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Abstract. LetG be a simple algebraic group over an algebraically closed field and letX be an irre-
ducible subvariety of Gr with r > 2. In this paper, we consider the general problem of determining
if there exists a tuple .x1; : : : ; xr / 2X such that hx1; : : : ; xr i is Zariski dense inG. We are primarily
interested in the case where X D C1 � � � � � Cr and each Ci is a conjugacy class of G comprising
elements of prime order modulo the center of G. In this setting, our main theorem gives a complete
solution to the problem whenG is a symplectic or orthogonal group. By combining our results with
earlier work on linear and exceptional groups, this gives an almost complete solution for all simple
algebraic groups. We also present several applications. For example, we use our main theorem to
show that many faithful representations of symplectic and orthogonal groups are generically free.
We also establish new asymptotic results on the probabilistic generation of finite simple groups by
pairs of prime order elements, completing a line of research initiated by Liebeck and Shalev over
25 years ago.
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1. Introduction

Let G be a simple algebraic group over an algebraically closed field k of characteristic
p > 0. Let r be a positive integer and let X be a (locally closed) irreducible subvariety
of Gr D G � � � � �G (r factors). For x D .x1; : : : ; xr / 2 X , let G.x/ denote the Zariski
closure of hx1; : : : ; xri, so

� D ¹x 2 X W G.x/ D Gº (1)

is the set of tuples in X that topologically generate G. Note that G is locally finite if k is
algebraic over a finite field, in which case � is empty. Given this observation, we will be
interested in the case where k is not algebraic over a finite field.

Let us observe that the existence of a tuple in � does not depend on the isogeny type
of G. Indeed, the center of G is contained in the Frattini subgroup, so a subgroup H
is dense in G if and only if HZ=Z is dense in G=Z, where Z is any central subgroup
of G. By a general theorem of Tits [48], every semisimple algebraic group over k con-
tains a Zariski-dense free subgroup on two generators, which of course implies that G is
topologically 2-generated.

In this paper, we are interested in determining if� is nonempty for specific irreducible
subvarieties X . If p D 0, then a theorem of Guralnick [18] implies that � is nonempty if
and only if it contains a nonempty open subvariety of X . In the general setting, we will
work with generic sets, which are subsets of X containing the complement of a countable
union of proper closed subvarieties. Note that the intersection of countably many generic
subsets is generic. If k is an uncountable algebraically closed field, then every generic
subset of X is dense (see [4, Lemma 2.4], for example), whereas a generic subset may
be empty if k is countable. In particular, if k is uncountable, then � is nonempty if it
contains the intersection of countably many generic subsets.

In [7, Theorem 2], we proved that � is nonempty if and only if it is a dense subset
of X . In view of Theorem 2.1 below, this is also equivalent to the property that � is
generic.

Theorem 1. Let k be an algebraically closed field that is not algebraic over a finite field.
Then the following are equivalent:

(i) � is nonempty.

(ii) �.k0/ is nonempty for some extension k0=k.

(iii) � is a dense subset of X .

(iv) � is a generic subset of X .

In (ii), �.k0/ is the set of elements in the variety X.k0/ over k0 that topologically
generate G.k0/ (note that there is no need to assume that k0 is algebraically closed; if k00

is the algebraic closure of k0, then �.k0/ � �.k00/). In light of Theorem 1, we are free to
assume that k is uncountable in the proof of our main results on the topological generation
of classical algebraic groups (see Theorem 7 below).
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The general set up applies in many different situations. For example, if � is a finitely
generated group with a presentation F=R, where F is a free group of rank r and R is
a set of defining relations, then we can take X to be an irreducible component of the
representation variety

Hom.�;G/ D ¹.x1; : : : ; xr / 2 Gr W '.x1; : : : ; xr / D 1 for all ' 2 Rº:

Another example that arises in this paper is the following. Given a locally closed
irreducible subvariety Y � Gm and words w1; : : : ; wr in a free group of rank m, we may
view each wi as a map from Gm to G, and we can take

X D ¹.w1.y/; : : : ; wr .y// 2 G
r
W y 2 Y º;

which is irreducible since it is the image of Y under a morphism. Further examples include
products of irreducible normal subsets ofG, withX D C1 � � � � �Cr an important special
case, where each Ci is a conjugacy class of G. We can also take X to be an irreducible
component of the subset of C1 � � � � � Cr consisting of r-tuples satisfying some relations
(for example, the product of the elements in each tuple is 1).

The case where X D C1 � � � � � Cr is a product of conjugacy classes was studied by
Gerhardt [16] for G D SLn.k/ (see Theorem 4). A detailed treatment of this problem
for exceptional algebraic groups was presented in [6, 7] (see below for further details),
where several more general results are established (including [7, Theorem 2], as men-
tioned above). Our main goal in this paper is to extend the results in [7, 16] to all simple
algebraic groups.

In [7], the primary tool for studying the topological generation of exceptional alge-
braic groups by elements in specified conjugacy classes is encapsulated in [7, Theorem 5],
which involves computing the dimensions of fixed point spaces of elements acting on
coset varieties of the form G=H , where H is a maximal closed subgroup of G. While
similar computations do arise in this paper, our approach is closer to the inductive method
employed by Gerhardt in [16]. As explained below, several significant complications arise
for the groups considered here.

Let G be a classical group with natural module V and set X D C1 � � � � � Cr , where
each Ci is a noncentral conjugacy class in G. By arguing inductively and applying Ger-
hardt’s result for SLn.k/, our aim is to identify certain generic subsets Y �X such that the
subgroups G.y/ for y 2 Y have restrictive properties. For example, G.y/ may be forced
to contain a large subgroup of G (typically defined in terms of the rank of G), or G.y/
may have to act irreducibly or primitively on V . Then by considering the maximal sub-
groups of G, our goal is to show that no proper subgroup of G can simultaneously satisfy
all of these conditions. If we can do this, then we deduce that the intersection of these
generic sets is contained in �, which in turn allows us to conclude that � is nonempty
(recall that we are free to assume k is uncountable).

In this paper, we first consider topological generation in the general setting and we pre-
sent a new result (Theorem 2), which generalizes the observation that � is either empty
or generic. We then turn our attention to the classical algebraic groups and completely
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determine when one can generate topologically with elements from prescribed conjugacy
classes, extending the earlier work in [7, 16] to all simple algebraic groups. We present
some corollaries (also see Section 8) and then apply our results to obtain bounds on the
dimensions of (not necessarily irreducible) kG-modules with a nontrivial generic sta-
bilizer (Theorem 13). In addition, we establish new asymptotic results on the random
generation of finite simple groups of Lie type by a pair of elements of prime order, com-
pleting a line of research initiated by Liebeck and Shalev in [32] (see Theorem 16).

Let G be a simple algebraic group over an algebraically closed field k of character-
istic p > 0. In order to state our first result, recall that a closed subgroup H of G is
G-irreducible if it is not contained in a proper parabolic subgroup of G. Also recall that
the rank of a closed subgroup H of G, denoted by rkH , is the dimension of a maximal
torus of the connected component H 0 (in particular, rkH D 0 if H is finite).

Note that we allow k to be algebraic over a finite field in the statement of Theo-
rem 2. In (ii), the subset Y � X is generic, and thus Y.k/ might be empty (but if k0 is an
uncountable algebraically closed field containing k, then Y.k0/ will be dense in X.k0/).
In addition, the setZ is nonempty open and defined over k, soZ.k/will be dense inX.k/
even when k is algebraic over a finite field.

Theorem 2. Let G be a simple algebraic group over an algebraically closed field k, let r
be a positive integer and let X be a locally closed irreducible subvariety of Gr . Then one
of the following holds:

(i) For all x 2 X , G.x/ is contained in a proper parabolic subgroup of G.

(ii) There exist a unique (up to conjugacy) closed G-irreducible subgroup H 6 G,
a generic subset Y and a nonempty open subset Z with Y � Z � X such that

(a) rkG.x/ 6 rkH for all x 2 X ;

(b) G.y/ is conjugate to H for all y 2 Y ; and

(c) G.z/ is contained in a conjugate of H for all z 2 Z.

It is worth noting that if (i) holds, then eachG.x/ is contained in a conjugate of a fixed
proper parabolic subgroup of G (see Remark 2.8).

Remark 3. Let us highlight the special case in Theorem 2 when the conclusion in part (ii)
holds with H D G, in which case G.x/ D G for all x in a generic subset of X .

(a) If k is not algebraic over a finite field, then� is dense inX (and hence nonempty)
by Theorem 1.

(b) Now assume k is the algebraic closure of a finite field, so p > 0 and each G.x/
is finite, whence �.k/ is empty. Let us assume G is simply connected and let k0 be any
algebraically closed field properly containing k. Note that �.k0/ is dense in X.k0/ by
Theorem 1. Fix a finite collection S of rational irreducible G-modules, each of which is
defined over k, and define

W D ¹x 2 X W G.x/ acts irreducibly on each module in Sº:
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Note that W is open in X and is defined over k. Clearly, W.k0/ contains �.k0/, so W.k0/
is a dense open subset ofX.k0/, and we deduce thatW.k/ is a dense open subset ofX.k/.
By choosing the modules in S appropriately and arguing as in [7] (or [23]), one can show
that if x 2 W.k/, then G.x/ contains a conjugate of G.q/ for some sufficiently large p-
power q, where the finite group G.q/ is possibly twisted. We can exploit this observation
to study the asymptotic generation properties of the finite groups of Lie type. For example,
see Theorem 16 below.

Let us now specialize to the case where G is a simple classical algebraic group with
natural module V and k is not algebraic over a finite field. Set

X D C1 � � � � � Cr D x
G
1 � � � � � x

G
r (2)

with each Ci D xGi a noncentral conjugacy class. Write n D dim V and let di be the
dimension of the largest eigenspace of xi on V . In this setting, there are two natural
obstructions to the existence of an element x 2 X with G.x/ D G:

(a) If
P
i di > n.r � 1/, then G.x/ fixes a 1-space in V for all x 2 X and thus � is

empty.

(b) We say that xi is quadratic if it has a quadratic minimal polynomial on V (and non-
quadratic otherwise). If r D 2 and x1, x2 are quadratic, then every composition factor
of G.x/ on V is at most 2-dimensional (see Lemma 3.13), and thus � is empty if
n > 3.

By the following theorem of Gerhardt [16, Theorem 1.1], these are the only obstruc-
tions for linear groups G D SLn.k/ with n > 3.

Theorem 4 (Gerhardt). Let G D SLn.k/, where n > 3 and k is an algebraically closed
field that is not algebraic over a finite field. Define X D C1 � � � � � Cr as in (2), where
each xi is noncentral. Then � is empty if and only if

(i)
P
i di > n.r � 1/; or

(ii) r D 2 and x1, x2 are quadratic.

This implies the same result for G D GLn.k/ if one replaces � by the set of x 2 X
such that G.x/ contains SLn.k/. There is a similar result for G D SL2.k/ which states
that � is empty if and only if r D 2 and x1, x2 are involutions modulo the center of G
(see [16, Theorem 4.5]).

We refer the reader to [7] for detailed results on the analogous problem for excep-
tional algebraic groups G. For example, [7, Theorem 7] states that if X is defined as
in (2), then � is nonempty (and therefore dense) whenever r > 5 (or r > 4 if G D G2).
As explained in [7], it is easy to construct examples that demonstrate the sharpness of
both bounds.

In order to complete our study of topological generation for simple algebraic groups,
it remains to extend the analysis to the orthogonal and symplectic groups, which is the
main goal of this paper. Recall that the center of G is contained in the Frattini subgroup
of G, so the isogeny type of G is not relevant. For convenience, we will work with the
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matrix groups SOn.k/ and Spn.k/, where SOn.k/ is an index-two subgroup of the isom-
etry group On.k/ and k is an algebraically closed field of characteristic p > 0 that is not
algebraic over a finite field.

Our main result is Theorem 7 below. HereGD SOn.k/ or Spn.k/, and we will assume
n > N , where

N D

8̂̂<̂
:̂
10 if G D SOn.k/, n even;

3 if G D SOn.k/, n odd;

4 if G D Spn.k/:

(3)

In order to justify this assumption, first recall that SO4.k/ is not simple and Sp2.k/ D
SL2.k/. In addition, the groups SO6.k/ and SL4.k/ are isogenous, so the result for
SO6.k/ can be read off from Theorem 4 (see Theorem 4.5 for a version of Theorem 7
for G D SO6.k/ in terms of the 6-dimensional natural module). The case G D SO8.k/
requires special attention because there are three restricted irreducible 8-dimensional kG-
modules and one needs to consider the eigenspaces of each xi on all three modules (see
Theorems 4.6 and 4.7). In addition, since there are isogenies between the classical groups
of type Bm and Cm in characteristic 2, we may assume p ¤ 2 when G D SOn.k/ and n
is odd.

In the statement of Theorem 7, we assume each xi in (2) has prime order modulo the
center Z.G/ of G (if p D 0, we allow xi to be an arbitrary nontrivial unipotent element).
Our methods can be extended to handle more general conjugacy classes (as in Theorem 4
for SLn.k/), but the analysis turns out to be considerably more complicated and many
exceptions arise. Furthermore, the case where the elements in Ci have prime order (mod-
ulo the center) is sufficient for our applications. However, it is worth noting that with
only minor modifications to the proof, one could replace the prime order assumption by
a more general hypothesis where we assume each xi is either unipotent or semisimple and
the following two conditions are satisfied:

(a) If xi is semisimple and p ¤ 2, then either xi is an involution, or �1 is not an eigen-
value of xi on the natural module.

(b) If xi is unipotent and p D 2, then xi is an involution.

Remark 5. Notice that if p D 0, then nontrivial unipotent elements have infinite order.
In order to avoid the need to repeatedly highlight this special situation, we will simply
view all nontrivial unipotent elements in characteristic 0 as having prime order. Alterna-
tively, we could assume p > 0 throughout and then deduce the corresponding results in
characteristic 0 by a standard compactness argument, but we prefer to adopt the former
approach.

Remark 6. SupposeG D Spn.k/ with n > 4 and p D 2. Let ei D dimV xi be the dimen-
sion of the 1-eigenspace of xi on V . As noted above, if

P
i ei > n.r � 1/, then each

G.x/ acts reducibly on V and thus � is empty. In fact, it turns out that � is also empty
if
P
i ei D n.r � 1/ (see Lemma 3.38), which explains the additional condition in Theo-

rem 7 in this special case.
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G Conditions x1 x2

SO2m.k/ m > 5 odd .I2; �Im�1; �
�1Im�1/ .Jm�12 ; J 21 /

�

.J 23 ; J
m�3
2 /, p ¤ 2

SO2m.k/ m > 6 even .I2; �Im�1; �
�1Im�1/ .Jm2 /

�

.J 23 ; J
m�4
2 ; J 21 /, p ¤ 2

.J3; J
m�2
2 ; J1/, p ¤ 2

SO2mC1.k/ m > 2 even .I1; �Im; �
�1Im/ .Jm2 ; J1/

Sp4.k/ p ¤ 2 .�I2; I2/ nonregular

Tab. 1. Some special cases with r D 2 in Theorem 7.

G p r x1 x2 x3 x4

SO5.k/ ¤ 2 3 .J 22 ; J1/ .J 22 ; J1/ .J 22 ; J1/

Sp8.k/ ¤ 2 3 .�I2; I6/ .�I2; I6/ .�I4; I4/

Sp6.k/ ¤ 2 3 .�I2; I4/ .�I2; I4/ .�I2; I4/

Sp4.k/ ¤ 2 3 .�I2; I2/ .�I2; I2/ quadratic
4 .�I2; I2/ .�I2; I2/ .�I2; I2/ .�I2; I2/

2 3 .J 22 /
� .J 22 /

� quadratic
4 .J 22 /

� .J 22 /
� .J 22 /

� .J 22 /
�

Tab. 2. The special cases with r 2 ¹3; 4º in Theorem 7.

We are now in a position to state our main result.

Theorem 7. Let G D SOn.k/ or Spn.k/, where n > N and k is an algebraically closed
field of characteristic p > 0 that is not algebraic over a finite field. Define X D C1 �

� � � � Cr as in (2), where each xi has prime order modulo Z.G/. Assume the following
conditions are satisfied:X

i

di 6 n.r � 1/; and also
X
i

ei < n.r � 1/ if G D Spn.k/ and p D 2.

Then � is empty if and only if one of the following holds:

(i) r D 2 and x1, x2 are quadratic on the natural kG-module.
(ii) r 2 ¹2; 3; 4º and the xi are recorded in Table 1 or Table 2 (up to ordering of the xi ).

Remark 8. Let us record some comments on the statement of Theorem 7.

(a) Recall that � is empty if
P
i di > n.r � 1/, or if r D 2 and x1, x2 are quadratic,

so the theorem shows that these are essentially the only obstructions to the existence of
a tuple x 2 X with G.x/ D G, apart from a handful of special cases with r 6 4 (see
Remark 6 for the additional condition

P
i ei < n.r � 1/ when G D Spn.k/ and p D 2).

As previously noted, Theorem 1 states that � is nonempty if and only if it is generic and
dense in X .
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(b) The elements xi appearing in Tables 1 and 2 are presented up to conjugacy in G
and scalars inZ.G/. For unipotent elements, we give the Jordan form of xi on the natural
module V for G, where Jm denotes a unipotent Jordan block of size m. Similarly, we
describe semisimple elements xi in terms of their eigenvalues on V , where Im is the
identity matrix of size m and � is any nonzero scalar in k with �2 ¤ 1.

(c) In the first two rows of Table 1, the asterisk in the final column indicates that if
p D 2, then we take x2 to be an a-type involution with the given Jordan form. Here we
are using the standard Aschbacher–Seitz notation from [1] for unipotent involutions in
classical groups (see Remark 3.26). In this notation, the elements appearing in the final
two rows of Table 2 are involutions of type a2 (i.e., short root elements).

(d) In the final row of Table 1, we can choose x2 2 Sp4.k/ to be any nonregular
element of prime order moduloZ.G/ (note that this is equivalent to the condition d2 > 2).
Similarly, for the two cases in Table 2 with G D Sp4.k/ and r D 3 we can take x3 to be
any quadratic element, which means that x3 is either semisimple of the form .�I2; I2/ or
.�I2; �

�1I2/, or unipotent with Jordan form .J 22 / or .J2; J 21 /.

(e) As noted above, the corresponding result for SO6.k/ can be read off from the
result for the isogenous group SL4.k/ (see Theorems 4 and 4.5). The case G D SO8.k/
requires special attention, and we refer the reader to Theorems 4.6 and 4.7.

It is worth noting that several new difficulties arise in the analysis of orthogonal and
symplectic groups in comparison to the linear groups handled in [16]. For instance, we
have to consider subspace stabilizers of both totally singular and nondegenerate spaces.
Similarly, we need to distinguish the eigenspaces of a semisimple element, noting that
a �-eigenspace is nondegenerate if � D ˙1, otherwise it is totally singular. The unipo-
tent conjugacy classes are also more complicated, especially in characteristic 2 when the
class of a unipotent element is not always uniquely determined by its Jordan form on the
natural module V . Several key features of the proof are also more difficult in this setting.
For example, there are considerably more special cases to consider and there are addi-
tional complications in applying the main induction argument. Indeed, the main idea in
the proof of Theorem 4 for SLn.k/ involves passing to the stabilizer of a 1-dimensional
subspace of V (or a hyperplane). But in an orthogonal or symplectic group, the largest
irreducible composition factor of the stabilizer of a totally singular 1-space has codimen-
sion 2 in V , rather than codimension 1.

Remark 9. Similar results (although not quite as precise) are obtained in [12] on the
generation of Lie algebras. For example, [12, Proposition 6.4] gives essentially the same
conditions for the Lie algebra sln.k/ of type A as obtained in Theorem 4 when p ¤ 2 and
the generating elements are all contained in the same SLn.k/-orbit (with the additional
condition that the elements are either nilpotent or semisimple). There are some advantages
in working with Lie algebras (for instance, one can multiply by scalars and take closures
more easily), but serious issues arise due to the existence of special isogenies when p D 2
or 3. Indeed, for Lie algebras one cannot ignore the issue of isogenies.
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Remark 10. Let us also highlight related results of Guralnick and Saxl [22, Theorems 8.1
and 8.2], which give an upper bound on the number of conjugates of a given noncen-
tral element in a simple algebraic group required to generate a Zariski dense subgroup
(in addition, they establish similar results for the corresponding finite groups of Lie type).
For example, if G is a classical group with an n-dimensional natural module, then n con-
jugates of a given noncentral element x 2 G will topologically generate, unless .G; x/ is
one of a handful of known cases (for instance, nC 1 conjugates are needed ifGD Spn.k/,
p D 2 and x is a transvection). The bounds in [22] are best possible (for classical groups),
but they are not sensitive to the choice of element x and they do not extend to the more
general situation we consider here, where C1; : : : ; Cr are arbitrary conjugacy classes of
noncentral elements (containing elements of prime order modulo Z.G/).

In Section 8, we will prove the following corollary. In the statement, we define

M D

8̂̂̂̂
<̂
ˆ̂̂:
10 if G D SOn.k/, n even;

7 if G D SOn.k/, n odd;

6 if G D Spn.k/;

3 if G D SLn.k/:

(4)

Corollary 11. Let G D SLn.k/, SOn.k/ or Spn.k/, where n > M and k is an alge-
braically closed field of characteristic p > 0 that is not algebraic over a finite field.
Define X as in (2), where each xi has prime order modulo Z.G/, and assume there
exists y 2 X such that G.y/ acts irreducibly on the natural kG-module. Then� is empty
if and only if G D Spn.k/, p D 2 and G.x/0 6 SOn.k/ for generic x 2 X .

In addition, by combining the above results with Theorem 4.6 on G D SO8.k/, one
can obtain the following corollary (note that noncentrality is the only condition on the xi ).

Corollary 12. Let G be a simple algebraic group over an algebraically closed field of
characteristic p > 0 that is not algebraic over a finite field. Define X as in (2), where
r > 5 and each xi is noncentral. If G is a classical group, then define di and ei as above.
Then � is empty if and only if G is classical and either

(i)
P
i di > n.r � 1/; or

(ii) G D Spn.k/, p D 2 and
P
i ei D n.r � 1/,

where n is the dimension of the natural kG-module.

The proof of this corollary relies on extending our basic set up to a slightly more
general situation. We will do this in a sequel and so we do not give a proof in this paper.

Let us now turn to some applications. Recall that if G is an algebraic group act-
ing on a variety V , then G has a generic stabilizer on V if there are a nonempty open
subvariety V0 of V and a closed subgroup H of G such that the G-stabilizer of each
point v 2 V0 is conjugate to H . Richardson [39, Theorem A] proved that generic sta-
bilizers exist in characteristic 0 if V is a smooth affine irreducible variety. However,
this result does not extend to semisimple groups in positive characteristic (for example,
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G d.G/ d 0.G/ Conditions

SLn.k/ 6 9 n D 2

9n2=4 9n2=4 n > 3

Spn.k/ 9n2=8C 2 3n2=2 n D 4 or .n; p/ D .6; 2/

9n2=8 3n2=2 n > 6 and .n; p/ ¤ .6; 2/

SOn.k/ 9n2=8 2.n � 1/2 n > 7

E8.k/ 720 1200

E7.k/ 378 630

E6.k/ 216 360

F4.k/ 144 240

G2.k/ 36 48

Tab. 3. The values of d.G/ and d 0.G/ in Theorem 13 and Corollary 15.

see [19, Theorem 1 (ii)]). It is true that generic stabilizers always exist (in any charac-
teristic) when G is simple and V is an irreducible kG-module, even as group schemes
[15, 19]. Moreover, in the latter situation, the generic stabilizers have been determined in
all cases [19] (and also for group schemes [15]); the generic stabilizer is typically trivial
whenever dim V > dimG. Indeed, by the results in [19] we deduce that if G is simple,
V is irreducible and dim V > dimG, then the generic stabilizer is always a finite group
scheme (but not necessarily smooth).

LetG be a simple algebraic group over an algebraically closed field k of characteristic
p > 0 and let V be a kG-module (possibly reducible). Set

V G D ¹v 2 V W gv D v for all g 2 Gº:

By combining Theorem 7 with the main results in [7,16], we can show that if dimV=V G

is sufficiently large, then the generic stabilizer is trivial. The analogous result for Lie
algebras was proved in [12]. Moreover, when combined with the results in [12], we can
prove that generic stabilizers are trivial as a group scheme under suitable hypotheses (see
Corollary 15 below).

In the statement of the following result, we say that V is generically free if the generic
stabilizer for the action of G on V is trivial. Note that if G is an exceptional type group,
then d.G/ D 3.dimG � rkG/.

Theorem 13. Let G be a simple algebraic group over an algebraically closed field k
of characteristic p > 0. Let V be a finite-dimensional faithful rational kG-module and
define d.G/ as in Table 3. If dimV=V G > d.G/, then V is generically free.

Remark 14. Note that if dim V < dimG, then the generic stabilizer is clearly positive-
dimensional. Here we highlight some interesting examples with dimV > dimG.
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(a) Let G D SL.W / D SLn.k/ and V D S2.W /˚ S2.W / with p ¤ 2, so

dimV D n.nC 1/ > dimG:

Here the generic stabilizer is equal to the intersection of two generic conjugates of the
orthogonal subgroup SO.W /, which is an elementary abelian 2-group of rank n � 1
(see [10, Theorem 8]).

(b) If G D Sp.W / D Spn.k/ and we take V to be the direct sum of n � 1 copies
of W , then dimV D n.n � 1/ and the generic stabilizer is positive-dimensional. Indeed,
if G fixes a generic point of V , then it acts trivially on a hyperplane of W and hence
fixes the 1-dimensional radical R of this hyperplane. The stabilizer of R is a maximal
parabolic subgroup P D QL, where the unipotent radical Q is the subgroup of P which
acts trivially on the hyperplane R?. So the generic stabilizer is Q, which has dimen-
sion 2n � 1.

(c) If G D SO.W / D SOn.k/, p ¤ 2 and V D L.!2/ is the nontrivial composition
factor of S2.W /, then the generic stabilizer is a nontrivial elementary abelian 2-group.

By combining Theorem 13 with [12, Theorem A], we obtain the following corollary.
Recall that p is special for a simple algebraic group G if p D 3 and G D G2, or if p D 2
and G is of type Bn, Cn or F4. Let g be the Lie algebra of G, with derived subalgebra
Œg;g�.

Corollary 15. Let G be a simple algebraic group over an algebraically closed field k of
characteristic p> 0. Let V be a finite-dimensional faithful rational kG-module and define
d 0.G/ as in Table 3. Let V 0 be the subspace of V annihilated by Œg; g�. If dim V=V 0 >

d 0.G/ and p is not special for G, then there exists a nonempty open subset V0 of V such
that the stabilizer of each v 2 V0 is trivial as a group scheme.

Note that the condition on p in Corollary 15 is necessary. Indeed, if p is special, then
we refer the reader to [14] for examples where dim V is arbitrarily large, V 0 D 0 and
the generic stabilizer is nontrivial. The proof of Theorem 13 is presented in Section 6,
together with a short argument for Corollary 15.

Finally, let us present a completely different application of our results to a prob-
lem on the random generation of finite simple groups, which was originally studied by
Liebeck and Shalev (see [32]). Let L be a finite group, let r , s be prime divisors of jLj
and let Im.L/ be the set of elements in L of order m. Then

Pr;s.L/ D
j¹.x; y/ 2 Ir .L/ � Is.L/ W L D hx; yiºj

jIr .L/j jIs.L/j
(5)

is the probability thatL is generated by a random pair of elements .x;y/2L�L, where x
has order r and y has order s. We say that L is .r; s/-generated if Pr;s.L/ > 0.

Recall that every finite simple group is 2-generated. With this result in hand, it is
natural to ask how the generating pairs for a simple group are distributed across the group;
the related problem of determining the existence (and abundance) of generating pairs
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of elements of prime order has been studied for more than a century. In this direction,
there has been a particular interest in understanding the simple groups that are .2; 3/-
generated, noting that they coincide with the finite simple quotients of the modular group
PSL2.Z/D Z2 �Z3. As far back as 1901, Miller [37] proved that every alternating group
of degree n > 9 is .2; 3/-generated. The main theorem of [32] states that if G ¤ PSp4.q/
is a finite simple classical or alternating group, then P2;3.G/! 1 as jGj ! 1, and this
result was recently extended to the exceptional groups of Lie type in [20, Theorem 8]
(excluding the Suzuki groups, which do not contain elements of order 3). It is interesting
to note that the 4-dimensional symplectic groups are genuine exceptions (see [32]):

lim
f!1

P2;3.PSp4.p
f // D

´
0 if p D 2; 3;

1=2 if p > 5:

Indeed, none of the groups PSp4.p
f / with p 2 ¹2; 3º are .2; 3/-generated [32, Theo-

rem 1.6].
For fixed primes r , s (with s > 2), the main theorem of [33] states that Pr;s.G/! 1

for all finite simple classical groups G of sufficiently large rank (where the bound on
the rank depends on r and s) and for all alternating groups of sufficiently large degree.
Gerhardt [16, Theorem 1.4] has recently proved that if .Gi / is a sequence of linear or
unitary groups of fixed rank, where jGi j ! 1 and each jGi j divisible by r and s, then
Pr;s.Gi / ! 1. An analogous result for exceptional groups of Lie type was established
in [7, Theorem 12]. As an application of Theorem 7, we can extend the above results to
all finite simple groups (using the earlier work in [32, 33] to reduce the problem to Lie
type groups of bounded rank).

Theorem 16. Fix primes r , s with s > 2 and let �r;s be the set of finite simple groups
whose order is divisible by both r and s. Let .Gi / be a sequence of simple groups in �r;s
with jGi j ! 1. Then either Pr;s.Gi / ! 1, or .r; s/ 2 ¹.2; 3/; .3; 3/º and there is an
infinite subsequence of groups of the form PSp4.q/.

Remark 17. As noted above, the anomaly of the groups PSp4.q/ when .r; s/ D .2; 3/

was originally observed by Liebeck and Shalev [32]. In Theorem 16, we see that the case
.r; s/ D .3; 3/ is also noteworthy. Indeed, if we write q D pf with p a prime, then we
will show that

lim
f!1

P3;3.PSp4.p
f // D

8̂̂<̂
:̂
0 if p D 3;

1=2 if p D 2;

3=4 if p > 5:

See Theorem 7.3 for a proof (we also include a new proof of the result from [32] when
.r; s/ D .2; 3/).

As an application of Theorem 16, we prove Corollary 19 below on the generation of
simple groups by two Sylow subgroups (see the end of Section 7 for the proof). Our main
motivation stems from the following conjecture.
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Conjecture 18. Let G be a finite simple group and let r and s be primes dividing jGj.
Then there exist a Sylow r-subgroup P and a Sylow s-subgroup Q of G such that
G D hP;Qi.

