ̌̌
�

ˇ̌̌
.y � i˛

���� k�12
jy�C

k�1
2
dy

y
; (4.1)

where we can exchange the order of summation and integration by Tonelli’s theorem.
Let � D ˇ C i
 be a pole of �f with ˇ 2 .0; 1/, and denote � WD 1C j
 j. Then since
ƒf .�/ D 0, observe that

Res
sD�

�f .s/ D ��C

�
�C

k � 1

2

�
L0f .�/ D �ƒ

0
f .�/;
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and for 0 � y � j˛j=4,

j.y � i˛/���
k�1
2 j D jy � i˛j�ˇ�

k�1
2 e
 arctan.�˛=y/

�f;˛ e
�
 arctan.˛=y/

D e
 sgn.˛/.arctan.y=j˛j/��=2/:

Therefore, we conclude that the RHS of (4.1) is

�f;˛

X
�DˇCi


a pole of�f
with ˇ2.0;1/

jƒ0f .�/j �

Z j˛j=4
0

e
 sgn.˛/.arctan.y=j˛j/��=2/y�C
k�1
2
dy

y
:

Using


 sgn.˛/.arctan.y=j˛j/ � �=2/ � �j
 j.arctan.y=j˛j/ � �=2/ � �
j
 jy

2j˛j
C
�j
 j

2
;

since arctan.x/ � x=2 for 0 � x � 1=4, we haveZ j˛j=4
0

e
 sgn.˛/.arctan.y=j˛j/��=2/y�C
k�1
2
dy

y
� e�j
 j=2

Z j˛j=4
0

e
�
j
jy
2j˛j y�C

k�1
2
dy

y

� e�j
 j=2
Z j˛j=4
0

e
�
�y
2j˛j y�C

k�1
2
dy

y
� e�j
 j=2

Z 1
0

e
�
�y
2j˛j y�C

k�1
2
dy

y

D e�j
 j=2
�
2j˛j

�

��C k�12
�

�
� C

k � 1

2

�
�f;˛;� e

�j
 j=2����
k�1
2 ;

so the desired result follows.

For the case of general level, we will apply Lemma 4.1 in conjunction with a pointwise
bound coming from subconvexity (we will see how to improve this for N D 1 in the next
section).

Lemma 4.2 (Weyl subconvexity for L0
f

[8, Lemma 3.1]). If � D ˇ C i
 is a zero of ƒf ,
then

ƒ0f .�/�f;" .1C j
 j/
k=2C 13 jˇ�1=2j�1=6C"e��j
 j=2 for any " > 0.

Proof (sketch). This follows from the Weyl subconvex bound Lf .1=2 C i t/ �f;"
.1 C jt j/1=3C" of [9], and a standard argument using Cauchy’s formula combined with
the Phragmén–Lindelöf principle, the functional equation, and Stirling’s formula. See the
reference for details.

Remark 4.3. If � 2 Œ0; 1=2� and we had a subconvexity bound of the form Lf .1=2C

i t/�f;" .1C jt j/
�C" for all " > 0, then Lemma 4.2 would become

ƒ0f .�/�f;" .1C j
 j/
k=2C.1�2�/.jˇ�1=2j�1=2/C"e��j
 j=2 for any " > 0.

The given result corresponds to � D 1=3.
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For a meromorphic function h on ¹s 2 C W <.s/ > 1º, let

‚.h/ WD inf
®
� � 0 W h continues analytically to ¹s 2 C W <.s/ > �º

¯
:

Furthermore, let

�f WD sup.¹0º [ ¹<.�/; 1 �<.�/ W � is a pole of �f º/

D sup.¹0º [ ¹<.�/ W � is a simple zero of ƒf or ƒ xf º/:

Then Lemmas 4.1 and 4.2 can be combined into the following result, which is a particular
case of [8, Proposition 3.3]. We again provide the proof for completeness.

Proposition 4.4 (General bound for N s
f

). Let ˛ 2 Q�. If ‚.Hf;˛/ > 0, then �f � 1=2
and

N s
f .T / D �.T

1
3 .1��f /C‚.Hf;˛/�1=2�"/ for any " > 0.

Proof. Let ˇnC i
n run through the poles of�f with ˇn > 0, in increasing order of j
nj.
For � 2 .0; 1�, Lemmas 4.1 and 4.2 giveZ j˛j=4

0

jSf .˛ C iy/jy
�C k�12

dy

y
�f;˛;�;"

1X
nD1

.1C j
nj/
1
3 jˇn�1=2jC1=3��C" (4.2)

for any " > 0. If‚.Hf;˛/ > 0, set � D ‚.Hf;˛/� ", where 0 < " < ‚.Hf;˛/ is arbitrary.
Then Proposition 2.2 implies that (4.2) diverges, so in particular �f has infinitely many
poles ˇn C i
n with ˇn > 0, and therefore �f � 1=2.

Now assume for a contradiction thatN s
f
.T /D o.T

1
3 .1��f /C‚.Hf;˛/�1=2�3"/ for some

0 < " < ‚.Hf;˛/. Then by (4.2), since jˇn � 1=2j � �f � 1=2, we get

1D

Z j˛j=4
0

jSf .˛ C iy/jy
�C k�12

dy

y
�f;˛;"

1X
nD1

.1C j
nj/
1
3 �fC1=6�‚.Hf;˛/C2"

�f 1C

Z 1
1

t
1
3 �fC1=6�‚.Hf;˛/C2" dN s

f .t/

�f 1C

Z 1
1

t
1
3 �fC1=6�‚.Hf;˛/C2"�1N s

f .t/ dt

D 1C

Z 1
1

o.t�1�"/ dt <1;

which is a contradiction.

