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Abstract. Given a hereditary graph property P , consider distributions of random orderings of ver-
tices of graphs G 2 P that are preserved under isomorphisms and under taking induced subgraphs.
We show that for many properties P the only such random orderings are uniform, and give some
examples of non-uniform orderings when they exist.
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1. Introduction

For any (finite or countably infinite) graph G, write OG for the set of possible total order-
ings of the vertex set V.G/, and write DG for the set of all probability distributions on OG .
(For countably infinite graphs, we use the � -algebra generated by all events of the form
u < v, u; v 2 V.G/.) Recall thatH is an induced subgraph of G if the vertex set V.H/ is
a subset of V.G/ and an edge xy lies in H if and only if x; y 2 V.H/ and xy is an edge
ofG. Note that an induced subgraph is determined by the subset V.H/� V.G/. We shall
write GŒS� for the induced subgraph of G with vertex set S .

We call a distribution PG 2 DG consistent if for any two finite isomorphic induced
subgraphs H1, H2 of G, and any isomorphism �W H1 ! H2, the induced orders on H1
andH2 have distributions that are mapped to each other by �, i.e., for all v1; : : : ; vk 2H1,

PG.v1 < � � � < vk/ D PG.�.v1/ < � � � < �.vk//:

(In fact, this then implies the same result even for infinite induced subgraphs.)
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Example 1.1. Define the uniform random ordering onG by assigning to the vertices i.i.d.
uniform U.0;1/ random variablesXv and declaring that v1 < v2 if and only ifXv1

<Xv2
.

This almost surely gives a total ordering of V.G/, and the resulting distribution of order-
ings is clearly consistent. For a finite graph of order n, the uniform random ordering is
just the natural uniform probability distribution on all jOG j D nŠ orderings of V.G/.

There are some cases when the uniform random ordering is the only consistent random
ordering. In this case we shall call the graph G itself uniform. As an example, consider
a homogeneous graph G, namely a graph that is either a complete graph or an empty
graph. As every induced subgraph of order k is isomorphic to itself by any permutation,
we must have that the ordering on any k vertices is uniformly chosen from the kŠ pos-
sible orderings. It thus agrees with the uniform model defined above on any finite subset
of vertices, and hence on the whole graph. The converse is false in general – there exist
infinite non-homogeneous graphs which are uniform. Indeed, we shall see many examples
below. However, for finite non-homogeneous graphs there are always non-uniform con-
sistent random orderings (see for example Theorem 2.2 and Lemma 2.3 below). Hence for
finite graphs,G is uniform if and only if it is homogeneous. We remark that Lemma 2.3 in
particular is useful in constructing several instructive examples. The proof of this lemma
however relies on some detailed calculations that we defer to the Appendix.

A graph property P is a collection of finite labelled graphs (typically on vertex sets
of the form Œn�D ¹1; : : : ; nº), which is closed under isomorphism, so if the labelled graph
G is isomorphic to G0 then G 2 P if and only if G0 2 P . A graph property is called
hereditary if wheneverG 2P andH is an induced subgraph ofG thenH 2P . Hereditary
properties of graphs have been studied for over two decades, and there is a huge family of
results concerning the structure of graphs, hypergraphs, and other combinatorial structures
having a certain hereditary property, the number of graphs of order n in a property, the
difficulty of approximation by graphs in the property, etc. For a sample of results, see
[1, 3–5, 7–10, 13–18, 28–31].

There are two obvious ways of defining a hereditary property of graphs. First, let H

be a collection of graphs, and write FH for the hereditary property consisting of all finite
graphs G that do not contain any induced subgraph isomorphic to some graph in H . We
call the graphs in this property H -free. Second, the collection PG of all finite graphs
isomorphic to some induced subgraph of a (finite or countably infinite) graph G is also a
hereditary property.

Given a hereditary property P , consider probability models that assign to each graph
G 2 P an element PG 2DG , i.e., a random total ordering of its vertex set V.G/. We call
this model consistent if, whenever H; G 2 P and H is isomorphic to an induced sub-
graph H 0 of G, by say �W H ! H 0, then the random order PH has the same distribution
as the random order induced on H 0 by PG . In other words, for all x1; : : : ; xk 2 V.H/,

PH .x1 < � � � < xk/ D PG.�.x1/ < � � � < �.xk//: (1.1)

Note that it follows that each PG must be consistent. For any hereditary property P , the
uniform model, defined by choosing the uniform distribution on all orderings of V.G/ for
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each G 2 P , is clearly consistent. We call the property P uniform if the only consistent
ordering model on P is the uniform one. This terminology is justified by the following
observation.

Lemma 1.2. Let G be a finite or countably infinite graph. Then any consistent random
ordering on G induces a consistent random ordering model on PG . Conversely, any con-
sistent random ordering model on PG is induced from a unique and consistent random
ordering on G. In particular, G is uniform iff PG is uniform.

Proof. Given a consistent ordering PG on G, we define for each H 2 PG the random
ordering given by (1.1), where �W H ! H 0 is any identification of H with an induced
subgraph H 0 of G. The fact that PG is consistent implies that the distribution of this
ordering is independent of the choice of �, and the collection ¹PH ºH2PG

is clearly a
consistent random ordering model on PG . Conversely, suppose we have a consistent ran-
dom ordering model ¹PH ºH2PG

on PG . Define a random ordering on G so that for any
finite set of vertices x1; : : : ; xk 2 V.G/,

P .x1 < � � � < xk/ D PH .x1 < � � � < xk/; (1.2)

whereH DGŒ¹x1; : : : ; xkº�. Consistency of ¹PH ºH2PG
implies that this produces a well

defined probability distribution in DG , which is clearly itself consistent. Moreover, any
distribution in DG that induces ¹PH ºH2PG

must satisfy (1.2), so this distribution on OG
is unique. The last statement also follows as the random ordering on G is uniform iff it is
uniform when restricted to any finite subgraph.

The study of consistent ordering models on families of graphs was started by Angel,
Kechris, and Lyons [6], who showed that the class of all graphs is uniform, as also is, for
example, the class ofKn-free graphs. In fact, they studied not only graphs, but also hyper-
graphs and metric spaces, and gave several applications of their results to uniquely ergodic
groups. Russ Lyons suggested to the authors that they continue the study of consistent
ordering models on hereditary properties of graphs. Some related results on uniform con-
sistent orderings can be found in [26].

The main aim of this paper is to show that for many natural choices of hereditary
property P , the only consistent ordering model is uniform, thus greatly extending the
result just mentioned in [6]. In particular, we shall prove the following result in Section 4.

Theorem 1.3. Suppose that P is a hereditary property such that for any graph G 2 P

and any vertex v 2G there exists a graphG0 2P which is obtained fromG by replacing v
by two twin vertices v1, v2 with the same neighbourhoods as v in G n ¹vº. Suppose also
that there exists a graph G 2 P that is not a disjoint union of cliques or a complete
multipartite graph. Then P is uniform.

Recall that vertices v1; v2 2 G are called twins if the neighbourhoods of v1 and v2 are
the same in G n ¹v1; v2º. Twin vertices may be either adjacent or non-adjacent, and either
possibility is allowed for the vertices v1 and v2 in Theorem 1.3.
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Remark 1.4. The hereditary properties satisfying the assumption of Theorem 1.3 have an
equivalent characterization using the theory of graph limits (see [23]). Each graph limit
(or graphon) W defines a hereditary property PW consisting of all graphs G such that
the induced subgraph density satisfies tind.G;W / > 0. Lovász and Szegedy [24, Proposi-
tion 4.10] have shown that P equals a union

S
W 2W PW for some set W of graph limits

if and only if the first condition in Theorem 1.3 holds.

The next result concerns H -free graphs introduced earlier; it follows from The-
orem 1.3 (see Section 4).

Theorem 1.5. Suppose that H is a set of finite graphs such that either noH 2H contains
a pair of adjacent twins, or no H 2 H contains a pair of non-adjacent twins. Suppose
also that H does not contain the path P3 on three vertices, or its complement xP3. Then
FH is uniform.

For example, Theorem 1.5 applies to triangle-free graphs (as a triangle does not con-
tain a pair of non-adjacent twins), claw-free graphs (the claw K1;3 does not contain
adjacent twins), and chordal graphs (¹C4; C5; C6; : : : º-free graphs) as cycles of length
at least 4 do not contain adjacent twins. However it cannot be applied to, for example,
the hereditary property consisting of all graphs of girth at least 5 (¹C3; C4º-free graphs)
as C3 contains a pair of adjacent twins and C4 contains a pair of non-adjacent twins. We
can however deduce that the class of all graphs with girth at least g is uniform from the
following more general result, proved in Section 5.

Theorem 1.6. Assume P is a hereditary property such that for any G1; G2 2 P and any
vertices v1 2 V.G1/, v2 2 V.G2/, the graph obtained from the disjoint unionG1 [G2 by
identifying the vertices v1 and v2 also lies in P . Then P is uniform.

Remark 1.7. The condition of Theorem 1.6 is equivalent to the condition that a graph G
lies in P if and only if all its 2-connected induced subgraphs do (assuming P contains
some graph with at least two vertices). Indeed, it is not hard to see that P is also closed
under disjoint unions. In particular, Theorem 1.6 applies to the class of all bipartite graphs,
the class of all forests, and the class of all planar graphs, thus answering Question 3.4
of [6]. It also generalises Theorem 5.1 of [6]. Indeed, it shows that the class of all H -free
graphs is uniform whenever H consists only of 2-connected graphs.

We actually derive Theorem 1.6 from the more general, but technical, Theorem 5.1
given in Section 5.

Although Theorem 1.6 applies to the class of all forests, in the case of hereditary
properties of forests we can say much more. Recall that a leaf is a vertex of degree 1.

