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Abstract. We prove that quantized multiplicative quiver varieties, quantum character varieties, and
Kauffman bracket skein algebras each define sheaves of Azumaya algebras over the smooth loci of
their corresponding classical moduli spaces. In the case of skein algebras this establishes a strong
form of the Unicity Conjecture of Bonahon and Wong.

Our proofs exploit a strong compatibility between quantum Hamiltonian reduction and the
quantum Frobenius homomorphism as well as a natural nondegeneracy condition satisfied by each
of the classical Hamiltonian spaces. We therefore introduce the concepts of Frobenius quantum
moment maps, Frobenius Poisson orders and their Hamiltonian reductions, and apply them to the
study of Azumaya loci.

Keywords: character variety, quantum groups, skein algebra, Azumaya algebra, quantum
Frobenius, quiver variety.

1. Introduction

In this paper we study quantized character varieties, and quantized multiplicative quiver
varieties, when the quantization parameter is a root of unity. Our main results describe
these quantized moduli spaces as Azumaya algebras — meaning that, étale-locally, they
are sheaves of matrix algebras — over an explicitly given open locus on the spectrum of
their centers. In the quiver examples, this spectrum is the classical multiplicative quiver
variety, while for character variety examples it is the classical character variety.

As a key application, we also treat the so-called Kauffman bracket skein algebra of a
surface. The ‘Unicity Conjecture’ of Bonahon—Wong asserts that the Kauffman bracket
skein algebra is Azumaya over some non-empty open subset [14—16]; in this form it was
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first proved by Frohman, Kania-Bartoszynska, and L& [29], who showed that the set of
Azumaya points was non-empty and open but did not determine the locus precisely. We
improve upon their result by showing that the Azumaya locus in fact contains the smooth
locus.

Both classes of quantizations are constructed via the process of quantum Hamiltonian
reduction, and in both cases the theory of Poisson orders equips the quantization with a
connection over an open symplectic leaf. Our primary techniques, therefore, exploit sev-
eral remarkable compatibilities between Lusztig’s quantum Frobenius homomorphism on
the quantum group, the theory of Poisson orders, and the procedure of quantum Hamilto-
nian reduction. To this end, we develop the frameworks of Frobenius Poisson orders and
their Frobenius quantum Hamiltonian reductions. We exploit the Frobenius Poisson order
to determine the Azumaya points before reduction, and then we show that Frobenius Pois-
son orders descend to Poisson orders on the Hamiltonian reduction, and hence conclude
that the Azumaya algebras we constructed before reduction descend to Azumaya algebras
on the Hamiltonian reduction. A further remarkable feature of both classes of examples is
that they are non-degenerate Hamiltonian G-Poisson spaces, which allows us to describe
the symplectic leaves explicitly in terms of the classical multiplicative moment map.

We first recall our two motivating classes of examples, then state our main results
concerning them, and then discuss the general results and techniques in more detail.

1.1. Character varieties and their quantization

Given a reductive group G, the G-character stack Chg (.S) of a connected topological sur-
face S (possibly with boundary) is the moduli space of G-local systems on S, equivalently
of representations 71 (S) — G, modulo the conjugation action. To construct Chg(S),
one considers first the framed character variety, Chg (S), consisting of G-local systems
with a fixed trivialization at one point; this is an affine variety, equipped with a G-action
by changes of framing. The framed character variety carries the Fock—Rosly Poisson
structure, and admits a multiplicative moment map Chfé (S) — G. The character vari-
ety Chg(S) is then the quotient of Chf(r; (S) by the G-action.

Given now a closed surface S of genus g, let us denote by S° the surface obtained by
removing some small disk. An important observation is that the character variety of S is
obtained from the character variety of S° via a procedure of group-valued Hamiltonian
reduction [3,5,63]. This means that Chfé (S°) carries a multiplicative moment map valued
in the group G, which records the holonomy around the boundary. The multiplicative
Hamiltonian reduction then computes the joint effect of attaching the disk and quotienting
by the G-action. The character variety obtained in this way is complicated — it is singular
in general, and may have several irreducible components. There is an important open
subset of the character variety called the ‘good locus’; it consists of the closed orbits
whose stabilizer is the center. It is empty in genus 1, but non-empty for genus greater
than 1 (and in fact dense for G = GLy, SLy).