Remark 4.5. Assuming a subconvexity exponent� 2 Œ0;1=2� as in Remark 4.3, the result
of Proposition 4.4 becomes N s

f
.T / D �.T .1�2�/.1��f /C‚.Hf;˛/�1=2�"/ for any " > 0.

Observe that Proposition 4.4 fails to give a power of T (even if the subconvexity
exponent were to be improved) if �f D 1 and ‚.Hf;˛/ D 1=2, which cannot be ruled out
with what we have done so far. However, we will use this proposition for the case of �f
sufficiently far from 1, where it gives a good bound.
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Corollary 4.6 (Main result for �f away from 1). We have �f � 1=2 and

N s
f .T / D �.T

1
3 .1��f /�"/ for any " > 0.

Proof. By the functional equation ƒf .s/ D �f � N
1=2�sƒ xf .1 � s/, we deduce that

N s
f
.T / D N s

xf
.T / and �f D � xf . By Proposition 3.3, there is f̨ 2 Q� such that

max¹‚.Hf; f̨ /; ‚.H xf ; f̨ /º �
1
2

. Then applying Proposition 4.4 to either f or xf gives
the desired result.

4.2. Improvements for �f close to 1

If �f is close to 1, then either �f or � xf must have a pole � with real part close to 1. We
will show that if for instance that is the case for �f , then there exists ˛ 2 Q� such that
Hf;˛ also has a pole at �, so Proposition 4.4 gives a much stronger result than before. The
main tool for showing such a pole transference will be a certain zero density estimate,
which we introduce now.

For a primitive form g 2 Sk.�1.M//, ˇ 2 R, and T � 0, let

Ng.ˇ; T / WD j¹s 2 C W <.s/ � ˇ; j=.s/j � T; and Lg.s/ D 0ºj; (4.3)

where the zeros are counted with multiplicity.

Lemma 4.7 (Zero density for twists close to the line 1). Let f 2 Sk.�1.N // be a prim-
itive form. For each prime p � 1 .mod N/, let  p .mod p/ be an arbitrary non-trivial
character modulo p. Then for any T � 2, X � 2, " > 0, and 3=4 � ˇ � 1, we haveX

p�X prime
p�1 .modN/

Nf˝ p .ˇ; T /�f;";T X
4.1�ˇ/C"

CX
6.1�ˇ/
3ˇ�1

C":

Proof. This follows directly from the more general result of Proposition A.1, given in
Appendix A.

Now, let � be such that 6.1��/
3��1

D 1, i.e. � D 7=9. The important point is that � < 1.

Proposition 4.8 (Ruling out pole cancellation inHf;˛ via zero density). If�f has a pole
� D ˇC i
 with ˇ > �, then there exists some ˛ 2Q� .depending on f and �/ such that
� is also a pole of Hf;˛ .

Proof. We will show that there exists a prime p satisfying p � 1 .mod N/ such that � is
a pole of either Hf;1 or Hf;1=p , so we will be able to pick ˛ D 1 or ˛ D 1=p.

Suppose for contradiction that � is not a pole of either Hf;1 or Hf;1=p for any prime
p � 1 .mod N/. By (3.1) we have

p1�2sHf;1.s/ �Hf;1=p.s/ D p
1�2s�f .s/ ��f;1;p.s/CRf;p.p

�s/ƒf .s/;

and by assumption this meromorphic function does not have a pole at s D �. Observe that
since j�f .p/j � 2 by Deligne’s bound, the poles of Rf;p.p�s/ƒf .s/ all satisfy<.s/D 0,



A. de Faveri 3008

so � is not a pole of Rf;p.p�s/ƒf .s/ (as � > 0). Hence it also cannot be a pole of

p1�2s�f .s/ ��f;1;p.s/

D

�
p1�2s � 1C

p

p � 1
Pf;p.p

�s/

�
�f .s/ �

1

p � 1

X
 .modp/
 6D 0

�. x /�f˝ .s/;

where  0 .mod p/ denotes the trivial character, and we have used (2.4).
Since �.p/ D 1, a direct computation gives

p1�2s � 1C
p

p � 1
Pf;p.p

�s/ D
p2�2s � �f .p/p

1�s C 1

p � 1
D

1

p � 1
Pf;p.p

1�s/:

Observe thatPf;p.p1��/ 6D 0, as<.1� �/D 1�ˇ 6D 0, since ˇ < 1 by [18]. Furthermore,

Res
sD�

�f .s/ D ��C

�
�C

k � 1

2

�
L0f .�/ D �ƒ

0
f .�/ 6D 0;

as � is a simple zero of ƒf . We conclude thatX
 .modp/
 6D 0

�. x / � Res
sD�

�f˝ .s/ D Res
sD�

Pf;p.p
1�s/�f .s/ D �Pf;p.p

1��/ƒ0f .�/ 6D 0;

so there is at least one non-trivial character  p .mod p/ such that �f˝ p has a pole at �,
or in other words ƒf˝ p has a simple zero at � D ˇ C i
 . This holds for every prime
p � 1 .mod N/, so it follows thatX

p�X prime
p�1 .modN/

Nf˝ p .ˇ; 2C j
 j/ � �.X IN; 1/�f
X

logX
(4.4)

for everyX sufficiently large (in terms ofN ). However, applying Lemma 4.7 we conclude
that X

p�X prime
p�1 .modN/

Nf˝ p .ˇ; 2C j
 j/�f;";� X
4.1�ˇ/C"

CX
6.1�ˇ/
3ˇ�1

C" (4.5)

for every X � 2 and " > 0. Observe that both 6.1�x/
3x�1

and 4.1� x/ are strictly decreasing
for 3=4 � x � 1, so since ˇ > � and 6.1��/

3��1
D 1, while 4.1� �/D 8=9 < 1, we conclude

that 4.1 � ˇ/ C " < 1 and 6.1�ˇ/
3ˇ�1

C " < 1 for " > 0 sufficiently small. But this is a
contradiction, as (4.4) and (4.5) imply

X4.1�ˇ/C" CX
6.1�ˇ/
3ˇ�1

C"
�f;";�

X

logX

for every " > 0 andX sufficiently large, which cannot hold for small " > 0whenX!1.
Therefore, the desired result follows.