Theorem 1.8. Suppose P is a hereditary property of forests and suppose that for every
non-empty forest F 2 P , at least one of the following holds:

(i) There exists a leaf u of F such that any forest obtained from F by replacing u by
an arbitrary number of .non-adjacent/ twins and then adding an arbitrary number
of independent vertices lies in P .
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(ii) There exist two leaves u1, u2 of F adjacent to distinct vertices v1; v2 2 V.F / n
¹u1; u2º such that the forest obtained by replacing both u1 and u2 by arbitrary num-
bers of .non-adjacent/ twins lies in P .

Then P is uniform.

Theorem 1.8 too is proved in Section 5. Note that the conditions of Theorem 1.8
imply that either P consists entirely of empty graphs, or P contains all graphs of the form
K1;n [ xKm. (Consider the case when F is a single edge.) Indeed, ¹K1;n [ xKmºn;m>0 is an
example where Theorem 1.8 applies. By comparison, the class of all induced subgraphs
of stars K1;n, n > 1, (i.e., the class of all stars and empty graphs) is not uniform (see
Example 2.1 below).

2. Some non-uniform consistent orderings

Before we prove that many properties P are uniform, we first give some examples of
properties and graphs with non-uniform consistent orderings.

Example 2.1. Suppose that every graph G 2 P is a disjoint union of cliques, and that
some G 2 P is non-homogeneous. We can construct a non-uniform consistent order by
first taking a uniform random order of the cliques, and then a uniform random order of the
vertices within each clique. By taking graph complements we can similarly construct an
example when every G 2 P is a complete multipartite graph. We take a uniform random
order of the partite classes, and then a uniform random order of the vertices within each
partite class.

The following results give constructions of non-uniform consistent orderings for large
classes of graphs and properties. The first construction was suggested by Leonard Schul-
man and proved by Angel, Kechris and Lyons [6]; the alternative proof we give below
was sketched to us by Lyons.

Theorem 2.2. Suppose that there exists � <1 such that for every graph G 2 P , the
maximum degree of G is at most �. Then there exists a consistent random order model
on P that is non-uniform on any non-homogeneous graph in P .

Proof. Let G 2 P be a graph with n vertices. We first show that we can embed G into
Euclidean space Rn in such a way that the distance between vertices x; y 2 V.G/ is c0 if
x and y are not adjacent, and c1 ¤ c0 if x and y are adjacent in G. Indeed, let A D .axy/
be the adjacency matrix of G, defined by axy D 1 if xy 2 E.G/ and axy D 0 otherwise.
Then A is symmetric and all its eigenvalues are real and lie between �� and �. Thus if
" < 1=�, the matrix In C "A is positive definite, and so there exists a symmetric matrix
B D .bij / such that BTB D B2 D In C "A. Place each vertex x 2 V.G/ at the point
px D .bix/

n
iD1 2 Rn. Then the distance between any two distinct vertices x; y 2 V.G/ is

given by kpx � pyk2 D px � px � 2px � py C py � py D 2 � 2"axy . Thus non-adjacent
vertices are at distance c0 D

p
2 and adjacent vertices are at distance c1 D

p
2 � 2".
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Now construct a random ordering of the vertices of G by taking a unit vector u 2 Rn

uniformly at random, and setting x < y if px � u < py � u. This almost surely gives a total
ordering on V.G/ and it is clear that it is consistent. Indeed, any induced subgraph H
is mapped to a set of points that is isometric to the set of points produced by the same
construction applied to H . We also note that this ordering is non-uniform on G, provided
that G is not homogeneous. Indeed, any non-homogeneous graph contains a subgraph
isomorphic to either the path P3 or its complement xP3, and so it is enough to show that
the ordering is non-uniform on any such subgraph. On such a subgraph, the ordering is
given by a random projection of a non-equilateral triangle, which it is easy to see is non-
uniform. For example, the probability that a vertex v is in the middle of the ordering is
proportional to the angle at the corresponding vertex of the triangle.

Lemma 2.3. Let G be a non-homogeneous graph with n vertices. Then there exists a
non-uniform consistent random ordering that is uniform on any subset of n � 1 ver-
tices. Moreover, it can be realised by assigning uniform .dependent/ random variables
Xv 2 Œ0; 1� to vertices v 2 V.G/ in such a way that any set of n � 1 variables Xv are
independent.

Proof. Fix an ˛ 2 Œ0; 1� and a v0 2 V.G/ and define a random ordering on G by giving
each vertex v¤ v0 an i.i.d.U.0;1/ random variableXv 2 Œ0;1�. Pick an edge xy uniformly
at random from G (independently of the Xv , v ¤ v0), and define Xv0

2 Œ0; 1� so thatX
v2V.H/

"vXv � ˛ mod 1; (2.1)

where "v D �1 if v 2 ¹x; yº and "v D 1 otherwise. Note that for any choice of edge
xy 2 E.G/ this is essentially equivalent to assigning i.i.d. U.0; 1/ random variables to all
vertices and conditioning on the event that (2.1) holds. Hence the resulting distribution is
independent of the choice of v0, and is uniform on any subset of n� 1 vertices. Moreover,
the overall probability distribution on orderings is obtained by averaging the distributions
for each choice of edge xy 2 E.G/, and is therefore invariant under any automorphism
of G. Consistency follows as the distribution is uniform on any proper induced subgraph.

We now show that, for suitable ˛, this ordering is not uniform on G itself. Let the
vertices of G be ¹1; : : : ; nº and define Pj1;:::;jr

to be the probability that

Xj1
< � � � < Xjr

< min ¹Xs W s … ¹j1; : : : ; jrºº; (2.2)

i.e., Xj1
; : : : ; Xjr

are the smallest r values of the Xv , and in that order. Define P .x;y/j1;:::;jr

to be the probability that (2.2) holds conditioned on the chosen edge being xy 2 E.G/.
Then

Pj1;:::;jr
D

1

jE.G/j

X
xy2E.G/

P
.x;y/
j1;:::;jr

:

Assume first thatG is not regular and label the vertices so that the degree d1 of vertex 1
is not equal to the degree d2 of vertex 2. Consider

ı D P1;2 � P2;1 D
1

jE.G/j

X
xy2E.G/

.P
.x;y/
1;2 � P

.x;y/
2;1 /:
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By symmetry, P .x;y/1;2 D P
.x;y/
2;1 unless j¹x; yº \ ¹1; 2ºj D 1. Hence, again by symmetry,

letting d 0j be the number of neighbours of j in V.G/ n ¹1; 2º,

jE.G/jı D d 01.P
.1;3/
1;2 � P

.1;3/
2;1 /C d 02.P

.2;3/
1;2 � P

.2;3/
2;1 /

D .d 01 � d
0
2/.P

.1;3/
1;2 � P

.1;3/
2;1 /

D .d1 � d2/
.�1/n

.n � 1/Š

�
n

2

�
Bn�1.˛/;

where the last line follows from Lemma A.2 and Bn.x/ denotes the nth Bernoulli poly-
nomial. In particular, ı ¤ 0 unless ˛ is one of the zeros of the polynomial Bn�1.x/.

Now assume G is regular with vertex degree d . As G is not homogeneous, n > 4 and
we can order the vertices so that ¹1; 3º 2 E.G/ but ¹2; 3º … E.G/. Consider

ı0 D P1;2;3 � P2;1;3 D
1

jE.G/j

X
xy2E.G/

.P
.x;y/
1;2;3 � P

.x;y/
2;1;3 /:

Once again by symmetry, P .x;y/1;2;3 D P
.x;y/
2;1;3 unless j¹x; yº \ ¹1; 2ºj D 1. Hence, again by

symmetry,

jE.G/jı0 D .P
.1;3/
1;2;3 � P

.1;3/
2;1;3 /C .d � 1/.P

.1;4/
1;2;3 � P

.1;4/
2;1;3 /C d.P

.2;4/
1;2;3 � P

.2;4/
2;1;3 /

D .P
.1;3/
1;2;3 � P

.1;3/
2;1;3 / � .P

.1;4/
1;2;3 � P

.1;4/
2;1;3 /:

Now
P
.1;3/
1;2 D

X
i>2

P
.1;3/
1;2;i D P

.1;3/
1;2;3 C .n � 3/P

.1;4/
1;2;3 ;

and similarly for P .1;3/2;1 . Hence by Lemma A.2 (noting that n > 4),

jE.G/jı0 D .P
.1;3/
1;2 � P

.1;3/
2;1 / � .n � 2/.P

.1;4/
1;2;3 � P

.1;4/
2;1;3 /

D
.�1/n

.n � 1/Š

��
n

2

�
� .n � 2/.n � 3C 2Hn�3/

�
Bn�1.˛/ �

.�1/n

.n � 3/Š
Bn�2.˛/;

where Hn D 1C 1
2
C � � � C

1
n

. As Bn�1.˛/ and Bn�2.˛/ are linearly independent, this is
non-zero for all but a finite number of ˛ 2 Œ0; 1�.

Thus in all cases the distribution is non-uniform on V.G/ for suitable ˛.

Theorem 2.4. Suppose P is a hereditary property and H is a graph on at least two
vertices such that for every G 2 P , all induced subgraphs of G isomorphic to H are
vertex-disjoint. Then there is a consistent random ordering model on P that is uniform
on all graphs G 2 P without an induced subgraph isomorphic to H , and is non-uniform
on all non-homogeneous graphs G 2 P containing H as an induced subgraph.

Note that H itself may be either homogeneous or non-homogeneous.