Functorial quantizations of character varieties were introduced in [10]; it was also
proved there that the framed quantizations of punctured surfaces could be described alge-
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braically via (mild generalizations of) certain ‘moduli’ algebras Ag defined combinatori-
ally by Alekseev, Grosse, and Schomerus [1]. In the case of closed surfaces, the resulting
quantized character varieties were shown in [11] to admit a description via quantum
Hamiltonian reduction of the algebras Ag, echoing the classical construction. In particu-
lar, in [10] a ‘distinguished object’ was introduced — a non-commutative stand-in for the
structure sheaf — whose endomorphism algebra gives a quantization of the affine character
variety, and which is computed via quantum Hamiltonian reduction.

In the case G = SL,, the Kauffman bracket skein algebra provides another celebrated
quantization of the character variety. The Kauffman bracket skein algebra K4(S) with
parameter A € C* is the vector space spanned by isotopy classes of links (L) drawn in
the cylinder S x I over the surface, modulo the relations

Q=1 {oO)=cr-w
D=0+ D),

where the diagrams represent links which are as depicted in some oriented 3-ball, and
identical outside of it. The algebra structure on K4(S) is obtained by vertically stacking
links in S. It was shown by Turaev [69] that the Kauffman bracket skein algebra provides
a deformation quantization of the SL,(C)-character variety of S.

1.2. Multiplicative quiver varieties and their quantization

Let QO be a quiver with dimension vector d. The multiplicative quiver variety is a moduli
space of representations of a doubled quiver satisfying certain moment map relations, first
introduced in [23]. It is constructed by first recalling that the collection of representations
of the doubled quiver of Q with dimension vector d forms a product of matrix spaces.
The framed representation variety Mg (Q, d) is an open locus of this product of matrix
spaces, defined by the non-vanishing of certain determinants, and admits a multiplicative
moment map to the gauge group G = [] GL,,, where the product runs over the set
of vertices of Q. The multiplicative quiver variety M(Q, d, &, 0) is the multiplicative
GIT Hamiltonian reduction of the framed representation variety Mg (Q, d) by the gauge
group G at a moment parameter £, and with stability parameter 0 (see [71,76]):

M(Qv d, 57 9) = Mfr(Q’ d)//é-’oGd.

According to [23], certain special cases of multiplicative quiver varieties yield moduli
spaces of GL y-connections with irregular singularities or, equivalently, moduli spaces of
representations of 771 (S), with prescribed monodromies around the punctures.
Quantizations of multiplicative quiver varieties were introduced in [37]. The construc-
tion involved first quantizing M (Q, d) via an algebra D, (Mat(Q, d)), then quantizing
the moment map, and defining M(Q, d, &, ) as a quantum Hamiltonian reduction. For
a more thorough recollection of multiplicative quiver varieties and their quantization, see
Section 5. The algebras £, (Mat(Q, d)) give deformations of M (Q, d), which are flat
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over the ring C[g, ¢~ ']. In [37] it was shown that the quantum Hamiltonian reductions
of D;(Mat(Q, d)) are formally flat (i.e., they are flat when tensored over the ring C[#],
where i = log ¢) whenever the classical multiplicative moment map is flat; by [23] this
can be read off from the dimension vector and the moment map parameters. However,
flatness of the quantum Hamiltonian reduction over C[g, ¢~ !] remains unsettled.

1.3. Main results: Examples and applications
Our main results in the context of the preceding examples are as follows:

Theorem 1.1. Let G be a connected reductive group and q a primitive £-th root of unity,
which together satisfy Assumption 3.1. Let S be a closed topological surface of genus g,
and denote by S° the surface obtained by removing some open disk from S.

(1) The moduli algebra Aso is finitely generated over its center, which is isomorphic to
the coordinate ring of the classical framed G-character variety Chfé (S°) = G?¢.

(2) The Azumaya locus of the moduli algebra Ago coincides with the preimage of the
open cell G° C G under the classical moment map Chg ($°) = G.

(3) The quantized character variety of the closed surface S is finitely generated over its
center, which is isomorphic to the coordinate ring of the classical character variety.
It may be constructed as a Frobenius quantum Hamiltonian reduction of Ago.

(4) The quantized character variety of the closed surface S is Azumaya over the entire
‘good locus’ of Chg(S).