Corollary 4.9 (Main result for �f close to 1). If �f > �, then

N s
f .T / D �.T

2
3 �f �1=6�"/ for any " > 0.
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Proof. If �f > �, then for any given 0 < " < �f � �, either �f or � xf must have a
pole � D ˇ C i
 with ˇ > �f � ". Since �f � " > �, by Proposition 4.8 there exists
some ˛ 2 Q� (depending on f and �) such that � is also a pole of either Hf;˛ or H xf ;˛ .
Therefore,

max ¹‚.Hf;˛/;‚.H xf ;˛/º � ˇ > �f � ":

Then we can use the relationsN s
f
.T /DN s

xf
.T / and �f D � xf to get the desired result after

applying Proposition 4.4 to either f or xf , since " > 0 can be chosen arbitrarily small.

4.3. Obtaining a power bound

The proof of our main theorem easily follows from what we have done so far.

Proof of Theorem 1.1. If �f > �, we apply Corollary 4.9 and observe that

2
3
�f �

1
6
> 2

3
� � 1

6
D

19
54

to get
N s
f .T / D �.T

2
3 �f �1=6�"/ D �.T

19
54�"/

for any " > 0, so in this case we have a rather strong bound.
Otherwise, if �f � �, we apply Corollary 4.6 and observe that

1
3
.1 � �f / �

1
3
.1 � �/ D 2

27

to get
N s
f .T / D �.T

1
3 .1��f /�"/ D �.T

2
27�"/

for any " > 0. In either case, we obtain the desired result.

Remark 4.10. Under the density hypothesis for the family of twists of a fixed holomor-
phic form which appears in Appendix A, so that in particular Proposition A.1 holds with
c.˛/D 2, we can take � D 3=4 in the preceding argument. This leads toN s

f
.T /D�.T ı/

for any ı < 1=12.

Remark 4.11. Under the generalized Lindelöf hypothesis, we can take � D 0 in Re-
mark 4.5 and � D 3=4 in the preceding argument. This leads to N s

f
.T / D �.T ı/ for any

ı < 1=4.

Remark 4.12. Under the generalized Riemann hypothesis (GRH), we can take � D 0

and �f D 1=2 in Remark 4.5. This leads to N s
f
.T / D �.T ı/ for any ı < 1=2. The weak

exponent 1=2 comes from the coarse bound in Lemma 4.1, where we apply absolute
values and presumably forsake square-root cancellation on average in Sf .˛ C iy/.

The better bound N s
f
.T /�f;" T .log T /�" for any " > 0 was obtained under GRH

by Milinovich and Ng [26] using the moment method. Recently, Gonçalves, de Laat, and
Leijenhorst [13] showed under GRH that a positive proportion of the zeros have order at
most 2.
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5. An improved estimate for f of level 1

If f has level N D 1, then we will easily see that there is ˛ 2 Q� with ‚.Hf;˛/ � �f ,
so Proposition 4.4 gives N s

f
.T / D �.T

2
3 �f �1=6�"/ D �.T 1=6�"/ for any " > 0, as was

proved in [10]. We improve this result by using the sixth moment bound of Jutila [20]
instead of subconvexity in the last step of the argument. An improvement in the exponent
for the case of general level N would also follow by the same reasoning, except that at
present a sixth moment bound does not seem to be in the literature in such generality.

To begin, we convert pointwise values of our L-function into moments via the follow-
ing standard lemma.

Lemma 5.1 (Pointwise values to short moments). Let f 2 Sk.�1.N // be a primitive
form and T � 2. For � D ˇ C i
 with ˇ � 1=2 and j
 j � T , we have

L0f .�/�f log4 T C log5 T �
Z log2 T

� log2 T
jL xf .1=2 � i.
 C x//j dx:

Proof. Let c D 1
100 logT . Observe that

1

2�i

Z 1Ci1

1�i1

Lf .�C w/�.w/
2 dw � 1;

as <.�C w/ � 3=2. Shifting the line of integration to <.w/ D 1=2 � ˇ � c, we pick up
a pole at w D 0 with residue L0

f
.�/. By Stirling’s formula we have the rough bound

�.1=2 � ˇ � c C i t/� e�jt j.j1=2 � ˇ � cj C jt j/�1 � e�jt j.c C jt j/�1;

so we get

L0f .�/� 1C

Z 1
�1

jLf .1=2 � c C i.
 C t //j e
�2jt j.c C jt j/�2 dt:

By convexity,Z ˙1
˙ 12 log2 T

jLf .1=2 � c C i.
 C t //j e
�2jt j.c C jt j/�2 dt �f

Z 1
1
2 log2 T

e�t dt � 1;

therefore

L0f .�/�f 1C log2 T �
Z 1

2 log2 T

� 12 log2 T
jLf .1=2 � c C i.
 C t //j dt: (5.1)

The functional equation combined with Stirling’s formula gives

Lf .1=2 � c C i.
 C t //�f
�C.k=2C c � i.
 C t //

�C.k=2 � c C i.
 C t //
L xf .1=2C c � i.
 C t //

� L xf .1=2C c � i.
 C t //:
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Now we use an argument similar to the one above. For # D 1=2C c � i.
 C t / we have

1

2�i

Z 1Ci1

1�i1

L xf .# C w/�.w/ dw � 1;

and shifting the line of integration to<.w/D�c, picking up a pole atw D 0 with residue
L xf .#/, and using �.�c C iv/� e�jvj.c C jvj/�1, we argue as before to get

L xf .#/�f 1C logT �
Z 1

2 log2 T

� 12 log2 T
jL xf .1=2 � i.
 C t � v//j dv: (5.2)

Inserting (5.2) into (5.1) then gives the desired result.