By the main theorem of [17], this conjecture holds if r D s D 2, and more generally
if r D 2 by [9]. It has also been verified for all sporadic and alternating groups by Breuer
and Guralnick. In addition, [3, Theorem 1.8] shows that if G is simple and r is any prime
divisor of jGj, then there exists a prime divisor s of jGj such that G D hP;Qi for some
Sylow r-subgroup P and Sylow s-subgroup Q of G. Here we establish the following
asymptotic version, which verifies Conjecture 18 for all sufficiently large finite simple
groups.

Corollary 19. Let r and s be primes. Then for all sufficiently large finite simple groupsG
with jGj divisible by r and s, there exist a Sylow r-subgroup P and a Sylow s-subgroupQ
of G such that G D hP;Qi.

We refer the reader to Remark 7.4 for some additional comments on the probability
that a simple group is generated by two randomly chosen Sylow subgroups corresponding
to fixed primes r and s.

We close the introduction with some brief comments on the organization of the paper.
In Section 2, we study the general setup and prove Theorem 2. Here we also present
several additional results that will play a key role in the proof of Theorem 7 (for exam-
ple, see Lemmas 2.2 and 2.5). Section 3 covers a wide range of preliminary results that
we will need in the proof of Theorem 7, most of which are tailored specifically for the
case we are interested in, where G is a classical group and X is a product of conjugacy
classes. In particular, this section includes various results that allow us to deduce that
the groups G.x/ satisfy a certain property on a generic subset of X just from the exis-
tence of such a group for a specific tuple x 2 X . The proof of Theorem 7 is presented in
Sections 4 (orthogonal groups) and 5 (symplectic groups), with the analysis partitioned
into various subcases. The main arguments are inductive on the rank of G, with Ger-
hardt’s theorem for SLn.k/ in [16] playing a key role. Finally, our main applications
are discussed in Sections 6 (generic stabilizers) and 7 (random generation), including
the proofs of Theorems 13 and 16. We close by presenting a proof of Corollary 11 in
Section 8.

2. Proof of Theorem 2

In this section, we prove Theorem 2. Unless stated otherwise,G is a simply connected sim-
ple algebraic group over an algebraically closed field k of characteristic p > 0. Let r > 2

be an integer and let X be a locally closed irreducible subvariety of Gr D G � � � � �G
(with r factors). Recall that if xD .x1; : : : ;xr /2X , thenG.x/ denotes the Zariski closure
of hx1; : : : ; xri and we define

� D ¹x 2 X W G.x/ D Gº
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as in (1). For a closed subgroup H of G, we set

XH D ¹x 2 X W G.x/ 6 Hg for some g 2 Gº; (6)

which coincides with the set of elements x 2 X such that G.x/ has a fixed point on the
coset variety G=H . Note that if k0 is a field extension of k, then we can consider G.k0/,
X.k0/, �.k0/, etc., which are defined in the obvious way.

Recall that a subset of X is generic if it contains the complement of a countable
union of proper closed subvarieties of X . We say that G.x/ is generically P for some
property P if G.x/ has the relevant property for all x in a nonempty generic subset of X .
Although a generic subset of X may have no points over k, [4, Lemma 2.4] implies that
every generic subset is dense if k is an uncountable algebraically closed field.

We begin by recording some consequences of [7, Theorem 2]. The following result
was stated as Theorem 1 in Section 1.

Theorem 2.1. Let k be an algebraically closed field that is not algebraic over a finite
field. Then the following are equivalent:

(i) �.k0/ is a nonempty subset of X.k0/ for some field extension k0=k.

(ii) � is a dense subset of X .

(iii) � is a generic subset of X .

Proof. The equivalence of (i) and (ii) is [7, Theorem 2]. Suppose � is a generic subset
of X and let k0 be an uncountable field extension of k. Then �.k0/ is dense in X.k0/ and
thus (i) holds. Therefore, to complete the proof of the theorem it suffices to show that if�
is nonempty, then it is generic.

Let M be a set of representatives of the conjugacy classes of maximal positive-
dimensional closed subgroups of G, which is finite by [30, Corollary 3]. For m 2 N
and H 2M, set

Xm D ¹x 2 X W jG.x/j 6 mº

and define XH as in (6). Note that � is the complement in X of the countable union[
m2N

Xm [
[
H2M

XH :

Here each Xm is a closed subvariety of X and Lemma 2.5 below implies that the same
conclusion holds for XH whenH is a parabolic subgroup. So it remains to show that if�
is nonempty and H 2M is nonparabolic, then XH is not dense in X .

LetH 2M be a nonparabolic subgroup and let V be an irreducible finite-dimensional
rational kG-module on which H acts reducibly (as noted in the proof of [7, Lemma 2.5],
there exists a finite collection of such modules with the property that each H 2M acts
reducibly on at least one of them). Then G.x/ is reducible on V for all x in the closure
of XH , so XH is not dense if � is nonempty. The result follows.

Lemma 2.2. Let xX be the Zariski closure of X in Gr and assume G.x/ D G for some
x 2 xX . Then � is a dense and generic subset of X .
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Proof. First recall that X is a locally closed subset of Gr , which means that X is open
in xX . Let us also note that xX is irreducible. Set �0 D ¹x 2 xX W G.x/ D Gº, which we
are assuming is nonempty (so in particular, k is not algebraic over a finite field). By [7,
Theorem 2], it follows that �0 is a dense subset of xX , whence � D �0 \ X is nonempty
and we conclude by applying Theorem 2.1.

Next we consider the action of G on a complete variety. If G acts on a variety Y , then
we write Y g to denote the subvariety of fixed points of g 2 G. Similarly, if H is a closed
subgroup of G, then we define

YH D ¹y 2 Y W hy D y for all h 2 H º D
\
h2H

Y h:

Lemma 2.3. Suppose G acts on a complete variety Y and S is a subset of G.

(i) We have dimY g > min¹dimY s W s 2 Sº for all g 2 xS .

(ii) If every g 2 S has a fixed point on Y , then the same is true for all g 2 xS .

Proof. Let d > 0 be an integer and set G.d/ D ¹g 2 G W dim Y g > dº. Consider the
closed subvariety W WD ¹.g; y/ 2 G � Y W gy D yº. The projection map � WG � Y ! G

is closed since Y is complete, so �.W / is a closed subset of G and it follows that G.d/
is also closed.

Set d D min¹dimY s W s 2 Sº. Then S � G.d/ and thus xS � G.d/, proving (i). Sim-
ilarly, if S is contained in �.W /, then so is xS and we deduce that (ii) holds.

Remark 2.4. With a minor modification, we can extend Lemma 2.3 to the case where Y
is a kG-module. To do this, we consider the induced action of G on the projective space
Y0 D P1.Y /, which is a complete variety. For g 2 G, let ˛.g/ be the dimension of the
largest eigenspace of g on Y . Then dim Y

g
0 D ˛.g/ � 1 and by applying Lemma 2.3 (i),

we deduce that if S is a subset of G, then ˛.g/ > min¹˛.s/ W s 2 Sº for all g 2 xS .

Recall that if P is a parabolic subgroup of G, then the homogeneous space Y D G=P
is a projective (and hence complete) variety.

Lemma 2.5. If P is a proper parabolic subgroup of G, then XP is a closed subvariety
of X .

Proof. Let Y D G=P and set

W D ¹.x; y/ 2 X � Y W G.x/y D yº:

Let � be the projection map fromW intoX . Since Y is complete, it follows that �.W /D
XP is closed as required.

Remark 2.6. Let G be a classical algebraic group of the form Sp.V / or SO.V / and
assume k is uncountable. SupposeG.x/ generically preserves a totally singularm-dimen-
sional subspace of V . By the previous lemma, the set of elements x 2 X such that G.x/
preserves a totally singularm-space is closed. Since every generic subset ofX meets every
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nonempty open subset, it follows that G.x/ must preserve a totally singular m-space for
all x 2 X . This basic observation will be applied repeatedly in the proof of Theorem 7.

Recall that a closed subgroupH 6G isG-irreducible if it is not contained in a proper
parabolic subgroup of G. We can now prove most of Theorem 2.

Theorem 2.7. Let k be an algebraically closed field. Then exactly one of the following
holds:

(i) �.k0/ is nonempty for some algebraically closed field extension k0=k.

(ii) For all x 2 X , G.x/ is contained in a proper parabolic subgroup of G.

(iii) There exists a unique (up to conjugacy) proper closed G-irreducible subgroup H
of G such that

(a) XH contains a nonempty open subset of X ; and

(b) ¹x 2 X W G.x/ D Hg for some g 2 Gº is a generic subset of X .

Proof. If� is nonempty, then it is generic and so at most one of the three conclusions can
hold. Therefore, we may assume that neither (i) nor (ii) holds. So�.k0/ is empty for every
algebraically closed field extension k0=k, and G.x/ is G-irreducible for some x 2 X .

Let Xpar be the set of tuples x 2 X such that G.x/ is contained in a proper parabolic
subgroup ofG. SinceG has only finitely many conjugacy classes of parabolic subgroups,
Lemma 2.5 implies that Xpar is a proper closed subvariety of X .

LetH be any closed subgroup ofG. Let�DGr and note that�H is the image of the
morphism G �H r ! � given by .g; h1; : : : ; hr / 7! .h

g
1 ; : : : ; h

g
r /. In particular, �H is

open in its closure and so XH is open in X (but may be empty).
By [36, Lemma 4.1], there are only countably many conjugacy classes of G-irre-

ducible subgroups of G, and each one is defined over some finite extension of the prime
subfield k0 of k (in particular, these subgroups are defined over the algebraic closure
of k0). Let ¹Hi W i 2 Nº be representatives of the conjugacy classes of the proper G-
irreducible subgroups of G and set Xi D XHi

. Since (i) and (ii) do not hold, it follows
that

S
i Xi contains the nonempty open subvariety X nXpar.

First assume k is uncountable. For a closed subgroup H of G, let xXH denote the
closure of XH in X . Then xXH D X for some proper G-irreducible subgroup H (recall
that X is irreducible, so it is not a countable union of proper closed subvarieties), which
implies that xXH DX over any algebraically closed field. Therefore,XH is open and dense
in xXH D X and by the minimum condition on subvarieties, we can choose H minimal
subject to this condition.

For any proper G-irreducible subgroup J , let

YJ D ¹x 2 X W G.x/ D J
g for some g 2 Gº: (7)

Note thatX is the union ofXpar, the complement ofXH and the subsets YJ , where J runs
over a set of conjugacy class representatives of the G-irreducible subgroups of H , so the
irreducibility ofX implies thatX D xYJ for some J . If J <H , then the inclusion YJ �XJ
implies thatXJ is dense inX , but this contradicts the minimality ofH . Therefore, J DH
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and we deduce that YH is a generic subset of X (indeed, each x 62 YH is contained in one
of Xpar, the complement of XH , or in one of countably many subsets xXL, where each L
is a proper G-irreducible subgroup of H ).

To complete the proof for k uncountable, we show that H is unique up to conjugacy
inG. If L is aG-irreducible subgroup satisfying (a) and (b) in (iii), then YL is generic and
therefore intersects the open subvariety XH , which in turn implies that L is conjugate to
a subgroup ofH . Then by the minimality ofH , we conclude that L is conjugate toH , as
required.

Finally, let us assume k is countable and let k0=k be any uncountable algebraically
closed field extension. Then as above, there is a unique (up to conjugacy) proper G.k0/-
irreducible subgroup H of G.k0/ such that X 0H is open in X 0, where X 0 D X.k0/. The
complement of this open subset is thus a proper closed subset of X 0. Since H is defined
over k, it follows that the complement of XH in X is a proper closed subset, so XH is
open and dense in X . The result follows.

Remark 2.8. Consider the conclusion in part (ii) of Theorem 2.7 and let P1; : : : ; Pm be
representatives of the conjugacy classes of proper parabolic subgroups of G. If (ii) holds,
then X D

S
i XPi

D
S
i
xXPi

and thus X D xXP for some proper parabolic subgroup P .
ButXP is closed by Lemma 2.5, soX DXP and we conclude that eachG.x/ is contained
in a conjugate of a fixed proper parabolic subgroup.

As a corollary, we obtain the following result. In the statement, we refer to G-orbits
and G-invariance, which are both defined in terms of simultaneous conjugation by G. So,
for example, ifX DC1 � � � � �Cr is a product of conjugacy classes, thenX isG-invariant.

Corollary 2.9. Suppose G.x/ is generically finite.

(i) There exists a positive integer d such that jG.x/j 6 d for all x 2 X .

(ii) If G.y/ is G-irreducible for some y 2 X , then there is a nonempty open subvariety
of X contained in a G-orbit. In particular, if X is G-invariant, then X has an open
dense G-orbit of dimension equal to dimG.

Proof. We can always pass to an extension field, so without any loss of generality we may
assume k is uncountable.

Suppose that G.x/ is infinite for some x. Then the set of x 2 X with G.x/ infinite
is generic since each subvariety ¹x 2 X W jG.x/j 6 mº with m 2 N is closed and proper.
Since the intersection of countably many generic sets over an uncountable algebraically
closed field is generic, we have a contradiction. Hence

X D
[
m2N

¹x 2 X W jG.x/j 6 mº

is a countable union of closed subvarieties and thus (i) follows from the irreducibility
of X .

Now assume thatG.y/ isG-irreducible for some y 2X . Then by (i) and Theorem 2.7,
there exists a finite G-irreducible subgroup H of G such that XH is open and YH is
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generic, where YH is defined as in (7). In fact, since H has only finitely many subgroups,
the proof of Theorem 2.7 implies that YH is open.

First assume that X is G-invariant. Here XH is contained in the closure of the image
of the morphism

f W G �H r
! Gr ; .g; h1; : : : ; hr / 7! .h

g
1 ; : : : ; h

g
r /;

which implies that X itself is contained in the closure of the image of f . Since H is
G-irreducible, its centralizer is finite (see [34, Lemma 2.1]), and so the dimension of the
image of f is equal to dimG. Thus, the dimension of the G-orbit of any x 2 X with
G.x/ D H is equal to dimG D dimX , and so this orbit contains a dense open subset
of X . This establishes (ii) in the case where X is G-invariant.

In the general case, we can work in the G-invariant variety that is the image of the
morphism G � X ! Gr given by .g; x1; : : : ; xr / 7! .x

g
1 ; : : : ; x

g
r / and the result fol-

lows.

Remark 2.10. Suppose X is G-invariant, dimX > dimG and G.x/ is G-irreducible for
some x 2 X . Then Corollary 2.9 implies that G.x/ is generically positive-dimensional.
In the special case whereX D C1 � � � � �Cr is a product of noncentral conjugacy classes,
it was shown in [7], using results from [21], thatG.x/ is generically positive-dimensional
if r > 3. In addition, [21, Corollary 5.14] shows that if r D 2 and G.x/ is generically
finite, then G.x/ is always contained in a Borel subgroup. See also Lemma 3.31.

The final ingredient we need to complete the proof of Theorem 2 is provided by Theo-
rem 2.11 below (recall that the rank of a closed subgroupH ofG, denoted by rkH , is the
dimension of a maximal torus ofH 0). The bound in part (i) completes the proof of Theo-
rem 2. In order to explain the notation in part (ii), let V be a nontrivial finite-dimensional
irreducible rational kG-module (the choice of V is irrelevant) and write f .g/ 2 kŒx� for
the characteristic polynomial of g 2 G acting on V . This defines a morphism

f W G !Md .x/; (8)

where Md .x/ is the variety of monic polynomials in kŒx� of degree equal to d D dimV .

Theorem 2.11. Suppose there exists a closed subgroup H 6 G such that XH contains
a nonempty open subset of X . Then for all x 2 X ,

(i) rkG.x/ 6 rkH ; and

(ii) if S is a maximal torus of G.x/0, then f .S/ is contained in the closure of f .H/.

Proof. Let V be a nontrivial finite-dimensional irreducible rational kG-module corre-
sponding to the map f in (8), where d D dim V . For each g 2 G, observe that f .g/ is
determined by the conjugacy class of the semisimple part of g. Let us also note that every
fiber of f is finite. To see this, let T be a maximal torus of G. Then f .t1/ D f .t2/ with
t1; t2 2 T if and only if t1 and t2 are conjugate in GL.V / and the claim follows because
every semisimple class in GL.V / intersects T in a finite set.
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Set e D rkH . We claim that dim f .H/ D e. To see this, first observe that f .H 0/ D

f .S/, where S is a maximal torus of H 0. Since f has finite fibers, this implies that
dim f .S/ D dimS D e. If h 2 H embeds in GL.V / as a semisimple element, then [45,
Theorem 7.5] implies that some conjugate of h normalizes S and this gives dimf .hS/ 6
dimS D e (in fact, this is a strict inequality unless h centralizes S ). This justifies the claim.

Let Z � XH be a nonempty open subset of X and let Y be the closure of f .H/ in
the variety Md .x/. Let x 2 X and let w be an element of the free group of rank r , which
we may view as a map from X to G. Then w.x/ is contained in the closure of w.Z/ and
thus f .w.x// is in the closure of f .w.Z// � Y . Therefore, f .G.x// � Y , proving both
parts of the theorem.

Remark 2.12. It would be interesting to know if it is possible to replace rank by dimen-
sion in part (i) of Theorem 2.11.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. We combine Theorems 2.7 and 2.11 (i). More precisely, if (i) holds
in Theorem 2.7, then Theorem 1 implies that � is dense and generic in X , so the conclu-
sions in case (ii) of Theorem 2 are satisfied with H D G, Y D � and Z D X . Clearly, if
Theorem 2.7 (ii) holds, then we are in case (i) of Theorem 2. Finally, if part (iii) in Theo-
rem 2.7 holds, then the existence of H and the appropriate subsets Y;Z � X in parts (b)
and (c) of Theorem 2 (ii) follows immediately, and the rank condition in (ii) (a) follows
from Theorem 2.11 (i). This completes the proof of Theorem 2.

We close this section by recording the following corollary.

Corollary 2.13. If k is uncountable, then ¹x 2X W rkG.x/Dmº is a generic subset ofX ,
where m D max¹rkG.x/ W x 2 Xº.

Proof. IfG.x/ isG-irreducible for some x 2X , then the result follows immediately from
Theorems 2.7 and 2.11, so we may assume that G.x/ is contained in a proper parabolic
subgroup for every x 2X . Fix a parabolic subgroupP ofG which is minimal with respect
to the property that each group G.x/ is contained in a conjugate of P (see Remark 2.8).
Let Q be the unipotent radical of P and note that X D XP .

Let Y be an irreducible component ofX \P r such that the morphism WG � Y !X

sending .g; y1; : : : ; yr / to .yg1 ; : : : ; y
g
r / is dominant. By the minimality of P , the set

¹y 2 Y W G.y/Q is contained in a proper parabolic subgroup of P º

is a proper closed subvariety of Y . Since P=Q has only countably many P=Q-irreducible
subgroups, the proof of Theorem 2.7 shows that there exists a closed subgroup H of P
such that HQ=Q is P=Q-irreducible and the sets

¹y 2 Y W G.y/Q is G-conjugate to a subgroup of HQº

and
¹y 2 Y W G.y/Q is G-conjugate to HQº
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are open and generic in Y , respectively. Then by arguing precisely as in the proof of
Theorem 2.11, we deduce that rkG.y/ 6 rkHQ D rkH for all y 2 Y , with equality
on a generic subset of Y . Since  .¹1º � Y / contains a nonempty open subset of im. /,
it follows that equality holds on a generic subset of X . This completes the proof.

3. Preliminaries for Theorem 7

In this section, we record various results that will be needed in the proof of Theorem 7,
which is our main result on the topological generation of classical algebraic groups.

Let G be a simply connected simple algebraic group over an algebraically closed
field k of characteristic p > 0. Let r > 2 be an integer and let X be a locally closed
irreducible subvariety ofGr . We begin by presenting some general results, before special-
izing to the case where X D C1 � � � � � Cr is a product of noncentral conjugacy classes.
We define G.x/ and � as before. In view of Theorem 2.1, in order to prove Theorem 7
we may (and do) assume k is uncountable.

3.1. Modules

Recall that since k is uncountable, every generic subset of X is nonempty and dense.
In particular, � is nonempty if it contains the intersection of countably many generic
subsets. Therefore, we are interested in establishing the genericity of certain subsets of X
defined in terms of G (recall that G.x/ is generically P for some property P if G.x/ has
the relevant property for all x in a generic subset of X , and similarly for the connected
component G.x/0).

With this goal in mind, the collection of results presented in the next two lemmas will
be useful in the proof of Theorem 7. A version of the following result is proved in [4,
Section 3] (see Lemma 3.5 below for a version that is stated in terms of the connected
components).

Lemma 3.1. Let V be a finite-dimensional rational kG-module.

(i) If there exists y 2 X such that G.y/ has a d -dimensional composition factor on V ,
then the set of x 2 X such thatG.x/ has a composition factor on V of dimension at
least d is a nonempty open subset of X . In particular, ifG.y/ acts irreducibly on V
for some y 2 X , then G.x/ is irreducible on V for x in a nonempty open subset
of X .

(ii) If d is the minimal dimension of a composition factor (resp. nonzero submodule)
of G.y/ on V for some y 2 X , then for all x in a nonempty open subset of X , the
minimal dimension of a composition factor (resp. nonzero submodule) ofG.x/ is at
least d .

(iii) If dimCEnd.V /.G.y// D d for some y 2 X , then dimCEnd.V /.G.x// 6 d for all x
in a nonempty open subset of X .
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Proof. Set n D dim V and let F.t1; : : : ; tr / be a polynomial identity for each matrix
algebra Me.k/ with e < d , but not for Md .k/ (see [40, Section 1.3]). Then F n.x/ ¤ 0 if
and only if G.x/ has a composition factor on V of dimension at least d and this is clearly
an open condition, proving (i).

By Lemma 2.5, the set of x 2 X such that G.x/ fixes a subspace of dimension less
than d is a closed subvariety. Our assumption is that this is a proper subvariety, so the
assertion regarding submodules in (ii) follows. For composition factors, we modify the
argument slightly. Consider the set of flags of V of the form 0 � U � W � V with
dimW=U < d . This is a finite union of projective varieties (one for each possible pair of
dimensions of U and W ) and thus the proof of Lemma 2.5 implies that the set of x 2 X
such that G.x/ has a fixed space on this variety is closed. Our assumption in (ii) implies
that this is a proper closed subvariety and hence (ii) follows.

Finally, part (iii) is clear since dimCEnd.V /.G.x// is upper semicontinuous.

Remark 3.2. Let F be the free group on r generators. As noted in Section 1, given a col-
lection of words w1; : : : ; wm in F , which we view as maps Gr ! G, the set

Xw WD ¹.w1.x/; : : : ; wm.x// W x 2 Xº

for w D .w1; : : : ; wm/ is also an irreducible subvariety of Gr . In particular, we can apply
all of our general results to Xw .

Let d be a positive integer and let F be the free group on r generators, whereX �Gr

as above. Let Fd be the intersection of all subgroups of F with index at most d and note
that Fd is a characteristic subgroup of F with finite index. In particular, Fd is finitely
generated, and we may choose generators w1; : : : ; wm, where we view each wi as a word
map from Gr to G. Then for x 2 X , we define

Gd .x/ D hw1.x/; : : : ; wm.x/i 6 G;

which is independent of the choice of generators for Fd .
The following result records some basic observations. Recall that a group acts prim-

itively on a vector space if it does not preserve a nontrivial direct sum decomposition of
the space.

Lemma 3.3. (i) G.x/0 6 Gd .x/ 6 G.x/ for all x 2 X , d 2 N.

(ii) Let V be a finite-dimensional irreducible rational kG-module and let d be an integer
such that d > dimV . Assume that

(a) G.x/ is generically irreducible on V ; and

(b) For some y 2 X , Gd .y/ acts irreducibly on a submodule W of V such that
dimW > d=s, where s is the smallest prime divisor of d .

Then G.x/ is generically primitive on V .

Proof. Part (i) is clear since G.x/0 has no proper closed subgroups of finite index. Now
consider (ii). There is no harm in assuming that d D dimV . Seeking a contradiction, sup-
pose G.x/ is not generically primitive on V . Then the condition in (a) implies that G.x/
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is generically conjugate to a subgroup of GLe.k/ o Sd=e for some proper divisor e of d .
In particular, Gd .x/ is generically contained in a direct product of d=e copies of GLe.k/
and so for all x 2 X , the largest composition factor of Gd .x/ on V has dimension at
most e 6 d=s. But this is incompatible with the condition in (b), and we have reached
a contradiction.

Remark 3.4. Let V be a finite-dimensional irreducible rational kG-module. If G.y/0

acts irreducibly on V for some y 2 X , then Gd .x/ is generically irreducible for all
d 2 N. In addition, if d is large enough, thenGd .y/DG.y/0 and soG.x/0 is generically
irreducible as well. In particular, this implies that both G.x/0 and G.x/ are generically
primitive on V .

Next we establish a version of Lemma 3.1 with respect to the connected components.

Lemma 3.5. Let V be a finite-dimensional rational kG-module.

(i) If there exists y 2 X such that G.y/0 has a composition factor of dimension at
least e on V , then the set of x 2 X such that G.x/0 has a composition factor
on V of dimension at least e is a generic subset of X . In particular, if G.y/0 acts
irreducibly on V for some y 2 X , then G.x/0 is generically irreducible on V .

(ii) If the minimal dimension of a composition factor (resp. nonzero submodule) of
G.y/0 on V is at least e for some y 2 X , then for generic x 2 X , the minimal
dimension of a composition factor (resp. nonzero submodule) ofG.x/0 is at least e.

(iii) If dimCEnd.V /.G.y/
0/ 6 e for some y 2 X , then dimCEnd.V /.G.x/

0/ 6 e for all x
in a generic subset of X .

Proof. Suppose there exists y 2 X such that G.y/0 has any of the properties described
in the lemma. Then Gd .y/ has the same property for every positive integer d and thus
Lemma 3.1 implies that the set of x 2 X such that Gd .x/ fails to have the given property
is a proper closed subvariety of X . Since there are only countably many positive integers,
we deduce that G.x/0 satisfies the property on a generic subset of X .

Remark 3.6. One can modify the proof of Lemma 3.5 in order to show that if G.y/0

acts irreducibly on V for some y 2 X , then the set of x 2 X such that G.x/0 acts irre-
ducibly on V is actually open, rather than just being generic. This follows by noting that
if d > dimV , then Gd .x/ is irreducible on V if and only if G.x/0 is irreducible.

Next we introduce the notion of a strongly regular element.

Definition 3.7. Let V be a finite-dimensional rational kG-module and let T be a maximal
torus of G. We say that x 2 T is strongly regular on V if every x-invariant subspace of V
is also T -invariant.

Equivalently, if �1; : : : ; �m are the distinct characters of T that occur in V , so V D
V1 ˚ � � � ˚ Vm with 0¤ Vi D ¹v 2 V W tv D �i .t/v for all t 2 T º, then x 2 T is strongly
regular on V if and only if �i .x/ ¤ �j .x/ for i ¤ j . From the latter characterization,
it is clear that the elements in T that are strongly regular on V form an open subset
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since the complement is the intersection over all pairs i , j of the closed subvarieties
¹t 2 T W �i .t/ D �j .t/º. Let us also note that if G is a classical algebraic group, then
x 2 T is strongly regular on the natural kG-module V if and only if all the eigenvalues
of x on V are distinct.

By [23, Theorem 11.7], there is a finite collection M of finite-dimensional irreducible
rational kG-modules such that no proper closed subgroup of G acts irreducibly on all
of these modules. Then with respect to this collection of modules, we say that x 2 T is
strongly regular if it is strongly regular on each module in M.

Remark 3.8. Note that the set of strongly regular elements in T is open. Moreover, since
each regular semisimple element in G is conjugate to an element of T , and since the
strongly regular property is invariant under conjugation and the set of regular semisimple
elements inG is open, it follows that the set of strongly regular elements inG is also open.

Lemma 3.9. Let V be a finite-dimensional rational kG-module, let T be a maximal
torus of G and suppose x 2 T is strongly regular on V . LetH be a closed subgroup of G
containing x and assume V has an H -invariant subspace that is not G-invariant. Then
hH;T i is contained in a proper closed subgroup of G.

Proof. Let W be an H -invariant subspace of V that is not G-invariant. Since W is x-in-
variant, it decomposes into a direct sum of eigenspaces for x and so it is also T -invariant.
Therefore, hH;T i preserves W and the result follows.

In part (iii) of the next result, recall that XH is defined in (6). Also recall that a closed
subgroup of G has maximal rank if it contains a maximal torus of G.

Lemma 3.10. Let V be a finite-dimensional irreducible rational kG-module and suppose
there exists u 2 X such thatG.u/ contains an element that is strongly regular on V . Then
the following hold:

(i) There exists a nonempty open subset Y of X such that G.y/ contains a strongly
regular element on V for all y 2 Y .

(ii) If G.u/0 contains a strongly regular element on V , then for generic x 2 X , G.x/0

contains a strongly regular element on V .

(iii) Either � is nonempty, or there exists a maximal closed maximal rank subgroup H
of G such that XH contains a nonempty open subset of X .

Proof. Let � be the set of elements in G that are strongly regular on V and recall that �

contains a nonempty open subset of G (see Remark 3.8). Since G.u/ \ � is nonempty, it
follows that there is a word w in the free group F of rank r , which we may view as a map
wWX!G, such thatw.u/ 2 � (since the abstract group generated by the coordinates of u
is dense in G.u/ by definition). This implies that Y D ¹y 2 X W w.y/ 2 �º is a nonempty
open subset of X , which proves (i).

Now let us turn to (ii). By the proof of (i), we deduce that ¹x 2X WGd .x/\ � ¤ ;º is
a nonempty open subset of X for each positive integer d . The desired result now follows
since Gd .x/ D G.x/0 for d � 0.
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Finally, let us consider (iii). As above, we define strongly regular elements in G with
respect to a finite set M of irreducible kG-modules. We may assume � is empty, which
implies that each G.x/ acts reducibly on at least one of the modules in M. Define w 2 F
as in the first paragraph of the proof and fix x 2 X such that w.x/ is strongly regular.
Let V be a module in M on which G.x/ acts reducibly and define � and Y as above,
with respect to this module. Then any w.x/-invariant subspace of V is also T -invariant,
where T D CG.w.x//, so hG.x/; T i acts reducibly on V , and thus G.x/ is contained
in a maximal closed maximal rank subgroup of G. Since there are only finitely many
conjugacy classes of such subgroups, it follows that there are a maximal closed maximal
rank subgroup H and a nonempty open subset Z � Y such that G.z/ is conjugate to
a subgroup of H for all z 2 Z.