We remark that the proofs of statements (3) and (4) apply identically to the rwisted
character variety of S, where we take G = GLy, and we require that the holonomy
around the boundary of S° is a primitive N -th root of unity [34]. In this case all points are
‘good’ in the above sense and the quotient is smooth; we obtain in this way an Azumaya
algebra defined over the entire twisted character variety.

Our techniques apply, in particular, to skein algebras such as the Kauffman bracket
skein algebra. In a series of papers [14—16] it was proved that the Kauffman bracket
skein algebra at roots of unity has a central subalgebra isomorphic to the functions on the
classical SL,(C)-character variety, and in [29] it was proved that this is in fact the whole
center and moreover that the Azumaya locus is open and dense. We prove the following
theorem in Section 4.4:

Theorem 1.2. Suppose that £ > 2 is an odd integer, and that { is a primitive £-th root of
unity. Then the skein algebra K¢ (S) is Azumaya over the whole smooth locus of Chgy, (S).

Remark 1.3. While Theorem 1.2 fits naturally in the broader framework we develop in
the paper, those readers who are only interested in the proof of Theorem 1.2 (i.e., in the
precise determination of the non-singular locus), and who are already familiar with [29],
may wish to skip directly to Section 4.4, referring back to Sections 2 and 3 only as needed.
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It is remarkable that the proof of the corresponding ‘unicity theorem’ for quantum
character varieties in Theorem 1.1 is uniform in all groups, and follows from functoriality
and generalities about quantum Hamiltonian reduction, in contrast to the hands-on alge-
braic methods in the skein literature. Precise determination of the Azumaya locus, as well
as an extension of the unicity theorem to more general groups in this way, was a major
motivation for this work.

Turning now to the quiver examples, we have the following result.

Theorem 1.4. Let £ > 1 be an odd integer, and q a primitive £-th root of unity.

(1) The algebra Dy(Mat(Q, d)) is finitely generated over a central subalgebra, which is
isomorphic to the coordinate ring O (M(Q,d)) of the classical framed multiplicative
quiver variety.

(2) D;Mat(Q,d)) is Azumaya over the preimage in Mg (Q, d) of the big cell G° C G
under the multiplicative moment map Mg (Q,d) — G.

(3) Frobenius quantum Hamiltonian reduction defines a coherent sheaf of algebras over
the classical multiplicative quiver variety M(Q,d, €, 0), which is Azumaya over the
locus M*(Q,d, &, 0) of 0-stable representations.

In particular, these theorems identify the center of the algebra £D,(Mat(Q, d))
(resp. Ago) with functions on Mg(Q, d) (resp. Chg(S)), and likewise identify the center
of the quantized multiplicative quiver variety (resp. quantum character variety) with the
affinization of M(Q,d, £, 0) (resp. of the classical character variety). It is already difficult
to compute such centers directly, and our results imply, by the flatness in g, that the center
is trivial away from roots of unity, a fact which is again not easy to see directly.

The Azumaya property asserts moreover that each sheaf is étale-locally the endomor-
phism algebra of a vector bundle on the classical variety, or equivalently, that the fiber of
the algebra at each point is a matrix algebra over C. In each statement, the second asser-
tion is derived from the first via the process of Frobenius quantum Hamiltonian reduction,
which is described in the next subsection.

Remark 1.5. Modules over an Azumaya algebra form an invertible sheaf of categories
which is locally trivial for the étale topology, i.e., a gerbe. It would be interesting to
understand this gerbe more conceptually. In a related direction, we expect that modules
over the quantum group at a root of unity form a factorizable category relative to its
Miiger center. Using the results of Gwilliam—Scheimbauer [33], one may prove that this
implies that this category defines an invertible object in the Morita category of braided
monoidal categories relative to the classical representation category of the group, i.e., it
might be interpreted as a ‘higher Azumaya algebra’. In particular, this will formally imply
that its factorization homology over a topological surface S forms an invertible sheaf of
categories over the classical character variety Chg (S).
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1.4. Main results: Methods and general results

The proofs of our main results are rooted in a collection of beautiful ideas emerging
from the literature on quantum groups and geometric representation theory, most notably
the seminal paper [12] where the Hamiltonian reduction of Azumaya algebras in char-
acteristic p was first carried out for differential operators with applications to Cherednik
algebras, and [74], where a g-analog was developed to study g-difference operators and
double affine Hecke algebras at roots of unity. Similar techniques were used in the study
of hypertoric varieties in positive characteristic [68], and of their g-analogs, quantum
multiplicative hypertoric varieties [30].