Proof. Assume first that H is homogeneous. Fix ˛ 2 Œ0; 1� and define the following ran-
dom order for each G 2 P . Each vertex v 2 V.G/ is assigned an i.i.d. U.0; 1/ random
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variable Xv , except that if G contains induced subgraphs H1; : : : ; Hk isomorphic to H ,
a fixed vertex vi is chosen from each V.Hi /, and Xvi

2 Œ0; 1� is redefined so thatX
v2V.Hi /

Xv � ˛ mod 1: (2.3)

This is essentially equivalent to conditioning on the event that (2.3) occurs for each i . The
ordering on G is then obtained from the ordering of the Xv in R. Note that the joint dis-
tribution of the Xv , v 2 V.G/, and hence the distribution on the ordering, is independent
of the choices of the vi , and hence is symmetric under all permutations of V.Hi /. Let G0

be an induced subgraph of G and assume G0 contains Hi only for i 2 S � ¹1; : : : ; kº.
By independence of the choice of vi we may assume vi … V.G0/ for i … S . Hence the
induced ordering on G0 is given by exactly the same model. By independence on the vi ,
the distribution is clearly invariant under automorphisms of G0, so the random ordering
model described is consistent on P . It is also clearly uniform on any G 2 P that does not
contain H as an induced subgraph. It remains to show that if G 2 P does contain H as a
proper induced subgraph then the ordering on G is non-uniform. (Note that in this case G
is necessarily non-homogeneous as otherwise it would contain non-vertex-disjoint copies
of H .) Let v 2 V.G/ n V.H/ and assume V.H/ D ¹1; : : : ; nº. Then by Lemma A.1,

P .Xv < X1 < � � � < Xn/ D
1

.nC 1/Š
C
.�1/n�1

nŠ2
Bn.˛/:

Hence, for all but a finite number of choices of ˛, this probability is not 1=.nC 1/Š as
it would be in the case of the uniform distribution. Thus, for a suitable choice of ˛, the
distribution is not uniform on G .

Assume now that H itself is not homogeneous. Fix a non-uniform distribution on H
as given by Lemma 2.3. Fix G 2 P and suppose G contains (vertex-disjoint) copies
H1; : : : ; Hk of H . Define a random ordering on the vertices of G 2 P by giving each
vertex v 2 V.G/ an independent uniform random variable Xv 2 Œ0; 1�, except that on
each Hi we apply the construction of Lemma 2.3, independently for each Hi . In other
words, we fix a choice of vertex vi 2 V.Hi / and then uniformly and independently choose
one edge from each Hi . The random variable Xvi

is then redefined so that (2.1) holds on
each Hi . Once again, if G0 is an induced subgraph of G containing only the copies Hi ,
i 2 S � ¹1; : : : ; kº, then we can without loss of generality assume that vi … V.G0/ for
each i … S . Then the induced ordering on G0 is given by exactly the same model. Hence
the ordering model on P is consistent and has the stated properties.

Remark 2.5. We note that it is important in Theorem 2.4 that the copies of H be vertex-
disjoint. For example, taking H as a single edge and P as any of the uniform properties
mentioned above gives examples with each copy ofH being edge-disjoint but the conclu-
sion of Theorem 2.4 failing. Another instructive example is given in Example 5.3 below,
where the copies ofH intersect in at most one vertex and each copy has “private” vertices
not included in any other copy of H . Nevertheless P is still uniform.
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Despite Remark 2.5, a construction similar to that in Theorem 2.4 is occasionally pos-
sible even when not all copies of H are vertex-disjoint. The following gives an example.

Example 2.6. Let n > 3 and define G to be the infinite double broom consisting of
a path Pn on n vertices with an infinite number of leaves added to the end-vertices of Pn
(so that the longest path in G is PnC2). Let the vertices of the central path be u1; : : : ; un.
Assign i.i.d. U.0; 1/ random variables Xv to all v 2 V.G/ except that Xun

2 Œ0; 1� is
redefined so that

Pn
iD1Xui

� ˛ mod 1, where ˛ 2 Œ0; 1� is a zero of the Bernoulli poly-
nomial Bn.x/. Any induced subgraph ofG that does not contain all vertices of the central
path Pn receives a uniform ordering, as does Pn itself (by symmetry). The only remaining
induced subgraphs arePnC1, single brooms containingPn and at least two leaves attached
at one end-vertex, and double brooms with one or more leaves at each end. Any pair of
such single brooms or double brooms are isomorphic only by an isomorphism which
either fixes Pn or reverses its direction, and hence receive the same distribution of order-
ings. Any copy of PnC1 consists of the central Pn with one leaf at either end. Such a graph
has the uniform random ordering by Lemma A.1 as Bn.˛/ D 0. (The Xui

are exchange-
able, so it is enough to check the distribution of the rank of the leaf v in the ordering
of v; u1; : : : ; un.) Thus the ordering is consistent. On the other hand, BnC1.˛/ ¤ 0 by
Lemma A.3, so the second formula in Lemma A.1 implies that the random ordering is not
uniform on any PnC2 subgraph.

Remark 2.7. Note that the ordering in Example 2.6 is not consistent for nD 2 (the infinite
double star) as the single brooms obtained by adding leaves to one end-vertex of a P2 are
in fact stars, and have many automorphisms which do not preserve the distribution of the
given random order. This is to be expected as the infinite double star is in fact uniform
by Theorem 1.8. Moreover, the class of all induced subgraphs of double brooms with
central path of length 6 n is also uniform by Theorem 1.8. Example 2.6 demonstrates
that Theorem 1.8 does not however apply when the central path length is required to be
exactly n. Indeed, the single broom subgraphs of the double brooms do not satisfy the
conditions of Theorem 1.8.

3. Templates and infinite blow-ups

Consider a (finite) template G, i.e., a graph with a set V of vertices, each vertex labelled
as either full or empty. Define the infinite blow-up G1 of G as an infinite graph with
vertex set

S
v2V Wv where Wv D ¹viº

1
iD1, such that Wv induces an empty or complete

graph according to whether v is empty or full respectively, and for any distinct v; w 2 V

and all i; j > 1, viwj is an edge in G1 if and only if vw is an edge in G. Define the
hereditary property PG as the set of all finite induced subgraphs ofG1, i.e., PG D PG1 .
We shall call a templateG uniform ifG1 (or equivalently PG) is uniform, i.e., if the only
consistent random ordering is the uniform one. Our aim is to prove that most templates
are uniform. This is, however, not always the case.
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Example 3.1. Suppose that the template has no edges and at least two vertices with at
least one of the vertices full. Thus G1 is a disjoint union of some infinite cliques and
(perhaps) some infinite empty graphs, and thus a disjoint union of at least two cliques
(infinite or singletons). Any induced subgraph is thus also a disjoint union of cliques. We
can construct a non-uniform consistent order as in Example 2.1 by first taking a uniform
random order of the cliques, and then a uniform random order of the vertices within each
clique.

Suppose we are given an arbitrary template G and consider first each ‘blob’ Wv sep-
arately. Fix v 2 V and vi 2Wv . Since any permutation of Wv is an automorphism ofG1,
and thus preserves the distribution of the order, the random variables ¹1¹vk < viººk¤i are
exchangeable. Thus, by de Finetti’s theorem (see e.g., [22, Theorem 1.1 and Proposition
1.4]), a.s. the limit

Uvi
WD lim

n!1

1

n

nX
kD1

1¹vk < viº (3.1)

exists. Then each Uvi
is a random variable with Uvi

2 Œ0; 1�. Moreover, if vi < vj , then
1¹vk < viº 6 1¹vk < vj º for every k, and thus Uvi

6 Uvj
.

Lemma 3.2. For each v, ¹Uvi
º1iD1 is a sequence of i.i.d. uniformly distributed random

variables: Uvi
� U.0; 1/.

Proof. The order restricted to Wv has a distribution invariant under all permutations, and
thus it is the uniform random order. We may thus assume that the random order on Wv is
defined by a collection of i.i.d. uniform random variablesXvi

as in Example 1.1. But then
(3.1) and the law of large numbers a.s. yield

Uvi
D lim
n!1

1

n

nX
kD1

1¹Xvk
< Xvi

º D Xvi
:

Moreover, this extends to all blobs, jointly.

Lemma 3.3. The random variables Uvi
, v 2 V and i > 1, are i.i.d. and uniform on Œ0; 1�.

Proof. Consider a finite subset Av of each Wv . Any permutation of Av is an automorph-
ism of G1, and thus the induced order on Av is the uniform random order, and this also
holds even if we condition on the induced orders on all Aw , w ¤ v. Hence the induced
orders on the subsets Av are independent (and uniform). Since the sets Av are arbitrary
finite subsets of the Wv , this means that the induced orders on the sets Wv , v 2 V , are
independent, and thus the families ¹Uvi

º1iD1, v 2 V , are independent.

Next, take two vertices v; u 2 V and compare vertices in the two blobs Wv and Wu.
For every vi 2 Wv , we see in analogy with (3.1), again by de Finetti’s theorem, that a.s.
the limit

Vu;vi
WD lim

n!1

1

n

nX
kD1

1¹uk < viº (3.2)
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exists. Note that Vv;vi
D Uvi

. Each Vu;vi
is a random variable with values in Œ0; 1� and

gives the ‘rank’ of vertex vi with respect to Wu, i.e., the proportion of vertices in Wu

that it exceeds. Note that these random variables are in general neither independent nor
uniform.

Example 3.4. Let the template consist of two full vertices and no edge; thus V D ¹1; 2º

and G1 consists of two disjoint infinite cliques. For the random order described in
Example 3.1, we have V1;2i

D V1;2j
2 ¹0; 1º for all i; j > 1, and V1;2i

� Be.1=2/.

Lemma 3.5. For each pair u; v 2 V , there exists a random distribution function Fu;v on
Œ0; 1� such that, a.s., for every x 2 Œ0; 1�,

Fu;v.x/ D lim
n!1

1

n

nX
iD1

1¹Vu;vi
6 xº: (3.3)

Furthermore, conditioned on Fu;v , the random variables Vu;vi
, i > 1, are i.i.d. with cumu-

lative distribution function Fu;v .

Remark 3.6. When v D u, this holds by Lemma 3.3 with Fu;u.x/ D x a.s., so Fu;u is
non-random.

Proof of Lemma 3.5. We may assume that v ¤ u. Since any permutation of Wv is an
automorphism of G1, it follows from (3.2) that the random variables ¹Vu;vi

º1iD1 are
exchangeable. The result follows from another application of de Finetti’s theorem.