We close with three results that will be applied directly in the proof of Theorem 7.
The first is essentially a corollary of part (i) of Lemma 3.1.

Corollary 3.11. Let G be one of the classical groups SLn.k/ .n > 2/, Spn.k/ .n > 4/,
or SOn.k/ .n > 3; n ¤ 4/ and let V be the natural kG-module. Assume there exist
x; y 2 X such that G.x/0 acts irreducibly on V and G.y/ contains a strongly regular
element on V . Then either

(i) � is nonempty; or

(ii) G D Spn.k/, p D 2 and G.x/0 is generically contained in a conjugate of SOn.k/.

Proof. Suppose � is empty. By applying Lemmas 3.1 (i) and 3.10, we deduce that there
is a maximal closed maximal rank subgroup H of G such that G.x/0 is irreducible on V
and is contained in a conjugate of H 0 for generic x 2 X . By considering the connected
irreducible maximal rank subgroups of G, we deduce that G D Spn.k/, p D 2 andH 0 D

SOn.k/ is the only possibility.

The following result is an easy consequence of the classification of low-dimensional
representations of simple algebraic groups.

Lemma 3.12. Let G be one of the groups Spn.k/ .n > 6/ or SOn.k/ .n > 9/ and let H
be a closed connected proper subgroup of G that acts irreducibly on the natural kG-
module V .

(i) If G D Spn.k/, then either rkH 6 bn=4c C 1, or p D 2 and H D SOn.k/.

(ii) If G D SOn.k/, then rkH 6 bn=4c C 1 if n is even, otherwise rkH 6 .nC 1/=4.

Proof. First assume H is not simple, in which case V is tensor decomposable as a kH -
module. If n D 2m with m even, then the largest rank self-dual non-simple closed con-
nected subgroup of G is of the form Sp2.k/˝ L, where L D Spm.k/ or SOm.k/, which
has rankm=2C 1D n=4C 1. Similarly, if G is symplectic and nD 2m withm odd, then
the same argument shows that the maximum rank is

mC 1

2
D

jn
4

k
C 1 when p ¤ 2:
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Here the bound is even better when pD 2 since no group has a nontrivial odd-dimensional
irreducible self-dual module in even characteristic.

The remaining cases where G is orthogonal and H is non-simple can be handled
in a similar fashion. If n D 2m with m odd, then we may assume p ¤ 2 (since there
are no closed connected tensor decomposable subgroups of G when p D 2). Here the
largest tensor decomposable subgroups of G are of the form La ˝ Lb , where La is
a symplectic or orthogonal group with an a-dimensional natural module (and similarly
for Lb), 2m D ab and 3 6 a < b. If n is odd, then p ¤ 2 and the same argument
applies.

Finally, suppose H is simple. By inspecting [35], one checks that aside from a hand-
ful of very low rank cases (excluded by the conditions on n in the statement of the
lemma), the self-dual irreducible kH -modules have relatively large dimension (excluding
Frobenius twists of the natural module when H is a classical group). The result quickly
follows.

Finally, we present the following well-known and elementary observation. See [10,
Lemma 3.14], for example.

Lemma 3.13. Let a; b 2 GL.V / D GLn.k/ be quadratic elements. Then each composi-
tion factor of ha; bi on V is at most 2-dimensional. In particular, if n > 3, then ha; bi acts
reducibly on V .

As a consequence, if G ¤ SL2.k/ is a classical group and a; b 2 G act quadratically
on the natural kG-module, then ha; bi is not Zariski dense.

3.2. Homogeneous spaces

For the remainder of Section 3, we will assume

X D C1 � � � � � Cr D x
G
1 � � � � � x

G
r ; (9)

where each Ci D xGi is a noncentral conjugacy class.
Here we establish some general results concerning the action of G on coset varieties

G=H , whereH is a closed subgroup. Our first lemma provides a useful criterion to ensure
that G.x/ is not generically contained in a conjugate of H (the relevant condition is
sufficient, but not always necessary). Recall that XH is defined in (6).

Lemma 3.14. Let H be a closed subgroup of G and set Y D G=H . If

rX
iD1

dimY xi < .r � 1/ dimY;

then XH is contained in a proper closed subvariety of X .

Proof. First we recall that

dimY � dimY g D dimgG � dim.gG \H/ (10)
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for all g 2H (see [29, Proposition 1.14]). Clearly,XH is nonempty if and only if Ci \H
is nonempty for all i , so we may assume each xi is contained in H . We will work with
the variety

Z D
°
.g1; : : : ; gr ; y/ W gi 2 Ci ; y 2

\
i

Y gi

±
� X � Y

and the projection maps �1WZ ! X and �2WZ ! Y , noting that XH coincides with the
image of �1.

All fibers of �2 have the same dimension, so

dimZ D dimY C

rX
iD1

dim.Ci \H/;

and by applying (10), we deduce that

dimZ D dimY C

rX
iD1

.dimCi � dimY C dimY xi / < dimX

since
P
i dim Y xi < .r � 1/ dim Y . Therefore, �1 is not dominant and thus XH is con-

tained in a proper closed subvariety of X .

We also record a version of (10) for subgroups. Recall that if H and L are closed
subgroups ofG, then T WD T .L;H/D ¹g 2G W Lg 6H º is the transporter of L intoH .
Note that T is a union of cosets of N D NG.L/ and T=N is a variety.

Lemma 3.15. LetH andL be closed subgroups ofG and set Y DG=H . If T D T .L;H/
is nonempty, then

dimY � dimY L D dimY � dimT=N D dimG � dimT:

Proof. Let Z D ¹.g; y/ 2 G � Y W y is fixed by Lgº. By projecting onto each factor,
we see that dimZ D dimY C dimT D dimG C dimY L and the result follows.

Note that Lemma 3.15 holds for any closed subsetL ofG (or one can replaceL by the
closure of the subgroup it generates). In the special case L D ¹gº, we have N D CG.g/
and T=N can be identified with gG \H , so we recover the equation in (10).

We can also establish the following generalization of Lemma 3.14, working with sub-
groups rather than elements. The proof is identical and we omit the details.

Lemma 3.16. Let H be a closed subgroup of G and set Y D G=H . Let L1; : : : ; Lr be
closed subgroups of G such that

rX
iD1

dimY Li < .r � 1/ dimY:

Then there exist gi 2 G such that hLg1

1 ; : : : ; L
gr
r i is not contained in a conjugate of H .

We will also need the following elementary observation.
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Lemma 3.17. Suppose D is a G-class such that an element of D is contained in the
closure of hg1; g2i for some gi 2 xGi and that G.y/ D G for some y 2 Y , where Y D
D � C3 � � � � � Cr . Then � is nonempty.

Proof. Suppose G.y/ D G for some y D .d; g3; : : : ; gr / 2 Y with d 2 D and gi 2 Ci
for i > 2. If x D .g1; g2; : : : ; gr / 2 X , then G.y/ 6 G.x/ and the result follows.

In particular, we can take D to be a conjugacy class contained in C1C2.

3.3. Scott’s theorem and the adjoint module

We begin by recalling Scott’s theorem [41, Theorem 1], which we will then apply in the
special case where G is acting on its adjoint module Lie.G/. Recall that if W is a kG-
module and J � G is a subset, then ŒJ; W � is the subspace hgw � w W g 2 J; w 2 W i
of W . Note that dimŒJ;W � D dimW � dim.W �/J .

Theorem 3.18 (Scott). If G D hy1; : : : ; yri 6 GL.W / and y0 D .y1 � � �yr /�1, then

rX
iD0

dimŒyi ; W � > dimW � dimW G
C dimŒG;W �:

Recall that X D C1 � � � � � Cr , where each Ci D xGi is a noncentral conjugacy class
in G. Fix an additional noncentral conjugacy class C0 D xG0 and set

Z D ¹.z0; : : : ; zr / 2 C0 � � � � � Cr W z0z1 � � � zr D 1º � G
rC1: (11)

For z D .z0; : : : ; zr / 2 Z, let G.z/ be the Zariski closure of hz0; : : : ; zri.

Lemma 3.19. If L D Lie.G/ and G D G.z/ for some z 2 Z, then

rX
iD0

dimCi >
rX
iD0

dimŒxi ; L� > 2 dimG � dimZ.L/:

Proof. Since G is simply connected, we have ŒG;L� D L and LG D Z.L/, the center of
the Lie algebra of G. The second inequality now follows from Scott’s theorem, while the
first holds since

dimgG D dimL � dimCG.g/ > dimL � dimLg D dimŒg; L�

for all g 2 G.

For each y D .y1; : : : ; yr / 2 X , set y0 D .y1 � � �yr /�1 so z D .y0; : : : ; yr / 2 Z with
C0 D yG0 (see (11)). Since dim yG0 6 dimG � rkG, we obtain the following corollary
which provides a useful necessary condition for topological generation by a tuple in X .

Corollary 3.20. If L D Lie.G/ and G D G.x/ for some x 2 X , then

dimX >
rX
iD1

dimŒxi ; L� > dimG C rkG � dimZ.L/:
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Remark 3.21. Suppose dimX < dimG C rkG � dimZ.L/ and let x 2 X .

(a) By Scott’s theorem, either LG.x/ strictly contains Z.L/, or ŒG.x/; L� ¤ L. In par-
ticular, � is empty.

(b) Recall that p is special for G if p D 3 and G D G2, or if p D 2 and G is of type Bn,
Cn orF4. If p is not special forG, thenL=Z.L/ is a self-dual irreducible kG-module
and G.x/ has nonzero fixed points on this module. In particular, if L is a simple Lie
algebra, then G.x/ has nonzero fixed points on L.

The following results can also be stated in terms of the variety Z in (11). But since X
is our main focus, we leave this to the reader.

Recall that the prime p D 2 is bad for all simple algebraic groups except type An;
p D 3 is also bad for all exceptional groups, and p D 5 is bad for E8. All other primes
(and also p D 0) are good for G.

Corollary 3.22. Suppose that either L D Lie.G/ is simple or the characteristic p of k
is good for G. If dim X < dim G C rk G, then G.x/ acts reducibly on every finite-
dimensional rational kG-module for all x 2 X .

Proof. First assume thatL is simple and let x 2X . As noted in Remark 3.21, the hypothe-
ses and Scott’s theorem imply that there exists 0 ¤ ` 2 L fixed by G.x/. Let W be an
irreducible kG-module. Untwisting by a Frobenius morphism of G, if necessary, we may
assume that W D W0 ˝ W

.p/
1 , where W0 is a nontrivial restricted kG-module and `

acts nontrivially on W . Since G.x/ fixes `, it preserves the eigenspaces of ` on W and
thus G.x/ acts reducibly on W .

Finally, suppose L is not simple and p is good for G, in which case G D SLn.k/
and p divides n. Here we can apply Scott’s theorem directly with respect to the action
of G on the Lie algebra L1 of GLn.k/. For x 2 X , this gives the inequality

rX
iD1

dimCi C .n
2
� n/ > 2n2 � 2 � .dimL

G.x/
1 � 1/ � .dim.L�1/

G.x/
� 1/;

and thus dimX > rkG C dimG � .dimL
G.x/
1 � 1/ � .dim.L�1/

G.x/ � 1/.
Since dimX < dimGC rkG andL1 is self dual, it follows that dimLG.x/1 > 2. There-

fore, G.x/ fixes a noncentral element of L1 and so it also fixes a noncentral element of L
(just choose an element of trace zero with the same eigenspaces). We can now conclude
by repeating the argument given in the first paragraph.

We present another consequence of the above observations. To do this, we need the
following lemma.

Lemma 3.23. Suppose the characteristic p of k is good for G and let s be a noncentral
semisimple element of Lie.G/. Then the following hold:

(i) CG.s/ is connected.

(ii) CG.s/ D CG.S/ for some nontrivial torus S in G.
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Proof. Part (i) is due to Steinberg (see [47, Theorem 3.14]).
Now let us turn to part (ii). IfGD SLn.k/ (or a quotient), then the result holds because

we can choose a semisimple element g 2G that has the same eigenspaces as s on the natu-
ral module. In the remaining cases, Lie.G/ is simple and we note that s 2 Lie.T / for some
maximal torus T ofG (see [26, Theorem 13.3, Remark 13.4]). Therefore, T 6CG.s/DC
is a maximal rank connected reductive subgroup of G. If C is not semisimple, then
S WD Z.C/ is a nontrivial torus and CG.S/ D C as required. Now assume C is semisim-
ple. Let D be a maximal connected subgroup of G containing C and note that D is
semisimple (since Z.D/ 6 Z.C/). Then p is good for any simple factor of D (if G has
type A, there are no such subgroups; if G is symplectic or orthogonal, then any simple
factor is classical; if G is exceptional, the observation follows by inspection of the pos-
sibilities for D). By induction, C D CD.s/ has a positive-dimensional center, which is
incompatible with the assumption that C is semisimple.

Corollary 3.24. Suppose the characteristic of k is good forG. If dimX < dimG C rkG,
then dimCG.G.x// > 0 for all x 2 X .

Proof. First suppose that G D SLn.k/ and let x 2 X . As in the proof of Corollary 3.22,
we see that G.x/ centralizes a noncentral element ` of the Lie algebra of GLn.k/ and
so also for the Lie algebra of G. Using elementary linear algebra, we see that CG.`/ has
a positive-dimensional center, whence dimCG.G.x// > 0 for all x 2 X .

In the remaining cases, the Lie algebra LD Lie.G/ is simple and irreducible as a kG-
module. Let x 2 X and let 0¤ ` 2 L be fixed byG.x/ (see Remark 3.21), which we may
assume is either nilpotent or semisimple. If ` is semisimple, then Lemma 3.23 applies,
so we can assume ` is nilpotent. Here the Springer correspondence implies that CG.`/ Š
CG.u/ for some nontrivial unipotent element u 2 G and we know that dimCG.u/ > 0

(see Seitz [43], for example).

Remark 3.25. We close by recording a couple of comments on the above results:

(a) First observe that the conclusion of Lemma 3.23 (ii) is false (in general) if p is
a bad prime forG. For example, ifG D Spn.k/ with p D 2 and n� 0 .mod 4/, then there
are semisimple elements s in the Lie algebra ofG such that CG.s/D Spm.k/� Spn�m.k/
is semisimple. In particular, CG.s/ is not the centralizer of a torus in this situation. Simi-
larly, if p D 3, then G D G2.k/ has a subgroup SL3.k/ with a 1-dimensional fixed space
on the Lie algebra of G.

(b) Let us also note that Corollary 3.24 is equivalent to the statement that every G-
orbit on X has dimension strictly less than dimG (this property is stronger than stating
that � is empty). As remarked above, the conclusion extends to tuples in Z (see (11)) if
we assume the condition dimZ < 2 dimG.

3.4. Unipotent classes

For the remainder of Section 3, unless stated otherwise, we will assumeG is a simple clas-
sical algebraic group over k of the form SL.V /, Sp.V / or SO.V /, where dimV D n. In the
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statement of Theorem 7, we assume that each xi in (2) has prime order modulo Z.G/,
which implies that the corresponding elements inG=Z.G/ are either semisimple or unipo-
tent (as noted in Remark 5, if p D 0, then xi can be an arbitrary nontrivial unipotent
element). In view of Lemma 2.2, in order to establish the existence of a tuple in � we
may replace X by its closure in Gr , so we are naturally interested in the closure proper-
ties of semisimple and unipotent classes.

The situation for semisimple classes is transparent: every such class is closed and
conjugacy of semisimple elements is essentially determined by the multiset of eigenvalues
on the natural module V (one has to be slightly careful if G D SO.V / and V x

2
D 0, in

which case n is even and there are two G-classes of semisimple elements with the same
eigenvalues as x on V , which are fused in O.V / D G:2). Our main aim in this section is
to briefly recall the parametrization of unipotent classes in the classical algebraic groups,
together with some of their closure properties that will be needed later. We will generally
follow the notation in [31]. The results discussed below are essentially all consequences
of Spaltenstein [44].

3.4.1. Linear groups. First recall that the conjugacy classes of unipotent elements in
G D SL.V / are in bijection with partitions of n. Write C.�/ for the conjugacy class
in SL.V / corresponding to the partition � and note that if p > 0, then the elements
in C.�/ have order p if and only if each part of � is at most p. If �1 and �2 are partitions
of n, then C.�2/ is in the closure of C.�1/ if and only if �1 dominates �2 in the usual
partial ordering on the set of partitions of n (see [24, 44], for example). Let d.�/ denote
the number of parts in the partition � and let U.m/ be the subvariety of G consisting of
all unipotent elements with an m-dimensional fixed space on V (in other words, U.m/
is the union of the unipotent classes C.�/ with d.�/ D m). It follows from the above
discussion that U.m/ is irreducible and C.�/ is open in U.m/, where � is the partition
.n � mC 1; 1m�1/. Moreover, there is a unique partition � 0 of n such that d.� 0/ D m

and C.� 0/ is contained in the closure of every conjugacy class contained in U.m/. This
partition has at most two distinct part sizes (and if there are two, say a and b with a > b,
then a � b D 1).

3.4.2. Symplectic groups with p¤ 2. Next assumeGD Sp.V / and p¤ 2. Let � be a par-
tition of n and write C.�/ for the corresponding class in SL.V / as above. Then C.�/ \G
is nonempty if and only if every odd part of � has even multiplicity; if this condition holds,
then CG.�/ WD C.�/\G is a conjugacy class of G. Moreover, the closure relation is the
same as for SL.V / (for the admissible partitions). Set UG.m/ D U.m/ \G and note that
UG.m/ is irreducible and contained in the closure of the class CG.�/, where

� D

´
.n �mC 1; 1m�1/ if m is odd;

.n �m; 2; 1m�2/ if m is even.

As noted for SL.V /, there is a unique unipotent class contained in the closure of any class
in UG.m/ (this is the same class as described for SL.V / and has the smallest dimension
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of any class in UG.m/). Also note that if m is even, then this class contains elements
in a Levi subgroup of G, namely the stabilizer in G of a pair of complementary totally
isotropic subspaces of dimension n=2. Of course, ifm is odd, then no elements in UG.m/
are contained in such a Levi subgroup.

3.4.3. Orthogonal groups with p ¤ 2. Next assume G D SO.V / and p ¤ 2, with n > 5.
Set CG.�/ D C.�/ \G, which is nonempty if and only if all even parts in � occur with
even multiplicity. In addition, we note that CG.�/ is a single conjugacy class in the full
orthogonal group G:2 D O.V /, while CG.�/ splits into two G-classes if and only if all
parts are even. As for Sp.V /, the closure relation is the same as above, restricted to the
admissible classes (for classes that split, the smallest classes in the respective closures are
precisely the same). If n is even, then d.�/ is even for every partition � corresponding to
a class in G. Once again, there is a unique unipotent class contained in the closure of any
class in UG.m/ D U.m/ \ G and it has the smallest dimension of any class in UG.m/.
This class also contains elements in a Levi subgroup of G, which is the stabilizer of
a pair of complementary totally singular subspaces of dimension n=2. Note that if n=2 is
odd, then this Levi subgroup is unique up to conjugacy in G, whereas there are two G-
classes of such Levi subgroups when n=2 is even, which are fused under the action of an
involutory graph automorphism of G (i.e., the two G-classes are fused in G:2 D O.V /).

3.4.4. Symplectic groups with p D 2. Now suppose G D Sp.V / and p D 2. If g 2 G
is unipotent, then we can write V as an orthogonal direct sum of indecomposable khgi-
modules (in the sense that a module is indecomposable if it cannot be decomposed as an
orthogonal sum of two proper submodules). The indecomposable summands that arise are
labeled as follows in [31, Lemma 6.2]:

(a) V.2m/, where g acts as a single Jordan block of size 2m; and

(b) W.`/, where g has two Jordan blocks of size `, each corresponding to a submodule
that is a totally isotropic space.

Then every unipotent element g 2 G yields an orthogonal direct sum decomposition of
the form

V D
X
i

V.2mi /
ai ?

X
j

W. j̀ /
bj (12)

with 0 6 ai 6 2 for each i , which is unique up to isomorphism. Spaltenstein [44] com-
pletely describes the closure relations, but here we only record what we need:

(i) Ifm1 >m2, the closure of V.2m1/? V.2m2/ contains V.2m1 � 2/? V.2m2C 2/.

(ii) If m1 > m2, the closure of V.2m1/ ? V.2m2/ contains W.m1 Cm2/.

(iii) We have ai D 0 for all i if and only if g is conjugate to an element in a Levi sub-
group of G arising as the stabilizer of a pair of complementary totally isotropic
subspaces of V . For such an element g, the multiplicity of every part in the corre-
sponding partition of n is even.
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(iv) The closure relation for unipotent elements with ai D 0 for all i coincides with the
usual ordering on partitions.

(v) If m is even, then there is a unique smallest class in UG.m/ D U.m/ \ G and this
class corresponds to a partition with at most two distinct sizes (if there are two, say
a > b, then a � b D 1).

3.4.5. Orthogonal groups with p D 2. Finally, let us assume G D SO.V / with p D 2,
where n > 6 is even. Here it is convenient to view G as a subgroup of J D Sp.V /
and we observe that the description of the unipotent conjugacy classes in G is (essen-
tially) the same as for J . If g 2 J is unipotent, then g is conjugate to an element of
G:2 D O.V / and two unipotent elements in G:2 are conjugate in G:2 if and only if they
are conjugate in J . So we can use the same notation for the unipotent elements in G:2
corresponding to the decomposition in (12). Note that such an element g 2 G:2 is con-
tained in G if and only if

P
i ai is even (which is equivalent to the condition that g has

an even number of Jordan blocks on V ). In addition, if g 2 G, then the class gG:2 splits
into two G-classes if and only if ai D 0 and j̀ is even for all i , j in (12) (see [31,
Proposition 6.22]). The closure properties in G are also inherited from J . In particular,
if m is even, then the smallest unipotent class gG with m Jordan blocks corresponds
to the smallest class in a Levi subgroup GL.W / with m=2 Jordan blocks, where W is
a maximal totally singular subspace of V (hence each Jordan block of g on V has even
multiplicity).

Remark 3.26. As previously noted, if G D Sp.V / or SO.V / with p D 2, then we will
mainly be interested in the unipotent involutions inG. The conjugacy classes of unipotent
involutions in simple algebraic groups (and the corresponding finite groups of Lie type)
were studied in detail by Aschbacher and Seitz [1] and here we recall their notation.

Let g 2 G be a unipotent involution with Jordan form .J s2 ; J
n�2s
1 / on V , where Ji

denotes a standard unipotent Jordan block of size i . If s is even, then Sp.V / and O.V /
both have two classes of such elements, with representatives denoted by as and cs (here g
is of type as if and only if .v; gv/ D 0 for all v 2 V , where . ; / is the corresponding
alternating or symmetric form on V ). On the other hand, if s is odd, then there is a unique
class of such elements in Sp.V / and O.V /, represented by bs (for orthogonal groups, these
elements are contained in O.V / n SO.V /). We also note that if g 2 SO.V / is a unipotent
involution, then gO.V / D gSO.V / unless n � 0 .mod 4/ and g is O.V /-conjugate to an=2,
in which case the O.V /-class splits into two SO.V /-classes. In view of the notation in [1],
we will refer to x-type involutions in G, where x is either a, b or c.

The correspondence between this notation and the decomposition in (12) is as follows:

as; s even; 2 6 s 6
n

2
W W.2/s=2 ? W.1/n=2�s;

bs; s odd; 1 6 s 6
n

2
W V.2/ ? W.2/.s�1/=2 ? W.1/n=2�s;

cs; s even; 2 6 s 6
n

2
W V.2/2 ? W.2/s=2�1 ? W.1/n=2�s :
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3.5. Tensor products

In the proof of Theorem 7, we will need to consider the action of unipotent elements on
tensor products and related spaces. As above, we write Ji for a standard unipotent Jordan
block of size i .

Let Ja 2 GLa.k/ D GL.W / be a regular unipotent element and let Ja ˝ Ja,
V2
.Ja/

and S2.Ja/ denote the action of Ja on the tensor product W ˝ W , the exterior squareV2
.W / and the symmetric square S2.W /, respectively. Similarly, we define Ja ˝ Jb .

There are results in the literature giving the precise Jordan decomposition of these opera-
tors (see [2], for example), but we are only interested here in the number of Jordan blocks
on the respective spaces. As explained below, this number is independent of the charac-
teristic p, with the exception of the module S2.W / for p D 2.

Lemma 3.27. Let a; b > 2 be integers.

(i) Ja ˝ Jb has min¹a; bº Jordan blocks.

(ii)
V2
.Ja/ has ba=2c Jordan blocks.

(iii) S2.Ja/ has da=2e C " Jordan blocks, where "D 1 if a is even and p D 2, otherwise
" D 0.

Proof. All these results hold in characteristic 0 by considering appropriate modules for
SL2.k/ (see [13, Section 6]). Since the relevant operators are defined over Z, it follows
that the results in characteristic 0 give lower bounds in the positive characteristic setting.

For the remainder, let us assume p > 0. First consider (i) and assume a > b. Then
Ja ˝ Jb has no more Jordan blocks than Ja ˝ Ib , which visibly has Jordan form .J ba /.
Therefore, (i) holds. Similarly, if p ¤ 2, then

Ja ˝ Ja D
2̂
.Ja/˚ S2.Ja/

and thus (ii) and (iii) follow by combining part (i) with the result in characteristic 0. For
the remainder, we may assume p D 2.

Consider (ii) and view g D Ja 2 GLa.k/ < SO2a.k/ D H , where GLa.k/ is the
stabilizer of a pair of complementary totally singular a-dimensional subspaces of the
natural module for H (so in particular, g has Jordan form .J 2a / on this space). Then
dimCH .g/ D aC 2c, where c is the number of Jordan blocks of

V2
.Ja/. By [31, Chap-

ter 4] or [25], the dimension of CH .g/ is independent of the characteristic and the result
follows.

Finally, consider (iii) with p D 2. HereH < Sp2a.k/DK and dimCK.g/D aC 2c0,
where c0 is the number of Jordan blocks of S2.Ja/. By Lemma 3.38 below, we have
dimCK.g/ D dimCH .g/C 2, so c0 D c C 1 and thus (iii) follows from (ii).

3.6. Exterior squares

Here we study the action ofG DGLn.k/DGL.V / onW D
V2
.V /, where n> 2 and k is

an algebraically closed field of characteristic p> 0. Let g 2G and recall that dimW D
�
n
2

�
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and W g denotes the fixed space of g on W . Let E.g/ be the set of eigenvalues of g on V
and let ˛.g/ be the dimension of the largest eigenspace of g on V . We will establish some
useful bounds on dimW g in terms of ˛.g/.

Lemma 3.28. Let g 2 G be a noncentral semisimple or unipotent element and assume g
is an involution if p D 2 and g is unipotent. If d D ˛.g/, then the following hold:

(i) dimW g 6 dbn=2c.

(ii) If p ¤ 2, g is semisimple and ¹˙1º � E.g/, then dimW g < d.n � 1/=2.

Proof. First assume g is semisimple and write n D 2de C f with 0 6 f < 2d . It is
straightforward to see that if f D 0, then dimW g is maximal when g has e pairs of distinct
eigenvalues ¹�; ��1º, each with multiplicity d . In this case, dimW g D ed2 D dn=2.

Now assume f > 0. Here the maximum still occurs when g has e pairs of distinct
eigenvalues ¹�; ��1º with multiplicity d and so we may write g D g1 ˚ g2 with respect
to the decomposition V D V1 ˚ V2, where dim V1 D 2de, dim V2 D f and g1 has the
eigenvalues on V1 as described above. Then

dimW g
D ed2 C dim

2̂
.V2/

g2 :

If 0 < f 6 d , then we can assume g2 is trivial and thus

dimW g
D ed2 C

1

2
f .f � 1/ 6

1

2
d.2ed C f � 1/ D

1

2
d.n � 1/;

with equality only if f D d . On the other hand, if f > d , then we may assume g2
has exactly two eigenvalues on V2 and it is straightforward to show that dimW g <

d.n � 1/=2.
To complete the proof for semisimple elements, let us assume ¹˙1º � E.g/ and write

g D g1 ˚ g2 with respect to the decomposition V D U1 ˚ U2, where U2 is the kernel
of g2 � 1. Then W g D

V2
.U1/

g1 ˚
V2
.U2/

g2 and the argument above gives

dim
2̂
.U1/

g1 6
1

2
d.n � l � 1/

with l D dimU2. In addition, if the two eigenspaces of g2 on U2 have dimensions m and
l �m, then

dim
2̂
.U2/

g2 D

�
m

2

�
C

�
l �m

2

�
6
1

2
d.l � 2/

and the result follows.
Finally, let us assume g is unipotent. In view of Lemma 2.3 (also see Remark 2.4),

we may replace g by any unipotent element in the closure of gG with the same number
of Jordan blocks on V .

First assume p ¤ 2. By the discussion in Section 3.4, we may assume g has Jordan
form .J ea ; J

d�e
a�1 / for some a > 2. By Lemma 3.27, we see that

V2
.Jm/ and Jb ˝ Jc (with

c 6 b) have bm=2c and c Jordan blocks, respectively. This makes it easy to compute the
number of Jordan blocks of g on W and the result follows. The case p D 2 (with g an
involution) is entirely similar.
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We need to consider the case where n is odd in a bit more detail (for example, see the
proof of Theorem 4.2, which establishes Theorem 7 for orthogonal groups of the form
SO2m.k/ with m > 5 odd). There is a similar result for n even, but the analysis is more
complicated and we do not need it in this paper. For n odd, we first observe that the proof
of Lemma 3.28 gives the following corollary.

Corollary 3.29. Suppose nD 2mC 1,m > 1 and g 2 G has prime order modulo h�Ini.
Set d D ˛.g/. Then dimW g 6 dm, with equality only if d 6 mC 1. In addition, if both
bounds are attained, then g is unipotent.

Corollary 3.30. Suppose n D 2mC 1 and m; r > 2. Let g1; : : : ; gr be elements in G of
prime order modulo h�Ini and set di D ˛.gi / and ei D dimW gi . If

P
i di 6 n.r � 1/,

then one of the following holds (up to ordering and conjugacy):

(i)
P
i ei < .r � 1/ dimW .

(ii) r D 2, g1 D .Jm2 ; J1/ and either g2 D .�Im; ��1Im; �I1/ with � 2 k� n ¹˙1º and
� 2 k� n ¹�˙º, or p ¤ 2 and g2 D .J3; Jm�12 /.