A significant technical portion of the paper develops a framework generalizing these
examples to our setting. Let us therefore review some of the ingredients here, many of
which are well-known, and some are new.

Integral forms of the quantum group. Let G be a connected reductive group, with g its Lie
algebra, and U = U(g) its universal enveloping algebra. For the remainder of the paper
we will reserve the letter ¢ to denote a complex root of unity, and £ to denote its order.
We will assume G and £ satisfy a number of mild assumptions (see Assumption 3.1).

We shall require several related forms of the quantum group associated to g. Our basic
reference is [21]. For us, the quantum group at generic parameters refers to the Drinfeld—
Jimbo rational form of the quantum group, defined over the base ring K = C(¢) of rational
functions in a variable ¢ with coefficients in C; we will denote this rational form of the
quantum group by Ug. It is generated by the quantum Cartan subalgebra, isomorphic to
the group algebra of the coweight lattice of G, and by the Serre generators E, and F,
for each positive simple root «. We do not recall the relations in detail for general g (see
instead [21, Chapter 9]), because we will only use some essential functorial properties,
which we detail later in this section.

In addition to the rational form of the quantum group, we consider the so-called
divided powers integral form' of the quantum group, introduced by Lusztig [51], and
defined as follows. Let R = C[t*!] denote the subring of X consisting of Laurent poly-
nomials in ¢, and consider the R-subalgebra U E of Uy generated by the quantum Cartan

,
generators and an integer family of divided powers Eg) = [b]Z! for each Serre genera-
. do _4—rd,
tor. Here [r], denotes the quantum integer %, dy = (@, )/2 and [r],! denotes

the quantum factorial [r]q[r — 1] - - - [2]a[1]a- We reserve the notation UqL for the base-
changed algebra,
L L

via the algebra homomorphism from R to C given by ¢ + ¢, our chosen root of unity.
Finally, we denote by u, the small quantum group, which we regard as a subalgebra
of U ;‘ generated by the ‘undivided powers’ E(gl), Fosl), together with the quantum Cartan

generators.

!For simplicity we study integral forms over the ring C [t 1] rather than Z[r+1].
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Definition 1.6. Let Rep®(G), Repy (G), Rep,(G), Rep(uy(g)), and Rep(G) denote
the categories of locally finite-dimensional modules, respectively, of Lusztig’s integral
form U :/]i (which are inductive limits of submodules which are finitely generated projec-
tive over JR), the rational form Uy, its specialization U, L the small quantum group ug,
and the classical enveloping algebra U, such that the weights of the Cartan subalgebra lie
in the weight lattice of G.

The quantum Frobenius. An important feature of Lusztig’s integral form is that it admits
a homomorphism of Hopf algebras,

Fr:U ;‘ — U,
uniquely defined so that for all simple roots o, we have

FMO e,
0, {}n.

ESMO 4n,

Fr(EM) =
(Ey"”) {0’ ¢tn.

Fr(FM) = {
The ‘quantum Frobenius’ map Fr is a surjective homomorphism of quasi-triangular
Hopf algebras, whose kernel is the two-sided ideal generated by the augmentation ideal
ker(e) of the small quantum group u,(g). Thus, we have Lusztig’s resulting ‘short exact

sequence’ of Hopf algebras,
Fr

ug > Uy — U. (1.1)
Basic references for the quantum Frobenius include [7,21,44-46,52,53,57].
This setup gives rise to a remarkable adjoint pair of braided tensor functors,

Fr*:Rep(G) — Rep,(G), Fr.:Rep,(G) — Rep(G),

the pullback via Fr and the passage to u,-invariants, respectively. We note that Fr, o Fr*
is the identity functor on Rep(G); in particular, the functors (Fr*, Fr.) form an adjoint
pair. The functor Fr* is braided monoidal, and maps into the Miiger center of Rep,(G).
That is, for any object V' in Rep(G) and any object W in Rep, (G ), the two braidings,

OF (v),w and ov_[,}Fr*(V): F*(V)@ W — W Q Fr*(V),
coincide. In fact, each is the switch-of-factors map on the underlying vector space.