It follows immediately from the definition (3.2) that, for any v;w 2 V and i; j > 1,

vi < wj H) Vu;vi
6 Vu;wj

: (3.4)

Equivalently, interchanging vi and wj ,

Vu;vi
< Vu;wj

H) vi < wj : (3.5)

Remark 3.7. The order is thus described by the variables Vu;vi
, for any fixed u 2 V , in

the case when these random variables are a.s. distinct. (This is not necessarily the case,
as is seen in Example 3.4; in that example the variables V1;2i

do not identify the order
on W2. See also Remark 3.12 below.)

Let FN be the � -algebra generated by all events vi < wj for v;w 2 V and i; j > N ,
and let F1 WD

T1
ND0 FN be the tail � -algebra.

Lemma 3.8. Each Fu;v is F1-measurable.

Proof. As the limits (3.2) and (3.3) do not depend on the first N terms in the sums, Vu;vi
,

i > N , and hence Fu;v are FN -measurable for all N .

Lemma 3.9. The i.i.d. uniform random variables Uvi
, v 2 V and i > 1, are . jointly/

independent of F1. Thus the two families ¹Uvi
ºv;i and ¹Fu;vºu;v2V are independent.
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Note that the random variables ¹Fu;vºu;v2V may be dependent on each other.

Proof. The induced orders on the subsets Wv;N WD ¹viº
N
iD1, v 2 V , are independent and

uniform, even conditioned on FN , since permutations of Wv;N are automorphisms ofG1.
Hence these induced orders are independent of F1, and letting N !1, we find that the
induced orders on the blobs Wv , v 2V , are (jointly) independent of F1. The random vari-
ables Uvi

depend on these induced orders only. The result now follows by Lemma 3.8.

We note some useful formulae.

Lemma 3.10. Let v; u 2 V . Then the following hold a.s.:

(i) For every i > 1,
Vu;vi

D sup
k

¹Uuk
W uk < viº: (3.6)

(ii) For every i > 1,
Vu;vi

D Fv;u.Uvi
/: (3.7)

(iii) For x 2 Œ0; 1�,
Fu;v.x/ D sup ¹s W Fv;u.s/ 6 xº: (3.8)

Hence, Fu;v is the right-continuous inverse of Fv;u.

Proof. (i) Let x WD supk ¹Uuk
W uk < viº. Then

Uuj
< x H) uj < vi H) Uuj

6 x:

Hence (3.6) follows from definition (3.2) and the law of large numbers.
(ii) By (3.4)–(3.5), recalling that Uvi

D Vv;vi
,

Vv;uk
< Uvi

H) uk < vi H) Vv;uk
6 Uvi

:

Hence, the definitions (3.2) and (3.3) imply a.s. that for all " > 0,

Fv;u.Uvi
� "/ 6 Vu;vi

6 Fv;u.Uvi
/:

Since Uvi
is a continuous random variable, and independent of Fu;v by Lemma 3.9,

Uvi
is a.s. a continuity point of Fu;v , and the result follows.
(iii) By (3.3), (3.7) and the fact that ¹Uvi

ºi are i.i.d. and uniform, a.s.,

Fu;v.x/ D lim
n!1

1

n

nX
iD1

1¹Fv;u.Uvi
/ 6 xº D sup¹s W Fv;u.s/ 6 xº:

(This holds a.s., e.g., for all rational x 2 Œ0; 1�, and thus for all x simultaneously.)

Theorem 3.11. Fix any u 2 V . Then the following are equivalent:

(i) The random order on G1 is uniform.

(ii) The random variables Vu;vi
, v 2 V and i > 1, are all i.i.d. and uniform.
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(iii) The random distribution functions Fu;v , u; v 2 V , are a.s. all equal to the identity:
Fu;v.x/ D x, x 2 Œ0; 1�.

We may assume u ¤ v in (iii) as this always holds for u D v (see Remark 3.6).

Proof. (i))(ii): We may assume that the random order is given by i.i.d. uniform random
variables Xvi

as in Example 1.1, and then Vu;vi
D Xvi

a.s. by (3.2) and the law of large
numbers.

(ii))(i): Immediate by (3.4)–(3.5).
(ii))(iii): By (3.3) and the law of large numbers.
(iii))(ii): By Lemma 3.10 (iii), Fv;u D F �1u;v is the identity. Thus Lemma 3.10 (ii)

yields Vu;vi
D Uvi

, and (ii) follows by Lemma 3.3.

Remark 3.12. Consider again any consistent order on G1. It follows from Lemmas 3.3
and 3.9 together with (3.7) that, for any pair u; v 2 V and i; j > 1, the random variables
Vu;ui

D Uui
and Vu;vj

D Fv;u.Uvj
/ are independent, with Uui

uniform. In particular,
these two random variables are a.s. distinct, and thus they determine the order between
ui and vj by (3.4)–(3.5). Hence, the order is a.s. determined by the collection of all Vu;vi

(u; v 2 V , i > 1). (As remarked in Remark 3.7, it is sometimes, but not always, possible
to use just a single u.)

Note also that Lemmas 3.3 and 3.9 together with (3.7) show that the random Vu;vi
may

be constructed by randomly selecting first ¹Fu;vºu;v with the right distribution and then
i.i.d. uniform Uui

, and defining Vu;vi
WD Fv;u.Uvi

/. The conditional distribution of Vu;vi

given ¹Fw;zºw;z2V is thus Fu;v (see Lemma 3.5).

Remark 3.13. This section only uses automorphisms of G1 that preserve each Wv (and
thus are permutations of each Wv). Remark 3.12 thus gives a description of all random
orders that are invariant under this group of permutations of the vertices of G1. Con-
versely, the construction above yields such a random order. In particular, if we fix u and
any distribution of ¹Fu;vºv such that each Fu;v is continuous, this defines a random order
of this type on G1. If some Fu;v have atoms, we may have to further specify the order.

4. Uniformity of templates

Recall that a template G is uniform if the only consistent random order on G1 is the
uniform random order.

Remark 4.1. If G is uniform, then so is its complement xG (with the labels full and
empty interchanged), since the corresponding graphs G1 and xG1 are complements of
each other, and thus have the same isomorphisms between subgraphs.

Lemma 4.2. A template with a single vertex is uniform. More generally, any template
consisting only of empty vertices and no edges is uniform, and so is any complete template
consisting only of full vertices.
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Proof. In the cases described, G1 is homogeneous, and thus any permutation of the ver-
tices is an isomorphism. Hence any consistent random order is uniform. (Cf. the proof of
Lemma 3.2.)

Given a consistent random order onG1, we define a relation� on V by letting v�w
if the induced random order on Wv [Ww is uniform. This relation is clearly symmetric,
and it is reflexive by Lemma 4.2. We shall soon see that it also is transitive.

Lemma 4.3. Suppose that v;w 2 V . Then the following are equivalent:

(i) v � w.

(ii) Vv;ui
D Vw;ui

a.s., for every u 2 V and i > 1.

(iii) Fv;u D Fw;u a.s., for every u 2 V .

(iv) Fu;v D Fu;w a.s., for every u 2 V .

(v) Fw;v.x/ D x a.s., for every x 2 Œ0; 1�.

Proof. (i))(ii): Suppose v � w. By Theorem 3.11 applied to Wv [Ww , Fw;v.x/ D
Fv;w.x/ D x a.s. Hence, Lemma 3.10 (ii) yields Vv;wi

D Uwi
.

Fix u and i . Let " > 0 and choose first a j > 1 such that Uvj
2 .Vv;ui

� "; Vv;ui
/ and

then a k > 1 such that Uwk
2 .Vv;ui

� "; Uvj
/. Then Vv;wk

D Uwk
< Uvj

< Vv;ui
, so

wk < ui by (3.5). Hence, (3.6) yields

Vw;ui
> Uwk

> Vv;ui
� ":

Since " is arbitrary, this yields Vw;ui
> Vv;ui

, Interchanging v and w we obtain (ii).
(ii))(iii): By definition (3.3).
(iii))(iv): By Lemma 3.10 (iii).
(iv))(v): Taking u D w we have Fw;v.x/ D Fw;w.x/ D x.
(v))(i): Theorem 3.11 shows that the induced random order on Wv [Ww is uni-

form.

Corollary 4.4. The relation� is an equivalence relation on V .

Proof. By Lemma 4.3, since (for example) (ii) defines an equivalence relation.

Corollary 4.5. If v � w, then Vw;vi
D Uvi

a.s. for every i > 1.

Proof. By Lemma 4.3, Vw;vi
D Vv;vi

D Uvi
.

Lemma 4.6. The random order on G1 is uniform if and only if v � w for any two
vertices v;w 2 V .

Proof. A consequence of Lemma 4.3 and Theorem 3.11.

Lemma 4.7. Suppose that the template G contains two .not necessarily disjoint/ pairs
u; v and w; z such that the induced subtemplates with vertices ¹u; vº and ¹w; zº are
isomorphic. If u � v, then w � z.
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Proof. The induced subgraphs of G1 on Wu [Wv and Ww [Wz are isomorphic, and
thus the induced random orders on these subgraphs have distributions that are mapped to
each other by the isomorphism mapping ui 7!wi and vi 7! zi . Hence, if the random order
induced on Wu [Wv is uniform, then so is the random order induced on Ww [Wz .

Lemma 4.8. Suppose that the template G contains an induced subtemplate H such that
any consistent ordering on G1 induces a uniform ordering on H1. Moreover, suppose
H contains two .not necessarily disjoint/ pairs of vertices u; v and u0; v0 such that u and
u0 are full, v and v0 are empty, and furthermore uv 2 E.G/ and u0v0 … E.G/. Then G is
uniform.

Proof. Since the ordering on H1 is uniform, we have u � v � u0 � v0.
If z 2 V is empty and zu 2 E.G/, then the subtemplates ¹z; uº and ¹v; uº are iso-

morphic. Since v � u, we have z � u by Lemma 4.7.
If z 2 V is empty and zu … E.G/, we argue similarly using the isomorphic subtem-

plates ¹z; uº and ¹v0; u0º and obtain z � u.
If z 2 V is full we argue similarly using the pairs ¹z; vº and ¹u; vº, or ¹z; vº and

¹u0; v0º to obtain z � v.
Hence z� u� v for every z 2V , and Lemma 4.6 shows that the random order onG1

is uniform.