The key new input is the lemma below.

Lemma 5.2 (Hölder against sixth moment). Let f 2 Sk.�0.1// be a primitive form and
T � 2. If �n D ˇn C i
n runs through the simple zeros of ƒf in increasing order of j
nj,
then X

ˇn�1=2
j
nj�T

jL0f .�n/j �f;" N
s
f .T /

5=6T 1=3C" for any " > 0.

Proof. Denote K D T C log2 T . By Lemma 5.1,X
ˇn�1=2
j
nj�T

jL0f .�n/j �f N
s
f .T / log4 T

C log5 T �
Z K

�K

jL xf .1=2 � i t/j �
X

ˇn�1=2
j
nj�T

1
jt�
nj�log2 T dt:

Observe that N s
f
.x C 1/ � N s

f
.x/�f log.2C jxj/ by standard zero-density results, so

we have the bounds N s
f
.T / log4 T �f N s

f
.T /5=6T 1=3 andX

j
nj�T

1
jt�
nj�log2 T �f log3 T

for any t 2 R. Therefore, using Hölder’s inequality twice we getZ K

�K

jL xf .1=2 � i t/j �
X

ˇn�1=2
j
nj�T

1
jt�
nj�log2 T dt

�

�Z K

�K

jL xf .1=2 � i t/j
6 dt

�1=6�Z K

�K

� X
j
nj�T

1
jt�
nj�log2 T

�6=5
dt

�5=6
�f

�Z K

�K

jL xf .1=2 � i t/j
6 dt

�1=6�
.log3 T /1=5N s

f .T / log2 T
�5=6

:
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Then Jutila’s sixth moment bound [20, Theorem 4.7] givesZ K

�K

jL xf .1=2 � i t/j
6 dt �f;" K

2C"
�" T

2C"

for any " > 0, and the lemma follows.

We are now ready to obtain the desired bound for N s
f
.T /.

Proof of Theorem 1.2. For f 2 Sk.�0.1// a primitive form, we can apply (3.1) with p D
2 to get

21�2sHf;1.s/ �Hf;1=2.s/ D 2
1�2s�f .s/ ��f;1;2.s/CRf;2.2

�s/ƒf .s/

D .21�2s � 1C 2Pf;2.2
�s//�f .s/CRf;2.2

�s/ƒf .s/

D Pf;2.2
1�s/�f .s/CRf;2.2

�s/ƒf .s/;

where we have used (2.4). Observe that Pf;2.21�s/ 6D 0 and Rf;2.2�s/ is holomorphic for
0 <<.s/ < 1, so the function above has the same poles as�f in this region. We conclude
that

max ¹‚.Hf;1/;‚.Hf;1=2/º � �f :

Let ˛ D 1 or 1=2 be such that ‚.Hf;˛/ � �f . Also let 0 < " < �f (recall that �f �
1=2 by Corollary 4.6) and � D �f � ". Then since 0 < � < ‚.Hf;˛/, Lemma 4.1 and
Proposition 2.2 give X

�DˇCi

a pole of�f
with ˇ>0

jƒ0f .�/je
�j
 j=2.1C j
 j/���

k�1
2 D1: (5.3)

By the functional equation, ƒ0
f
.�/ D ��f � N

1=2��ƒ0
xf
.1 � �/ �f ƒ

0
xf
.1 � �/, so the

LHS of (5.3) is

�f

X
�DˇCi


a pole of�f
with ˇ�1=2

jƒ0f .�/je
�j
 j=2.1C j
 j/���

k�1
2

C

X
�DˇCi


a pole of� xf
with ˇ�1=2

jƒ0xf
.�/je�j
 j=2.1C j
 j/���

k�1
2 : (5.4)

Applying Stirling’s bound �.�C k�1
2
/� .1C j
 j/ˇCk=2�1e��j
 j=2, valid for ˇ � 1=2,

we haveX
�DˇCi


a pole of�f
with ˇ�1=2

jƒ0f .�/je
�j
 j=2.1C j
 j/���

k�1
2 �

X
ˇn�1=2

jL0f .�n/j .1C j
nj/
ˇn���1=2;
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where we use the notation of Lemma 5.2. Observing that ˇn � �f and applying Lem-
ma 5.2, we obtainX
ˇn�1=2

jL0f .�n/j .1C j
nj/
ˇn���1=2 �f 1C

1X
kD1

X
TD2k

T �1=2C"
X

ˇn�1=2
T=2<j
nj�T

jL0f .�n/j

�f;" 1C

1X
kD1

X
TD2k

N s
f .T /

5=6T �1=6C2"

for any sufficiently small " > 0.
Now suppose for contradiction that N s

f
.T / D o.T 1=5�6"/. Then

X
ˇn�1=2

jL0f .�n/j .1C j
nj/
ˇn���1=2 �f;" 1C

1X
kD1

X
TD2k

o.T �3"/ <1:

The same argument, exchanging f with xf (and observing that �f D � xf ), shows that the
second term of (5.4) is also finite. This contradicts (5.3), so we conclude that

N s
f .T / D �.T

1=5�"/

for any " > 0, as desired.