Frobenius Poisson orders. The notion of a Poisson order, introduced in [18], consists of
a non-commutative algebra A, a central subalgebra Z of A, a Poisson bracket on Z, and
a linear map from Z to Der(A). The general and elegant formalism developed in loc. cit.
produces isomorphisms between fibers of any two points in the same symplectic core of
Spec(Z), in particular on any two points of the open symplectic leaf. For instance, if A
is generically Azumaya over Z, it is in fact Azumaya over the whole open symplectic
leaf. Poisson orders have been applied more recently to the theory of discriminants of PI
algebras [19,58] and Sklyanin algebras [75].

The general method of obtaining Poisson orders is as follows. Suppose A g is a family
of associative algebras parametrized by t € R = C[t,1~!] together with a central subal-



I. Ganev, D. Jordan, P. Safronov 3030

gebra Z C A, at the special value ¢ = ¢. Then under a mild assumption (which is in
particular satisfied when Z is the entire center of A,, see Proposition 3.23) we get the
structure of a Poisson order on the pair (44, Z).

In our examples, A is a family of algebras in Repg (G), so we combine the quantum
Frobenius map and the notion of a Poisson order into the notion of a Frobenius Poisson
order. Namely, a Frobenius Poisson order consists of an algebra A, € Rep,(G), a Poisson
algebra Z € Rep(G) and a central embedding Fr*(Z) C A, such that (4,4, Z) forms a
Poisson order. If Ag is a flat family of associative algebras in Repg (G ), and Z € Rep(G)
is a central subalgebra at the special value ¢ = ¢, then under the same mild assumption
(Ag4. Z) forms a Frobenius Poisson order (see Proposition 3.24).

Frobenius quantum Hamiltonian reduction. If G is a Poisson-Lie group and Z = Spec Z
is a Poisson G-variety equipped with a classical moment map u: Z — G (we recall
the relevant formalism of group-valued moment maps in Section 2), the affine quotient
Z // G =pu'(e)/G = Spec O(11~1(e))C carries a natural structure of a Poisson variety;
see Proposition 2.9.

Similarly, if A, is an algebra in Rep,(G) equipped with a quantum moment map
Hq: O4(G) — A, from the reflection equation algebra @, (G) (see Sections 3.3 and 3.4
for the relevant definitions), then we can form the quantum Hamiltonian reduction
Ay // UqL(g), which is still an associative algebra (see Proposition 3.13).

We are interested in obtaining a Poisson order structure on the Hamiltonian reduction
of (44, Z), so we need to assume the two moment maps are compatible with each other:
this leads to the notion of a Frobenius quantum moment map for a Frobenius Poisson order

(A4, Z). Namely, we assume that the composite O(G) C O4(G) L, Ay factors through
the central subalgebra Z C A, which gives rise to a classical moment map Z — G.

Our first result in this direction is that given a Frobenius Poisson order (44, Z)
equipped with such a Frobenius quantum moment map satisfying some extra compati-
bilities (see Definition 3.20 for the notion of a G-Hamiltonian Frobenius Poisson order)
the Hamiltonian reduction (4, //Uf(g). Z // G) becomes a Poisson order (see Proposi-
tion 3.21).

Our second result in this direction is the following mechanism for obtaining Hamilto-
nian Frobenius Poisson orders (see Proposition 3.28). Suppose Ag € Repz(G) is a flat
family of algebras such that the map on invariants (A eR)UﬂL?(Q) — (Aq)UC% @ is surjec-
tive, Z C A, is a central subalgebra and pg: O®(G) — Ag is a quantum moment map.
Then (A4, Z) becomes a Hamiltonian Frobenius Poisson order. In examples we check the
surjectivity assumption using a good filtration on A (see Section 3.2).

Distinguished fibers. In each of our examples there is a distinguished point — correspond-
ing to the trivial local system, and the trivial quiver representation, respectively, where the
Azumaya property can be checked directly: for character varieties this proceeds by reduc-
ing to the small quantum group, while for quiver varieties it requires a long computation.

Non-degenerate G-Hamiltonian varieties. In order to fully exploit the method of Poisson
orders, we require a description of the open symplectic leaf of the framed moduli space.
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It turns out that in our examples these can be described purely in terms of the moment
map, because both of our examples are non-degenerate Poisson G-varieties as defined
in [3]. For framed character varieties, this is proved in loc. cit., while for framed quiver
varieties, we use a convenient characterization of non-degeneracy due to Li-Bland—Severa
[48] to prove that they are non-degenerate by a direct computation in coordinates. We
show (Theorem 2.15) that given a non-degenerate Poisson G-variety X equipped with a
moment map u: X — G, the open symplectic leaf of G is given by the preimage 1~ (G°)
of the big cell G° = B4y B_ C G.