We now show that any template G containing certain 3-vertex subtemplates is neces-
sarily uniform (see Figure 1).

w

u v

ı

� �
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.......................................................................................................................................................................................................

w

u v

ı

� �
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....................................
..........

w

u v

ı
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w

u v

�

� �
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..........
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....................................
....................................
....................................
..........

(Lemma 4.9) (Lemma 4.11) (Lemma 4.12) (Lemma 4.13)

Fig. 1. Subtemplates implying uniformity of G.

Lemma 4.9. Suppose that the templateG contains two full vertices u and v and an empty
vertex w, with uv; uw 2 E.G/ and vw … E.G/. Then G is uniform.

Proof. First, u � v by Lemma 4.2 applied to the subtemplate ¹u; vº.
The two subgraphs induced by Wu [ ¹w1; w2º and Wu [ ¹w1; v1º are isomorphic,

by an isomorphism mapping w2 7! v1 and fixing everything else; thus the distributions
of their induced random orders are mapped to each other by this isomorphism. Hence, by
(3.2) and Corollary 4.5,

.Vu;w1
; Vu;w2

/
d
D .Vu;w1

; Vu;v1
/ D .Vu;w1

; Uv1
/:

Let x; y 2 Œ0; 1�. By Lemma 3.5, P .Vu;w1
6 x; Vu;w2

6 y/D E.Fu;w.x/Fu;w.y//. Sim-
ilarly, and also using Lemma 3.9, P .Vu;w1

6 x; Uv1
6 y/ D E.Fu;w.x//y. Hence,

E.Fu;w.x/Fu;w.y// D E.Fu;w.x//y; x; y 2 Œ0; 1�: (4.1)
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Taking x D 1 in (4.1) yields EFu;w.y/ D y, and then taking x D y yields

E.Fu;w.x/
2/ D E.Fu;w.x//x D .EFu;w.x//

2:

Hence Var.Fu;w.x// D 0, and thus Fu;w.x/ D EFu;w.x/ D x a.s. Consequently, w � u
by Lemma 4.3.

We have shown that w � u � v. In other words, the ordering is uniform on the sub-
template induced by ¹u; v; wº. The result follows from Lemma 4.8, using the pairs u; w
and v;w.

Lemma 4.10. Let F W Œ0; 1� ! Œ0; 1� be a distribution function on Œ0; 1�, and let
F �1W Œ0; 1�! Œ0; 1� be its right-continuous inverse. If X and Y are random variables
such that X has distribution F and Y has distribution F �1, then

E.X2/C E.Y 2/ > 2=3;

with equality if and only if F is the uniform distribution F.x/ D x.

Proof. Note first the well-known formula

E.X2/ D E

Z 1

0

2x 1¹x < Xº dx D

Z 1

0

2x.1 � F.x// dx:

Next, if U � U.0; 1/, then F.U / has the distribution function F �1, so Y d
D F.U / and

thus

E.Y 2/ D E.F.U /2/ D

Z 1

0

F.x/2 dx:

Hence,

E.X2/C E.Y 2/ D

Z 1

0

�
2x.1 � F.x//C F.x/2

�
dx

D

Z 1

0

.F.x/ � x/2 dx C

Z 1

0

.2x � x2/ dx

D

Z 1

0

.F.x/ � x/2 dx C
2

3
:

The result follows.

Lemma 4.11. Suppose that the template G contains two full vertices u and v and an
empty vertex w, with uw 2 E.G/, uv; vw … E.G/. Then G is uniform.

Proof. Let W 0u WD Wu n ¹u1º. There is an isomorphism between W 0u [ ¹w1º [Wv and

Wu [Wv fixing W 0u [Wv and sending w1 to u1. It follows that Vu;w1

d
D Uu1

, even when
conditioned on the order in W 0u [Wv . Since Fv;u is determined by the order in W 0u [Wv ,
it follows for any x 2 Œ0; 1�, using also Lemma 3.9 and Remark 3.12, that

E.Fu;w.x/ j Fv;u/ D P .Vu;w1
6 x j Fv;u/

D P .Uu1
6 x j Fv;u/ D P .Uu1

6 x/ D x:
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Since Vu;v1
D Fv;u.Uv1

/ by (3.7), and Uv1
is independent of ¹Fu;w ; Fu;vº, it follows that

E.Fu;w.Vu;v1
/ j Fv;u; Uv1

/ D E.Fu;w.Fv;u.Uv1
/// j Fv;u; Uv1

/

D Fv;u.Uv1
/ D Vu;v1

: (4.2)

Next, note that by the same isomorphism, P .Vu;v1
D Vu;w1

/ D P .Vu;v1
D Uu1

/ D 0,
since Uu1

is continuous and independent of Vu;v1
. By symmetry, a.s. Vu;v1

¤ Vu;wj
for

every j , and thus by Remark 3.12, these random variables determine the order between
v1 and wj . It follows that, a.s., using (3.3),

Fu;w.Vu;v1
/ D lim

n!1

1

n

nX
iD1

1¹Vu;wi
6 Vu;v1

º D lim
n!1

1

n

nX
iD1

1¹wi < v1º: (4.3)

However, Ww [ ¹v1º is an infinite empty graph, isomorphic to Ww , and by Lemma 3.2
and (3.1), the r.h.s. has a uniform distribution. Thus QU WD Fu;w.Vu;v1

/ � U.0; 1/, and by
(4.2), E. QU j Fv;u; Uv1

/ D Vu;v1
. Consequently,

1=3 D E. QU 2/ D E.. QU � Vu;v1
/2/C E.V 2u;v1

/ > E.V 2u;v1
/: (4.4)

By the obvious isomorphism of Wu [Wv interchanging Wu and Wv , Vv;u1

d
D Vu;v1

, so
EV 2v;u1

6 1=3 too.
Conditioned on Fu;v and Fv;u D F �1u;v , Vu;v1

and Vv;u1
have distributions Fu;v and

Fv;u, and thus Lemma 4.10 applies and yields

E.V 2u;v1
C V 2v;u1

j Fu;v/ > 2=3: (4.5)

Thus, taking the expectation,

E.V 2u;v1
C V 2v;u1

/ > 2=3: (4.6)

Consequently, there must be equality in both (4.4) and (4.6), and thus a.s. in (4.5).
By Lemma 4.10, this implies that Fv;u.x/ D Fu;v.x/ D x a.s. Furthermore, by (4.4),
Fu;w.Vu;v1

/ D QU D Vu;v1
a.s., where Vu;v1

D Fv;u.Uv1
/ D Uv1

is independent of Fu;w ,
and thus Fu;w.x/ D x. Thus v � u � w by Lemma 4.3.

This shows that the ordering is uniform on the subgraph of G induced by ¹u; v; wº.
Finally, G is uniform by Lemma 4.8 applied to the pairs u;w and v;w.

Lemma 4.12. Suppose that the template G contains two full vertices u and v, and one
empty vertex w, with uw; vw 2 E.G/ and uv … E.G/. Then G is uniform.

Proof. The induced subgraph ofG1 with vertex set ¹w1;w2; u1; v1º has an isomorphism
w1 $ u1, w2 $ v1. Hence, the assumption that the random order of G1 is consistent
implies

P .w1; w2 < u1/ D P .u1; v1 < w1/: (4.7)

By (3.4)–(3.5), and since ¹Vu;wi
ºi are independent of Uu1

by Lemma 3.9 and (3.7) (or
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Remark 3.12),

P .w1; w2 < u1/ D P .Vu;w1
; Vu;w2

< Uu1
/

D E.Fu;w.Uu1
/2/ D E

Z 1

0

Fu;w.x/
2 dx: (4.8)

Furthermore, ¹w1º [Wu is an infinite complete graph, and thus Vu;w1

d
D Uui

� U.0; 1/

(see Lemma 3.2). Thus, for x 2 Œ0; 1�,

x D P .Vu;w1
6 x/ D EFu;w.x/:

Consequently, by (4.8),

P .w1; w2 < u1/ D

Z 1

0

E.Fu;w.x/
2/ dx

>
Z 1

0

.EFu;w.x//
2 dx D

Z 1

0

x2 dx D 1=3: (4.9)

On the other hand, using the Cauchy–Schwarz inequality,

P .u1; v1 < w1/ D P .Vw;u1
; Vw;v1

< Uw1
/ D E.Fw;u.Uw1

/Fw;v.Uw1
//

6
�
E.Fw;u.Uw1

/2/
�1=2�

E.Fw;v.Uw1
/2/
�1=2

: (4.10)

By (3.7), Fw;u.Uw1
/D Vu;w1

and, as noted above, Vu;w1
�U.0;1/. Hence we deduce that

E.Fw;u.Uw1
/2/ D 1=3. Similarly, by symmetry, E.Fw;v.Uw1

/2/ D 1=3. Consequently,
(4.10) yields

P .u1; v1 < w1/ 6 1=3: (4.11)

By (4.7), we thus must have equality in both (4.9) and (4.10). The equality in (4.9) implies
that for a.e. x, Fu;w.x/ D EFu;w.x/ D x a.s., which implies that a.s. Fu;w.x/ D x for
all x 2 Œ0; 1�. Hence w � u by Lemma 4.3. By symmetry, w � v also.

Suppose z is any full vertex of G. If uz 2 E.G/ then z � u by Lemma 4.2, while if
uz … E.G/ then z � u by applying Lemma 4.7 to ¹u; vº and ¹u; zº. Now suppose z is
an empty vertex of G. If zu 2 E.G/ then z � w � u by applying Lemma 4.7 to ¹u;wº
and ¹u; zº. If zw … E.G/ then z � w � u by applying Lemma 4.2 to ¹z; wº. Finally, if
zw 2 E.G/ and zu … E.G/ then we deduce that xG, and hence G, is uniform by applying
Lemma 4.11 to ¹z; u; wº in xG. In all cases we see that z � u. Hence G is uniform by
Lemma 4.6.