Proof. By Corollary 3.29, we have
P
i ei 6 .r � 1/dimW , with equality only if

P
i di D

n.r � 1/ and di 6mC 1 for all i . Therefore, we may assume these conditions are satisfied,
which immediately implies that r D 2 (since n > 5). Up to reordering, it follows that

d1 D mC 1; d2 D m; e1 D d1m; e2 D d2m

and thus g1 is unipotent by Corollary 3.29.
If p D 2, then g1 is an involution and the condition d1 D m C 1 forces it to have

Jordan form .Jm2 ; J1/ as required. If p ¤ 2, then the closure of any unipotent class in G
withmC 1 Jordan blocks on V contains the class of elements with Jordan form .Jm2 ; J1/.
The next smallest class of unipotent elements withmC 1 Jordan blocks contains elements
with Jordan form .J3; J

m�2
2 ; J 21 /. But it is straightforward to check that e1 < d1m if g1

has this form, so this is not possible.
Similarly, we find that if d2 D m and e2 D d2m, then g2 has the form described

in (ii).

3.7. Subspace stabilizers

In this final preliminary section, we assume G is one of the classical groups SLn.k/
(n > 2), Spn.k/ (n > 4) or SOn.k/ (with n > 3, n ¤ 4). Recall that we may assume
p ¤ 2 if G D SOn.k/ and n is odd. As before, let V be the natural kG-module and set

X D C1 � � � � � Cr D x
G
1 � � � � � x

G
r

as usual, where r > 2 and each xi has prime order modulo Z.G/ (see Remark 5). For
g 2 G, let ˛.g/ be the dimension of the largest eigenspace of g on V and set di D ˛.xi /
for i D 1; : : : ; r . We define� and XH as in (1) and (6), respectively, whereH is a closed
subgroup of G.
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As noted in Section 1, if
P
i di > n.r � 1/, then G.x/ acts reducibly on V for all

x 2 X and thus � is empty. The following result shows that if
P
i di 6 n.r � 1/ (or

if r > 3), then G.x/ is generically positive-dimensional. In particular, in order to prove
Theorem 7 we can ignore any tuples x 2 X such that G.x/ is finite.

Lemma 3.31. Suppose r > 3 or d1 C d2 6 n. Then G.x/ is generically infinite.

Proof. If r > 3, then the main theorem of [21] implies that C1C2C3 contains elements
of arbitrarily large order (and indeed, elements of infinite order if k is not algebraic over
a finite field). In addition, the same conclusion holds for C1C2, aside from a short list of
classes C1 and C2 given in [21, Theorem 1.1] and in each of these cases one can check
that d1 C d2 > n. Therefore, the closed subvariety

Xm WD ¹x 2 X W jG.x/j 6 mº

is proper for all m 2 N and thus ¹x 2 X W G.x/ is infiniteº contains the complement of
a countable union of closed subvarieties and is therefore generic (and nonempty unless k
is algebraic over a finite field).

For the remainder of Section 3.7, we are mainly interested in the action of sub-
groups of G of the form G.x/ on varieties of appropriate m-dimensional subspaces of V
with m D 1 or 2. Our first result on 1-spaces can be viewed as an extension of [16,
Lemma 2.15].

Lemma 3.32. Let H be the stabilizer in G of a 1-dimensional subspace of V , which is
either nondegenerate (if p ¤ 2) or nonsingular (if p D 2) when G D SO.V /. If we haveP
i di 6 n.r � 1/, then XH is contained in a proper closed subvariety of X .

Proof. Set Y DG=H and observe that dimY D n� 1 and dimY g 6 d � 1 for all g 2G,
where d D ˛.g/. Since

P
i di 6 n.r � 1/, we deduce that

P
i .di � 1/ < .r � 1/ dim Y

and the result follows via Lemma 3.14.

Remark 3.33. Let x D .g1; : : : ; gr / 2X and let Ui be a di -dimensional eigenspace of gi
on V . Notice that if

P
i di > n.r � 1/, then

T
i Ui is nonzero and thus G.x/ fixes a 1-

dimensional subspace of V . In particular, if G D SL.V / or Sp.V /, then XH D X and
the converse to Lemma 3.32 holds. However, if G D SO.V /, then G.x/ may fix a totally
singular 1-space and we cannot conclude that XH is dense in X .

The next result handles the action of orthogonal groups on totally singular 1-spaces.

Lemma 3.34. Let G D SO.V / and let H be the stabilizer of a 1-dimensional totally
singular subspace of V . If

P
i di 6 n.r � 1/, then either

(i) XH is a proper closed subvariety of X ; or
(ii) r D 2 and x1, x2 are quadratic.

Proof. Set Y DG=H and note thatXH is closed by Lemma 2.5, so we only need to show
that XH is proper (unless r D 2 and the xi are quadratic). We will apply Lemma 3.14 to
do this, which means that we need to estimate dimY xi . Note that dimY D n � 2.



Topological generation of simple algebraic groups 2901

First assume xi is unipotent and p ¤ 2, so di is equal to the number of Jordan
blocks of xi on V . By replacing Ci by a unipotent class yGi in its closure with ˛.yi / D
˛.xi /D di , we may assume that every Jordan block of xi on V has size ` or ` � 1 for
some ` > 2 (with at least one Jordan block of size `); see Section 3.4.3. If ` > 3, then
there are no Jordan blocks of size 1 and so the fixed space V xi is totally singular and
dimY xi D di � 1. The same conclusion holds if ` D 2 and there are no Jordan blocks of
size 1. Finally, suppose ` D 2 and xi has a Jordan block of size 1. Here xi fixes a nonde-
generate 1-space and we claim that dimY xi D di � 2. To see this, first observe that Y xi is
precisely the subvariety of totally singular 1-dimensional subspaces of V xi . Let P1.V xi /

be the variety of 1-dimensional subspaces of V xi , so

dim P1.V xi / D di � 1:

The nondegenerate 1-spaces in P1.V xi / form a nonempty open subset and so the vari-
ety of totally singular 1-spaces in V xi has codimension 1 in P1.V xi /. This justifies the
claim.

Now assume xi is semisimple and p ¤ 2. If xi has a totally singular eigenspace of
dimension di , then dim Y xi D di � 1. If not, then a di -dimensional eigenspace W of xi
on V is nondegenerate (and corresponds to an eigenvalue ˙1); the largest irreducible
component of Y xi corresponds to the subvariety of totally singular 1-spaces in W , which
has dimension di � 2.

For both unipotent and semisimple xi (with p ¤ 2), we observe that di 6 n=2 when-
ever dimY xi D di � 1. First assume dimY xi D di � 1 for i D 1; 2. Then

rX
iD1

dimY xi 6 n � 2C

rX
iD3

dimY xi ;

which is less than .r � 1/ dimY D .r � 1/.n � 2/ unless r D 2 and each xi is quadratic.
If we exclude the latter situation, the desired result follows from Lemma 3.14. Similarly,
if we assume dimY xi D di � 1 for only one i , then

rX
iD1

dimY xi D 1C

rX
iD1

.di � 2/ < .r � 1/.n � 2/

and again the result holds. Finally, if dimY xi < di � 1 for all i , then

rX
iD1

dimY xi D

rX
iD1

.di � 2/ 6 .r � 1/n � 2r < .r � 1/.n � 2/

and once again the result follows.
To complete the proof, let us assume p D 2. If xi is unipotent and some Jordan

block has size 1, then a generic fixed vector is nonsingular and the above argument
goes through. Similarly, for semisimple classes we can repeat the argument given
above.

For 2-spaces we will need the following result.
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Lemma 3.35. Let G D SL.V / with n > 3 and let H be the stabilizer of a 2-dimensional
subspace of V . If

P
i di 6 n.r � 1/, then either

(i) XH is contained in a proper closed subvariety of X ; or

(ii) r D 2 and x1, x2 are quadratic.

Proof. Set Y D G=H and note that dim Y D 2.n � 2/. By [19, Lemma 3.35], we may
assume that each xi is semisimple. Let g 2 G be a noncentral semisimple element with
˛.g/ D d and let d 0 be the dimension of the second largest eigenspace of g on V . Then
one of the following holds:

(a) d 0 D d and dimY g D 2.d � 1/.

(b) d 0 D d � 1 and dimY g D 2d � 3.

(c) d 0 6 d � 2 and dimY g D 2.d � 2/.

Let d 0i be the dimension of the second largest eigenspace of xi on V . If d 0i 6 di � 2

for all but at most two i , then using the bound
P
i di 6 n.r � 1/ we deduce that

rX
iD1

dimY xi 6 4C

rX
iD1

.2di � 4/ 6 2.r � 1/.n � 2/ D .r � 1/ dimY:

Moreover, we see that equality holds if and only if r D 2 and di D d 0i for i D 1; 2, in
which case n is even and x1, x2 are quadratic.

Now assume that d 0i > di � 1 for i D 1; 2; 3, so
P3
iD1 dimY xi 6 2

P3
iD1 di � 6. If n

is even, then di 6 n=2 for i D 1; 2; 3 and thus

rX
iD1

dimY xi 6 2

rX
iD1

di � 2r 6 3nC 2.r � 3/.n � 1/ � 2r < .r � 1/ dimY

since n > 4. Similarly, if n is odd and i 2 ¹1; 2; 3º, then either di D .n C 1/=2 and
dimY xi D 2di � 3, or di 6 .n � 1/=2 and dimY xi 6 2di � 2. By arguing as above, we
deduce that

P
i dimY xi < .r � 1/ dimY and the result follows.

By applying the previous lemma, we obtain the following result concerning the action
of symplectic and orthogonal groups on nondegenerate 2-spaces.

Lemma 3.36. Let G D Sp.V / or SO.V / with n > 3 and let H be the stabilizer of a 2-
dimensional nondegenerate subspace of V . If

P
i di 6 n.r � 1/, then either

(i) XH is contained in a proper closed subvariety of X ; or

(ii) r D 2 and x1, x2 are quadratic.

Proof. First observe that G acts transitively on Y D G=H , which is a dense open subset
of the variety Z of all 2-dimensional subspaces of V , and thus dim Y D dimZ. Since
dim Y g 6 dimZg for all g 2 G, the proof of Lemma 3.35 implies that

P
i dim Y xi <

.r � 1/ dimY unless r D 2 and x1, x2 are quadratic. Now apply Lemma 3.14.
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To close this section, we present Lemma 3.38 below on the action of Sp.V / on the
homogeneous space Y D Sp.V /=O.V / when p D 2 (as explained in the proof of the
lemma, this can be viewed as a subspace action by identifying Spn.k/ with the orthogo-
nal group OnC1.k/). This justifies the comments in Remark 6 and it explains the extra
condition in Theorem 7 when G D Sp.V / and p D 2.

In order to prove the lemma, we need the following well-known fact about symplectic
and orthogonal groups in characteristic 2.

Lemma 3.37. Let G D Sp.V / and H D O.V /, where n > 4 and p D 2. Then every
element of G is conjugate to an element of H .

Proof. Let x 2 G and write x D su D us, where s is semisimple and u is unipotent.
If s has 3 or more distinct eigenvalues on V , then x preserves an orthogonal decom-
position V D V1 ? V2, where each Vi is a nondegenerate subspace (with respect to the
defining symplectic form on V ), and the result follows by induction. If s has exactly 2 dis-
tinct eigenvalues, then CG.s/ is the stabilizer of a pair of complementary totally isotropic
spaces and this subgroup embeds in some conjugate of H . So we may assume that s D 1
and x is unipotent. We can argue as above if x commutes with a nontrivial semisimple ele-
ment, so we may assume x is a distinguished unipotent element. As before, if x preserves
an orthogonal decomposition, then the result follows by induction. The only distinguished
unipotent elements in G that act indecomposably on V are regular, which act on V with
a single Jordan block (see [31, Chapter 6]). In this case, one can write down such an
element in H , or one can appeal to the classification of conjugacy classes of unipotent
elements in H , as described in [31].

Lemma 3.38. Let G D Sp.V / and H D O.V /, where n > 4 and p D 2. Define xi 2 G
as in (9) and set ei D dimV xi .

(i) If
P
i ei < n.r � 1/, then XH is contained in a proper closed subvariety of X .

(ii) If
P
i ei > n.r � 1/, then � is empty.

Proof. Set Y D G=H (so dim Y D n) and let W be an indecomposable rational kG-
module of dimension nC 1 with socle V . Then G acts transitively on the variety of 1-
dimensional subspaces of W that are not contained in V and the stabilizers are just
orthogonal groups. Thus we may identify this variety with Y . By Lemma 3.37, each
g 2 G fixes a complement to V in W and so we can identify the corresponding fixed
spaces Y g and V g . In particular, dim Y g D dim V g and the bound in (i) implies thatP
i dimY xi < .r � 1/ dimY . Now apply Lemma 3.14.
Now let us turn to (ii). Since each g 2 G fixes a complement to V in W , it follows

that dimW g D dimV g C 1. Therefore,

dimW xi D ei C 1

and so the inequality in (ii) implies that
T
i W

xi is nonzero. In other words, each G.x/
fixes a nonzero vector in W , and thus G.x/ ¤ G since W G D 0.
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4. Proof of Theorem 7: Orthogonal groups

In this section, we prove Theorem 7 for the orthogonal groups G D SOn.k/. We partition
the proof into two cases, according to the parity of n. We continue to define X as in (9),
where each xi has prime order modulo Z.G/. We work over an algebraically closed
field k of characteristic p > 0 that is not algebraic over a finite field. In addition, as
explained in Section 1, we may (and do) assume that k is uncountable, so � is nonempty
if and only if it contains the intersection of countably many generic subsets of X .

4.1. Even-dimensional groups

We begin by assuming G D SO.V / with dim V D n D 2m > 6. The cases m 2 ¹3; 4º
are excluded in the statement of Theorem 7 – they require special attention and will be
handled at the end of this section (see Theorems 4.5, 4.6 and 4.7). So for now, we will
assume that m > 5 and make a distinction between cases according to the parity of m.

4.1.1. m > 5 odd. To begin with, we will assume m > 5 is odd. We first consider the
relevant cases with X D C1 � C2 that appear in Table 1. In order to state our first result,
we define x1; x2 2 G as follows:

x1 D .I2; �Im�1; �
�1Im�1/; or p ¤ 2 and x1 D .J 23 ; J

m�3
2 /;

x2 D .J
m�1
2 ; J 21 /I type am�1 if p D 2;

(13)

where � 2 k� and �2 ¤ 1 (for p D 2, we adopt the notation for x2 from [1] for unipotent
involutions; see Remark 3.26).

In the proof of Lemma 4.1 below, we will use Gerhardt’s result for GLm.k/ (see
Theorem 4), which we view as a Levi subgroup of the stabilizer in G of a totally singular
m-dimensional subspace of V . Note that such a Levi subgroup stabilizes exactly two
totally singular m-spaces. Moreover, since m is odd, these two spaces are in different G-
orbits (recall that G has two orbits on the set of totally singular m-spaces, with U and W
in the same orbit if and only if dimU � dim.U \W / is even; this allows us to refer to
the type of a totally singular m-space).

Lemma 4.1. Suppose m > 5 is odd, r D 2 and x1, x2 are defined as in (13).

(i) There exists a nonempty open subvariety Y of X such that for all y 2 Y , G.y/ pre-
serves a complementary pair of maximal totally singular subspaces of V .

(ii) For all x 2X ,G.x/ preserves maximal totally singular subspaces of V of both types.

In particular, � is empty.

Proof. We may view x1 and x2 as elements of L D GLm.k/, which is the stabilizer in G
of a pair of complementary maximal totally singular subspaces of V . More precisely, as
an element of L we take

x1 D .I1; �I.m�1/=2; �
�1I.m�1/=2/ or .J3; J

.m�3/=2
2 /
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and we note that the embedding of x2 is unique up to conjugacy in L. Set Y D D1 �D2,
where Di D xLi , and note that

dimC1 D m
2
Cm � 2; dimC2 D m.m � 1/;

dimD1 D
1

2
.m2 C 2m � 3/; dimD2 D

1

2
.m2 � 1/:

In view of the eigenspace dimensions of x1 and x2 on the natural module for L, by
applying Theorem 4 we deduce that L.y/ contains L0 D SLm.k/ for generic y 2 Y .

Consider the morphism

�W D1 �D2 �G ! C1 � C2;

.d1; d2; g/ 7! .d
g
1 ; d

g
2 /:

We claim that a generic fiber of � has dimension m2. To see this, first observe that if
y D .d

g
1 ; d

g
2 / 2 im.�/, then

¹.d
gh�1

1 ; d
gh�1

2 ; h/ W h 2 Lº � ��1.y/

and thus dim ��1.y/ > dimL D m2. Therefore, it suffices to show there is a fiber of
dimension m2. Choose y 2 D1 � D2 � C1 � C2 so that L0 6 G.y/ 6 L. Then G.y/
is not contained in any other conjugate of L, so �.d1; d2; g/ D y only if g 2 L and
.d
g
1 ; d

g
2 / D y. In particular, the fiber ��1.y/ is determined by y and so it has dimen-

sion m2.
Therefore, in view of the dimensions of Ci and Di given above, we deduce that � is

dominant and thus the image of � contains a nonempty open subvariety of X D C1 � C2.
If x 2 X is in the image of �, then G.x/ is conjugate to a subgroup of L and thus (i)
holds. Finally, let us observe that the set of totally singular m-spaces of a given type can
be identified with the homogeneous space G=P for some maximal parabolic subgroup P
of G. By Lemma 2.5, XP is closed and thus (i) implies that XP D X . This establishes
part (ii).

We can now establish Theorem 7 for G D SO.V /, where dim V D 2m and m > 5

is odd. Recall that Ci D xGi and di D ˛.xi / is the maximal dimension of an eigenspace
of xi on V .

Theorem 4.2. Ifm > 5 is odd and
P
i di 6 n.r � 1/, then� is empty if and only if r D 2

and either x1, x2 are quadratic, or defined as in (13) (up to ordering).

Proof. If r D 2 and x1, x2 are either quadratic or defined as in (13), then � is empty
by Lemmas 3.13 and 4.1. Therefore, it remains to show that � is nonempty in all other
cases. We partition the proof into two cases. In order to explain the case distinction, recall
that if xi is unipotent, then there is a unique unipotent conjugacy class yG of minimal
dimension with ˛.y/D di (see Section 3.4). We will refer to yG as the smallest unipotent
class containing elements with di Jordan blocks on V and it will be useful (in Case 2) to
note that yG is contained in the closure of xGi .
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Case 1. If xi is unipotent, then Ci D xGi is the smallest conjugacy class inG of unipotent
elements with di Jordan blocks on V .

Suppose the given condition holds for all unipotent elements xi in (9). Let P D QL
be the stabilizer in G of a totally singular m-space W of V , where Q is the unipotent
radical and L D GL.W / D GLm.k/ is a Levi subgroup. Note that L is the stabilizer of
a decomposition V D W ˚W 0, where W 0 is also a totally singular m-space (since m is
odd,W andW 0 represent the two G-orbits on the set of such spaces). We may identifyQ
with the kL-module

V2
.W /.

Up to conjugacy, we may embed each xi in L. Indeed, this is clear if xi is semisimple
since L contains a maximal torus of G; for unipotent xi , it follows from the hypothesis in
Case 1 and the properties of unipotent classes discussed in Section 3.4 (specifically, the
Jordan blocks of xi occur with even multiplicity). If xi is unipotent, then Ci \ L D xLi .
On the other hand, if xi is semisimple, then we may assume that if �¤˙1 is an eigenvalue
of xi on V , then the multiplicities of � on W and W 0 differ by at most 1.

Let d 0i D ddi=2e be the maximal dimension of an eigenspace of xi on W . We claim
that

P
i d
0
i 6 m.r � 1/. This is clear if each di is even. Similarly, if exactly one di is

odd, then
P
i di 6 2m.r � 1/ � 1 and once again the claim follows. More generally,

suppose ` > 2 of the di are odd and note that di 6m if di is odd, otherwise di 6 2m� 2.
If .`; r/ ¤ .2; 2/, then

rX
iD1

di 6 `mC 2.r � `/.m � 1/ 6 2m.r � 1/ � `

and the result follows. Finally, if `D r D 2, then we may assume x1 or x2 is non-quadratic,
so d1 C d2 6 2m � 2 and this justifies the claim.

Set
Y D D1 � � � � �Dr D x

L
1 � � � � � x

L
r � X:

Since
P
i d
0
i 6 m.r � 1/, Theorem 4 implies that for generic y 2 Y , either L.y/ con-

tains L0 D SLm.k/, or r D 2 and the xi are quadratic elements of L with respect to W .
In the latter situation, the xi also act quadratically on V , which is a case we have already
handled.

By applying Lemma 3.5, it follows that for generic x 2 X , G.x/0 is either irreducible
on V , or it has exactly two composition factors of dimension m. In addition, the rank
of G.x/ is generically at least m � 1 by Corollary 2.13. Since L0 D SLm.k/ contains
regular semisimple elements with distinct eigenvalues on V (that is, L0 contains elements
that are strongly regular on V ; see Definition 3.7), it follows that for generic x 2 X ,
G.x/0 contains strongly regular elements on V (by Lemma 3.10 (ii)). In particular,G.x/0

does not generically preserve a nondegenerate m-space (since m is odd, the stabilizer
in G of a nondegenerate m-space does not contain an element with distinct eigenvalues
on V ). As a consequence, either G.x/0 is generically irreducible on V , or it has precisely
two composition factors (both m-dimensional) and any proper invariant subspace of V
is totally singular. Since the totally singular m-spaces of a fixed type (i.e., in a given
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G-orbit) form an irreducible projective variety, by applying Lemma 2.5 we deduce that
either

(a) G.x/0 acts irreducibly on V for generic x 2 X ; or

(b) for all x 2 X , G.x/0 stabilizes a totally singular m-space (of a fixed type).

If (a) holds, then Corollary 3.11 implies that � is nonempty. Therefore, to complete
the argument in Case 1, we need to rule out (b).

Seeking a contradiction, suppose (b) holds. Fix z D .z1; : : : ; zr / 2 X such that L0 6
G.z/0 6 G.z/ 6 L. Consider the set

X0 WD z
Q
1 � � � � � z

Q
r � X

and note thatG.y/ 6 P and P 0 6 G.y/Q for all y 2 X0. We observe that if y 2 X0, then
either G.y/ is contained in a complement to Q in P , or G.y/ contains Q (since QL0 6
QG.y/). Moreover, if y1, y2 are distinct elements of X0 and Q 66 G.yi / for i D 1; 2,
thenG.y1/ andG.y2/ are contained in distinct complements toQ. SinceH 1.L0;Q/D 0

by [27], it follows that the space of complements to Q in P coincides with the space
of Q-conjugates of L and so has dimension m.m � 1/=2 as a variety. On the other
hand, aside from the special cases recorded in the statement of the theorem, we see
that

dimX0 D r dimQ �

rX
iD1

dimQxi > dimQ D
1

2
m.m � 1/

by Corollary 3.30 and thus QL0 6 G.y/0 for some y 2 X0. In particular, there exists
y 2 X0 such that G.y/0 fixes a unique totally singular m-space (namely, W ) and it fol-
lows that the set of y 2 X such that G.y/0 fixes a totally singular m-space in the other
orbit is contained in a proper closed subvariety of X .

But by applying the same argument with respect to the opposite parabolic subgroup
of G (namely, the stabilizer of the totally singular m-space W 0) we see that for some
y 2 X , G.y/0 does not fix any totally singular m-space in the orbit of W . This is a con-
tradiction and the proof is complete in Case 1.

Case 2. There exists a unipotent xi such that Ci D xGi is not the smallest conjugacy class
of unipotent elements in G with di Jordan blocks on V .

To complete the proof of the theorem, we may assume that we are in the situation
described in Case 2. Let yGi be the smallest unipotent class containing elements with di
Jordan blocks on V and recall that yGi is contained in the closure of xGi . In view of
Lemma 2.2, we may assume that G.x/ ¤ G for all x 2 xX n X , which implies (by our
work in Case 1) that r D 2 and either

(a) y1 and y2 are quadratic; or

(b) y1 and y2 have the form given in (13), up to ordering.

First assume y1 and y2 are both quadratic, so d1 D d2 D m (since d1 C d2 6 2m and
di > m for each i ). But since m is odd, there are no quadratic unipotent elements in G
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with di D m, so both classes are semisimple and thus x1, x2 are both quadratic, which
is one of the special cases appearing in the statement of the theorem. For the remainder,
we may assume y1, y2 have the form given in (13), up to ordering, so d1 D m � 1 and
d2 D mC 1. We will consider separately the cases p D 2 and p ¤ 2.

Suppose p D 2, so x1 D y1 is semisimple, y2 is a unipotent involution of type am�1
and the condition in Case 2 forces x2 to be of type cm�1. Set Y D yG1 � y

G
2 �

xX .
As explained in the analysis of Case 1, there exists y 2 Y such that SLm.k/ 6 G.y/,
where SLm.k/ fixes a decomposition V D W ˚ W 0 into totally singular m-spaces. By
Corollary 2.13, the rank of G.x/ is at least m � 1 for generic x 2 X . Then by arguing
as above, using Lemma 3.1, we deduce that � is nonempty if G.x/0 is generically irre-
ducible on V .

To complete the proof for p D 2, we may assume G.x/0 is reducible on V for
all x 2 X , with two m-dimensional composition factors for generic x. In particular,
G.x/0 generically fixes a totally singular m-space. Notice that x1 and x2 both commute
with transvections and so the two classes C1 and C2 are invariant under G:2 D On.k/.
Therefore, G.x/0 generically preserves totally singular m-spaces of both types, which
implies that G.x/0 is generically contained in a Levi subgroup GLm.k/. But this is
a contradiction since every unipotent involution in a Levi subgroup of this form is of
type a in the notation of [1]; in particular, no conjugate of x2 is contained in such a sub-
group.

Finally, let us turn to the case p ¤ 2. By arguing as above for p D 2, we see that
either� is nonempty, or each G.x/0 is contained in a Levi subgroup of the form GLm.k/
(indeed, G.x/0 generically preserves totally singular m-spaces of both types, in which
case Lemma 2.5 forces this property to hold for all x 2 X ). Seeking a contradiction, let us
assume each G.x/0 is contained in a Levi subgroup of the form GLm.k/. There are two
cases to consider.

First assume x2 and y2 are not conjugate. By passing to the closures of xG1 and xG2 ,
we may assume that x1 and y1 are conjugate and dim xG2 is as small as possible (subject
to the constraints). This means that we may assume x2 has a Jordan block of size 3 and x1
acts nontrivially on a 3-dimensional nondegenerate space. Since SO3.k/ can be topo-
logically generated by conjugates of any two nontrivial elements other than involutions
(see [16, Theorem 4.5]), there exists x 2 X such that G.x/ induces SO3.k/ on a non-
degenerate 3-space. For such an element x, G.x/0 does not preserve a totally singular
m-space (since such a space would have to be contained in the orthogonal complement
of the nondegenerate 3-space). Therefore, by applying Lemma 2.5 we deduce that the set
of x 2 X such that G.x/ preserves a totally singular m-space (of either type) is a proper
closed subvariety ofX . But this is incompatible with the fact that eachG.x/0 is contained
in a Levi subgroup of the form GLm.k/ and we have reached a contradiction.

Now assume x2 and y2 are conjugate. Given the assumption in Case 2, it follows
that x1 is unipotent and not conjugate to y1 D .J 23 ; J

m�3
2 /. If x1 is not contained in

a Levi subgroup of the form GLm.k/, then we can repeat the argument above for p D 2
to obtain a contradiction. So we may assume that the multiplicity of each Jordan block
of x1 is even. Moreover, by passing to closures, we may assume that x1 either has a Jor-
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dan block of size 4, or at least four Jordan blocks of size 3 (with d1 D m � 1). Let �
be the variety of totally singular m-spaces of a fixed type. By arguing as in the proof of
Lemma 4.1, it follows that dim�x1 < dim�y1 and thus

dim�x1 C dim�x2 < dim�y1 C dim�y2 D dim�:

Then by applying Lemma 3.14, we deduce that G.x/ does not generically fix an m-space
in � and this final contradiction completes the proof of the theorem.

4.1.2. m > 6 even. Now let us assumem > 6 is even. In the following lemma, we define
Ci D x

G
i for i D 1; 2 as follows:

x1 D .I2; �Im�1; �
�1Im�1/; or p ¤ 2 and x1 D .J 23 ; J

m�4
2 ; J 21 /;

x2 D .J
m
2 /I type am or type a0m if p D 2;

(14)

where � 2 k� and �2 ¤ 1 (note that d1 D m � 1 if x1 is semisimple and d1 D m if x1
is unipotent). Recall that if p D 2, then there are three G-classes of unipotent involu-
tions with Jordan form .Jm2 /, with representatives labeled am, a0m and cm in [1] – the
involutions of type am and a0m are conjugate in G:2 D O.V /.

Lemma 4.3. Suppose m > 6 is even, r D 2 and x1, x2 are defined as in (14).

(i) There exists a nonempty open subvariety Y of X such that for all y 2 Y , G.y/ pre-
serves a complementary pair of maximal totally singular subspaces of V .

(ii) For all x 2 X , G.x/ preserves maximal totally singular subspaces of V .

In particular, � is empty.

Proof. First observe that xG1 D x
G:2
1 , which implies that x1 preserves totally singular m-

spaces of both types. On the other hand, x2 preserves a totally singularm-space of a fixed
type. With this observation in hand, the proof of the lemma is essentially identical to that
of Lemma 4.1 and we omit the details.

Theorem 4.4. Ifm> 6 is even and
P
i di 6 n.r � 1/, then� is empty if and only if r D 2

and either

(i) the xi are quadratic, or defined as in (14), up to ordering; or

(ii) p ¤ 2 and x1 D .J3; Jm�22 ; J1/, x2 D .Jm2 /, up to ordering.

Proof. First observe that � is empty in (i) and (ii). This is clear if the xi are quadratic
and it follows from Lemma 4.3 if x1 and x2 are defined as in (14). If (ii) holds, then C1
is in the closure of the corresponding unipotent class in (14), so once again Lemma 4.3
implies that � is empty. It remains to show that � is nonempty in all other cases.

Let P D QL be the stabilizer in G of a totally singular 1-space hvi, where Q is the
unipotent radical and L is a Levi subgroup. Set W D v?=hvi, which is a nondegenerate
space of dimension n � 2, and note that we may identify L0 with SO.W /. Let Di be the
closure of Ci . In terms of this notation, we make the following claim.
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Claim. The set � is nonempty if there exists gi 2 Di \ L such that the Zariski closure
of hg1; : : : ; gri contains L0.