Appendix A. Zero-density for twists of primitive forms

The purpose of this appendix is to obtain a zero-density estimate for character twists of
a fixed form f that holds in the generality required for our application and is efficient in
the Q-aspect. We use the notation of (4.3) for the number of zeros in a rectangle.

Proposition A.1 (Zero-density for twists in degree 2). Let f 2 Sk.�0.N /; �/ be a prim-
itive holomorphic modular form of arbitrary weight k, level N , and nebentypus � . Then
for any Q � 2, T � 2, " > 0, and 1=2C " � ˛ � 1, there exists some A depending only
on " such thatX

q�Q
.q;N/D1

X�

� .modq/

Nf˝�.˛; T /�f;"
�
.QT /4C" C .Q2T /c.˛/

�1�˛ logA.QT /;

where

c.˛/ WD min
²

3

2 � ˛
;

3

3˛ � 1

³
and

P� denotes summation over primitive characters.

The proof uses standard methods for large values of Dirichlet polynomials, and we
closely follow the argument of Iwaniec–Kowalski [16, Section 10.4] for the case of
Dirichlet L-functions, with the necessary technical modifications to deal with our case
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of degree 2 (mostly complications coming from larger conductor). This approach is based
on the power of the large sieve in the Q-aspect. Proposition A.1 is not particularly effi-
cient in terms of T (as we do not have access to the fourth moment in that aspect), but this
is irrelevant since T is fixed in our application. For T small in terms of Q, in particular
for T fixed, Proposition A.1 improves (in all ranges of ˛) results of Zhang [31] valid for
f of level N D 1.

Proof of Proposition A.1. Let g W R�0 ! R be given by

g.x/ WD �

Z 1
x

exp
�
�y �

1

y

�
dy

y
;

where � WD .2K0.2//
�1 is a normalizing constant such that g.0/ D 1. Then one may

check that the Mellin transform

Og.z/ WD

Z 1
0

g.x/xz�1 dx

is odd and has a pole at z D 0, and that z Og.z/ is analytic. In addition, we have the bounds

0 < g.x/ < �e�x ; (A.1)

0 < 1 � g.x/ < �e�1=x ; (A.2)

and
Og.z/� jzjj<.z/j�1e�

�
2 j=.z/j (A.3)

uniformly for z 2 C. We refer to [16, pp. 257–258] for details, where one may combine
Euler’s reflection formula �.z/�.1� z/D �

sin.�z/ with Stirling’s formula to deduce (A.3)
from [16, (10.55)].

Our preliminary goal is to obtain a convenient approximate functional equation for
Lf˝�.s/, where from now on we assume that s D � C i t with 1=2C " � � � 1 and � is
a primitive character modulo q, where .q;N / D 1. We evaluate the sum

Bf .s; �/ WD

1X
nD1

�f .n/�.n/n
�sg.n=X/; (A.4)

where X > 0 will be chosen later. By contour integration,

Bf .s; �/ D
1

2�i

Z
.1/

Lf .s C u; �/X
u
Og.u/ du

D Lf .s; �/C
1

2�i

Z
.�1/

Lf .s C u; �/X
u
Og.u/ du: (A.5)

Since .q;N /D 1 and � .mod q/ is primitive, it follows that Lf .z; �/D Lf˝�.z/ and
f ˝ � is a primitive form in Sk.�0.Nq2/; ��2/, so we have the functional equation

Lf .z; �/ D �f˝� � .Nq
2/1=2�z
k.z/L xf .1 � z; x�/;
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where j�f˝�j D 1 and


k.z/ WD .2�/
2z�1

�
�
1 � z C k�1

2

�
�
�
z C k�1

2

� :

Using this functional equation, we check that the integral over <.u/ D �1 in (A.5) is
equal to ��f˝� � B�f .s; �/, where

B�f .s; �/ WD
1

2�i

Z
.1/

.Nq2/1=2�sCu
k.s � u/L xf .1 � s C u; x�/X
�u
Og.u/ du:

Expanding L xf into a Dirichlet series we get

B�f .s; �/ D

1X
mD1

� xf .m/x�.m/m
s�1h.Xm/ (A.6)

with
h.y/ WD

1

2�i

Z
.1/

.Nq2/1=2�sCu
k.s � u/y
�u
Og.u/ du: (A.7)

In conclusion, collecting the expressions above we obtain

Lf˝�.s/ D Lf .s; �/ D Bf .s; �/C �f˝� � B
�
f .s; �/; (A.8)

where Bf .s; �/ and B�
f
.s; �/ are given by (A.4) and (A.6), respectively, and X > 0 is

arbitrary.
By Euler’s reflection formula and Stirling’s formula, we have


k.z/�k jzj
1�2<.z/ (A.9)

uniformly in the half-plane <.z/ � 1=2. Using the bounds (A.3) and (A.9) and moving
the integral in (A.7) sufficiently to the right, say to the line

<.u/ D max
�
1;
1

3

�
y

Nq2jsj2

�1=3�
;

one obtains the rough uniform bound

h.y/�k

Nq2jsj2

y
exp

�
�
1

3

�
y

Nq2jsj2

�1=3�
:

Therefore, h.mX/ is quite small as long as m is a bit larger than Nq2jsj2X�1. More
precisely, by (A.6) and Deligne’s bound we have

B�f .s; �/ D
X
m�Y

� xf .m/x�.m/m
s�1h.mX/COf

�
1

XY

�
(A.10)

provided
XY � Nq2jsj2 log4.Nq2jsj2/: (A.11)
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Now we write (A.7) as

h.y/ WD
1

2�i

Z
.�/

.Nq2/1=2�sC2��u
k.s � 2� C u/y
u�2�

Og.2� � u/ du

by changing u into 2� � u and then moving the line of integration to <.u/ D �, where
1 < � < 2� . Inserting this into (A.10) we get