Lemma 4.13. Suppose that the subgraph of G induced by the set of full vertices has a
component that is not a clique. Then G is uniform.

Proof. The assumption implies that there exist three full vertices u, v, w in G with
uw; vw 2 E.G/, but uv … E.G/. By Lemma 4.2, w � u and w � v. For any full vertex
z ¤ v;w, either the template induced by ¹w; zº is isomorphic to that induced by ¹u; vº or
that induced by ¹u;wº. Hence z � w for every full vertex z.
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Now let z be an empty vertex. We consider two cases.

Case 1: Either uz 2E.G/ or vz 2E.G/. In this caseG is uniform by either Lemma 4.11
or Lemma 4.12 applied to the subtemplate ¹u; v; zº.

Case 2: uz; vz … E.G/. Let W 0z WD Wz n ¹z1; z2º. In this case, the subgraphs of G1
induced by Wz and W 0z [ ¹u1; v1º are isomorphic, by an isomorphism fixing W 0z . Again,
since the random order is consistent, it follows by (3.2) that

.Vz;u1
; Vz;v1

/
d
D .Vz;z1

; Vz;z2
/ D .Uz1

; Uz2
/:

Hence, arguing as in the proof of Lemma 4.9, for x 2 Œ0; 1�, EFz;u.x/D P .Vz;u1
6 x/D

P .Uz1
6 x/ D x and

E.Fz;u.x/Fz;v.x// D P .Vz;u1
6 x; Vz;v1

6 x/ D P .Uz1
6 x; Uz2

6 x/ D x2:

Furthermore, Fz;u D Fz;v a.s., by Lemma 4.3 since u� v. Consequently, E.Fz;u.x/2/D
.EFz;u.x//2, and thus Fz;u.x/ D EFz;u.x/ D x a.s. Hence z � u by Lemma 4.3.

In both cases we see that z � u. Hence G is uniform by Lemma 4.6.

We call a template G reduced if if contains no adjacent twin full vertices, and no non-
adjacent twin empty vertices. Clearly any adjacent twin full vertices or non-adjacent twin
empty vertices can be merged in a non-reduced template G without affecting G1 and
hence without affecting whether or not G is uniform. Merging all such twins results in a
reduced template, so it is enough to consider just these.

Theorem 4.14. If G is a non-uniform reduced template, then G is either an empty graph
.with at most one empty vertex/ or complete .with at most one full vertex/. In particular,
for any non-uniform template G, G is either complete or empty, and so G1 is either a
disjoint union of cliques or a complete multipartite graph.

Proof. By Lemmas 4.9 and 4.11, any empty vertex must be joined to either all the full
vertices, or none of them. By taking complements we also see that each full vertex is either
joined to all empty vertices or none of them. Thus either all full vertices are joined to all
empty vertices, or no full vertex is joined to any empty vertex. Without loss of generality
(taking complements if necessary), we may assume that every full vertex is joined to every
empty vertex.

By Lemma 4.13, the subgraph of G induced by the full vertices consists of a disjoint
union of cliques. Since we assume G is reduced and any two full vertices in a clique of
full vertices would be adjacent twins, we deduce that no two full vertices are adjacent.
Similarly, applying Lemma 4.13 to the complement of G, we may assume any two empty
vertices are adjacent.

If G contained at least two full vertices and at least one empty vertex, then G would
be uniform by Lemma 4.12. Hence we deduce that either there is no empty vertex, and G
is an empty graph of full vertices; or there is at most one full vertex and G is a complete
graph consisting of empty vertices and at most one full vertex.
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Lemma 4.15. Suppose that G is a template and that G1 has a consistent random
order such that for any three vertices u; v; w 2 V.G1/, the induced random ordering
on ¹u; v;wº is uniform. Then the ordering is uniform.

Proof. Pick any two vertices u; v 2 V.G/, and consider the three vertices u1; u2; v1
in G1. By Remark 3.12 (and the argument there), Uu1

, Uu2
and Vu;v1

D Fv;u.Uv1
/ are

independent, with Uui
uniform, and these three random variables determine the order

between u1, u2 and v1. By assumption, this order is uniform, and thus

1=3 D P .u1; u2 < v1/ D P .Uu1
; Uu2

< Vu;v1
/ D E.V 2u;v1

/:

Similarly, E.V 2v;u1
/ D 1=3. As in the proof of Lemma 4.11, it follows from Lemma 4.10

that Fu;v.x/ D x a.s., and thus u � v by Lemma 4.3. As u and v were arbitrary, the
ordering on G1 is uniform by Lemma 4.6.

Proof of Theorem 1.3. Consider a consistent ordering model on P .
Suppose G 2 P . By repeatedly replacing vertices by twins and using Ramsey’s the-

orem on each subgraph corresponding to one of the original vertices of G, we see that
for all N > 0 there exists a GN 2 P which is obtained from G by replacing each vertex
with either a complete graph or an empty graph on N vertices. By the infinite pigeonhole
principle, there must be a template G0 with underlying graph G such that for infinitely
many N , GN is an induced subgraph of G01 (with N copies of each vertex in G). But
then PG0 �

S1
ND1PGN

�P . Hence the random ordering model on P induces a random
ordering model on PG0 .

Suppose first thatG is not a disjoint union of cliques or a complete multipartite graph.
Since G01 contains G as an induced subgraph, Theorem 4.14 shows that the template G0

is uniform. In particular, the random ordering on G 2 PG0 is uniform.
As G is not a disjoint union of cliques, it contains an induced subgraph isomorphic to

the path P3 on three vertices. Similarly, as G is not complete multipartite, G contains the
graph xP3 consisting of an edge and an isolated vertex. Thus P3; xP3 2 P and receive the
uniform ordering on their vertices. The only other graphs on three vertices are homogen-
eous, so we deduce that for any graph H 2 P and any three vertices u; v;w 2 V.H/, the
induced random ordering on ¹u; v;wº is uniform.

Now suppose G is any graph in P . Let, as above, G0 be a template with underlying
graph G and PG0 � P . By what we just have shown, any set of three vertices in G01
receives the uniform ordering, and thus the ordering of G01 is uniform by Lemma 4.15.
Hence the ordering of G is uniform.

Proof of Theorem 1.5. The hereditary property FH has the property that for any G 2 FH

and v 2 V.G/, some graph G0 obtained by replacing v by twins v1; v2 is also in FH .
Indeed, we can take the twins to be adjacent if there is no graph H 2 H with adjacent
twins, and we can take v1; v2 to be non-adjacent if there is no graph H 2 H with non-
adjacent twins. In both cases no copy of H 2 H in G0 could use both vertices v1; v2,
and hence H would have to be an induced subgraph of G. Without loss of generality (by
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taking complements if necessary), assume we are in the first case, so that any vertex can be
replaced by adjacent twins. If P3 2 FH then we are done by Theorem 1.3 as FH contains
blow-ups of P3 that are neither a disjoint union of cliques nor complete multipartite (for
example, a triangle with a pendant edge). If P3 … FH , then H must contain an induced
subgraph of P3. As P3 … H , H must then contain a graph with two (or fewer) vertices.
But then FH consists only of homogeneous graphs, and is therefore uniform.

5. Gluing graphs

In this section we show in particular that hereditary properties that are closed under join-
ing graphs at a single vertex, and many hereditary properties of forests, are uniform. We
start by proving the result for any hereditary property that satisfies a certain technical
condition.

Denote the disjoint union of two graphsG1 andG2 byG1 [G2. SupposeG is a graph
and H is an induced subgraph. Define the graph ŒG�nH to be the graph obtained by taking
n copies of G (i.e., G [ � � � [ G, n times) and identifying the corresponding subgraphs
H from each copy. Thus, for example, jV.ŒG�nH /j D njV.G/ n V.H/j C jV.H/j. Let xKn
denote the empty graph on n vertices. We also extend these notations in the obvious way
to the case when n D1.

Theorem 5.1. Suppose P is a hereditary property such that for any G 2 P with at least
two vertices, there exists a proper induced subgraph H ¤ ; of G such that for all n > 1,
ŒG�nH [ ŒG�

n
H [

xKn 2 P . Then P is uniform.

Proof. We may assume P contains some non-empty graph as otherwise P is clearly uni-
form. Note that, by taking an induced subgraph, for any G 2 P , G [ G [ xKn 2 P .
(For jV.G/j < 2 take an induced subgraph of G0 [ G0 [ xKn with jV.G0/j > 2.) We
shall prove by induction on jV.G/j that if G 2 P then the ordering on G [ G [ xKn
is uniform for any n. This clearly implies the result. As G [ G [ xKn is homogeneous
for jV.G/j < 2, we may assume jV.G/j > 2. Thus by assumption there exists a proper
induced subgraph H ¤ ; of G such that for all n > 1, ŒG�nH [ ŒG�

n
H [

xKn 2 P . Let
QG D ŒG�1H [ ŒG�

1
H [

xK1. Then P QG � P , and so the consistent ordering on P induces a
consistent ordering on P QG , and hence on QG (see Lemma 1.2). Denote the vertices of xK1
as ¹uiº1iD1, and the copies of H as Hi , i D 1; 2, with vertices V.Hi / D ¹vi;1; : : : ; vi;rº.
Denote the remaining vertices in the j th copy of G0 WD G nH associated toHi as wi;j;k ,
k D 1; : : : ; s. Let QG0 D QG n .H1 [H2/ be the graph QG with the two copies ofH removed,
so that QG0 consists of an infinite number of disjoint copies of G0 together with xK1. We
first consider the induced random ordering on QG0. One can define random variables

Vi;j;k D Vu;wi;j;k
WD lim

n!1

1

n

nX
`D1

1¹u` < wi;j;kº

as in Section 3 giving the order of the wi;j;k relative to the vertices in the xK1 subgraph.
As the copies ofG0 can be permuted in QG0, the random variables Vi;j WD .Vi;j;1; : : : ;Vi;j;s/
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are exchangeable for i 2 ¹1; 2º, j > 1. Hence, de Finetti’s theorem implies that there is
a random distribution � on Œ0; 1�s such that, conditioned on �, the Vi;j are i.i.d. with
distribution �. However, we know that the joint distribution of V1;1 and V2;1, say, is
uniform in Œ0; 1�s as by induction the induced subgraph G0 [ G0 [ xKn has a uniform
random order for all n, and hence G0 [ G0 [ xK1 receives a uniform random ordering.
Thus for any measurable subset S � Œ0; 1�s , E.�.S/�.S// D jS j2 D E.�.S//E.�.S//.
Thus � is a.s. constant and uniform. Thus all Vi;j are i.i.d. uniform random variables in
Œ0; 1�s , i.e., all Vi;j;k are i.i.d. U.0; 1/ random variables.