Langlands duality at even roots of unity. Throughout the paper we make simplifying
assumptions on G and the order £ of the root of unity g, e.g. that G in the semisimple case
is of adjoint type and ¢ is odd. This ensures that the Miiger center of Rep, (G) is identified
with the symmetric monoidal category Rep(G) equipped with the obvious braiding. This
no longer holds if we relax the assumptions on G and £.

Let us now assume that £ is divisible by 4 and G = Spin(2n + 1) for n > 1. Then the
Miiger center of Rep,(G) coincides with Rep, (Y*G), where G = PSp(2n), the adjoint
group of type C,. Therefore, the quantum character variety for G then forms a sheaf of
algebras over the classical character variety for ' G.

In these cases one still has a factorizable braided monoidal category Vect ®gey(Z )
Rep, (G), but it is not given by modules over a Hopf algebra. We expect that our approach
nevertheless admits a minor modification which would prove that the quantum character
variety is Azumaya over the classical character variety for a more general class of G and £.

In the case of skein algebras, the results of [29] also apply in the case of even order
roots of unity, and so we can apply the method of Poisson orders there as well. We hope
to return to this in future work as well.

1.5. Outline

We briefly describe the contents of this paper. In Section 2, we recall factorizable Poisson—
Lie groups (Section 2.1), multiplicative moment maps (Section 2.2), and non-degenerate
Poisson G-varieties (Section 2.3). The main result therein (Theorem 2.15, Section 2.4)
is a description of symplectic leaves of a non-degenerate Poisson G-variety X as the
preimages under the multiplicative moment map u : X — G of the G*-orbits on G (i.e.,
orbits under the dressing action), where G* is the Poisson-Lie dual group of G.

In Section 3, we first consider reflection equation algebras, for generic parameters, for
Lusztig’s integral form, and at a root of unity (Section 3.3). We then set up the notions
of Frobenius Poisson orders and Frobenius quantum moment maps (Section 3.5), and
discuss degenerations of quantum groups and quantum algebras in light of these notions
(Section 3.6). We also formulate the procedure of Frobenius quantum Hamiltonian reduc-
tion and prove that Azumaya algebras descend to Azumaya algebras under this procedure
(Theorem 3.32, Section 3.8).

In Section 4, we apply the techniques developed in Section 3 to the setting of char-
acter varieties. After recalling the construction of quantum character varieties and stacks,
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we show that the framed character variety, together with its ‘quantum character sheaf’,
form a Frobenius Poisson order (Section 4.1). We exhibit a Frobenius quantum moment
map in this setting (Section 4.2), and run the procedure of Frobenius quantum Hamilto-
nian reduction (Section 4.3) to obtain Azumaya algebras over classical affine character
varieties (Theorem 4.5).

In Section 5, we turn our attention to multiplicative quiver varieties and their quantiza-
tions at a root of unity. We then recall in Section 5.1 the construction of the multiplicative
quiver variety, as a Hamiltonian reduction of the framed multiplicative quiver variety. We
recall in Section 5.2 the quantization of the framed multiplicative quiver variety, and in
Section 5.2 we identify the central subalgebra, establish the existence of good filtrations,
and finally construct the Frobenius Poisson order, in Theorem 5.21. In Section 5.4 we
show that the resulting Poisson G-variety is non-degenerate (Theorem 5.23), and in Sec-
tion 5.5 we prove that the zero representation is an Azumaya point. In Section 5.6, we
construct the Frobenius quantum moment map (Theorem 5.31). In Section 5.7, we define
the quantized multiplicative quiver variety associated to an arbitrary GIT parameter 6 via
Frobenius quantum Hamiltonian reduction. Finally, in Section 5.8, we bring all the ele-
ments together to establish the Azumaya property on the smooth locus of the quantum
multiplicative quiver variety (Theorem 1.4).

2. Multiplicative Hamiltonian reduction

The goal of this section is to collect some useful results on moment maps for factorizable
Poisson—Lie groups. Throughout this section, we assume that G is an arbitrary connected
reductive group. For x € g we denote by x, x® € Tg the left- and right-invariant vector
fields with value x at the unit.