B�f .s; �/ D
1

2�i

Z
.�/

�X
m�Y

� xf .m/x�.m/m
�xsCu�1

�
W.u/ duCOf

�
1

XY

�
; (A.12)

where
W.u/ WD .Nq2/1=2�sC2��u
k.s � 2� C u/X

u�2�
Og.2� � u/:

Choose � D 1C ", which satisfies 1 < � < 2� and �� C � � 1=2. By (A.3) and (A.9),
for u D �C iv we have

W.u/� .Nq2.jsj C jvj/2/1=2C���X��2� .2� � �/�1e�
�
2 jvj

� .2� � �/�1
�
Nq2jsj2

X2

�1=2C���
X1��e�jvj:

Assuming that
X2 � Nq2jsj2; (A.13)

since � � 1=2C " we get
W.u/� "�1X�"e�jvj:

Therefore, (A.12) becomes

B�f .s; �/�f "
�1X�"

Z 1
�1

ˇ̌̌X
m�Y

�f .m/�.m/m
�sC"Civ

ˇ̌̌
e�jvj dv C

1

XY
: (A.14)

Denote D WD 2
p
NQT and L WD 2 logD. As a reminder, we have s D � C i t with

1=2C " � � � 1, � .mod q/ primitive with .q;N /D 1, and from now on we also assume
jt j � T and q � Q. Choose

X D DL and Y D DL3;

so that conditions (A.11) and (A.13) are satisfied. Then by (A.1) the sum in (A.4) can be
reduced to n � Y up to an error of O.D�2/, so that combining it with (A.8) and (A.14)
we get

Lf .s; �/ D
X
n�Y

�f .n/�.n/n
�sg.n=X/

COf;"

�
X�"

Z 1
�1

ˇ̌̌X
n�Y

�f .n/�.n/n
�sC"Civ

ˇ̌̌
e�jvj dv CD�2

�
: (A.15)
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Let 1 �M � D and

Mf .s; �/ WD
X
m�M

bf .m/�.m/m
�s;

where the coefficients bf are inverses of �f under Dirichlet convolution, i.e. are given by

1X
nD1

bf .n/n
�s
WD

Y
p prime

.1 � �f .p/p
�s
C �.p/p�2s/ for <.s/ > 1;

so that Deligne’s bound implies jbf .n/j � d.n/. From (A.15) we obtain

Lf .s; �/Mf .s; �/ D
X
n�MY

af .n/�.n/n
�s

COf;"

�
L

Z 1
�1

ˇ̌̌ X
n�MY

af .n; v/�.n/n
�s
ˇ̌̌
e�jvj dv CD�2M 1=2

�
; (A.16)

where
af .n/ WD

X
cmDn

c�Y;m�M

�f .c/g.c=X/bf .m/� d4.n/

by (A.1) and similarly

af .n; v/ WD
X
cmDn

c�Y;m�M

�f .c/.c=Y /
"Civbf .m/� d4.n/:

For n �M , by (A.2) we have the more precise estimates

af .n/ D
X
cmDn

�f .c/bf .m/.1CO.e
�X=c// D 1nD1 CO.d4.n/D

�2/

and
af .n; v/� .n=Y /"

X
cmDn

j�f .c/j jbf .m/j � .n=Y /
"d4.n/:

As a consequence,ˇ̌̌X
n�M

af .n; v/�.n/n
�s
ˇ̌̌
� Y �"

X
n�M

d4.n/n
�1=2
� Y �"M 1=2 log3.2M/:

We want this to be O".L�2/, which holds assuming for instance

M � D": (A.17)

In that case, using the bounds above in (A.16) gives

Lf .s; �/Mf .s; �/ D 1C
X

M<n�MY

af .n/�.n/n
�s

COf;"

�
L

Z 1
�1

ˇ̌̌ X
M<n�MY

af .n; v/�.n/n
�s
ˇ̌̌
e�jvj dv CL�1

�
: (A.18)
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To unify the treatment of the sum and integral, we consider the measure

d� WD 1
3
e�jvjdv C 1

3
ı.v/;

where dv denotes the Lebesgue measure on R, ı.v/ is the point measure at v D 0, and 1
3

is a normalization factor that makes
R1
�1

d� D 1. Then (A.18) can be written as

Lf .s; �/Mf .s; �/ � 1�f;" L

Z 1
�1

ˇ̌̌ X
M<n�MY

af .n; v/�.n/n
�s
ˇ̌̌
d�.v/CL�1 (A.19)

after redefining af .n; 0/ WD af .n/. For convenience, we also redefine af .n; v/ WD 0 for
n �M or n > MY . From now on the only properties of the coefficients we will use are
that they do not depend on s or � and satisfy af .n; v/� d4.n/.