Let E be any event determined by the ordering on H1 [ H2 [ xK1, and assume
P .E/ D p > 0. The pairs .V1;j ; V2;j /, j > 1, are exchangeable, even conditioned on E .
Hence, there is a random measure �E on Œ0; 1�2s such that conditioned on E and �E ,
.V1;j ; V2;j / are i.i.d. with distribution �E . However, for any measurable subset S �
Œ0; 1�2s , a.s. on E ,

�E.S/ D lim
n!1

1

n

nX
jD1

1¹.V1;j ; V2;j / 2 Sº D jS j:

Hence, the pairs .V1;j ; V2;j /, j > 1, are i.i.d. and uniform, even conditioned on E . In
other words, all Vi;j;k are i.i.d. and uniform, and independent of the ordering onH1 [H2
[ xK1. However, by induction, the random ordering on H1 [H2 [ xK1 is also uniform
as it is uniform on every subgraph H1 [H2 [ xKn. The ordering on QG is a.s. determined
by the ordering on H1 [H2 [ xK1 and the variables Vi;j;k as the Vi;j;k are continuous.
Clearly this distribution is uniform. The result follows as G [ G [ Kn is an induced
subgraph of QG.

Example 5.2. We note that the requirement that we have two copies of ŒG�nH in The-
orem 5.1 is essential. For example, let P be the set of all graphs that are induced subgraphs
of some ŒC4�n¹uº (i.e., a collection of 4-cycles with a single vertex identified). Then for any
G 2P , jV.G/j> 2, the graph ŒG�nH [ xKn lies in P for someH �G,H ¤ ;. Indeed, we
can takeH D ¹uº if u 2 V.G/,H a component ofG ifG is disconnected, the central ver-
tex if G D P3 and either vertex if G D P2. However, the following gives a non-uniform
model on P . Fix ˛ 2 Œ0; 1� and assign to each vertex v an i.i.d. U.0; 1/ random vari-
able Xv , conditioned so that the sum of Xv round any 4-cycle is ˛ mod 1. It is not hard
to see that any induced subgraphH that does not contain either a P3 [ P3 or a proper C4
subgraph is uniform, and any H that is of this form is embedded in ŒC4�n¹uº in an essen-
tially unique manner. In particular, if H D P3 [ P3 then it must occur as a subgraph
of the form ŒC4�

2
¹uº
n ¹uº. If we denote the vertices of the two P3s as ¹v1; v2; v3º and

¹w1; w2; w3º then
P
i Xvi

�
P
i Xwi

� ˛ �Xu mod 1, which implies that the ordering
v1<w1<v2<w2<v3<w3 is impossible asXv1

CXv2
CXv3

<Xw1
CXw2

CXw3
<

Xv2
CXv3

C .Xv1
C 1/. Hence the ordering is not uniform.

Example 5.3. In contrast to Example 5.2, let P 0 be the set of all graphs that are dis-
joint unions of induced subgraphs of some ŒC4�n¹uº. Then P 0 satisfies the conditions
of Theorem 5.1. Hence P 0 is uniform. The ordering described in Example 5.2 is not
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consistent on P 0 due to the fact that there are two distinct induced distributions on sub-
graphs isomorphic to P3 [ P3; the one on ŒC4�2¹uº n ¹uº is not uniform, while the one
on .ŒC4�1¹uº n ¹uº/ [ .ŒC4�

1
¹u0º
n ¹u0º/ is uniform. The class P 0 also has the property that

allC4 subgraphs are edge-disjoint, and indeed also have private vertices that do not belong
to any other C4 (cf. Remark 2.5).

Proof of Theorem 1.6. If P consists only of empty graphs then it is uniform and we are
done, so assume P contains some non-empty graph. ThenK2 2 P , and so by assumption
on P , P3 2 P . Take any graph G 2 P and any vertex v 2 V.G/. We can attach multiple
copies of G together at v to obtain ŒG�n

¹vº
2 P . Joining two of these to the end-vertices

of a P3 and then removing the central vertex gives ŒG�n
¹vº
[ ŒG�n

¹vº
2 P . Now repeatedly

attaching this graph to an end-vertex of P3 and removing the central vertex of the P3
gives ŒG�n

¹vº
[ ŒG�n

¹vº
[ xKn 2 P . Hence P satisfies the conditions of Theorem 5.1, so is

uniform.

In the case when G n H always is a set of isolated vertices, one can weaken the
conditions of Theorem 5.1 so that only one copy of ŒG�nH is required. Indeed, in this case
we can prove by induction that G [ Kn is uniform and, in the proof, note that QG0 is an
empty graph, so is automatically uniform. This implies Theorem 1.8 in the case when (i)
always holds as we can take H to be G n ¹uº. We modify the proof slightly to obtain
Theorem 1.8 in its entirety.

Proof of Theorem 1.8. Given any forest F , write SF for the set of vertices of F that are
adjacent to a leaf of F . Write F �n for the forest obtained by adding (or deleting) isolated
vertices so that F �n has exactly n isolated vertices. For u 2 SF , write F un for the forest
obtained by adding (or deleting) leaves attached to u so that F un has exactly n leaves
attached to u.

Consider a consistent random ordering on P . We prove that for every forest F 2 P

and every u 2 SF [ ¹�º, the random ordering on F un is uniform, provided these graphs
lie in P for every n > 2. The proof is by induction on jV.F /j. If F is empty then SF D ;
and F �n is empty, so uniform. Thus we may assume F is non-empty. As no F un is empty,
either (i) or (ii) holds for F un . This implies there exists vn 2 SF u

n
[ ¹�º with vn ¤ u, such

that the graph F u;vn
n;m WD .F

u
n /
vn
m lies in P . As SF u

n
� SF is finite, this implies that there is

a single v 2 SF [ ¹�º, v ¤ u, such that F u;vn;m 2 P for all n;m. Let F u;v1;1 be the infinite
graph with infinitely many leaves or isolated vertices associated with u and v. Let the
leaves or isolated vertices associated to u be ¹uiºi>1 and let the leaves or isolated vertices
associated to v be ¹viºi>1.

Any finite subgraph of F u;v1;1 belongs to P , so the ordering on P induces a random
ordering on F u;v1;1. Assume first that v ¤ �. As in Section 3, we can define random
variables

Vi D Vu;vi
WD lim

n!1

1

n

nX
kD1

1¹vk < viº:

As ¹uiºi>1 [ ¹viºi>1 is a homogeneous set, Vi are i.i.d. U.0; 1/ random variables. More-
over, as in the proof of Theorem 5.1, these random variables are independent of the
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ordering on F u;v1;0. But the random ordering on F u;v1;0 is also uniform as it is uniform on
all subgraphs F u;vn;0 by induction applied to the proper subgraph F u;v1;0 (or F u;v0;0 if u D �)
of F . Also, a.s. the ordering on F u;v1;1 is determined by the ordering on F u;v1;0 and the Vi
as the Vi are continuous, and this random ordering is clearly uniform. If v D � then, inter-
changing u and v, we again find that the ordering on F u;v1;1 is uniform. Hence in both
cases the ordering on F un is uniform for all n.

Finally, we note that for any non-empty F 2 P conditions (i) or (ii) imply that there
is a u 2 SF such that F un 2 P for all n. Hence the ordering on F is also uniform.

Appendix A. Non-uniformity of some explicit distributions

We recall the Bernoulli polynomials Bn.x/, which can be defined by the generating func-
tion

text

et � 1
D

1X
nD0

Bn.x/
tn

nŠ

(see e.g. [27, Section 24.2]). The first few values areB0.x/D 1,B1.x/D x � 1
2

,B2.x/D
x2 � xC 1

6
, and B3.x/D x3 � 3

2
x2C 1

2
x. The most important property for our purposes

is the Fourier series representation of Bn.x/ [27, (24.8.3)],

Bn.x/ D �
nŠ

.2�i/n

X
k¤0

1

kn
e2�ikx ; (A.1)

which is valid for x 2 Œ0; 1� when n > 2 and for x 2 .0; 1/ when n D 1.