To see this, suppose we can find elements gi with this property. Then Lemma 3.1
implies that for generic x 2 xX (and hence also for generic x 2 X ), G.x/0 has a compo-
sition factor on V of dimension at least n � 2. In particular, G.x/ is not generically an
irreducible imprimitive subgroup of G with respect to the natural module V . In addition,
by combining the bound

P
i di 6 n.r � 1/ with our results in Section 3.7 on subspace

stabilizers, we deduce thatG.x/ does not generically fix a 1-space nor a nondegenerate 2-
space. Therefore, G.x/ is generically irreducible and primitive on V (which implies that
G.x/0 is also generically irreducible). By applying Corollary 2.13, we deduce that G.x/
has rank m � 1 or m for generic x 2 X . But since m > 6, Lemma 3.12 implies that G
does not have any proper connected irreducible subgroups of rankm� 1 orm. Therefore,
G.x/ D G for generic x 2 X and this justifies the claim.

It remains to establish the existence of the gi . First assume that xi is semisimple
and fix a scalar � 2 k� such that the �-eigenspace of xi has dimension di . Note that
Di D Ci and choose gi 2 Di \ L with giv D �v. Let d 0i be the dimension of the largest
eigenspace of gi onW . If we can choose �¤˙1, then either di 6m and d 0i D di � 1, or
di 6 2m=3 and d 0i D di (in the latter case, xi has at least three distinct eigenvalues with di -
dimensional eigenspaces on V ). On the other hand, if the only di -dimensional eigenspace
corresponds to an eigenvalue ˙1, then either d 0i D di � 2, or xi is an involution and
d 0i D di D m.

Now assume xi is unipotent. If di >m, then xi has at least two Jordan blocks of size 1
(and if p D 2, at least four such blocks) since the total number of Jordan blocks is even.
Therefore, in this situation we can choose gi 2 Ci \ L with d 0i D di � 2 (that is, gi has
di � 2 Jordan blocks on W ). Now assume di 6 m and consider a Jordan block of xi of
size e > 1. If e is odd, then the closure of Ci contains an element with two Jordan blocks
of size 1 (and one of size e � 2), so in this case we can choose gi 2Di \L with d 0i D di .
Similarly, if e is even, then xi has at least two Jordan blocks of size e and the closure
of Ci contains an element with two Jordan blocks of size 1 (and two of size e � 1), so
once again we can choose gi 2 Di \ L with d 0i D di .

For r > 3, if we choose gi 2 Di \ L as above, then
P
i d
0
i 6 .n � 2/.r � 1/ and by

applying Theorem 4.2 we deduce that the closure of hg1; : : : ; gri contains L0 D SO.W /
as required.

Finally, suppose r D 2, d1C d2 6 n and we are not in cases (i) or (ii) in the statement
of the theorem. Then the previous argument goes through unless the chosen gi 2 L are
among the special cases arising in the statement of Theorem 4.2. It just remains to handle
these special cases.

If g1 and g2 are both quadratic on W , then the condition d1 C d2 6 n implies that x1
and x2 are both quadratic on V , as in part (i) of the theorem. So we may assume that g1
and g2 are as in (13), up to reordering. In particular,

g2 D .J
m�2
2 ; J 21 /;
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which is of type am�2 if p D 2. Given the above construction of g2 from x2, it follows
that the Jordan form of x2 is one of the following:

.Jm2 /; .Jm�22 ; J 41 /; .J3; J
m�2
2 ; J1/; .J 23 ; J

m�4
2 ; J 21 /: (15)

First assume g1 D .I2; �Im�2; ��1Im�2/ on W , so x1 D .I2; �Im�1; ��1Im�1/ and
d1 Dm� 1. In turn, this implies that d2 6mC 1, ruling out the second possibility for x2
in (15). We now consider the cases p D 2 and p ¤ 2 separately.

Suppose p D 2. Here x2 D .Jm2 / is the only option and we may assume x2 is of
type cm (if x2 has type am or a0m, then we are in one of the cases recorded in (14)). To
handle this case, we switch parabolics and work in the stabilizer of a totally singular m-
space U . By replacing x2 by an element of type am in the closure of C2, we see that
for some x 2 xX , G.x/ contains the derived subgroup SLm.k/ of a Levi subgroup of
the stabilizer of U . Similarly, if we replace x2 by an involution of type a0m, then there
exists y 2 xX such that G.y/ contains the corresponding subgroup in the stabilizer of U 0,
where U and U 0 represent the two G-orbits on the set of all totally singular m-spaces. In
the usual way, this shows that either

(a) G.x/0 is generically irreducible with rank at least m � 1; or

(b) G.x/ generically preserves totally singular m-spaces of both types and the smallest
composition factor of G.x/ on V is m-dimensional for generic x 2 X .

If (a) holds, then � is nonempty. To eliminate (b), observe that the intersection of two
totally singular m-spaces of different types is nontrivial since m is even. In particular,
if (b) holds, then G.x/ generically preserves a space of dimension less than m, which is
a contradiction.

Now assume that p¤ 2 (we are continuing to assume that g1D .I2;�Im�2;��1Im�2/
onW ). We consider the possibilities for x2 recorded in (15). If x2 D .Jm2 /, then we are in
one of the cases in (14), so we may assume x2 is one of the final two possibilities in (15).
In both cases, the closure of C2 contains an element with Jordan form .Jm2 / and we note
that there are two such G-classes, which are fused in G:2 D O.V /. We can now argue as
in the p D 2 case, working with the stabilizers of totally singular m-spaces of both types.

To complete the proof, we may assume p ¤ 2 and g1 D .J 23 ; J
m�4
2 /. From the con-

struction of g2 given above, this forces x1 D .J 23 ; J
m�4
2 ; J 21 / and once again we need to

inspect the possibilities for x2 given in (15). As above, the bound d1 C d2 6 n rules out
the second possibility, while x2 D .Jm2 / gives one of the cases in (14). In the final two
cases, we can argue as above: there exists x 2 xX such that G.x/0 contains the derived
subgroup of a Levi subgroup of the stabilizer of a totally singular m-space of either type
and we conclude that G.x/ D G for generic x 2 X .

4.1.3. m 2 ¹3; 4º. Here we consider the groups SO6.k/ and SO8.k/. Since SO6.k/ is
isogenous to SL4.k/, we can use Theorem 4 to state a result in terms of the 6-dimensional
orthogonal module V and the 4-dimensional linear module W (note that V D

V2
.W / as

a module for SL4.k/). As before, we set di D ˛.xi / with respect to the action of xi on V .
In parts (i) and (iii), we write � for a scalar in k� with �2 ¤ 1.
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Theorem 4.5. If m D 3 and
P
i di 6 6.r � 1/, then � is empty if and only if one of the

following holds:

(i) r D 3 and each xi is of the form .�I3; �
�1I3/ or .J 22 ; J

2
1 /.

(ii) r D 2 and x1, x2 are both quadratic on W .

(iii) r D 2, x1 D .�I3; ��1I3/ or .J 22 ; J
2
1 /, and x2 is nonregular (up to ordering).

The result for SO8.k/ is necessarily more complicated because there are three re-
stricted irreducible 8-dimensional modules (each a twist of the other by a triality graph
automorphism). Moreover, the dimensions of the eigenspaces on the three modules can
differ for a given element. For example, if p ¤ 2 and x has Jordan form .J3; J

5
1 / on one

of the 8-dimensional modules, then it has Jordan form .J 42 / on the other two.
We will work with the simply connected groupG D Spin8.k/ and we use the standard

high weight notation to denote the three modules of interest, namely Vj D L.!j / for
j D 1; 3 and 4. For g 2 G, let j̨ .g/ be the dimension of the largest eigenspace of g
on Vj . In particular, for the elements xi in (9), set dij D j̨ .xi /.

Theorem 4.6. If G D Spin8.k/, r > 4 and the xi in (9) are noncentral, then � is non-
empty.

Proof. Let V D L.!j / for j D 1; 3 or 4 and let di be the maximal dimension of an
eigenspace of xi on V . Note that di 6 6 and thus

P
i di 6 8.r � 1/. In view of Lemma 2.2,

it suffices to show that G.x/ D G for some x 2 xX . Since the closure of xGi contains the
semisimple part of xi (see [46, p. 92], for example), we may assume that each xi is either
semisimple or unipotent. In fact, by the same argument, we may assume that each xi is
either semisimple of prime order or a long root element (that is, a unipotent element with
Jordan form .J 22 ; J

4
1 / on V ).

Let W be a totally singular 4-dimensional subspace of V and let P D QL be the
stabilizer ofW inG, whereQ is the unipotent radical andLDGL.W / is a Levi subgroup.
By applying Theorem 4, we deduce that there exists x 2 xX such that G.x/0 contains
L0 D SL4.k/. Similarly, by applying a triality graph automorphism, there exists y 2 xX
such thatG.y/0 contains SL.W 0/D SL4.k/, whereW andW 0 represent the twoG-orbits
on totally singular 4-spaces. We can also find z 2 xX such that G.z/0 contains SO6.k/,
which is the derived subgroup of a Levi subgroup of the stabilizer of a totally singular
1-space (recall that SO6.k/ and SL4.k/ are isogenous, so the latter claim also follows
from Theorem 4).

These observations imply that for generic x 2 X , the smallest composition factor
of G.x/0 on V is at least 4-dimensional and the largest is at least 6-dimensional, whence
G.x/0 is generically irreducible on V and has rank 3 or 4. Moreover, G.x/0 generically
contains semisimple elements with distinct eigenvalues on V (by Lemma 3.10) and so
either � is nonempty, or G.x/0 is generically contained in a proper maximal rank sub-
group ofG (cf. Corollary 3.11). ButG has no proper maximal rank irreducible connected
subgroups and thus � is nonempty.
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Our main result for 8-dimensional orthogonal groups is the following. Note that in
the statement of this theorem we return to assuming that the xi in (9) have prime order
modulo Z.G/. Also note that if xi is an involution as described in part (i) or (ii) of the
theorem, then Ci D xGi is Aut.G/-invariant and so xi acts the same way on all three
8-dimensional modules.

Theorem 4.7. If G D Spin8.k/ and
P
i dij 6 8.r � 1/ for all j , then � is empty if and

only if r D 2 and either

(i) p ¤ 2 and x1 D x2 D .�I4; I4/; or

(ii) p D 2 and x1 D x2 are involutions of type c4.

Proof. To begin with, let us assume r D 2. Clearly, if (i) or (ii) holds, then x1 and x2 are
quadratic and thus � is empty by Lemma 3.13. It remains to show that � is nonempty
in all other cases. Set V D V1 and di D di1 for i D 1; 2. Note that if x1 and x2 are both
quadratic on V , then either d1j C d2j > 8 for some j in ¹1; 3; 4º, which is incompatible
with the hypothesis of the theorem, or we are in one of the special cases (i) or (ii) in the
statement of the theorem. Therefore, we may assume that x1 is not quadratic. There are
several cases to consider.

First assume x1 and x2 are both unipotent, so p ¤ 2 since x1 is non-quadratic. Sup-
pose d1 < 4, in which case p ¤ 3 since x1 has order p modulo Z.G/. Then by passing
to closures, we may assume that x1 D .J 24 / and x2 D .J 22 ; J

4
1 / is a long root element.

By Theorem 4, we can choose y 2 xX so that G.y/0 induces SL4.k/ on a 4-dimensional
totally singular subspace of V . Then for generic x 2 X , the smallest composition factor
of G.x/0 on V is at least 4-dimensional. By applying the same argument to V3 and V4,
we see that G.x/0 generically has a composition factor on V of dimension at least 6
(since a Levi subgroup of the stabilizer of a totally singular 1-space is conjugate via tri-
ality to a Levi of the stabilizer of a totally singular 4-space). It follows that G.x/0 is
generically irreducible on V , with rank at least 3 and it contains elements with distinct
eigenvalues on V . But there are no proper connected subgroups ofG with these properties,
whence G.x/ D G for generic x 2 X . If d2 < 4, the result follows by interchanging x1
and x2.

Now assume di > 4 for i D 1; 2 (we are continuing to assume that r D 2 and the xi
are unipotent, with x1 non-quadratic). Then d1 D d2 D 4 and by passing to closures, if
necessary, we may assume that x1 D .J 23 ; J

2
1 / and x2 D .J 42 /. Note that x1 is conju-

gate to an element in a Levi subgroup GL.W / of the stabilizer in G of a totally singular
4-space W . It is also conjugate to an element in a Levi subgroup GL.W 0/, where W
and W 0 represent the two G-orbits on the set of totally singular 4-spaces in V . On the
other hand, x2 is conjugate to an element in GL.W / or GL.W 0/, but not both (in other
words, x2 only fixes a pair of complementary totally singular 4-spaces in one of the two
G-orbits). Therefore, Theorem 4 implies that we can find y 2 xX such that G.y/ induces
SL4.k/ on a totally singular 4-space and we can now repeat the argument presented in the
previous paragraph.
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Next assume r D 2 and x1 is semisimple (and non-quadratic), so x1 is conjugate to
elements in both Levi subgroups GL.W / and GL.W 0/ described above. The same con-
clusion holds if x2 is semisimple. On the other hand, if x2 is unipotent, then there is
a unipotent element y in the closure of C2 such that ˛.y/ D d2 (with respect to V )
and some conjugate of y is contained in GL.W / or GL.W 0/. We can now argue as
above.

To complete the proof, it remains to show that � is nonempty when r D 3 (since this
immediately gives the result for all r > 3). Without loss of generality, we may assume
that d1 6 4. Note that if x2 and x3 are unipotent, then by passing to closures we may
assume that x2 D x3 D .J 22 ; J

4
1 / are long root elements. In all cases, by arguing as above

for r D 2, we see that there exist x; y 2 xX such that G.x/ induces a subgroup containing
SL4.k/ on a totally singular 4-space and G.y/ has a 6-dimensional composition factor
on V . The result now follows as above.

4.2. Odd-dimensional groups

To complete the proof of Theorem 7 for orthogonal groups, we may assumeG D SOn.k/,
where n D 2mC 1, m > 1 and p ¤ 2. We continue to adopt the notation of the previous
section (in particular, note that Z.G/ D 1 and the xi in (9) have prime order). We begin
by handling a special case.

Lemma 4.8. Suppose m is odd and r D 2, where x1 is unipotent, d1 D m and d1 C
d2 6 n. Then � is nonempty.

Proof. We use induction on m, noting that the case m D 1 follows by applying [16, The-
orem 4.5] with respect to the isogenous group SL2.k/ (note that x1 is a regular unipotent
element).

For the remainder, let us assume that m > 3. By considering the closure of xG1 and
appealing to the information on unipotent classes in Section 3.4, we may assume that
x1 D .J3; J

m�1
2 /. Note that the m-dimensional fixed space V x1 is totally singular, so x1

fixes a 2-dimensional totally singular subspace of the natural module V . Also note that
d2 6 mC 1.

Case 1: x2 is unipotent. Here d2 is odd, so d2 6 m. Since C1 is contained in the closure
of any unipotent class containing elements with at mostm Jordan blocks on V , by passing
to closures we may assume that x1 D x2.

Let P D QL be the stabilizer in G of a totally singular 2-dimensional subspace W
of V , where Q is the unipotent radical and L is a Levi subgroup. As observed above,
we may assume that xi 2 P . Note that we may identify the kL0-module Q=Q0 with the
tensor product U ˝U 0, where U and U 0 are the respective natural modules of the compo-
nents of L0 D SL2.k/ � SO2m�3.k/. Set Y D D1 �D2, where Di is the set of elements
inCi \L acting nontrivially onW . Then each gi 2Di has Jordan form .J3;J

m�3
2 / on the

nondegenerate .2m� 3/-space preserved by L, so by induction and the result for SL2.k/
(see [16, Theorem 4.5]), we deduce that G.y/ contains L0 for generic y 2 Y .
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The Künneth formula gives H 1.L0;Q=Q0/ D 0 and one checks that

dimŒgi ;Q=Q0� D 2m � 2 > 2m � 3 D
1

2
dimQ=Q0

for all .g1; g2/ 2 Y . Therefore, if we fix .g1; g2/ 2 Y , then there exist q1; q2 2 Q such
that hgq1

1 ; g
q2

2 i is Zariski dense in P 0. By Lemma 3.5, this implies that for generic x 2 X ,
G.x/0 has a composition factor of dimension at least 2m � 3 and does not fix a 1-space.
Ifm> 5, then 2m� 3 >m and soG.x/ cannot generically be imprimitive and irreducible
on V . On the other hand, if m D 3, then dim V D 7 is a prime and G has no positive-
dimensional imprimitive subgroups. So in all cases, G.x/ is not generically imprimitive
and irreducible on V . Clearly, no element of Ci acts nontrivially on a nondegenerate
2-space and we also note that G.x/ cannot act irreducibly on a 4-space (each element
in Ci would have Jordan form .J 22 / on such a space and so the action of G.x/ would
be reducible by Lemma 3.13). Therefore, we see that for generic x 2 X , either G.x/0

acts irreducibly on V , or G.x/ preserves a totally singular 2-space. Moreover, G.x/0

generically contains elements with distinct eigenvalues on V (that is, elements that are
strongly regular on V ).

Let � D G=P be the variety of 2-dimensional totally singular subspaces of V . We
need to compute dim�x1 . Suppose W 2 �x1 . If x1 acts trivially on W , then W is con-
tained in the 1-eigenspace V x1 , which as noted above is a totally singular m-space. The
variety of 2-dimensional subspaces of V x1 has dimension 2.m � 2/. On the other hand,
if x1 is nontrivial on W , then W contains a nonzero vector in the hyperplane

V0 D ¹v 2 V W .x1 � In/
2v D 0º:

Let V 00 denote the set of singular vectors in V0. This is a hypersurface in V0 and so it has
dimension n � 2 D 2m � 1. Let V 000 D V

0
0 n V

x1 and consider the map from V 000 to �x1

given by v 7! hv; x1vi. This is a surjection and all fibers are 2-dimensional (the fiber
of hv; x1vi consists of the vectors avC bx1v with a ¤ 0). Therefore, dim�x1 D 2m� 3

and thus

dim�x1 C dim�x2 D 4m � 6 < dim� D 4m � 5;

so for generic x 2 X , G.x/ does not fix a totally singular 2-space.
We conclude that G.x/ is generically irreducible on V (and also primitive). Finally,

since G.x/ generically contains elements that are strongly regular on V , we deduce that
either G.x/ is generically contained in a proper maximal rank subgroup of G, or � is
nonempty. But G does not have a proper primitive irreducible maximal rank subgroup,
whence � is nonempty.

Case 2: x2 is semisimple. To complete the proof, we may assume x2 is semisimple. First
suppose x2 is an involution, so x2 D .�ImC1; Im/ since d2 6 mC 1. Define P D QL
and � D G=P as in Case 1. Note that we may embed x2 in L so that it has distinct
eigenvalues on the 2-dimensional totally singular subspace W preserved by P . Visibly
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we have dim�x2 D 2m� 3 (the largest component arises by choosing totally singular 1-
spaces from each eigenspace of x2) and the result now follows by repeating the argument
in Case 1 for C1 D C2.

Finally, let us assume x2 is semisimple of odd prime order. If dimV x2 D d2, then d2
is odd and thus d2 6 m. If not, then since each eigenvalue � 2 k� n ¹˙1º has the same
multiplicity as ��1, we still deduce that d2 6 m. As above, by induction we may assume
that x2 2 L and L0 6 G.x/ for generic x 2 X . Then a straightforward calculation shows
that dim�x2 6 2m � 3 and we can now repeat the argument in Case 1.

We will also need the following technical lemma on fixed spaces for the action ofG D
SO9.k/ on totally singular 4-spaces.

Lemma 4.9. Suppose that m D 4 and � is the variety of 4-dimensional totally singular
subspaces of the natural module V .

(i) If g D .J 33 / or .I3; �I3; ��1I3/ for some � 2 k� n ¹˙1º, then dim�g D 3.

(ii) If g D .J 42 ; J1/, then dim�g D 6.

Proof. First observe that dim� D 10. The result for g D .I3; �I3; ��1I3/ is clear since
eachW in�g intersects the nondegenerate 1-eigenspace of g in a totally singular 1-space,
while dim.W \ U/ 6 3 if U is the �-eigenspace.

Now assume g D .J 33 / is unipotent. Let �1 be the set of spaces in �g on which g
acts quadratically and let U be a space in�1. Then U is a subspace ofW D ker.g � I /2,
which is a 6-dimensional space with a 3-dimensional radical W1 (the fixed space of g
on V ). Note thatW=W1 is a nondegenerate 3-space and so every maximal totally singular
subspace is 1-dimensional. It follows that U must contain W1 and the map U 7! U=W1
from �1 to the set of 1-dimensional totally singular subspaces of W=W1 is an isomor-
phism of varieties. Therefore, dim�1 D 1.

So it suffices to show that dim�0 D 3, where �0 is the set of spaces U in �g such
that g acts on U with a Jordan block of size 3. Let U be a space in �0 and set U1 D
U \ V g , which is a 2-dimensional space. Then U=U1 is a g-invariant totally singular 2-
dimensional subspace of U?1 =U1, which is 5-dimensional and nondegenerate. Moreover,
g has Jordan form .J3; J

2
1 / on this 5-space. Let R be the variety of 2-dimensional totally

singular subspaces in U?1 =U1, so R is irreducible and dimR D 3. We can identify R
with the variety of 1-dimensional subspaces in a 4-dimensional symplectic space. Under
this identification, since g has Jordan form .J 22 / on the symplectic 4-space, we see that
dimRg D 1. Therefore, the variety of g-invariant totally singular 4-spaces whose inter-
section is a fixed hyperplane in V g is 1-dimensional. Let f be the morphism from �0 to
the variety of hyperplanes in V g sending U to U \ V g . The image of f is 2-dimensional
and we have shown that every fiber is 1-dimensional, whence dim�0 D 3 as required.

To complete the proof, let us assume g D .J 42 ; J1/. Let S D V g , so dim S D 5 and
the radical R D im.g � 1/ of S is 4-dimensional. Let �i be the set of spaces U in �g

with dim.U \ S/ D i . We claim that dim�i 6 6 for each i , with equality when i D 2.
Fix U in �g and observe that dim.U \ S/ > 2 since g is quadratic.
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If dim.U \ S/D 4, then U DR and thus dim�4 D 0. Next assume dim.U \ S/D 3.
Here U=.U \ S/ is a 1-dimensional totally singular subspace of the 3-dimensional non-
degenerate space .U \ S/?=.U \ S/. Now the variety of 1-dimensional totally singular
subspaces of a 3-dimensional orthogonal space has dimension 1 and we deduce that
dim�3 D 4 since the variety of hyperplanes in S is 3-dimensional. Finally, suppose
dim.U \ S/ D 2. Here U=.U \ S/ is a totally singular g-invariant subspace of the non-
degenerate 5-space .U \ S/?=.U \ S/. Since g acts nontrivially on this space, it must
correspond to a long root element in SO5.k/ (that is, it must have Jordan form .J 22 ; J1/

on this 5-space). We can identify the action of g on the variety of totally singular 2-
spaces in this orthogonal 5-space with the action of .J2; J 21 / on 1-dimensional subspaces
of the corresponding 4-dimensional symplectic space. It follows that the fixed space of g
on the variety of 2-dimensional totally singular subspaces of .U \ S/?=.U \ S/ is 2-
dimensional. Finally, since the variety of 2-dimensional totally singular subspaces of S is
4-dimensional, we conclude that dim�2 D 6. This justifies the claim and the proof of the
lemma is complete.

We are now ready to prove Theorem 7 for odd-dimensional orthogonal groups. Note
that if r D 2 and x1, x2 are quadratic, then d1 C d2 > n and so this case does not arise in
the following statement.

Theorem 4.10. Suppose G D SOn.k/, where nD 2mC 1,m > 1, and the xi in (9) have
prime order. If

P
i di 6 n.r � 1/, then � is empty if and only if one of the following

holds:

(i) r D 3, m D 2 and xi D .J 22 ; J1/ for all i .

(ii) r D 2, m > 2 is even, x1 D .Jm2 ; J1/ and x2 D .I1; �Im; �
�1Im/ for some � 2

k� n ¹˙1º, up to ordering.

Proof. First we show that � is empty in cases (i) and (ii). Suppose m D 2. Here we work
in the isogenous group Sp.W / D Sp4.k/, in which case x1 has Jordan form .J2; J

2
1 /

on W and thus any three conjugates of x1 fix a nonzero vector in W . This gives the
desired conclusion in (i). In (ii), we calculate that dimC1 D m

2 and dimC2 D m
2 Cm,

so dimX D dimG and thus Corollary 3.22 implies that G.x/ acts reducibly on V for all
x 2 X . In particular, � is empty.

To complete the proof of the theorem, it remains to show that � is nonempty in all
other cases. We proceed by induction on m, noting that SO3.k/ Š PSL2.k/ and so the
result holds for m D 1 by [16, Theorem 4.5].

Now assume m > 2. In view of Lemmas 3.32, 3.34 and 3.36, we see that the boundP
i di 6 n.r � 1/ implies that for generic x 2 X , G.x/ does not fix a 1-space (of any

type) nor a nondegenerate 2-space. The case m D 2 requires special attention.

Case 1: m D 2. For m D 2, we claim that it suffices to prove that G.x/ is generically
irreducible on V (recall that G.x/ is generically positive-dimensional by Lemma 3.31).
To justify the claim, first observe that the only proper positive-dimensional irreducible
subgroup of G is H D PSL2.k/, up to conjugacy, with p ¤ 3. So let us assume p ¤ 3
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and set Y D G=H . Let g 2 H be a nontrivial element. Since dim.gG \ H/ 6 2 and
dimgG > 6, it follows that dim Y g < .1=2/ dim Y (see (10)) and thus Lemma 3.14
implies that G.x/ is not generically contained in a conjugate of H . This justifies the
claim.

As noted above, G.x/ does not generically preserve a 1-dimensional subspace of V
nor a nondegenerate 2-space. Therefore, G.x/ is either generically irreducible (in which
case � is nonempty, as explained above), or every G.x/ fixes a totally singular 2-space.
The stabilizer of a totally singular 2-space in G corresponds to the stabilizer in Sp4.k/ of
a 1-dimensional subspace in the 4-dimensional symplectic module W . Therefore, we just
need to determine when the standard inequality

P
i d
0
i 6 4.r � 1/ holds, where d 0i is the

maximal dimension of an eigenspace of xi on W .
This clearly holds if r > 4. For r D 3, the inequality fails if and only if each xi is

a transvection on W , which gives the case recorded in part (i) of the theorem. Finally,
suppose r D 2 and the inequality does not hold. Then up to reordering, noting that
d1 C d2 6 5, we may assume x1 is a transvection on W and x2 is not regular (that
is, x2 has a 2-dimensional eigenspace on W ). If x2 is unipotent or an involution, then
d1 C d2 > 5, which is a contradiction. The remaining case is given in (ii).

Case 2: m > 3. Now assume m > 3. Let P D QL be the stabilizer in G of a totally
singular 1-space spanned by v 2 V , where Q is the unipotent radical and L is a Levi
subgroup. Choose gi 2 Ci \ P and let d 0i be the dimension of the largest eigenspace
of gi acting on the nondegenerate .n � 2/-dimensional space U D v?=hvi. We embed
each gi in P so that d 0i is as small as possible.

Case 2:1:
P
i d
0
i 6 .r � 1/.n � 2/. Suppose

P
i d
0
i 6 .r � 1/.n � 2/. To begin with, we

will assume we are not in one of the special cases recorded in parts (i) and (ii) (with respect
to the action of gi on U ). Then by induction, G.x/0 generically has a composition factor
on V of dimension at least n � 2. Since G.x/ does not generically fix a nondegenerate
2-space nor any 1-space, it follows that G.x/ is generically irreducible on V with rank
m � 1 or m. If m > 4, then Lemma 3.12 implies that there is no proper subgroup of G
with these properties, whence G.x/ D G for generic x 2 X .

Now assume m D 3. If G.x/ has rank 3 for any x (and so for generic x), then G.x/
is generically a rank 3 irreducible subgroup. By inspection, we see that there is no proper
subgroup of G with this property and thus � is nonempty. Therefore, we may assume
G.x/ has rank 2 for generic x 2 X . Recall that there exists x 2 X such thatQL0 6 G.x/.
This implies that f .G.x// is contained in the closure of f .L0/, where f WG ! M7.x/
is the morphism in (8), sending g 2 G to its characteristic polynomial on V , which is
contained in the variety M7.x/ of monic polynomials in kŒx� of degree 7. In particular,
this implies that G.x/ does not contain elements with distinct eigenvalues on V (since
the 1-eigenspace of any element in QL0 is at least 3-dimensional). Now the only con-
nected irreducible rank 2 subgroups of G are G2 and A2 (the latter occurring only for
p D 3). But the weight spaces on V for the maximal tori of these subgroups are all
1-dimensional, so they both contain regular semisimple elements and we have reached
a contradiction.
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To complete the argument in Case 2.1, we may assume that we are in one of the spe-
cial cases recorded in parts (i) and (ii) of the theorem (in terms of the action of gi on the
.n � 2/-space U ). In particular, r 6 3 and m is odd.

First assumemD 3. If xi is unipotent and not of the form .J 22 ; J
3
1 /, then xi has a Jor-

dan block of size at least 3 and clearly we may choose gi 2 Ci \ P so that it does not
have Jordan form .J 22 ; J1/ on U . It follows that if we are forced to be in one of the special
cases recorded in (i) and (ii) (with respect to the action on U ), then the original elements
xi 2 G must also be of the form given in one of these special cases (for the action on V ).
This is a contradiction.

Now assume m > 5. Here r D 2 and we may assume that x1 is unipotent and x2 D
.I1; �Im; �

�1Im/ is semisimple. The condition d1 C d2 6 n implies that d1 6mC 1 and
thus d1 6 m since m is odd. In particular, x1 must have a Jordan block of size at least 3
and as noted above we may choose g1 2 Ci \ P so that it does not have Jordan form
.Jm�12 ; J1/ on U . Once again, we have reached a contradiction.

Case 2:2:
P
i d
0
i > .r � 1/.n � 2/. For the remainder of the proof, we may assume thatP

d 0i > .r � 1/.n � 2/. Note that if xi is semisimple, then either d 0i D di � 2 or one of
the following holds:

(a) xi is an involution with di D mC 1 and d 0i D m;

(b) xi has odd order, di 6 m and d 0i D di � 1; or

(c) xi has odd order and di D d 0i 6 n=3.

Similarly, if xi is unipotent, then either d 0i D di � 2, or xi has at most one Jordan block
of size 1 and di D d 0i 6 mC ", where " D 1 if m is even, otherwise " D 0 (note that di
is always odd if xi is unipotent).

Next observe that if d 0i D di � 2 for all but at most one i , then
P
i d
0
i 6 .r � 1/.n� 2/,

which is a contradiction. Similarly, the above observations imply that if d 0i ¤ di � 2 for
three distinct i , say i D 1;2;3, then

P3
iD1d

0
i 6 2.2n� 1/ and thus

P
i d
0
i 6 .r � 1/.n� 2/.