Now, assume that � is a zero of Lf˝�.s/ D Lf .s; �/ for some primitive � .mod q/
with .q;N /D 1, q�Q, 1=2C "�˛�<.�/� 1, and j=.�/j �T . IfD is sufficiently large
in terms of f and " (which we can assume, otherwise Proposition A.1 follows trivially),
then (A.19) impliesZ 1

�1

ˇ̌̌ X
M<n�MY

af .n; v/�.n/n
��
ˇ̌̌
d�.v/�f;" L�1:

We break the summation into dyadic segments J < n � 2J for J WD 2`M , 0 � ` � L WD
blogY=log 2c � L. Denote

D`.s; �/ WD

Z 1
�1

ˇ̌̌ X
J<n�2J

af .n; v/�.n/n
�s
ˇ̌̌
d�.v/:

Then for each such zero � being counted there exists some ` such that

D`.�; �/�f;" L�2: (A.20)

If �` denotes the set of relevant pairs .�; �/ satisfying (A.20) and R` WD j�`j, then the
total number R of zeros being counted in Proposition A.1 satisfies

R �

LX
`D0

R` � L max
0�`�L

R`:

Raising D`.s; �/ to a suitable power 2r , for r � 2 (depending on J ) we get

D`.s; �/
2r
�

Z 1
�1

ˇ̌̌ X
J<n�2J

af .n; v/�.n/n
�s
ˇ̌̌2r
d�.v/

DW

Z 1
�1

ˇ̌̌ X
P<n�2rP

cf .n; v/�.n/n
�s
ˇ̌̌2
d�.v/;

where P WD J r falls in the interval

Z � P � .MY /2 CZ3=2 (A.21)
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for Z that will be chosen later satisfying

MY � Z � D100: (A.22)

Observe that an integer r � 2 such that (A.21) holds exists. From now on we choose

M D D"=4;

so that r is bounded in terms of ", by (A.22). Observe that condition (A.17) is automati-
cally satisfied.

By (A.20), we conclude that

R` �f;" L4r

Z 1
�1

X
.�;�/2�`

ˇ̌̌ X
P<n�2rP

cf .n; v/�.n/n
��
ˇ̌̌2
d�.v/: (A.23)

The coefficients satisfy cf .n; v/�r d4r .n/, as af .n; v/� d4.n/, soX
P<n�2rP

jcf .n; v/j
2n�2˛ � P 1�2˛LB (A.24)

for some B depending only on r (and therefore "). We can now apply results about large
values of Dirichlet polynomials to the integrand of (A.23), after separating the zeros � for
each given � into O.L/ families of 1-spaced points. Let H WD Q2T .

Suppose that 1=2C " � ˛ � 3=4. By (A.24) and the large sieve inequality [16, The-
orem 9.13], we have

R` �f;" .P CH/P
1�2˛LC

�
�
.MY /4.1�˛/ CZ3.1�˛/ CHZ1�2˛

�
LC

for some C depending only on ", where we have used (A.21). IfH � .MY /3�2˛ , choose
Z DMY , which trivially satisfies (A.22), so

R` �f;" .MY /4.1�˛/LC
� D.4C"/.1�˛/LCC6

and we are done. If instead H � .MY /3�2˛ , then we can make the optimal choice Z D
H

1
2�˛ and (A.22) is satisfied, so we get

R` �f;"
�
.MY /4.1�˛/ CH

3.1�˛/
2�˛

�
LC
�
�
D.4C"/.1�˛/

CH
3.1�˛/
2�˛

�
LCC6

as desired.
Finally, suppose that 3=4 � ˛ � 1. By the Halász–Montgomery–Huxley method [16,

Theorem 9.15], we have

R` �f;" .P CR
2=3

`
H 1=3P 1=3/P 1�2˛LC

for some C depending only on ", which implies

R` �f;" .P
2�2˛

CHP 4�6˛/L3C

� ..MY /4.1�˛/ CZ3.1�˛/ CHZ4�6˛/L3C ;
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where we have again used (A.21). IfH � .MY /2˛ , we chooseZ DMY , which trivially
satisfies (A.22), and get

R` �f;" .MY /4.1�˛/L3C
� D.4C"/.1�˛/L3CC3;

so we are done. If instead H � .MY /2˛ , then we make the optimal choice Z D H
1

3˛�1 ,
which in this case satisfies (A.22). Therefore,

R` �f;"
�
.MY /4.1�˛/ CH

3.1�˛/
3˛�1

�
L3C

�
�
D.4C"/.1�˛/

CH
3.1�˛/
3˛�1

�
L3CC3

as desired.

Acknowledgments. I would like to thank my PhD advisor, Maksym Radziwiłł, for introducing me
to this problem, for many useful discussions on the topics of this paper, and for valuable advice and
encouragement. Thanks also to Andrew Booker for his helpful comments and correspondence.

References

[1] Andersen, N., Thorner, J.: Zeros of GL2 L-functions on the critical line. Forum Math. 33,
477–491 (2021) Zbl 1486.11068 MR 4223062

[2] Atkin, A. O. L., Li, W. C. W.: Twists of newforms and pseudo-eigenvalues of W -operators.
Invent. Math. 48, 221–243 (1978) Zbl 0369.10016 MR 0508986

[3] Bauer, P. J.: Zeros of Dirichlet L-series on the critical line. Acta Arith. 93, 37–52 (2000)
Zbl 0953.11029 MR 1760087

[4] Booker, A. R.: Poles of Artin L-functions and the strong Artin conjecture. Ann. of Math. (2)
158, 1089–1098 (2003) Zbl 1081.11038 MR 2031863

[5] Booker, A. R.: Simple zeros of degree 2 L-functions. J. Eur. Math. Soc. 18, 813–823 (2016)
Zbl 1339.11058 MR 3474457

[6] Booker, A. R., Cho, P. J., Kim, M.: Simple zeros of automorphic L-functions. Compos. Math.
155, 1224–1243 (2019) Zbl 1443.11073 MR 3961571

[7] Booker, A. R., Krishnamurthy, M.: Weil’s converse theorem with poles. Int. Math. Res.
Notices 2014 5328–5339 Zbl 1312.11035 MR 3267373

[8] Booker, A. R., Milinovich, M. B., Ng, N.: Quantitative estimates for simple zeros of L-
functions. Mathematika 65, 375–399 (2019) Zbl 1437.11076 MR 3902330