Lemma A.1. Let n > 2 and ˛ 2 Œ0; 1�, and let X1; : : : ; Xn�1 and X , X 0 be i.i.d. U.0; 1/
random variables. Define Xn 2 Œ0; 1� so that

nX
iD1

Xi � ˛ mod 1: (A.2)

Then for 1 6 k 6 n,

P ŒX < Xk and X1 < � � � < Xn� D
k

.nC 1/Š
C
.�1/n�k

nŠ2

�
n � 1

k � 1

�
Bn.˛/;

and

P ŒX;X 0 < Xk and X1 < � � � < Xn�

D
k.k C 1/

.nC 2/Š
C

.�1/n�k

nŠ.nC 1/Š

�
n � 1

k � 1

��
.nC 1/Bn.˛/C 2HnBnC1.˛/

�
;

where Hn D 1C 1
2
C

1
3
C � � � C

1
n

.
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Proof. Let P 1
k
.˛/ D P ŒX < Xk and X1 < � � � < Xn� and P 2

k
.˛/ D P ŒX; X 0 < Xk and

X1 < � � � < Xn�. If ˛ is replaced by a uniform random variable on Œ0; 1�, independent of
X1; : : : ; Xn�1; X; X

0, then X1; : : : ; Xn; X; X 0 are i.i.d. U.0; 1/ random variables and ˛
satisfies (A.2). Thus the Fourier transform

OP
j

k
.t/ WD

Z 1

0

P
j

k
.˛/e�2�it˛ d˛; t 2 Z;

can be represented as

OP
j

k
.t/ D E.P j

k
.˛/e!X1C���C!Xn/ D

Z
X1<���<Xn

X
j

k
e!X1C���C!Xn dX1 � � � dXn;

where ! D �2�it . If t D 0 then OP 1
k
.0/ D k=.nC 1/Š and OP 2

k
.0/ D k.k C 1/=.nC 2/Š

because there are k (respectively k.k C 1/) orderings of X; X1; : : : ; Xn (respectively
X;X 0;X1; : : : ;Xn) contributing to OP j

k
and theX;X 0;X1; : : : ;Xn are i.i.d. Hence we may

now assume t ¤ 0. By symmetry,

OP
j

k
.t/ D

1

.k � 1/Š .n � k/Š

Z
X1;:::;Xk�1<Xk<XkC1;:::;Xn

X
j

k
e!X1C���C!Xn dX1 � � � dXn

D
1

.k � 1/Š .n � k/Š

Z 1

0

�Z x

0

e!y dy

�k�1�Z 1

x

e!y dy

�n�k
xj e!x dx

D
1

!n�1.k � 1/Š .n � k/Š

Z 1

0

.e!x � 1/k�1.1 � e!x/n�kxj e!x dx

D
.�1/n�k

!n�1.k � 1/Š .n � k/Š

Z 1

0

xj .e!x � 1/n�1e!x dx:

Integrating by parts gives

OP
j

k
.t/ D

.�1/n�k

!nn.k � 1/Š.n � k/Š

�
xj .e!x � 1/n

ˇ̌1
0
�

Z 1

0

jxj�1.e!x � 1/n dx

�
D
.�1/kC1

!nnŠ

�
n � 1

k � 1

�Z 1

0

jxj�1.1 � e!x/n dx:

For j D 1, expand .1 � e!x/n using the binomial theorem and note that
R 1
0
es!x dx D 0

for s 2 Z n ¹0º. This gives

OP 1k .t/ D
.�1/kC1

!nnŠ

�
n � 1

k � 1

�
:

For j D 2, we note that

In WD

Z 1

0

x.1 � e!x/n dx D
1

2
�
1

!
Hn; (A.3)
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where Hn D 1C 1
2
C

1
3
C � � � C

1
n

. Indeed, I0 D 1
2

and, for n > 1,

In � In�1 D

Z 1

0

x.�e!x/.1 � e!x/n�1 dx

D
1

n!
x.1 � e!x/n

ˇ̌1
0
�

Z 1

0

1

n!
.1 � e!x/n dx D �

1

n!
:

Hence
OP 2k .t/ D

.�1/kC1

!nnŠ

�
n � 1

k � 1

��
1 �

2

!
Hn

�
:

Now we take inverse Fourier transforms, noting that by (A.1) the inverse Fourier transform
of !�n is X

t¤0

1

!n
e2�i˛t D

1

.�2�i/n

X
t¤0

1

tn
e2�i˛t D �

.�1/n

nŠ
Bn.˛/: (A.4)

We obtain

P 1k .˛/ D
k

.nC 1/Š
C

X
t¤0

.�1/kC1

!nnŠ

�
n � 1

k � 1

�
e2�it˛

D
k

.nC 1/Š
C
.�1/n�k

nŠ2

�
n � 1

k � 1

�
Bn.˛/;

and

P 2k .˛/ D
k.k C 1/

.nC 2/Š
C

X
t¤0

.�1/kC1

!nnŠ

�
n � 1

k � 1

��
1 �

2

!
Hn

�
e2�it˛

D
k.k C 1/

.nC 2/Š
C

.�1/n�k

nŠ.nC 1/Š

�
n � 1

k � 1

��
.nC 1/Bn.˛/C 2HnBnC1.˛/

�
for almost all ˛ 2 Œ0; 1�. As in both cases both sides are continuous in ˛, these in fact hold
for all ˛ 2 Œ0; 1�.

Lemma A.2. Let X1; : : : ; Xn�1 be i.i.d. U.0; 1/ random variables. Fix ˛ 2 Œ0; 1� and
1 6 i < ` 6 n and define Xn 2 Œ0; 1� so that

nX
j¤i;`

Xj �Xi �X` � ˛ mod 1: (A.5)

Define P .i;`/j1;j2;:::;jr
to be the probability that

Xj1
< � � � < Xjr

< min.Xs W s … ¹j1; : : : ; jrº/; (A.6)

i.e., the smallest r values of Xk are Xj1
; : : : ; Xjr

in that order. Then for distinct i; j; k; `,

P
.i;`/
i;j � P

.i;`/
j;i D

.�1/n

.n � 1/Š

�
n

2

�
Bn�1.˛/ .n > 3/;

P
.i;`/

i;j;k
� P

.i;`/

j;i;k
D

.�1/n

.n � 1/Š
.n � 3C 2Hn�3/Bn�1.˛/C

.�1/n

.n � 2/Š
Bn�2.˛/ .n > 4/;

where Hn D 1C 1
2
C

1
3
C � � � C

1
n

.
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Proof. Consider the Fourier transform

OP
.i;`/
j1;:::;jr

.t/ D

Z 1

0

P
.i;`/
j1;:::;jr

.˛/e�2�it˛ d˛; t 2 Z:

If we consider ˛ to be a uniform random variable in Œ0; 1� independent of X1; : : : ; Xn�1,
then X1; : : : ; Xn are now i.i.d. U.0; 1/ random variables and ˛ satisfies (A.5). Thus

OP
.i;`/
j1;:::;jr

.t/ D

Z
D

e"1!X1C���C"n!Xn dX1 � � � dXn;

where ! D �2�it , "s D 1 if s ¤ i; ` and "i D "` D �1, and D � Œ0; 1�n is the domain
given by (A.6). For the first statement we can by symmetry assume .i; j; `/ D .1; 2; 3/.
Then

OP
.1;3/
1;2 .t/ � OP

.1;3/
2;1 .t/

D OP
.1;3/
1;2 .t/ � OP

.2;3/
1;2 .t/

D

Z
X1<X2<X3;:::;Xn

.e�!X1C!X2 � e!X1�!X2/e�!X3C!X4C���C!Xn dX1 � � � dXn:

For t D 0 (i.e., ! D 0) this is clearly zero, so assume now that t ¤ 0. ThenZ 1

X2

e"!x dx D
1

"!
.1 � e"!X2/

for " 2 ¹�1; 1º, andZ X2

0

.e�!X1C!X2 � e!X1�!X2/ dX1 D
1

!
.e!X2 C e�!X2 � 2/:

Hence integrating over all Xs , s ¤ 2, gives

OP
.1;3/
1;2 .t/ � OP

.1;3/
2;1 .t/ D

1

!n�1

Z 1

0

.e!x C e�!x � 2/.�1C e�!x/.1 � e!x/n�3 dx

D
1

!n�1

Z 1

0

.e!x � 1/2.1 � e!x/n�2e�2!x dx

D
1

!n�1

Z 1

0

.1 � e!x/ne�2!x dx

D
1

!n�1

�
n

2

�
;

where in the last line we have expanded .1 � e!x/n using the binomial theorem and usedR 1
0
es!x dx D 0 for s 2 Z n ¹0º. Now take the inverse Fourier transform using (A.4) to

get

P
.1;3/
1;2 .˛/ � P

.1;3/
2;1 .˛/ D

.�1/n

.n � 1/Š

�
n

2

�
Bn�1.˛/

for almost all ˛ 2 Œ0; 1�. However, as both sides are continuous in ˛, this holds for all
˛ 2 Œ0; 1�.
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For the second statement we can assume without loss of generality that .i; j; k; `/ D
.1; 2; 3; 4/. Then, performing the integration over X1, X4; : : : ; Xn, and finally over X2,
we have

OP
.1;4/
1;2;3 .t/ �

OP
.1;4/
2;1;3 .t/

D OP
.1;4/
1;2;3 .t/ �

OP
.2;4/
1;2;3 .t/

D

Z
X1<X2<X3<X4;:::;Xn

.e�!X1C!X2 � e!X1�!X2/e!X3e�!X4C!X5C��� dX1 � � � dXn

D
1

!n�2

Z
X2<X3

.e!X2 C e�!X2 � 2/e!X3.�1C e�!X3/.1 � e!X3/n�4 dX2 dX3

D
1

!n�2

Z
X2<X3

.e!X2 C e�!X2 � 2/.1 � e!X3/n�3 dX2 dX3

D
1

!n�1

Z 1

0

.e!x � e�!x � 2!x/.1 � e!x/n�3 dx:

Hence, using (A.3),

OP
.1;4/
1;2;3 .t/ �

OP
.1;4/
2;1;3 .t/ D

1

!n�1

Z 1

0

.e!x � e�!x � 2!x/.1 � e!x/n�3 dx

D
1

!n�1
..n � 3/ � ! C 2Hn�3/:

Taking inverse Fourier transforms, again using (A.4), gives

P
.1;4/
1;2;3 .˛/ � P

.1;4/
2;1;3 .˛/ D

.�1/n

.n � 1/Š
.n � 3C 2Hn�3/Bn�1.˛/C

.�1/n

.n � 2/Š
Bn�2.˛/

for almost all ˛ 2 Œ0; 1�, and hence for all ˛ 2 Œ0; 1� by continuity.

Finally, we record a well-known fact, easily shown by induction using symmetry and
B 0n.x/ D nBn�1.x/.

Lemma A.3. The only zeros of Bn.x/ in Œ0; 1� are 0; 1
2
; 1 for odd n > 3, and exactly two

values, one in .0; 1
2
/ and one in .1

2
; 1/, for even n > 2.

In particular,Bn.x/ andBnC1.x/ have no common zeros in Œ0;1�. (In fact, this extends
to all complex zeros; equivalently, all zeros are simple, see [19, 20].)
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