Therefore, up to reordering the Ci , we may assume that d 0i D di � 2 if and only if i > 3.
Notice that if x1 and x2 are semisimple, then either d 0i D di � 1 or di D d 0i 6 n=3 for
i D 1; 2, which implies that

P
i d
0
i 6 .r � 1/.n � 2/. Therefore, we may assume x1 is

unipotent with d1 D d 01 6 mC ". In particular, d1 is odd.
First assume m > 3 is odd, so d1 6 m (since d1 is odd). Suppose x2 is unipotent.

If d2 < m, then d2 6 m � 2 and this is incompatible with the bound on
P
i d
0
i . On the

other hand, if d2 D m, then by passing to the closures of C1 and C2, we may assume that
x1 D x2 D .J3; J

m�1
2 /. Let us also observe that if x2 is semisimple, then d2 6 mC 1

and d1 D m (indeed, if d1 6 m� 2, then it is easy to check that
P
i d
0
i 6 .r � 1/.n� 2/).

Therefore, in both cases Lemma 4.8 implies that hy1; y2i is Zariski dense inG for generic
.y1; y2/ 2 C1 � C2 and the result follows.

To complete the proof, we may assume m > 4 is even and x1 is unipotent with
d1 D d

0
1 6 mC ". We partition the analysis into three subcases.

Case 2:2:1:m> 4 even, x2 is unipotent, r > 3. Here we assume r > 3 and x2 is unipotent,
so d1 C d2 D d 01 C d

0
2 > n � 2 and di 6 mC 1 for i D 1; 2. By passing to closures, we
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may assume that x1 D x2 D .Jm2 ; J1/. Note that for any class C3, we have
P3
iD1 di 6 2n

and so we may assume that r D 3. Since
P
i d
0
i > 2.n � 2/, it follows that d 03 > n � 4

and d3 D d 03 C 2 > n � 2, so x3 is one of the following:

.J3; J
n�3
1 /; .J 22 ; J

n�4
1 /; .�In�1; I1/:

First assume x3 is unipotent. Then by passing to closures once again, we may assume
that x3 D .J 22 ; J

n�4
1 /. By applying [16, Theorem 4.5], we see that there exists .y1; y2/ 2

C1 �C2 such that J D SL2.k/m=2 is the Zariski closure of hy1; y2i (as a kJ -module, V is
a direct sum of m 2-dimensional spaces and a copy of the trivial module). In particular,
there exists a conjugacy classD D zG � C1C2 of prime order semisimple elements such
that each eigenspace of z on V is at most 2-dimensional. If d 0 denotes the dimension of
the largest eigenspace of z onU , then d 0C d 03D n� 2. Therefore, if we setX 0DD �C3,
then our earlier work in Case 2.1 implies that G D G.y/ for generic y 2 X 0 and we con-
clude by applying Lemma 3.17.

To complete the analysis of Case 2.2.1, we may assume r D 3 and x3 D .�In�1; I1/
is a pseudoreflection. Fix .y1; y2/ 2 C1 � C2 such that the Zariski closure of hy1; y2i
is the subgroup J D SL2.k/m=2 described above. Note that J fixes only finitely many
nondegenerate subspaces of V and so there is a nonempty open subset of C3 such that no
element in this open set fixes a proper nondegenerate space fixed by J .

Next observe that the variety of 2-dimensional totally singular subspaces fixed by J is
1-dimensional. Let us also note that for y3 2C3, the variety of y3-invariant totally singular
2-spaces coincides with the variety of all 2-dimensional totally singular subspaces of the
.�1/-eigenspace of y3. The latter variety has codimension at least 2 in the variety of all
totally singular 2-dimensional subspaces of V . Therefore, we may choose y3 2 C3 so that
it does not preserve any J -invariant totally singular 2-space (nor any J -invariant proper
nondegenerate subspace). Given x D .y1; y2; y3/ 2 X with the above properties, we see
that G.x/ is either irreducible, or it must preserve a totally singular subspace. But y3
preserves such a space if and only if it is contained in its .�1/-eigenspace. So if G.x/
fixes a totally singular spaceW , then any J -invariant subspace ofW is G.x/-invariant as
well. Since every irreducible kJ -submodule of V is 2-dimensional (or trivial), this would
imply that G.x/ fixes a totally singular 2-space, contrary to the choice of y3. Thus for
generic y3 2 C3, G.x/ is irreducible.

Finally, we claim thatG.x/ acts primitively on V (for x D .y1; y2; y3/ 2X as above).
Suppose G.x/ is imprimitive, so it preserves a decomposition V D V1 ˚ � � � ˚ Vt , where
t > 3 is odd andG.x/ acts transitively on the set of summands (sinceG.x/ is irreducible).
Since J < G.x/ is connected, it must fix each summand in this decomposition. But
then hy3i must act transitively on the summands, which is a contradiction since t > 3

and y3 is an involution. Therefore, G.x/ is a primitive irreducible group containing pseu-
doreflections and it is well known that this implies that G.x/D G (see [22, Theorem 8.3]
for a much more general result).

Case 2:2:2: m > 4 even, x2 is unipotent, r D 2. Now assume r D 2 and x2 is unipotent,
so di D d 0i 6 m C 1 is odd and we have 2m 6 d1 C d2 6 2m C 1. Up to reordering,
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we may assume that d1 D m C 1 and d2 D m � 1. Then by passing to closures, we
may assume that x1 D .Jm2 ; J1/ and x2 D .J 33 ; J

m�4
2 /. Let P D QL be the stabilizer

in G of a totally singular m-space W , where Q is the unipotent radical and L is a Levi
subgroup.

First assume that m D 4. Here we can choose y1 2 C1 so that it has Jordan form
.J3; J1/ on W . By Theorem 4, there exists x 2 X so that G.x/ D G.x/0 acts as SL4.k/
on W and acts uniserially on V . For generic x 2 X it follows that G.x/ has rank at
least 3, the smallest nonzero G.x/-invariant subspace is at least 4-dimensional and G.x/
is generically primitive. Since x2 does not preserve a 4-dimensional nondegenerate space,
we see thatG.x/ is either generically irreducible and primitive, or it generically preserves
a totally singular 4-space. Let � be the homogeneous variety of totally singular 4-spaces.
By Lemma 4.9, we have dim�x1 D 3 and dim�x2 D 6. Therefore, dim�x1 C dim�x2 <

dim� D 10 and so for generic x, G.x/ does not preserve a totally singular 4-space.
In view of Lemma 3.12, we conclude that � is nonempty.

Now assume m > 6. We can choose y 2 X such that G.y/ D QL0 (here we are
using Theorem 4, working with elements in C1 and C2 that stabilize a totally singular
m-space). Note that EndQL0.V / D k and so for generic x 2 X , dim EndG.x/0.V / D 1

and thus V is an indecomposable kG.x/0-module. By induction, we can choose x 2 X
so that G.x/ D SL2.k/ � SOn�4.k/, which is the derived subgroup of a Levi subgroup
of the stabilizer of a totally singular 2-space. Therefore, for generic x 2 X we observe
that the smallest nonzero G.x/0-invariant subspace has dimension at least m, and G.x/0

also has a composition factor of dimension at least n � 4. This forces G.x/0 to be gener-
ically irreducible of rank at least m � 1 and then Lemma 3.12 implies that G.x/ D G for
generic x.

Case 2:2:3: m > 4 even, x2 is semisimple. Finally, to complete the proof of the the-
orem we may assume m > 4 is even and x2 is semisimple. Recall that x1 is unipo-
tent with d1 D d 01 and we may assume that either d 02 D d2 � 1, or m D 4 and d2 D
d 02 D 3. The condition

P
i d
0
i > .r � 1/.n � 2/ implies that d 01 C d

0
2 > 2m, so x1 D

.Jm2 ; J1/ and either x2 D .I1; �Im; ��1Im/, or x2 D .�Im; ImC1/, or m D 4 and d2 D
d 02 D 3.

First assume x2 D .I1; �Im; ��1Im/, so d 01 C d
0
2 D 2m. If r > 3, then

rX
iD1

d 0i 6 2mC .r � 2/.n � 3/ 6 .r � 1/.n � 2/;

which is incompatible with the defining condition of Case 2.2. On the other hand, if r D 2,
then we are in the special case identified in part (ii) of the theorem.

Next assume x2 D .�Im; ImC1/. Here d1 D d 01 D d2 D m C 1 and d 02 D m, so
the condition

P
i di 6 n.r � 1/ implies that r > 3. In addition, the inequality

P
d 0i >

.r � 1/.n � 2/ implies that r D 3 and x3 D .�I2m; I1/. As in Case 2.2.1, we can choose
yi 2 Ci , i D 1; 2 such that J D SL2.k/m=2 is the Zariski closure of hy1; y2i. Then by
repeating the argument in Case 2.2.1, we can find y3 2 C3 such that G.x/ D G for
x D .y1; y2; y3/ 2 X .
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Finally, let us assumemD 4 and d2 D d 02 D 3. First observe that we can choose a 2X
such that G.a/ contains L0 D SL4.k/, where L is a Levi subgroup of the stabilizer in G
of a totally singular 4-space. In particular, the rank of G.x/ is generically at least 3 and
as above it suffices to show that G.x/ is generically irreducible on V .

Since G.a/ does not preserve any 2-dimensional or 3-dimensional spaces, and G.x/
does not generically fix a totally singular 4-space by Lemma 4.9, it follows that if G.x/ is
not generically irreducible, then G.x/ must preserve a nondegenerate 5-space for generic
x 2 X . On such a 5-space, an element of C2 either has a 3-dimensional 1-eigenspace,
or two 2-dimensional eigenspaces. In the first case, we see that G.x/ fixes a 1-space,
while G.x/ fixes a 2-space in the latter (this is the exception for m D 2). As noted above,
neither possibility can occur, so G.x/ does not generically fix a nondegenerate 5-space
and the proof of the theorem is complete.

5. Proof of Theorem 7: Symplectic groups

In this section, we complete the proof of Theorem 7 by handling the symplectic groups
G D Sp.V / D Spn.k/, where n D 2m with m > 2 and k is an uncountable algebraically
closed field of characteristic p > 0. We continue to define X as in (9), where each xi has
prime order modulo Z.G/. We consider separately the cases where p ¤ 2 and p D 2.

5.1. Odd characteristic

In this section, we assume p ¤ 2, so Z D Z.G/ D h�Ini. We begin by considering the
special case m D 2.

Theorem 5.1. Suppose m D 2 and p ¤ 2. If
P
i di 6 4.r � 1/, then � is empty if and

only if one of the following holds (up to ordering and conjugacy):

(i) r D 2 and x1, x2 are quadratic.

(ii) r D 2, x1 D .�I2; I2/ and x2 is nonregular.

(iii) r D 3, x1 D x2 D .�I2; I2/ and x3 is quadratic.

(iv) r D 4 and xi D .�I2; I2/ for all i .

Proof. First assume that we are in one of the cases labeled (i)–(iv). If

y D .y1; : : : ; yr / 2 X;

then in each case it is easy to check that the yi preserve a common 1-dimensional sub-
space of the 5-dimensional orthogonal module kG-module W . In particular, � is empty.
To complete the proof, we need to show that � is nonempty in all the remaining cases.

This essentially follows from the corresponding result for Spin5.k/ in Theorem 4.10.
For each g 2 G, let ˛.g/ (resp. ˇ.g/) be the dimension of the largest eigenspace of g
on V (resp. W ). Since W ˚ k Š

V2
.V /, we have the following relationship between ˛

and ˇ (here � 2 k� is a scalar with �2 ¤ 1):
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(a) If g D .�I2; I2/, then ˛.g/ D 2 and ˇ.g/ D 4.

(b) If g is semisimple, ˛.g/D 2 and g is not an involution, then either g D .�I2; ��1I2/
and ˇ.g/ D 3, or g D .I2; �I1; ��1I1/ and ˇ.g/ D 2.

(c) If g is regular, then ˛.g/ D ˇ.g/ D 1.

(d) If g D .J2; J 21 / is a long root element, then ˛.g/ D ˇ.g/ D 3.

(e) If g D .J 22 / is a short root element, then ˛.g/ D 2 and ˇ.g/ D 3.

So by applying Theorem 4.10, we deduce that if r > 4, then � is nonempty unless
r D 4 and each xi is an involution acting as .�I4; I1/ onW . This corresponds to the case
recorded in part (iv). Similarly, the exceptional cases for r D 2; 3 are easily determined
from the above information in (a)–(e).

Remark 5.2. The previous result implies that if G D Sp4.k/ and p ¤ 2, then � is
nonempty if and only if there exists x 2 X such that G.x/0 is irreducible on both the
symplectic and orthogonal kG-modules.

For the remainder of Section 5.1, we may assume that m > 3. It turns out that the
cases m 2 ¹3; 4º also require special attention. In particular, we will need the following
technical lemma on fixed point spaces for certain actions ofG D Sp6.k/. Recall that ˛.g/
denotes the dimension of the largest eigenspace of g 2 G on the natural module V .

Lemma 5.3. Suppose m D 3, p ¤ 2 and let P D QL be the stabilizer in G of a totally
isotropic 3-space, whereQ is the unipotent radical and L is a Levi factor. Set X1 D G=P
and X2 D G=N , where N D NG.L/D L:2, so dimX1 D 6 and dimX2 D 12. Let g 2 G
be an element of prime order modulo Z.G/.

(i) If g D .�I2; I4/, then dimX
g
1 D 4 and dimX

g
2 D 8.

(ii) If g D .J2; J 41 / or .J 32 /, then dimX
g
1 D 3 and g has no fixed points on X2.

(iii) If g D .J 22 ; J
2
1 / or g D .I4; �I1; ��1I1/ for some � 2 k� n ¹˙1º, then dimXg1 D 3

and dimX
g
2 D 6.

(iv) If gD .�I3;��1I3/ for some �2 k� n ¹˙1º, then dimXg1 D 2 and dimXg2 D 4C ",
where " D 2 if �2 D �1, otherwise " D 0.

(v) If g D .J 23 /, then dimX
g
1 D 2 and dimX

g
2 D 4.

(vi) If g is semisimple of odd order and ˛.g/6 2, then dimXg1 6 2 and dimXg2 D 1C ",
where " D 3 if 1 is an eigenvalue, otherwise " D 0.

Proof. This is a straightforward computation using (10), which states that if Y D G=H is
a homogeneous space, then

dimY � dimY g D dimgG � dim.gG \H/

for all g 2 H . We omit the calculations. Note that if g 2 N , then either g 2 L, or g2 is
the central involution in G.

We can now prove the main result for G D Sp6.k/ with p ¤ 2 (note that the elements
in parts (ii) and (iii) are described up to conjugacy and multiplication by �1).
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Theorem 5.4. Suppose m D 3, p ¤ 2 and the xi in (9) have prime order modulo Z.G/.
If
P
i di 6 6.r � 1/, then � is empty if and only if one of the following holds (up to

ordering):

(i) r D 2 and x1, x2 are quadratic.

(ii) r D 2, x1 D .�I2; I4/ and x2 D .J 23 / or .I2; �I2; ��1I2/ for some � 2 k� n ¹˙1º.

(iii) r D 3 and xi D .�I2; I4/ for all i .

Proof. First we show that � is empty in the cases described in parts (i)–(iii). This is
clear in (i) (see Lemma 3.13). In cases (ii) and (iii), we claim that G.x/ generically fixes
a totally isotropic 3-space (and so every G.x/ fixes a totally isotropic 3-space).

To see this, let Y be an irreducible component of X \ Lr of maximal dimension,
where L is a Levi subgroup of the stabilizer of a totally singular 3-space. By applying
Theorem 4, we deduce that G.y/ contains L0 D SL3.k/ for generic y 2 Y . Next consider
the map f WG � Y ! X given by f .g; y/ D yg , where yg D .y

g
1 ; : : : ; y

g
r / for y D

.y1; : : : ; yr /. Then for generic y 2 Y , we have f �1.y/ D ¹.g; y/ W g 2 Lº since G.y/
contains SL3.k/. It follows that a generic fiber of f is 9-dimensional and thus Lemma 5.3
implies that f is dominant and thus XL is open and dense in X . The claim follows.

It remains to show that � is nonempty in the remaining cases. The following claim
will play a key role in the proof.

Claim. The set � is nonempty if G.x/ is generically primitive on V .

To prove the claim, let us assume G.x/ is generically primitive and note that this is
equivalent to assuming thatG.x/0 is generically irreducible on V . Now the only maximal
primitive positive-dimensional closed connected subgroups of G are A1A1 D SO3.k/˝
Sp2.k/ and A1 (with p ¤ 3; 5 in the latter case). Let H D A1A1 and set � D G=H ,
so dim� D 15. Then dim.Ci \H/ 6 4, with dim.Ci \H/ D 2 if xi is an involution.
In addition, we note that Ci \H is empty if xi D .J2; J 41 / and by applying (10) we con-
clude that dim�g 6 7 for all noncentral g 2G. Therefore, Lemma 3.14 implies thatG.x/
is not generically contained in a conjugate ofH . An even easier argument handles the case
H D A1 since dim.Ci \H/ 6 2 for all i . This justifies the claim.

We now partition the remainder of the proof into several cases.

Case 1: x1 is either semisimple with at least 4 distinct eigenvalues, or unipotent with
Jordan form .J6/, .J4; J2/ or .J4; J 21 /. Let P D QL be the stabilizer of a 1-space hvi,
where Q is the unipotent radical and L is a Levi subgroup with L0 D Sp4.k/. We may
assume each xi is contained in P , and by applying Theorem 5.1 we see that there exists
y 2 X such that G.y/ is contained in P and it induces Sp4.k/ on the nondegenerate
4-space v?=hvi. By Lemma 3.5, G.x/0 has a composition factor on V of dimension at
least 4 for generic x 2 X . Now the bound

P
i di 6 6.r � 1/ implies that G.x/ does not

generically fix a 1-space nor a nondegenerate 2-space (see Lemmas 3.32 and 3.36) and
thus G.x/ is generically irreducible and has rank 2 or 3. Since G.x/0 generically has
a composition factor of dimension at least 4, it follows that G.x/ is generically primitive
and this implies that � is nonempty by the above claim.
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Case 2: x1 D .J 23 / or .I2; �I2; ��1I2/ for some � 2 k� n ¹˙1º. Let P D QL be the
stabilizer of a totally isotropic 3-space W in V . Here Q is the unipotent radical and
L D GL.W / is a Levi subgroup fixing a decomposition V D W ˚ W 0, where W 0 is
a complementary totally isotropic 3-space. Without loss of generality, we may assume x1
is a regular semisimple or unipotent element of L.

Suppose x2 ¤ .J2; J 41 /. Then by replacing x2 by a suitable conjugate, we may assume
that x2 2 P and x2Q 2 P=Q is nontrivial, so by Theorem 4 there exists x 2 X such that
P 0 6 G.x/0Q. As a consequence, for generic x 2 X , the smallest composition factor
of G.x/0 on V is at least 3-dimensional. Therefore, either

(a) G.x/0 is generically irreducible on V ; or

(b) G.x/0 is contained in a conjugate of P for all x 2 X .

Now assume x2 D .J2; J 41 /, in which case the inequality
P
i di 6 6.r � 1/ implies that

r > 3. If x3 ¤ .J2; J 41 /, then the previous argument implies that (a) or (b) holds. On the
other hand, if x3 D .J2; J 41 /, then we can find a noncentral element y 2 C2C3 of prime
order with y ¤ .J2; J 41 / and once again we deduce that (a) or (b) holds.

Recall that if (a) holds, then G.x/ is generically primitive and we conclude that �
is nonempty. Therefore, it remains to eliminate case (b). That is, we need to identify an
element x 2 X such that G.x/0 does not fix a totally isotropic 3-space.

Suppose x2 is not an involution. For i D 1; 2, we can choose yi in the closure of Ci
such that the closure of hy1; y2i induces Sp2.k/ on some nondegenerate 2-space (note
that if x1 is unipotent, then we may assume y1 acts nontrivially on a nondegenerate 2-
space). If we now take a tuple x 2 X with y1 and y2 in the first and second coordinates,
then G.x/0 does not fix a totally isotropic 3-space and we conclude that � is nonempty.

Finally, let us assume each xi is an involution for i > 2. If r > 3, then we can repeat
the previous argument, working with a noncentral element y 2 C2C3 with y2 ¤ 1. And
if r D 2, then we are in case (ii) in the statement of the theorem.

To complete the proof of the theorem, we may assume di > 3 for all i .

Case 3: di > 3 for all i . First assume that d1 D d2 D 3. Then x1 and x2 are quadratic,
so we may assume r > 3. We can choose yi 2 Ci so that the Zariski closure of hy1; y2i
contains SL2.k/3 and so contains a regular semisimple element of prime order. By apply-
ing Lemma 3.17, we can now complete the argument as in Case 1.

Next assume d1 D 3 and di > 4 for all i > 2, in which case the condition
P
i di 6

6.r � 1/ implies that r > 3. Note that if i > 2, then xi is either an involution, or a unipo-
tent element with Jordan form .J 22 ; J

2
1 / or .J2; J 41 /, or a semisimple element of the form

.I4; �I1; �
�1I1/ for some � 2 k� n ¹˙1º. In each case we can find conjugates yi 2 Ci

for i > 2 that act nontrivially on a nondegenerate 4-space W and trivially on the nonde-
generate 2-space W ?. In addition, we can choose a conjugate y1 of x1 so that its largest
eigenspace on W is 2-dimensional.

Suppose r > 4. Since x1 is not an involution, Theorem 5.1 implies that we can
choose y 2 X such that G.y/ induces Sp.W / on W . Then G.x/0 is either generically
irreducible on V , or generically it acts irreducibly on a 4-dimensional nondegenerate
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subspace, whence the same is true for G.x/. Since G.x/ does not generically preserve
a 1-space nor a nondegenerate 2-space, we deduce that G.x/ is generically primitive and
the result follows. If r D 3, then the same argument applies unless x2 and x3 are involu-
tions. But in this case we observe that C2C3 contains a semisimple element of the form
.I2; �I2; �

�1I2/ and thus Case 2 applies.
Finally, let us assume di > 4 for all i . First assume that r D 3, in which case the

bound
P
i di 6 6.r � 1/ implies that di D 4 for all i . If each xi is an involution, then we

are in case (iii), so let us assume x1 is not an involution. We can choose y so that G.y/0

induces a subgroup containing SL3.k/ on a totally isotropic 3-space. Then eitherG.x/0 is
generically irreducible and the result follows, or every G.x/0 preserves a totally isotropic
3-space. Let us assume we are in the latter situation and let � be the variety of totally
isotropic 3-spaces, so dim� D 6. Since di > 4, it follows that no xi interchanges two
spaces in � and thus every G.x/ has a fixed point on �. However, Lemma 5.3 gives
dim�xi 6 4, with equality if and only if xi is an involution, whence

P
i dim�xi <

.r � 1/dim� and Lemma 3.14 implies thatG.x/ does not generically fix a totally isotrop-
ic 3-space. This is a contradiction. An entirely similar argument applies if r > 4 (including
the case where r D 4 and each xi is an involution).

In order to handle the general case, we need the following result concerning the action
of a symplectic group on the variety of maximal totally isotropic subspaces of the natural
module. Here we allow p D 2.

Lemma 5.5. SupposeGD Sp.V /D Spn.k/, where nD 2m,m> 1. Let Y DG=P , where
P D QL is the stabilizer of a totally isotropic m-space W , with unipotent radical Q and
Levi subgroup L D GL.W /. Then

dimY g D dimCQ.g/ D dim S2.W /g

for all unipotent elements g 2 L.

Proof. First observe that we may identify Q with the kL-module S2.W /, so the equality
dimCQ.g/ D dim S2.W /g is clear. We proceed by induction on m, noting that the case
m D 1 is trivial. Now assume m > 2 and observe that dimY g > dimCQ.g/ since Q acts
simply transitively on the set of totally isotropic complements to W in V .

Let U be a 1-dimensional g-invariant subspace ofW and let Y.U / be the set of spaces
in Y containing U . Then U?=U is a nondegenerate .n � 2/-space and we may view g

as an element in a Levi subgroup of the corresponding parabolic subgroup P1 D Q1L1
of Sp.U?=U / (namely, the stabilizer of the maximal totally isotropic spaceW=U ). Then
there exists a positive integer ` such that g D J` ˚M as an element of L D GL.W / and
g D J`�1 ˚M as an element of L1 D GL.W=U /. By induction, the dimension of the
fixed space of g acting on Y.U / is dimCQ1

.g/, which coincides with the dimension of
the fixed space of g acting on S2.W=U /.

By applying Lemma 3.27, it follows that if ` is odd and p ¤ 2, then

dimCQ.g/ � dimCQ1
.g/ D

1

2
.`C 1/ �

1

2
.` � 1/C c D c C 1;
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where c is the number of Jordan blocks of g on M that have size at least `. Similarly,
if ` is even and p ¤ 2, then the same argument shows that the difference in centralizer
dimensions is c. If p D 2, then Lemma 3.27 still implies that the difference in centralizer
dimensions is at least c.

Now if the action of g onW has the form as above, then U is contained inW .g�1/`�1

and the variety of such 1-spaces (in the projective space of W ) has dimension c � 1.
Therefore, the dimension of the fixed space of g on Y 0, the variety of totally isotropic
subspaces which intersectW nontrivially, is at most dimCQ.g/ and the result follows.

We also need some fixed point space computations for G D Sp8.k/. Recall that ˛.g/
is the maximal dimension of an eigenspace of g on the natural module V .

Lemma 5.6. Suppose m D 4, p ¤ 2 and � is the variety of totally isotropic 4-spaces
in V , so dim� D 10. Then

dim�g D

8̂̂̂̂
<̂
ˆ̂̂:
7 if g D .�I2; I6/,

6 if g D .�I4; I4/,

4 if g D .J 23 ; J
2
1 /,

3 if g D .J 23 ; J2/.

Proof. This is clear if g is an involution since any totally isotropic 4-space fixed by g is
of the form U1 ? U�1, where U� is a totally isotropic subspace of the nondegenerate �-
eigenspace of g on V . Now assume gD .J 23 ;J2/ or .J 23 ;J

2
1 /. By replacing g by a suitable

conjugate, we may assume g is contained in the stabilizer P D QL of a totally isotropic
4-space W , where Q is the unipotent radical of P and L is a Levi subgroup. If g D
.J 23 ; J

2
1 /, then we may assume g is contained in L and thus Lemma 5.5 implies that

dim�g D dimCQ.g/ D 4.
Finally, let us assume g D .J 23 ; J2/. Without loss of generality, we may assume that g

has Jordan form .J3; J1/ onW . Since g does not fix any totally isotropic 4-spaceW 0 with
W \W 0 D 0, it follows that .W \W 0/g contains a 1-space hvi for all W 0 2 �g .

Let U D W g \ Œg; W � and note that dimU D 1. Then �g D �1 [�2 is the union
of two subvarieties:�1 comprises the totally isotropic 4-spacesW 0 with U �W 0 and�2
consists of the spaces W 0 such that U \W 0 D 0. It suffices to show that dim�1 6 3 and
dim�2 D 3.

Suppose W 0 2 �2. Then W 0=hvi is a totally isotropic 3-space in the nondegener-
ate 6-space v?=hvi and g induces a Jordan block of size 3 on W=hvi. By Lemma 5.5,
a unipotent element in Sp6.k/ of the form .J 23 / has a 2-dimensional fixed point space
on the variety of totally isotropic 3-spaces of the natural module for Sp6.k/. The map
W 0 7! W 0 \W g defines a morphism from �2 to the variety of 1-dimensional subspaces
of W g . Since dimW g D 2, the latter variety is 1-dimensional and we conclude that
dim�2 D 3.

Now assume W 0 2 �1. Then W 0=U is a 3-dimensional totally isotropic subspace
of U?=U . Note that g acts onW=U with two Jordan blocks and there exists an element h
in the closure of gP that is contained in a corresponding Levi subgroup of Sp6.k/. Then by
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Lemma 5.5, h has a 3-dimensional fixed space on the variety of totally isotropic 3-spaces
in U?=U and so the same is true for g. This gives dim�1 6 3 and thus dim�g D 3 as
required.

We are now in a position to establish our main result for symplectic groups with
p ¤ 2. We will apply induction on m, noting that special care is required for m D 4.
In the statement, we allow � D � in part (ii).

Theorem 5.7. SupposeG D Spn.k/, where nD 2m,m> 4, p ¤ 2 and the xi in (9) have
prime order modulo Z.G/. If

P
i di 6 n.r � 1/, then � is empty if and only if one of the

following holds (up to ordering):

(i) r D 2 and x1, x2 are quadratic.

(ii) r D 2, m D 4, x1 D .�I4; I4/ and x2 is either .I4; �I1; ��1I1; �I1; ��1I1/ or
.J 23 ; J

2
1 /, with �;� 2 k� n ¹˙1º.

(iii) r D 3, m D 4, x1 D x2 D .�I2; I6/ and x3 D .�I4; I4/.

Proof. As usual, first observe that � is empty if the conditions in (i), (ii) or (iii) are
satisfied. This is clear in (i). Now consider (ii) and (iii), so m D 4. Let L D GL4.k/ be
the stabilizer in G of a pair of complementary totally isotropic 4-spaces. By applying
Theorem 4, there exists y 2 X such that L0 D SL4.k/ 6 G.y/ 6 L. For each i , letDi be
an L-class in Ci \L of maximal dimension and set Y DD1 � � � � �Dr . Then for generic
y 2 Y , G.y/ is contained in a unique conjugate of L. It is straightforward to compute
dimX D

P
i dimCi and dimY D

P
i dimDi , which gives

dimG C dimY D dimX C dimL:

Consider the morphism f WG � Y ! X defined by f .g; y/ D yg . Fix y 2 Y such that
G.y/ is contained in a unique conjugate of L and consider the fiber f �1.y/. Since G.y/
has a unique fixed point on G=L, this implies that g 2 NG.L/ D L:2 for all .g; z/ 2
f �1.y/, so a generic fiber of f has dimension at most dimL. It follows that f is dominant
(and the dimension of a generic fiber is precisely dimL) and thus G.x/ is conjugate to
a subgroup of L for generic x 2 X . We conclude that � is empty if (ii) or (iii) holds.

To complete the proof, we will use induction on m to prove that � is nonempty in all
the remaining cases.

Let P DQL be the stabilizer in G of a 1-dimensional subspace hvi of V , whereQ is
the unipotent radical andL is a Levi subgroup. LetW be the nondegenerate .n� 2/-space
v?=hvi. We may assume that each xi is contained in P and we write gi 2 Sp.W / for the
induced action of xi on W (note that gi is quadratic on W only if xi is quadratic on V ).
We define d 0i to be the dimension of the largest eigenspace of gi onW and we assume the
embedding of xi in P is chosen to minimize d 0i . Notice that one of the following holds:

(a) d 0i D di � 2.