We assume the reader is familiar with the theory of quasi-Poisson groups and quasi-
Poisson spaces; see e.g. [2] and [64, Section 4.1] for references. Let us recall that a Poisson
G-variety is a G-variety X equipped with a Poisson structure such that the action map
G x X — X is Poisson. All varieties we consider in this section are affine.

Remark 2.1. Much of the formalism of G-valued Poisson moment maps developed in
this preliminary section constitutes a minor modification of two related and well-known
notions — the G*-valued moment maps developed in [49], and the quasi-Poisson moment
maps developed in [2—4]. We nevertheless include precise statements and selected proofs
in our setting for the sake of completeness.

2.1. Factorizable Poisson—Lie groups

Fix a non-degenerate element ¢ € Sym?(g)®. Let ¢ = [c12,¢13] € /\S(Q)G. With respect
to a basis {e,} of g we may write

1
lea. ep] = Zfacbec, c= Zc“bea Qep, ¢= < Z c"ecbdfe"dea Aep A ee.
c a,b

a,b,c,d,e
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We have the following quasi-Poisson structures:

e Denote by G4 the quasi-Poisson group G equipped with the zero bivector and trivec-
tor ¢.

e Consider G as a G-variety under conjugation and equip it with the bivector
TSTS, 6 = anbef A e,f.
a,b

By [3, Proposition 3.1] we get a quasi-Poisson Gg-variety that we denote by Ggrs ¢.

Definition 2.2. A classical twist is an element ¢ € /\z(g) satisfying the equation

Equivalently, we may say that the classical r-matrix r = ¢ 4 ¢ satisfies the classical
Yang—Baxter equation

[r12,r13] + [r12, r23] + [r13,723] = 0.

Example 2.3. In the case g = gl we use the classical r-matrix

r=%28§®85+28{®$§,
1

i>]
where 8ij is the elementary matrix with 1 in the i -th row and j-th column.

Using ¢t we may perform the following twists:
o Twist the quasi-Poisson structure G4 into a Poisson—Lie structure

gk = 1 L_ t R
on G that we denote by Ggi. We call Poisson-Lie structures obtained in this manner
factorizable.

o Twist the quasi-Poisson Gg-variety Gsrs ¢ to a Poisson Ggg-variety Gsts with the Pois-
son bivector

ad
TTSTS = TSTS,p — L

where (—)* is the map A °*(g) — I'(G, /\* T¢) given by differentiating the conjugation
action of G on itself. The Poisson structure wgts was introduced in [66].

The classical twist gives g the structure of a Lie bialgebra and provides an embedding
of Lie algebras g* — g @ g. In particular, the action of g @& g on G by left and right
translations induces a g*-action on G which is known as the dressing action. Since the
diagonal subalgebra ¢ C g & g and g* C g @ g are transverse Lagrangians, the dressing
g*-action on G is free at the unit e € G. In particular, there is an open orbit G° C G of
e € G. The following is shown in [4, Section 4].

Proposition 2.4. The symplectic leaves of Gsts are the connected components of the
intersections of the conjugacy classes of G with the dressing g*-orbits.
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We will assume that the Lie algebra g* integrates to a group G* and that there is a
g-action on G* such that the map G* — G is g-equivariant.

Example 2.5. Suppose G is a connected reductive group equipped with a choice of a
maximal torus 7 C G and a Borel subgroup By C G containing it. Let ¢ € Sym?(g)¢
be a non-degenerate element. Let A™ be the set of positive roots and pick an orthonormal
basis {k;} of Lie(T). Then {eq, f4,k;} is a basis of g, where e, for & € A™T is a standard
basis of Lie(B+). Then we have the standard r-matrix

Fstd = %Zki ® ki + Z dy fo ® eq.
i

acAt

Let B_ be the opposite Borel subgroup. Denote by p+: B+ — T the abelianization maps.
Then the dual Poisson—Lie group is given by

G* ={(by.b-) € By x B_| p1(by)p-(b-) = 1}.

The open subscheme G° C G, the image of G* C G, is given by the subscheme B B_
C G which is isomorphic to the big Bruhat cell. Note that in the case G = GL, we have
Z(GL,) C G°.

2.2. Multiplicative moment maps

Fix a factorizable Poisson—Lie structure on G. Pick a basis {e;} of g and let {e'} be the
dual basis of g*. Denote by a: g* — I'(G, Tg) the dressing g*-action on G.