[9] Booker, A. R., Milinovich, M. B., Ng, N.: Subconvexity for modular form L-functions in the
t aspect. Adv. Math. 341, 299–335 (2019) Zbl 1469.11280 MR 3872849

[10] Conrey, J. B., Ghosh, A.: Simple zeros of the Ramanujan � -Dirichlet series. Invent. Math. 94,
403–419 (1988) Zbl 0653.10038 MR 0958837

[11] Conrey, J. B., Iwaniec, H., Soundararajan, K.: Critical zeros of Dirichlet L-functions. J. Reine
Angew. Math. 681, 175–198 (2013) Zbl 1357.11070 MR 3181494

[12] Farmer, D. W.: Mean value of Dirichlet series associated with holomorphic cusp forms.
J. Number Theory 49, 209–245 (1994) Zbl 0817.11028 MR 1305090

[13] Gonçalves, F., de Laat, D., Leijenhorst, N.: Multiplicity of nontrivial zeros of primitive
L-functions via higher-level correlations. Math. Comp. (online, 2024)

[14] Heath-Brown, D. R.: Simple zeros of the Riemann zeta function on the critical line. Bull.
London Math. Soc. 11, 17–18 (1979) Zbl 0409.10027 MR 0535789

[15] Huxley, M. N.: Large values of Dirichlet polynomials. Acta Arith. 24, 329–346 (1973)
Zbl 0252.10041 MR 0330067

https://doi.org/10.1515/forum-2020-0104
https://zbmath.org/?q=an:1486.11068
https://mathscinet.ams.org/mathscinet-getitem?mr=4223062
https://doi.org/10.1007/BF01390245
https://zbmath.org/?q=an:0369.10016
https://mathscinet.ams.org/mathscinet-getitem?mr=0508986
https://doi.org/10.4064/aa-93-1-37-52
https://zbmath.org/?q=an:0953.11029
https://mathscinet.ams.org/mathscinet-getitem?mr=1760087
https://doi.org/10.4007/annals.2003.158.1089
https://zbmath.org/?q=an:1081.11038
https://mathscinet.ams.org/mathscinet-getitem?mr=2031863
https://doi.org/10.4171/JEMS/603
https://zbmath.org/?q=an:1339.11058
https://mathscinet.ams.org/mathscinet-getitem?mr=3474457
https://doi.org/10.1112/s0010437x19007279
https://zbmath.org/?q=an:1443.11073
https://mathscinet.ams.org/mathscinet-getitem?mr=3961571
https://doi.org/10.1093/imrn/rnt127
https://zbmath.org/?q=an:1312.11035
https://mathscinet.ams.org/mathscinet-getitem?mr=3267373
https://doi.org/10.1112/s0025579318000530
https://doi.org/10.1112/s0025579318000530
https://zbmath.org/?q=an:1437.11076
https://mathscinet.ams.org/mathscinet-getitem?mr=3902330
https://doi.org/10.1016/j.aim.2018.10.037
https://doi.org/10.1016/j.aim.2018.10.037
https://zbmath.org/?q=an:1469.11280
https://mathscinet.ams.org/mathscinet-getitem?mr=3872849
https://doi.org/10.1007/BF01394330
https://zbmath.org/?q=an:0653.10038
https://mathscinet.ams.org/mathscinet-getitem?mr=0958837
https://doi.org/10.1515/crelle-2012-0032
https://zbmath.org/?q=an:1357.11070
https://mathscinet.ams.org/mathscinet-getitem?mr=3181494
https://doi.org/10.1006/jnth.1994.1090
https://zbmath.org/?q=an:0817.11028
https://mathscinet.ams.org/mathscinet-getitem?mr=1305090
https://doi.org/10.1090/mcom/4005
https://doi.org/10.1090/mcom/4005
https://doi.org/10.1112/blms/11.1.17
https://zbmath.org/?q=an:0409.10027
https://mathscinet.ams.org/mathscinet-getitem?mr=0535789
https://doi.org/10.4064/aa-24-4-329-346
https://zbmath.org/?q=an:0252.10041
https://mathscinet.ams.org/mathscinet-getitem?mr=0330067


Simple zeros of GL.2/ L-functions 3021

[16] Iwaniec, H., Kowalski, E.: Analytic number theory. Amer. Math. Soc. Colloq. Publ. 53, Amer-
ican Mathematical Society, Providence, RI (2004) Zbl 1059.11001 MR 2061214

[17] Iwaniec, H., Sarnak, P.: The non-vanishing of central values of automorphic L-functions and
Landau–Siegel zeros. Israel J. Math. 120, 155–177 (2000) Zbl 0992.11037 MR 1815374

[18] Jacquet, H., Shalika, J. A.: A non-vanishing theorem for zeta functions of GLn. Invent. Math.
38, 1–16 (1976/77) Zbl 0349.12006 MR 0432596

[19] Jutila, M.: Zero-density estimates for L-functions. Acta Arith. 32, 55–62 (1977)
Zbl 0307.10045 MR 0429790

[20] Jutila, M.: Lectures on a method in the theory of exponential sums. Tata Institute of Funda-
mental Research Lectures on Mathematics and Physics 80, Springer, Berlin (1987)
Zbl 0671.10031 MR 0910497

[21] Kowalski, E., Michel, P.: Zeros of families of automorphic L-functions close to 1. Pacific J.
Math. 207, 411–431 (2002) Zbl 1129.11316 MR 1972253

[22] Kowalski, E., Michel, P., VanderKam, J.: Mollification of the fourth moment of automorphic
L-functions and arithmetic applications. Invent. Math. 142, 95–151 (2000) Zbl 1054.11026
MR 1784797
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