(b) d 0i D di � 1 and di 6 n=2.

(c) d 0i D di and di 6 n=3.
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We claim that
P
i d
0
i 6 .n � 2/.r � 1/. Let ` be the number of i with d 0i D di � 2.

If ` 6 1, then

rX
iD1

d 0i 6
rX
iD1

di � 2.r � 1/ 6 n.r � 1/ � 2.r � 1/ D .n � 2/.r � 1/

as required. Similarly, if ` > 2, then

rX
iD1

d 0i 6 .r � 2/.n � 3/C 2
�n
2
� 1

�
6 .n � 2/.r � 1/:

This justifies the claim. Then by induction, excluding the cases where m 2 ¹4; 5º and
the gi line up with one of the special cases for Sp2.m�1/.k/ in the statement of the the-
orem (for m D 5) or Theorem 5.4 (for m D 4), it follows that G.x/0 generically has
a composition factor on V of dimension at least n � 2 and has rank m � 1 or m.

Suppose that either m > 6, or m 2 ¹4; 5º and the gi do not correspond to one of the
special cases for Sp2.m�1/.k/. By Lemmas 3.32 and 3.36, the condition

P
i di 6 n.r � 1/

implies that G.x/ does not fix a 1-space nor a nondegenerate 2-space, whence G.x/0 is
generically irreducible on V (with rank m � 1 or m, as noted above). For m > 5, we find
that there is no proper closed connected subgroup of G with these properties and thus �
is nonempty. Now assume m D 4. Here G has an irreducible subgroup of rank 3 with
connected component

H D A31 D Sp2.k/˝ Sp2.k/˝ Sp2.k/:

By considering the characteristic polynomials on V of elements in Sp.W / D Sp6.k/
(every such polynomial has 1 as a double root) and applying Theorem 2.11 (ii), we deduce
that G.x/0 is not generically conjugate to H and the result follows.

To complete the proof, we may assumem 2 ¹4; 5º and the gi correspond to one of the
special cases for Sp2.m�1/.k/. Recall that we are assuming (i) does not hold, so we never
descend to the case where r D 2 and g1, g2 are quadratic on W .

First assumemD 4, r D 3 and we descend to the special case described in part (iii) of
Theorem 5.4. Here each xi is an involution in G D Sp8.k/ and the condition

P
i di 6 16

implies that we may assume d1 D 4. Suppose d2 D 4. Here we can find a semisimple
element h 2 C1C2 of prime order with four distinct 2-dimensional eigenspaces on V and
thus Y D hG � xG3 does not descend to a special case for Sp6.k/. Then by the previous
argument, it follows that � is nonempty if d2 D 4 (and similarly if d3 D 4). Therefore,
we may assume d2 D d3 D 6, which corresponds to the special case described in part (iii)
of the theorem (up to reordering).

Next assume m D 4, r D 2 and we descend to one of the possibilities in part (ii) of
Theorem 5.4. Since we are assuming (iii) does not hold (in the statement of the theo-
rem we are proving), it follows that neither g1 nor g2 is of the form .I2; �I2; �

�1I2/.
The remaining possibility is that we descend to the case where g1 D .�I2; I4/ and
g2 D .J

2
3 /, up to scalars and ordering. Since we are assuming (ii) does not hold, it follows
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that x2 D .J 23 ; J2/. Then by applying Theorem 4 with respect to a Levi subgroup of the
stabilizer in G of a totally isotropic 4-space, we deduce that G.y/ contains the derived
subgroup of this parabolic subgroup for some y 2 X (and in particular, G.x/ has rank 3
or 4 for generic x 2 X ). Since the centralizer of G.y/0 in End.V / is 1-dimensional, it
follows that either G.x/0 is generically irreducible on V , or every G.x/ fixes a totally
isotropic 4-space. The latter possibility does not arise since

dim�x1 C dim�x2 6 6C 3 < dim� D 10;

where� is the variety of 4-dimensional totally isotropic subspaces of V (see Lemma 5.6).
Therefore, G.x/0 is generically irreducible on V and we claim that this forces � to be
nonempty.

To justify the claim, let T be a maximal torus of L0 D SL4.k/, where L is a Levi
subgroup of the stabilizer in G of a totally isotropic 4-space W . Then

Lie.G/ Š gl4.k/˚ S2.W /˚ S2.W �/;

and thus the nonzero weight spaces for T on the adjoint module Lie.G/ are all 1-di-
mensional. Therefore, T contains strongly regular elements with respect to the adjoint
module and so G.x/0 generically contains strongly regular elements. As a consequence,
either G.x/D G for generic x, or G.x/0 is contained in a proper maximal rank subgroup
that acts irreducibly on the natural module for G. But there are no such subgroups and so
we conclude that � is nonempty.

Finally, let us assume m D 5 and we descend to one of the special cases for Sp8.k/
in the statement of the theorem, so r 6 3. If r D 3, then each xi is an involution and the
condition

P
i di 6 20 implies that at least two of the xi are of the form .�I6; I4/ up to

scalars. But these elements descend to involutions in Sp8.k/ of the form .�I4; I4/, which
is not a special case. Now suppose r D 2. Here we may assume x1 D .�I6; I4/, so d2 6 4

and thus d 02 6 3. But once again this does not correspond to a special case for Sp8.k/ and
the proof of the theorem is complete.

5.2. Even characteristic

In this section, we complete the proof of Theorem 7 by handling the symplectic groups

G D Spn.k/ with n D 2m > 4 and p D 2:

With reference to (9), recall that di denotes the maximal dimension of an eigenspace of xi
on V . In this section, we also define

ei D dimV xi 6 di for i D 1; : : : ; r:

Note that ei D di if xi is unipotent. As explained in Lemma 3.38, we know that � is
empty if

P
i ei > n.r � 1/. Also note that Z.G/ D 1 since p D 2.

We begin by considering the case m D 2, which requires special attention. Here G D
Sp4.k/ has two 4-dimensional restricted irreducible kG-modules, namely Vj D L.!j /
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for j D 1; 2, which are interchanged by a graph automorphism � . Note that � does not
preserve eigenspace dimensions in general. For example, � interchanges long and short
root elements, so if x has Jordan form .J2; J

2
1 / on L.!1/, then it has Jordan form .J 22 /

on L.!2/ (that is, � fuses the G-classes containing b1 and a2 involutions, with respect
to the notation in [1]). On the other hand, the dimension of the largest eigenspace of
a semisimple element is invariant under � , but the set of eigenvalues is not preserved in
general. For example, � takes a quadratic semisimple element of the form .�I2; �

�1I2/

to one of the form .I2; �I1; �
�1I1/, and vice versa.

For j D 1;2, set eij D dimV xi

j and let dij be the maximal dimension of an eigenspace
of xi on Vj .

Theorem 5.8. Suppose m D p D 2 and the xi in (9) have prime order. If
P
i dij 6

4.r � 1/ and
P
i eij < 4.r � 1/ for j D 1; 2, then � is nonempty.

Proof. First observe that if r D 2 and x1 and x2 are both quadratic on V1, then e12 C
e22 > 4, which violates the hypothesis. Therefore, this situation does not arise.

More generally (for all r > 2), we observe that G.x/ does not generically preserve
a 1-dimensional subspace of V1 or V2. And since a graph automorphism interchanges
the two conjugacy classes of maximal parabolic subgroups, as well as the modules V1
and V2, we see that G.x/ does not generically fix a totally isotropic 2-space in either
representation. Furthermore, Lemma 3.36 implies that G.x/ does not generically pre-
serve a nondegenerate 2-space and thus G.x/ is generically irreducible on both mod-
ules.

The maximal imprimitive subgroups of G with respect to V1 are of the form
Sp2.k/ o S2 and GL2.k/:2, corresponding to the stabilizers in G of a suitable direct sum
decomposition of V1 into two nondegenerate 2-spaces and two totally isotropic 2-spaces,
respectively. Under the graph automorphism, the first subgroup is sent to O4.k/ and the
second is mapped to a reducible subgroup. The inequality

P
i ei < 4.r � 1/ implies that

G.x/ is not generically contained in a conjugate of O4.k/ (see Lemma 3.38) and we have
already noted that G.x/ is generically irreducible on V1 and V2. This implies that G.x/
is generically primitive with respect to both modules and we conclude that G.x/ D G for
generic x.

We note some immediate consequences. Recall that short root elements are involu-
tions of type a2 in the notation of [1].

Corollary 5.9. Suppose m D p D 2 and the xi in (9) have prime order. Then � is
nonempty if any of the following hold:

(i) xi is a regular semisimple element for some i .

(ii) r > 3 and none of the xi are long or short root elements.

(iii) r > 5.

By combining the previous two statements, we can present a result for G D Sp4.k/ in
terms of the natural symplectic module (as in Theorem 7).
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Theorem 5.10. Suppose m D p D 2 and the xi in (9) have prime order. If
P
i di 6

4.r � 1/ and
P
i ei < 4.r � 1/ with respect to the 4-dimensional symplectic module,

then � is empty if and only if one of the following holds (up to ordering):

(i) r D 2 and x1, x2 are quadratic.

(ii) r D 3, x1, x2 are short root elements and x3 is quadratic.

(iii) r D 4 and each xi is a short root element.

Next we turn to the case G D Sp6.k/, which also requires special attention.

Theorem 5.11. Suppose m D 3, p D 2 and the xi in (9) have prime order. If
P
i di 6

6.r � 1/ and
P
i ei < 6.r � 1/, then � is empty if and only if r D 2 and x1, x2 are

quadratic.

Proof. As usual, if r D 2 and the xi are quadratic, then � is empty by Lemma 3.13
and therefore it remains for us to show that � is nonempty in all the remaining cases.
We partition the proof into several subcases. Let V be the natural module.

Case 1: x1 is semisimple with at least four distinct eigenvalues on V . Let U be a 1-
dimensional subspace of V and choose a conjugate of x1 so that it acts as a regular
semisimple element on the nondegenerate 4-space U?=U . Then Corollary 5.9 implies
that there exists x 2 X such that G.x/ induces Sp4.k/ on U?=U and thus G.x/0 generi-
cally has a composition factor on V of dimension at least 4. Since G.x/ does not generi-
cally fix a nondegenerate 2-space (see Lemma 3.36), this implies that G.x/ is generically
primitive and irreducible on V with rank 2 or 3. But O6.k/ (and its connected com-
ponent) are the only proper subgroups of G with these properties and the inequalityP
i ei < 6.r � 1/ rules out the possibility that G.x/ is generically contained in such

a subgroup (see Lemma 3.38). It follows that � is nonempty.

Case 2: d1 D 2. Here x1 is semisimple and in view of Case 1 we may assume it is of the
form .I2; �I2; �

�1I2/ for some scalar 1 ¤ � 2 k�. In particular, d1 D e1 D 2.
First assume r D 2, so d2 6 4 and e2 6 3. Note that if d2 D 4, then e2 D d2, which

violates the bound e1C e2 6 5, whence d2 6 3. Now x1 preserves a 3-dimensional totally
isotropic subspace of V , acting as a regular semisimple element on this 3-space. There-
fore, Theorem 4 implies that there exists x 2 X such that G.x/0 induces SL3.k/ on such
a subspace. In addition, we can find y 2 X such that G.y/0 D Sp2.k/ acts irreducibly
on a nondegenerate 2-space and does not preserve a totally isotropic 3-space. Therefore,
G.x/0 is generically irreducible and has rank 2 or 3. Now SO6.k/ is the only proper con-
nected subgroup of G with this property, but if G.x/0 is generically conjugate to SO6.k/,
then G.x/ is generically contained in a conjugate of O6.k/ and this is not possible by
Lemma 3.38.

Now assume r > 3. If di 6 3 for some i > 2, then the result follows from the argu-
ment in the previous paragraph, so we may assume ei D di > 4 for all i > 2. If x2 and x3
are unipotent, then there exists a conjugacy class D D yG � C2C3 of elements of prime
order t (we can take t D 2 if x2 or x3 is a transvection, otherwise t > 3) such that the
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relevant inequalities still hold with respect to the variety C1 �D � C4 � � � � � Cr . Conse-
quently, we may assume that at most one xi is unipotent. In particular, we may assume x2
is semisimple of the form .I4; �I1; �

�1I1/ for some 1 ¤ � 2 k�. Next observe that we
can choose elements yi 2 Ci for i D 1; 2 so that the closure of hy1; y2i is a subgroup
H D Sp2.k/ � A preserving an orthogonal decomposition V D U ? U 0 into nondegen-
erate spaces, where dimU D 2. Here A is abelian and has four distinct weight spaces
on U 0, which means that H preserves only finitely many subspaces of V . In turn, this
implies that G.x/0 does not generically preserve a totally isotropic 3-space. It follows
that G.x/0 is generically irreducible and has rank at least 2, whence � is nonempty by
arguing as above. This completes the proof in Case 2.

Case 3: di > 3 for all i . If r D 2, then d1 D d2 D 3 and we deduce that x1 and x2 are
quadratic, which is the case we are excluding. For the remainder, let us assume r > 3.
There are a number of different cases to consider.

Case 3:1: d1 D d2 D 3. Here we may choose yi 2 Ci for i D 1; 2 such that the closure
of hy1; y2i is a maximal rank subgroup of the form Sp2.k/

3. Since such a subgroup is
contained in only finitely many maximal closed subgroups of G, it follows that we can
find yi 2 Ci with i > 3 so that G.x/ D G for x D .y1; y2; : : : ; yr / 2 X .

Case 3:2: d1D 3, x1 semisimple and di > 4 for i > 2. First observe that x1D .�I3;��1I3/
and ei D di for i > 2. Suppose x2 and x3 are both semisimple, so ei D di D 4 for i D 2;3.
Then there exists a semisimple element g 2 C2C3 of the form .I2; �I2; �

�1I2/ so that

d1 C ˛.g/C

rX
iD4

di D

rX
iD1

di � 6 6 6.r � 2/

and the desired result follows by Case 2. Similarly, if x2 and x3 are unipotent with
Jordan form .J 22 ; J

2
1 /, then by passing to closures we may assume they are both short

root elements and therefore we can find a semisimple element g 2 C2C3 of the form
.I2; �I2; �

�1I2/. Once again, we deduce that � is nonempty via Case 2.
Next suppose x2 and x3 have Jordan forms .J 22 ; J

2
1 / and .J2; J 41 /, respectively. By

passing to closures, we may assume x2 is a short root element. Here we can find an
involution g 2 C2C3 with Jordan form .J 32 / and so there exists x 2 xX such that G.x/0 D
Sp2.k/

3. If r > 4, then we immediately deduce that � is nonempty since Sp2.k/
3 is

contained in only finitely many maximal closed subgroups of G. Now assume r D 3.
Here we deduce that for generic x 2 X , G.x/0 has rank 3 and it does not fix a nonzero
totally isotropic subspace of V . By Lemma 3.38, G.x/0 is not generically SO6.k/ and so
it remains to show that G.x/0 is not generically of the form Sp2.k/

3.
Seeking a contradiction, supposeG.x/0 is generically a subgroup of the form Sp2.k/

3.
SinceG.x/ does not generically fix a nondegenerate 2-space (see Lemma 3.36), it follows
that G.x/ is generically irreducible on V . Now the elements in C1 have odd order and
they do not transitively permute the three nondegenerate spaces in an orthogonal decom-
position

V D V1 ? V2 ? V3 (16)
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preserved byG.x/0 D Sp2.k/
3 (this would only be possible if x1 is an element of order 3

of the form .I2; !I2; !
�1I2/, which is not the case since d1 D 3). Similarly, no ele-

ment in C3 can interchange two of the summands. Therefore, since x2 is an involution,
we conclude that G.x/ does not transitively permute the Vi and thus G.x/ is reducible,
a contradiction.

If x2 D x3 D .J2; J 41 /, then r > 4 and we can replace C2 and C3 by the class of short
root elements (which is contained in C2C3) and argue as above.

To complete the analysis of Case 3.2, we may assume x2 is semisimple (with d2 D 4),
x3 is unipotent and r D 3. We can choose yi 2 Ci for i D 1; 2 such that the closure
of hyi ; y2i induces Sp2.k/ on a nondegenerate 2-space, whence G.x/0 does not gener-
ically fix a totally isotropic 3-space. By passing to closures, we may assume that x3 is
either a long root element or a short root element.

First assume that x3 D .J2; J
4
1 /. By applying [16, Theorem 4.5], we see that there

exists x 2 X with G.x/0 D Sp2.k/ � Sp2.k/, preserving an orthogonal decomposition
as in (16). Since G.x/ does not generically fix a nondegenerate 2-space nor a 1-space,
it follows that either G D G.x/, or G.x/ acts imprimitively on V , transitively permuting
the Vi in (16). But every element in C1, C2 and C3 acts trivially on the set of summands in
any orthogonal decomposition of V into nondegenerate 2-spaces, so the latter possibility
is ruled out and we conclude that � is nonempty.

Finally, suppose that x3 D .J 22 ; J
2
1 / is a short root element. Then x3 is conjugate

to an element in GL.W /, a Levi subgroup of the stabilizer in G of a totally isotropic 3-
spaceW . By Theorem 4, there exists x 2X such thatG.x/0 D SL.W /. SinceG.x/0 does
not generically fix a totally isotropic 3-space and since the smallest composition factor
of G.x/0 on V is generically at least 3-dimensional, it follows that G.x/0 is generically
irreducible and contains elements with distinct eigenvalues on V . But as noted above, G
does not have a proper connected subgroup with these properties and thus G D G.x/ for
generic x 2 X .

Case 3:3: d1D 3, x1 unipotent and di > 4 for i > 2. Here x1D .J 32 / and ei D di for all i ,
so
P
i di < 6.r � 1/ and r > 3. If x2 and x3 are long root elements, then we can replace

C2 � C3 by the class gG of short root elements, noting that the relevant inequalities are
satisfied for Y D C1 � gG � C4 � � � � � Cr . Therefore, we may assume d2 D d3 D 4 and
r D 3. In the usual manner, we see that there exists x 2 xX such thatG.x/ induces SL3.k/
on a totally isotropic 3-space. Also as above, there exist yi 2 Ci for i D 1; 2 such that the
closure of hyi ; y2i induces Sp2.k/ on a nondegenerate 2-space. This implies that G.x/0

does not generically fix a totally isotropic 3-space and as before this allows us to conclude
that � is nonempty.

Case 3:4: di > 4 for all i . To complete the proof of the theorem, we may assume that
di > 4 for all i . Here ei D di and thus r > 4. If x1 and x2 are transvections, then the boundP
i ei < 6.r � 1/ implies that r > 5 and we can replace C1 �C2 by the class of short root

elements (noting that the relevant inequalities are still satisfied). This reduces the problem
to the case where r D 4 and at most one xi is a transvection. If x1 D .J2; J 41 / and x2 is
unipotent, then x2 D .J 22 ; J

2
1 / and there exists g 2 C1C2 with g D .J 32 /, so the relevant
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inequalities still hold for Y D gG � C3 � � � � � Cr . Similarly, if x1 D x2 D .J 22 ; J
2
1 /,

then by passing to closures, we may assume they are both short root elements and we can
replace C1 � C2 by gG , where g is a semisimple element of the form .I2; �I2; �

�1I2/.
In view of the previous cases we have handled, these observations reduce the problem to
the case where r D 4 and at most one xi is unipotent.

Suppose x1 D .J2; J 41 /. Then there exists y 2 X such thatG.y/0 D Sp2.k/� Sp2.k/
fixes an orthogonal decomposition as in (16) and by arguing as above, we deduce that
either � is nonempty, or G.x/ is generically irreducible and imprimitive on V . In the
latter situation, this means that there exists x 2 X such that G.x/ transitively permutes
the summands V1, V2 and V3 in (16). But each element in Ci acts trivially on the set of
summands and we conclude that � is nonempty. An entirely similar argument applies
if each xi is semisimple, so we may assume that x1 D .J 22 ; J

2
1 /. As usual, by passing

to closures, we may assume that x1 is a short root element and by arguing as above we
can show that there exist x; y 2 X such that G.x/0 induces SL3.k/ on a totally isotropic
3-space and G.y/0 induces Sp2.k/ on a nondegenerate 2-space. As before, this implies
that G.x/ D G for generic x and the proof of the theorem is complete.

In the next lemma, we consider a special case that arises in the proof of our main
theorem for symplectic groups in even characteristic.

Lemma 5.12. Suppose m > 4 is even, p D 2 and r > 3. If x1, x2 are involutions with
Jordan form .Jm2 /, then � is nonempty.

Proof. First observe that d1 D d2 D m and we are free to assume that r D 3. Note that
we have

P
i ei 6

P
i di < 2n and by passing to closures, we may assume that x1 and x2

are a-type involutions (see [1] and Remark 3.26). In particular, no element in C1 or C2
acts nontrivially on a nondegenerate 2-space.

Next observe that there exist yi 2 Ci for i D 1; 2 such that the Zariski closure of
hy1; y2i isH D T:2, where T is a torus ofG of rankm=2 such that all of its weight spaces
on V are 2-dimensional and its fixed space is trivial. Here the involutions in H n T act
by inversion on T and we note that H does not preserve any odd-dimensional subspaces
of V . In particular,G.x/ does not generically preserve an odd-dimensional subspace of V .
There are two cases to consider.

Case 1: x3 D .J2; J n�21 / is a long root element. First we claim that either G.x/ is gener-
ically irreducible on V , or G.x/ generically fixes a totally isotropic 2-space.

To see this, suppose G.x/ generically fixes a d -dimensional subspace U with d > 1

minimal, so d 6 m and we may assume U is either nondegenerate or totally isotropic.
In the nondegenerate case, x3 acts trivially on U or U?, and the closure of hx1; x2i
preserves a 2-dimensional subspace by Lemma 3.13, whence d 6 2 and thus d D 2. On the
other hand, if U is totally isotropic, then x3 acts trivially on U and so once again we
deduce that d D 2. The claim now follows since we have already noted that the elements
in C1 and C2 act trivially on any nondegenerate 2-space.
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Our next aim is to show that G.x/ does not generically fix a totally isotropic 2-space,
in which case the previous claim implies that G.x/ is generically irreducible. Let � be
the variety of totally isotropic 2-spaces and note that dim� D 2n � 5. We claim that

dim�x1 D dim�x2 D n � 2; dim�x3 D 2n � 7:

In particular, Lemma 3.16 implies that if x D .y1; y2; y3/ 2X with y3 2 C3 generic, then
G.x/ does not fix a totally isotropic 2-space.

To justify the claim, first assume W 2 �x1 . If x1 acts trivially on W , then W is con-
tained in the variety of 2-dimensional subspaces of V x1 , which has dimension n� 4 since
dim V x1 D m. Now assume x1 has Jordan form .J2/ on W and write W D hw; x1wi,
so hwi ¤ W x1 . The 1-dimensional subspaces of V that are not contained in V x1 form
an open subset in the variety of all 1-dimensional subspaces of V . In particular, this sub-
variety has dimension n � 1. Since the set of 1-dimensional subspaces hwi of W with
hwi ¤ W x1 forms a 1-dimensional variety, we conclude that the subvariety of 2-spaces
in �x1 on which x1 acts nontrivially has dimension n � 2. Therefore, dim�x1 D n � 2

as claimed (and also dim�x2 D n � 2 since x1 and x2 are conjugate).
We now compute dim�x3 . Suppose W 2 �x3 and note that x3 acts trivially on W ,

which means that W is contained in the .n� 1/-space V x3 . The variety of 2-dimensional
subspaces of V x3 has dimension 2n � 6 and the subvariety of totally isotropic 2-spaces
has codimension 1. Therefore, dim�x3 D 2n � 7 as required.

We have now shown that G.x/ is generically irreducible and contains long root ele-
ments. Any proper closed subgroup of G with these properties is contained in On.k/, but
the bound

P
i ei < 2n implies that G.x/ is not generically contained in an orthogonal

subgroup (see Lemma 3.38) and thus � is nonempty.

Case 2: x3 is not a long root element. For the remainder, let us assume x3 is not a long
root element. By passing to the closure of C3, we may assume that x3 is either semisimple
or a short root element. Let P D QL be the stabilizer of a totally isotropic m-space W ,
where Q is the unipotent radical and L is a Levi subgroup. Note that we may embed
each xi in L.

By Theorem 4, there exists y D .y1; y2; y3/ 2 X such that G.y/0 induces SLm.k/
onW . Moreover, sinceH 1.SLm.k/;W /D 0 (see [27]) and the sum of the dimensions of
the fixed point spaces of the xi on Q=Rad.Q/ Š W is less than m, it follows that there
exist qi 2 Q such that P 0 6 G.y0/ with y0 D .y

q1

1 ; y
q2

2 ; y
q3

3 / 2 X . As a consequence,
either G.x/0 is generically irreducible, or G.x/0 acts uniserially on V and therefore fixes
a totally isotropic m-space for all x 2 X .

Next observe that there exists a semisimple element g 2 C1C2 such that V g is trivial
and every eigenspace of g on V is 2-dimensional. By applying Theorem 5.11, we can find
h 2 C3 such that the closure of hg; hi induces Sp6.k/ on a nondegenerate 6-space. There-
fore, G.x/0 does not generically fix a totally isotropic m-space and so by the observation
in the previous paragraph, we deduce that G.x/0 is generically irreducible, it has rank
at least m � 1 and it contains elements with distinct eigenvalues on the natural module.
Therefore, either G D G.x/ for generic x 2 X , or G.x/0 is contained in a maximal rank
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connected irreducible subgroup. But the only such subgroup is SOn.k/ and this is ruled
out by the bound

P
i ei < 2n. The result follows.

We can now complete the proof of Theorem 7.

Theorem 5.13. Suppose G D Spn.k/, where n D 2m, m > 3, p D 2 and the xi in (9)
have prime order. If

P
i di 6 n.r � 1/ and

P
i ei < n.r � 1/, then� is empty if and only

if r D 2 and x1, x2 are quadratic.

Proof. We proceed by induction on m, noting that the base case m D 3 is covered by
Theorem 5.11. Assume m > 4 and let P D QL be the stabilizer in G of a 1-dimensional
subspace hvi, whereQ is the unipotent radical andL is a Levi subgroup stabilizing a non-
degenerate .n � 2/-space (note that L0 D Spn�2.k/). By replacing each xi by a suitable
conjugate, we may embed xi in P and we write gi for the induced action of xi on the non-
degenerate .n� 2/-spaceW D v?=hvi. Let d 0i be the maximal dimension of an eigenspace
of gi and set e0i D W

gi .
First assume m is odd. If xi is unipotent, then we may assume d 0i D e

0
i 6 di � 1 (and

indeed d 0i D di � 2 unless xi has Jordan form .Jm2 / on V ). Similarly, if xi is semisimple
and ei D di , then we may assume that one of the following holds:

(a) d 0i D di � 2.

(b) d 0i D di � 1 and di 6 n=2.

(c) d 0i 6 di and di 6 n=3.

And if xi is semisimple with ei < di , then we may assume that either d 0i D d � 1, or
d 0i D di and di 6 n=4. In particular, it follows thatX

i

d 0i 6 .n � 2/.r � 1/;
X
i

e0i < .n � 2/.r � 1/; (17)

and so by induction we can choose y 2 X such that G.y/ induces Spn�2.k/ on W .
In addition, Lemmas 3.32 and 3.36 imply that G.x/ does not generically fix a 1-space
nor a nondegenerate 2-space, so for generic x 2 X , G.x/0 is irreducible and has rank
m � 1 or m. By inspecting Lemma 3.12, we see that the only proper closed connected
subgroup ofG with these properties is SOn.k/. However, the condition

P
i ei < n.r � 1/

implies that for generic x 2 X , G.x/ is not contained in On.k/ (see Lemma 3.38) and the
result follows.

Finally, let us assumem is even. We can repeat the previous argument form odd unless
at least one xi is an a-type involution (in the sense of [1]) with Jordan form .Jm2 /. Here
d 0i D di D ei D e

0
i D m. If there are two such classes, then r > 3 and Lemma 5.12 gives

the result. Now assume there is a unique such class, say C1. Then the relevant inequalities
in (17) are satisfied unless x2 is a semisimple element of the form .�Im; �

�1Im/. If x2
has this form, then r > 3 and we note that there exist yi 2 Ci for i D 1; 2 such that H D
Sp2.k/

m is the Zariski closure of hy1;y2i and the restriction of V toH is a direct sum ofm
totally isotropic 2-dimensional irreducible modules, each occurring with multiplicity 2.
This implies thatH contains a maximal torus and preserves only finitely many subspaces
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of V . Therefore, for generic y3 2 C3 it follows that hH; y3i is irreducible and contains
a maximal torus and a long root subgroup. We conclude that G D hH; y3i for generic
y3 2 C3 and the result follows.

This completes the proof of Theorem 7.

6. Generic stabilizers

With the proof of Theorem 7 in hand, we now turn to our main applications. In this section,
we will prove Theorem 13 on generically free modules.

First, let us recall the setup. Let G be a simple algebraic group over an algebraically
closed field k of characteristic p > 0 and let V be a finite-dimensional faithful rational
kG-module. Set

V G D ¹v 2 V W gv D v for all g 2 Gº

and recall that V is generically free ifG has a trivial generic stabilizer; that is, there exists
a nonempty open subset V0 of V such that each stabilizerGv is trivial for all v 2 V0. Note
that we may pass to a field extension k0=k in order to establish the existence of a trivial
generic stabilizer, so without loss of generality we may assume that k is not algebraic
over a finite field.

By combining Theorem 7 with the main results from [7, 16], we will show that if
dim V=V G is sufficiently large, then V is generically free. As noted in Section 1, the
analogous result for Lie algebras was proved in [12] and we refer the reader to Remark 14
for several examples. Moreover, when combined with the results in [12] we can prove
that generic stabilizers are trivial as a group scheme under suitable hypotheses (see Corol-
lary 15).

In view of [16, Theorem 1.3] (for G D SLn.k/) and [7, Theorem 9] (for exceptional
groups), we may assume that G is isogenous to either Spn.k/ with n > 4, or SOn.k/ with
n > 7. Let P be the set of conjugacy classes of elements in G of prime order (including
all nontrivial unipotent elements if p D 0). Given an integer r > 2, let Pr be the set of
classes C in P such that G is topologically generated by r elements in C and no fewer.
By Theorem 7, each C 2 P is contained in some Pr with r 6 n C 1. Moreover, C is
contained in PnC1 if and only if one of the following holds:

(a) G D Spn.k/, p D 2 and C is the class of long root elements (or short root elements
if n D 4);

(b) G D Sp4.k/, p ¤ 2 and C is the class of involutions of the form .�I2; I2/.

This observation is also a corollary of [22, Theorem 8.1].
Let V be a finite-dimensional faithful rational kG-module and note that in order to

prove Theorem 13, we may assume V G D 0. Given C 2 Pr , set

V.C / D ¹v 2 V W gv D v for some g 2 C º:
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By [16, Lemma 5.1], we have

dimV.C / 6
�
1 �

1

r

�
dimV C dimC

and [16, Lemma 5.2] implies that V is generically free if dimV.C /< dimV for allC 2P .
By combining these observations, we get the following result.

Lemma 6.1. In terms of the above notation, V is generically free if

dimV > max¹r dimC W C 2 Pr ; r > 2º DW c.G/:

We are now ready to begin the proof of Theorem 13 for symplectic and orthogonal
groups. As before, given x 2 G we will write ˛.x/ for the maximal dimension of an
eigenspace of x on the natural module V and we set s D n � ˛.x/.

Proposition 6.2. The conclusion of Theorem 13 holds if G D Spn.k/ with n > 4.

Proof. Let C D xG 2 Pr . In view of Lemma 6.1, our goal is to show that

r dimC 6
9

8
n2 C "; (18)

where " D 2 if n D 4 or .n; p/ D .6; 2/, otherwise " D 0.
First assume n > 6. If r D 2, then dimC 6 n2=2 (maximal if x is regular) so we may

assume r > 3. By [5, Proposition 2.9], we have

dim xG 6
1

2
.2ns � s2 C 1/: (19)

Suppose r D 3. Since G is not topologically generated by two elements in C , by
applying Theorem 7 we deduce that either x is quadratic, or ˛.x/ > n=2. In the quadratic
case, we calculate that dimC 6 n.nC 2/=4, while (19) (with sD n=2� 1) yields dimC 6
3n2=8 � n=2 if ˛.x/ > n=2. Now assume ˛.x/ D n=2 and x is not quadratic, so p D 2
by Theorem 7. Then x is semisimple with a 1-eigenspace of dimension n=2 and it is easy
to check that dimC 6 3n2=8, with equality if x has n=2C 1 distinct eigenvalues on V .
We conclude that 3 dimC 6 9n2=8 in all cases.

Now assume r > 4. If n D 6 and x D .�I2; I4/, then r D 4, dimC D 8 and clearly
r dimC < 9n2=8. In the remaining cases, Theorem 7 implies that .r � 1/˛.x/> n.r � 2/

(with equality only if p D 2), so

˛.x/ >
ln.r � 2/
r � 1

m
: (20)

By applying the bound in (19), we deduce that

r dimC 6
r

r � 1

�
1 �

1

2.r � 1/

�
n2 C

r

2
:

One can check that this upper bound is maximal when r D 4, which gives

r dimC 6
10

9
n2 C 2:
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Now 10n2=9C 2 6 9n2=8 if and only if n > 12, so the cases with n 2 ¹6; 8; 10º need
closer attention. By combining the bounds in (19) and (20), we reduce to the cases where
.n; r/D .8; 5/ or .6; 4/, and also .n; r/D .6; 7/ if pD 2. In the latter case, x D .J2; J 41 / is
a long root element, dimC D 6 and 7dimC D 42D 9n2=8C 3=2. Next assume .n; r/D
.6; 4/. Here the bound .r � 1/˛.x/ > n.r � 2/ implies that ˛.x/ 2 ¹4; 5º. In fact, since
r D 4, we see that ˛.x/ D 4 is the only option (if ˛.x/ D 5, then r˛.x/ > n.r � 1/), so
p D 2 and it is easy to check that dimC 6 10, which yields 4 dimC < 9n2=8 (note that
either x is semisimple of the form .I4; �; �

�1/, or x is an involution of type a2 or c2 in
the notation of [1]). Similarly, if .n; r/ D .8; 5/, then ˛.x/ D 6, p D 2 and we calculate
that dimC 6 14, which gives 5 dimC < 9n2=8 as required.

To complete the proof of the proposition, we may assume n D 4, so r 6 5 and
9n2=8 D 18. First assume p ¤ 2. If r D 2, then the desired bound r dimC 6 20 holds
since dimC 6 8. Next assume r D 3. If x is quadratic, then dimC 6 6 (with equality if
x D .�I2; �

�1I2/ or .J 22 /) and thus 3dimC 6 18. Otherwise 2˛.x/ > 4, so ˛.x/D 3 and
this case does not arise since r˛.x/ > n.r � 1/. If r D 4, then 3˛.x/ > 8, so ˛.x/ D 3,
x D .J2; J

2
1 / and the result follows since dimC D 4. Finally, if r D 5, then x D .�I2; I2/,

dimC D 4 and thus 5 dimC D 20 D 9n2=8C 2.
Finally, assume nD 4 and p D 2. The above argument applies when r D 2, or if r D 3

and x is quadratic. If r D 3 and x is not quadratic, then x D .I2; �; ��1/, dimC D 6 and
the desired bound holds. The previous argument handles the case r D 4, and for r D 5 we
have x D b1 or a2, so dimC D 4 and thus 5 dimC D 20 D 9n2=8C 2.

Proposition 6.3. The conclusion of Theorem 13 holds if G D SOn.k/ with n > 7.

Proof. Let C D xG 2 Pr . By Lemma 6.1, it suffices to show that (18) holds with " D 0.
First assume n > 10 is even and note that dimC 6 n2=2 � n, so we may assume r > 3.
By [5, Proposition 2.9], we have

dim xG 6
1

2
.2ns � s2 � 2s/; (21)

where s D n � ˛.x/ as above.
If r D 3, then either x is quadratic, or ˛.x/ > n=2. For x quadratic, we calculate that

dimC 6 n2=4 (maximal if p D 2, n � 0 .mod 4/ and x is an involution of type cn=2).
Similarly, if ˛.x/ > n=2, then (21) implies that dimC 6 3n2=8� nC 1=2 and so in both
cases we conclude that 3 dimC < 9n2=8. Now assume r > 4. Here (20) holds and by
applying the bound in (21) we deduce that

r dimC 6
r

r � 1

�
1 �

1

r � 1

�
n2 �

rn

r � 1
<

r

r � 1

�
1 �

1

r � 1

�
n2 < n2;

which gives the desired bound.
A very similar argument applies if n > 7 is odd (recall that p ¤ 2 in this case). For

example, suppose r > 4. As before, (20) holds, which in turn implies that s 6 n=.r � 1/

and we note that [5, Proposition 2.9] gives

dim xG 6
1

2
.2ns � s2 � 2s C 1/:
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In this way, we get

r dimC 6
r

r � 1

�
1 �

1

2.r � 1/

�
n2 6

10

9
n2 <

9

8
n2;

and the result follows.
Finally, let us assumeGD SO8.k/. Here Theorem 4.6 implies that r 2 ¹2;3;4º and we

claim that r dimC 6 48 D 3n2=4 is best possible. To see this, first note that dimC 6 24,
so the bound holds when r D 2. Next suppose r D 3. If x is quadratic, then dimC 6 16,
with equality if x is an involution of the form .�I4; I4/ or c4, according to the parity
of p. Otherwise, 2˛.x/ > 8 and thus ˛.x/D 6, but this is incompatible with the condition
r D 3 since 3˛.x/ > 2n. Finally, suppose r D 4. Here 3˛.x/ > 2n, so ˛.x/ D 6 and it is
straightforward to check that dimC 6 12, with equality if and only if x is semisimple of
the form .I6; �; �

�1/, or p ¤ 2 and x is unipotent with Jordan form .J3; J
5
1 /, or p D 2

and x is an involution of type c2. In particular, 4 dimC 6 48 D 3n2=4 and the proof of
the proposition is complete.

This completes the proof of Theorem 13 and we conclude this section by presenting
a brief proof of Corollary 15.

Proof of Corollary 15. Define G, V , V 0 and d 0.G/ as in the statement of the corollary
and define V G and d.G/ as in Theorem 13. It is well known that a generic stabilizer
is trivial as a group scheme if and only if there are no k-points and the corresponding
Lie algebra is trivial (this is a special case of [38, Proposition 3.16]). By Theorem 13,
a generic stabilizer is trivial as an algebraic group if dim V=V G > d.G/, while the Lie
algebra is trivial if dimV=V 0 > d 0.G/ by [12, Theorem A]. The result follows.

7. Random generation of finite simple groups

In this section, we prove Theorem 16 and Corollary 19 on the generation of finite simple
groups of Lie type. As discussed in Section 1, Theorem 16 extends work of Liebeck and
Shalev [32, 33] and Gerhardt [16] on random .r; s/-generation of finite classical groups,
as well as similar results of Guralnick et al. [7, 20] for exceptional groups of Lie type.

As in the statement of Theorem 16, let r and s be primes with s > 2 and let �r;s be
the set of finite simple groups whose order is divisible by both r and s. Given a group L
in �r;s , let Pr;s.L/ be the probability that L is generated by randomly chosen elements of
order r and s (see (5)). Our goal is to prove that if .Gi / is a sequence of simple groups
in �r;s with jGi j ! 1, then either

(a) Pr;s.Gi /! 1, or

(b) .r; s/ D .2; 3/; .3; 3/ and .Gi / contains an infinite subsequence of groups of the
form PSp4.q/.

By combining [16, Theorem 1.4] and [7, Theorem 12] with the main theorem of [33],
we deduce that if .Gi / is any sequence of alternating, linear, unitary, or exceptional groups
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in �r;s with jGi j!1, then Pr;s.Gi /! 1. Therefore, in view of the main theorem of [33],
to complete the proof of the theorem we need to extend this result to symplectic and
orthogonal groups of bounded rank, noting the anomaly of the 4-dimensional symplectic
groups when .r; s/ D .2; 3/ or .3; 3/ (see Remark 17 in Section 1).

Let us briefly introduce our notational set up for the proof of Theorem 16. Let G be
a simply connected simple algebraic group defined over an algebraically closed field k
of positive characteristic p that is not algebraic over a finite field. Given a Steinberg
endomorphism F WG ! G, let GF D G.q/ be the fixed points of F on G for some
p-power q, where G.q/ is possibly twisted. Set Z.q/ D Z.G/ \ G.q/ and note that
G.q/=Z.q/ is almost always a finite simple group of Lie type over Fq (the handful of
exceptions include the groups Sp4.2/ and 2F4.2/, which are not perfect). Let r be a prime
and set

m.G; r; q/ D max¹dimgG W g 2 G.q/ has order r modulo Z.G/º;

C.G; r; q/ D ¹gG W dimgG D m.G; r; q/ and g 2 G.q/ has order r modulo Z.G/º:

For primes r and s, let Q.r; s/ be the set of powers q D pa such that G.q/ contains
elements of orders r and s modulo Z.G/.

The following result is a key ingredient in the proof of Theorem 16. In the statement,
the integer N is defined in (3). Also recall the definition of � in (1).

Proposition 7.1. Let G D Spn.k/ or Spinn.k/, where n > N . Let r and s be primes
with s > 2 and assume .r; s/ ¤ .2; 3/; .3; 3/ if G D Sp4.k/. Fix q 2 Q.r; s/ and set
X D C1 � C2, where C1 2 C.G; r; q/ and C2 2 C.G; s; q/. Then � is nonempty.

Proof. Write Ci D xGi and let di be the dimension of the largest eigenspace of xi on the
natural n-dimensional kG-module V . In addition, let ei D dim V xi be the dimension of
the 1-eigenspace of xi on V . Then by Theorem 7, it follows that � is nonempty if all the
following conditions are satisfied:

(a) d1 C d2 6 n;

(b) e1 C e2 < n if G D Spn.k/ and p D 2;

(c) x1 and x2 are not both quadratic;

(d) x1 and x2 do not appear in Table 1 (up to ordering).

We refer the reader to [8, Chapter 3] for a convenient source of information on the conju-
gacy classes of elements of prime order in finite classical groups.

Case 1: G D Spn.k/. To begin with, let us assume G D Spn.k/ with n > 4 and fix
a conjugacy class C D xG in C.G; r; q/. Set e D dim V x and let d be the maximal
dimension of an eigenspace of x on V .

If r D 2, then it is straightforward to show that d D n=2. For example, if p ¤ 2 and
g 2 G.q/ has order 2 modulo Z.G/, then g is either G-conjugate to an involution of the
form .�I`; In�`/ for some even integer 2 6 ` 6 n � 2, or an element of order 4 of the
form .�In=2; �

�1In=2/. Now dimgG D `.n � `/ or n.nC 2/=4 in the two cases, whence
dimgG is maximal when g D .�In=2; ��1In=2/ and thus d D n=2 as claimed.
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Now assume r > 2. We claim that either d 6 n=2 � 1 or .n; r; d/ D .4; 3; 2/.
To see this, let us first assume r D p, so x is unipotent and the Jordan form of x on V

corresponds to the largest partition � of n (with respect to the usual dominance ordering
on partitions) with the property that all parts of � have size at most p and the multiplicity
of every odd part is even (as noted in [8, Proposition 3.4.10], every partition of this form
corresponds to an element of order p in G.q/). Write n D apC b with 0 6 b < p. If a is
even, then � D .pa; b/, otherwise � D .pa�1; p � 1; b C 1/. In both cases, d D dn=pe
and the claim quickly follows (note that � D .22/ if n D 4 and p D 3).

Now assume r > 2 and r ¤p, so x is semisimple. Let i be the smallest positive integer
such that r divides qi � 1 and set t D .r � 1/=i . First we establish the bound d 6 n=2.
To see this, suppose d > n=2 and note that d D e since each eigenvalue �2 k has the same
multiplicity as ��1. Suppose i is even and in the notation of [8, Section 3.4.1] write x as
a block-diagonal matrix

x D .ƒ
a1

1 ; : : : ; ƒ
at
t ; Ie/ 2 G.q/;

where each ƒj 2 GLi .q/ is irreducible and each aj is a nonnegative integer (here the ƒj
represent the distinct conjugacy classes in GLi .q/ of elements of order r , while aj denotes
the multiplicity of ƒj in the block-diagonal form of x). Then

dimC D dimG �
1

2
e2 �

1

2
e �

i

2

tX
jD1

a2j :

Consider the following element

y D .ƒ
a1C1
1 ; ƒ

a2

2 ; : : : ; ƒ
at
t ; Ie�i / 2 G.q/

of order r and set D D yG . Then

dimD D dimC C i
�
e � a1 �

i

2

�
> dimC (22)

since a1 < n=2i and i < n=2. This is a contradiction and one can check that a very similar
argument applies when i is odd.

To complete the proof of the claim, it remains to rule out d D n=2 (unless .n; r/ D
.4; 3/, in which case d D 2 for every element inG of order r). Seeking a contradiction, let
us assume d D n=2. If n � 2 .mod 4/, then x cannot have a d -dimensional 1-eigenspace
(since the 1-eigenspace of any semisimple element has to be even-dimensional) and thus
i 2 ¹1; 2º, e D 0 and x D .�In=2; ��1In=2/ is quadratic. But then G.q/ contains elements
of the form y D .�In=2�1; �

�1In=2�1; I2/ and we have dimyG D dimxG C n� 4, which
is a contradiction. Finally, suppose n � 0 .mod 4/. If n D 4 and r > 5, then G.q/ con-
tains regular semisimple elements of order r , so d D 1 D n=2 � 1. Now assume n > 8.
If e ¤ n=2, then the previous argument applies, so let us assume e D n=2. If i is even,
then we can defineD D yG as in the previous paragraph and we note that (22) holds since
a1 6 n=2i and i 6 n=2. Once again, we have reached a contradiction. And similarly if i
is odd.
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In view of the above bounds, and recalling that .r; s/ ¤ .2; 3/; .3; 3/ when n D 4, it is
now easy to see that properties (a)–(d) hold when G D Spn.k/, whence � is nonempty
by Theorem 7.

Case 2: G D Spinn.k/. For the remainder, let us assume G D Spinn.k/ with n > 7. The
case n odd is straightforward; here p ¤ 2 and it is easy to check that d D .n C 1/=2

if r D 2 and d 6 .n � 1/=2 if r > 2. In particular, we observe that (a), (c) and (d) are
satisfied.

Now assume n is even, so n > N D 10. If r D 2, then one can check that

d D

´
n=2 if n � 0 .mod 4/;

n=2C 1 if n � 2 .mod 4/:

For example, if p D 2 and g 2 G is an involution, then dim gG is maximal when g is of
type cn=2 if n � 0 .mod 4/ (in the notation of [1]) and of type cn=2�1 if n � 2 .mod 4/.
In particular, in the latter case g has Jordan form .J

n=2�1
2 ; J 21 / and thus d D n=2 C 1

(note that in this situation, there are no involutions of type bn=2 in G).
Now assume r > 2. We claim that d 6 n=2 � 1 if r D p. As in the symplectic case,

the Jordan form of x corresponds to the largest partition � of n with the property that all
parts have size at most p, but here we require that every even part has an even multiplicity.
Write n D ap C b with 0 6 b < p. If a is odd, then b is odd and � D .pa; b/. On the
other hand, if a is even, then � D .pa/ if b D 0, otherwise � D .pa; b � 1; 1/. It is
now straightforward to check that d 6 n=2 � 1. For example, suppose p D 3. From the
above observations we deduce that d 6 n=3C 2, which is less than n=2 for n > 18. The
remaining cases with 10 6 n 6 16 can be checked directly. For instance, if n D 10, then
� D .33; 1/ and thus d D 4 D n=2 � 1.

Finally, suppose that r > 2 and r ¤ p. As before, let i > 1 be minimal such that r
divides qi � 1. We claim that

d 6

´
n=2 if n � 0 .mod 4/;

n=2 � 1 if n � 2 .mod 4/:

First we establish the bound d 6 n=2 for all n. Seeking a contradiction, suppose d > n=2.
As in the symplectic case, this implies that d D e and it is easy to construct an element
y 2 G.q/ of order r modulo Z.G/ with dim yG > dim xG , which gives the desired con-
tradiction. For example, suppose i is odd and write

x D ..ƒ1; ƒ
�1
1 /

a1 ; : : : ; .ƒt=2; ƒ
�1
t=2/

at=2 ; Ie/

as in [8, Proposition 3.5.4], where t D .r � 1/=i . Here the ƒ˙j represent the distinct
conjugacy classes of elements of order r in GLi .q/ and we note that ƒj and ƒ�1j must
have the same multiplicity aj in the block-diagonal form of x, as indicated by the notation.
Now define

y D ..ƒ1; ƒ
�1
1 /

a1C1; .ƒ2; ƒ
�1
2 /

a2 ; : : : ; .ƒt=2; ƒ
�1
t=2/

at=2 ; Ie�2i / 2 G.q/
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and note that
dimyG D dim xG C 2i.e � a1 � i � 1/:

Since a1 6 .n=2� 1/2i and i 6 .n=2� 1/=2, it is easy to check that a1 C i C 1 < e and
thus dimyG > dim xG as required. A similar argument applies when i is even.

This establishes the desired bound on d when n � 0 .mod 4/, so let us assume n � 2
.mod 4/. If d D n=2, then x D .�In=2; �

�1In=2/ is the only option (note that the 1-
eigenspace of any semisimple element inG of order r moduloZ.G/ is even-dimensional)
and it is easy to see that dimyG > dim xG with y D .�In=2�1; ��1In=2�1; I2/ 2 G.q/.

With the bounds on d in hand, it is straightforward to check that properties (a) and (c)
hold. In addition, by inspecting Table 1 we observe that (d) holds. This completes the
proof of the proposition.

We also need an analogous result in the special case G D Spin8.k/.

Proposition 7.2. Let G D Spin8.k/ and r , s be primes with s > 2. Fix q 2 Q.r; s/ and
set X D C1 � C2, where C1 2 C.G; r; q/ and C2 2 C.G; s; q/. Then � is nonempty.

Proof. Fix a class C D xG in C.G; r; q/ and let dj be the maximal dimension of an
eigenspace of x on the 8-dimensional irreducible kG-module Vj D L.!j / for j D 1; 3; 4.
By inspecting the relevant conjugacy classes in G and their images under a triality graph
automorphism � of G, it is straightforward to show that dj 6 4 for all j .

To see this, first assume r D 2. If p ¤ 2, then x has Jordan form .�I4; I4/ on V1
and we note that C is stable under � , so dj D 4 for all j . Similarly, if p D 2, then x is
a c4-type involution and the same conclusion holds. Now assume r > 2. If r D p, then

x D

8̂̂<̂
:̂
.J 23 ; J

2
1 / if p D 3;

.J5; J3/ if p D 5;

.J7; J1/ if p > 7

and in each case C is stable under � , whence dj D 4 if p D 3, otherwise dj D 2.
Finally, suppose r > 2 and r ¤ p. Let i > 1 be minimal such that r divides qi � 1,
so i 2 ¹1; 2; 3; 4; 6º. If i 2 ¹3; 6º, then dj D 2 for all j and similarly dj 2 ¹2; 4º if i D 4.
Now assume i 2 ¹1; 2º. If r D 3, then x D .I2; �I3; �

�1I3/ or .I4; �I2; ��1I2/, not-
ing that dim xG D 18 in both cases, so dj 2 ¹3; 4º in this case. For r D 5, we get x D
.I4; �; �

2; ��1; ��2/ or .�I2; �2I2; ��1I2; ��2I2/, where � 2 k is a primitive 5-th root
of unity; in both cases, dimxG D 20 and dj 2 ¹2; 4º. Finally, if r > 7, then dimxG D 24
and dj 2 ¹1; 2º.

This justifies the claim and the result now follows via Theorem 4.7.

We are now in a position to complete the proof of Theorem 16.

Proof of Theorem 16. Let r and s be primes with s > 2. By combining [16, Theorem 1.4]
and [7, Theorem 12] with the main results in [33] on classical and alternating groups of
large rank and degree, respectively, we only need to consider symplectic and orthogo-
nal groups of fixed rank. So let G D Spn.k/ or Spinn.k/ be a simply connected simple
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algebraic group over an algebraically closed field k of characteristic p > 0 and assume k
is not algebraic over a finite field. Since Sp2.k/ D SL2.k/ and Spin6.k/ is isogenous
to SL4.k/, we may assume that either n > N (see (3)) or G D Spin8.k/. Let us also
assume that .r; s/ ¤ .2; 3/; .3; 3/ if G D Sp4.k/.

Fix q 2 Q.r; s/ and set X D C1 � C2, where C1 2 C.G; r; q/ and C2 2 C.G; s; q/.
By applying Propositions 7.1 and 7.2, we deduce that � is nonempty and thus

lim
q2Q.r;s/; q!1

Pr;s.G.q// D 1

by [16, Lemma 6.4]. Finally, sinceZ.q/ is contained in the Frattini subgroup ofG.q/, we
deduce that the same conclusion holds for the simple groups G.q/=Z.q/.

Let us highlight the anomaly of the 4-dimensional symplectic groups.

Theorem 7.3. Suppose G D Sp4.k/, where k has characteristic p > 0.

(i) If .r; s/ D .2; 3/, then Pr;s.G.q// D 0 if p 6 3 and limq!1 Pr;s.G.q// D 1=2 if
p > 5.

(ii) If .r; s/ D .3; 3/, then Pr;s.G.q// D 0 if p D 3 and

lim
q!1

Pr;s.G.q// D

´
3=4 if p > 5,

1=2 if p D 2.

Proof. Let C D xG and D D yG be conjugacy classes of maximal dimension, where x
and y have order 2 and 3 modulo Z.G/, respectively. Note that C \G.q/ and D \G.q/
are nonempty.

If p ¤ 2, then x D .�I2; �
�1I2/, where �2 D �1. Similarly, if p ¤ 3, then y D

.�I2; �
�1I2/ or .I2; �; ��1/ up to conjugacy, where �3 D 1. In particular, if p > 5 and

X D C �D, then Theorem 7 implies that � is nonempty if and only if D is the class of
elements of the form .I2; �; �

�1/. Therefore, by arguing as in the proof of Theorem 16,
we deduce that

lim
q!1

P2;3.G.q// D
1

2

if p > 5. Similarly, by considering X D D1 �D2 where D1 and D2 are classes of ele-
ments of order 3 of maximal dimension, we deduce that � is nonempty unless D1 D D2
is the class of quadratic elements of order 3, whence

lim
q!1

P3;3.G.q// D
3

4

for p ¤ 3.
Next assume pD 3. As above, x is quadratic and we note that y is also quadratic, with

Jordan form .J 22 /. Since G is not topologically generated by two quadratic elements, we
deduce that P2;3.G.q// D P3;3.G.q// D 0 for all q D 3f .

Finally, let us assume p D 2 and recall that G has two 4-dimensional irreducible
restricted kG-modules, denoted Vj D L.!j / for j D 1; 2. First note that x acts quadrati-
cally on both modules (with Jordan form .J 22 /). Similarly, y acts quadratically on exactly
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one of the two modules and we deduce that P2;3.G.q// D 0. Finally, if D1 and D2
denote the two classes of elements of order 3, then � is nonempty if X D D1 � D2
or D2 �D1, and empty if X D Di �Di for i D 1; 2 (see Theorem 5.10). We conclude
that P3;3.G.q//! 1=2 when p D 2.

Finally, let us turn to Corollary 19, which gives an asymptotic version of Conjecture 18
on the generation of finite simple groups by two Sylow subgroups.

Proof of Corollary 19. LetG be a finite simple group and let r , s be prime divisors of jGj
with r 6 s. Clearly, if Pr;s.G/ > 0, then G is generated by a pair of Sylow subgroups
corresponding to the primes r and s. Therefore, by combining Theorems 16 and 7.3, the
proof of Corollary 19 is reduced to the following cases:

(a) .r; s/ D .3; 3/ and G D Sp4.q/ with q D 3f ; or

(b) .r; s/ D .2; 3/ and G D Sp4.q/ with q D 2f or 3f ; or

(c) .r; s/ D .2; 2/.

First consider cases (a) and (b). Write q D pf , where p is a prime and note that p 2
¹r; sº. In both cases, a maximal subgroup of G contains a Sylow p-subgroup of G if and
only if it is a parabolic subgroup. In particular, there are only two maximal subgroups ofG
containing a fixed Sylow p-subgroup. The probability that a randomly chosen element of
a given nontrivial conjugacy class is contained in a fixed maximal parabolic subgroup
tends to 0 as f tends to infinity and the desired result follows.

Finally, consider case (c). By the main theorem of [17], it follows that every non-
abelian finite simple group G can be generated by a Sylow 2-subgroup and an involution.
The result follows.

Remark 7.4. Fix primes r and s and let .Gi / be a sequence of finite simple groups,
with jGi j tending to infinity, such that each jGi j is divisible by r and s. In a sequel, we
will prove that with probability tending to 1, Gi D hP;Qi for randomly chosen Sylow
subgroups P and Q corresponding to the primes r and s. Let us briefly outline the main
steps:

(a) By applying Theorems 16 and 7.3, we can reduce the problem to the case where
r D s D 2.

(b) Suppose G D An. Fix a Sylow 2-subgroup P of G and note that P fixes at most
one subset of ¹1; : : : ; nº of a given size. The probability that a random conjugate of P
fixes the same subset of size k is either 0 or

�
n
k

��1, and clearly the sum of these prob-
abilities for 1 6 k < n goes to 0 as n ! 1. Therefore, with probability tending to 1
with n, the subgroup of G generated by two random Sylow 2-subgroups acts transitively
on ¹1; : : : ; nº. By a classical theorem of Jordan (see [11, Example 3.3.1], for example), if
n > 9, thenG has no proper primitive subgroup containing a double transposition. There-
fore, the only obstruction to randomly generating G by a pair of Sylow 2-subgroups is
the possibility that they generate a transitive imprimitive subgroup. But for any divisor m
of n, a Sylow 2-subgroup of G stabilizes at most one partition of ¹1; : : : ; nº into parts
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of size m. Therefore, the probability that two random Sylow 2-subgroups generate an
imprimitive subgroup goes to 0 as n!1.

(c) Finally, let G be a group of Lie type over Fq of twisted Lie rank `. If ` is increas-
ing, then the desired result follows from [28, Theorems 3.1 and 3.2].

(d) Now assume ` is fixed and q tends to infinity. Suppose q is even and let P be
a Sylow 2-subgroup of G. By a lemma of Tits (see [42, §1.6]), there are precisely ` max-
imal subgroups of G that contain P ; one for each conjugacy class of maximal parabolic
subgroups of G. Therefore, the probability that P and a random conjugate of any given
nontrivial element generate G tends to 1 as q !1.

(e) Finally, suppose ` is fixed, q D pf is odd and f tends to infinity. Let xG be
the corresponding simply connected simple algebraic group over an algebraically closed
field of characteristic p that is not algebraic over a finite field. Here the key step is to
extend our results on topological generation by establishing the existence of conjugacy
classes C1 and C2 in xG containing elements of order 2 and 4 (modulo the center of xG),
respectively, with several desirable properties. In particular, we will show that there exists
a tuple .y1; y2/ 2 C1 � C2 such that hy1; y2i is Zariski dense in xG. From here, it is
relatively straightforward to complete the argument.

8. Proof of Corollary 11

In this final section, we present a proof of Corollary 11, which is another consequence of
our main results.

As in the corollary, let G be a simple classical algebraic group over an algebraically
closed field k of characteristic p > 0 that is not algebraic over a finite field. Let V be
the natural module for G and set n D dimV . Recall that n > M , where M is the integer
defined in (4). DefineX as in (2), where each xi has prime order moduloZ.G/, and let di
be the maximal dimension of an eigenspace of xi on V . Let us assume there exists y 2 X
such that G.y/ acts irreducibly on V .

First observe that the existence of such an element y implies thatG.x/ does not gener-
ically fix a 1-dimensional subspace of V and thus

P
i di 6 n.r � 1/.

Suppose G D Spn.k/, n > 4 and p D 2. Let ei D dim V xi be the dimension of
the 1-eigenspace of xi on V . If

P
i ei D n.r � 1/, then by arguing as in the proof of

Lemma 3.38 we see that G.x/ generically fixes a 1-dimensional subspace of the inde-
composable orthogonal kG-module W of dimension nC 1 (with socle of dimension n).
Since G.x/ does not generically fix a 1-dimensional subspace of the socle of W , it fol-
lows that G.x/ generically fixes a complement to the socle and is therefore contained in
an orthogonal subgroup On.k/.

Therefore, we have
P
i di 6 n.r � 1/ and we may assume

P
i ei < n.r � 1/ if G D

Spn.k/ and p D 2. Then by Theorem 7, � is nonempty unless we are in one of the
exceptional cases recorded in parts (i) and (ii) in the statement of the theorem. If (i) holds,
in which case r D 2 and the xi are quadratic, then Lemma 3.13 implies that each G.x/
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acts reducibly on V . Similarly, by carefully inspecting the proof of Theorem 7, we find
that each G.x/ acts reducibly on V whenever we are in any of the exceptional cases in
part (ii) of the theorem. The result follows.

This completes the proof of Corollary 11.
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