Definition 2.6. Let X be a Poisson G-variety. A G-equivariant map pu: X — G is a
moment map if for every h € O(G) and a € O(X) we have

{u(h).a} =y (@) hei.a. 2.1

In this case we say that X is a Hamiltonian G-Poisson variety.

Proposition 2.7. Suppose X is a Poisson G-variety and w: X — G is a moment map.
Then u: X — Ggrs is a Poisson morphism.

Proof. By [64, Proposition 4.18], our definition of moment maps agrees with the def-
inition of Alekseev and Kosmann-Schwarzbach [2]. Now, let X’ be the quasi-Poisson
G4-variety obtained by twisting X using —t € /\z(g). Then by [3, Proposition 3.3]
the map u: X’ — Gsrs,¢ is quasi-Poisson and hence after twisting back we find that
X — Ggrs is Poisson. [

Using a moment map we may construct a Hamiltonian reduction of X.

Definition 2.8. Let ¢ € G be an element in the center and X a Poisson G-variety equipped
with a moment map p: X — G. The Hamiltonian reduction is

X [l,G = SpecO(u™" §)°.
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Hamiltonian reduction carries a natural Poisson structure constructed in the follow-
ing way. Let I C O(X) be the ideal defining ! (£). Since G is reductive, the natural
morphism

OX)°/1% - (0(X)/1)°

is an isomorphism. So, it is enough to construct a Poisson structure on @ (X)¢ /1Y,

Proposition 2.9. O(X)¢ C O(X) is a Poisson subalgebra and 1¢ € O(X)C is a Poisson
ideal.

Therefore, we obtain a natural Poisson structure on ©(X)% /19, i.e., X //G is a Pois-
son variety.

2.3. Non-degenerate Poisson G-varieties

Leta:g — I'(X, Tx) be the g-action on a G-variety X . The following was introduced in
[3, Definition 9.1].

Definition 2.10. Let G be a quasi-Poisson group and (X, mx) a smooth quasi-Poisson
G-variety. X is non-degenerate if the map

(a, ni): a® Ty - Tx
is surjective.

Remark 2.11. Clearly, if X is a Poisson G-variety, the locus where the Poisson structure
is symplectic is contained in the non-degeneracy locus.

Lemma 2.12. Let G be a quasi-Poisson group, (X, mx) a quasi-Poisson G-variety, and
t e /\z(g). Then (X, x) is non-degenerate if and only if its twist (X, tx — a(t)) is non-
degenerate.

Proof. Indeed, the images of JT)#( and nf( — a(t)* differ by the image of a. ]

We have the following convenient criterion to determine whether a Poisson G-variety
is non-degenerate, proven in [48, Theorem 3].

Proposition 2.13. Let r be a classical r-matrix defining a factorizable Poisson—Lie struc-
ture on G and suppose (X, my) is a Poisson G-space equipped with a moment map
w: X — G. Denote 1y = nxy +a(r) € T'(X,Tx ® Tx) and ﬁf(: Ty — Tx the induced

map. Then (X, my) is non-degenerate if and only if 77;"}: Ty — Tx is an isomorphism.

Let us now show that non-degeneracy is preserved by fusion. Consider the element

V= Zr“be; Aej € A (g ® ).
a,b

where r is the classical »-matrix.
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Proposition 2.14. Suppose (X, nx) is a Poisson G x G-variety and consider its fusion
Xpus = (Xa X — ﬂ(lﬂ))
(1) Xpys is a Poisson G-variety with respect to the diagonal G-action.

(2) Suppose p1 X pz: X — G x G is a moment map. Then [iyys = [L1p2: Xs = G is a
moment map for the diagonal G-action.

(3) Suppose X is equipped with a moment map and is non-degenerate. Then Xy is non-
degenerate.

We omit the proof, which is standard.

2.4. Symplectic leaves of non-degenerate Poisson G-varieties

Non-degenerate Poisson G-varieties equipped with moment maps have an easy descrip-
tion of symplectic leaves. Let ag: g — I'(G, Tg) be the adjoint action.

Theorem 2.15. Let X be a non-degenerate Poisson G-variety equipped with a moment
map (: X — G. Then the symplectic leaves of X are given by the connected components
of the preimages of the dressing g*-orbits G, C G.

We believe this result to be well-known to experts, but we have not found a satisfactory
reference, so we include a complete proof.

Proof of Theorem 2.15. The moment map equation is equivalent to the commutativity of

the diagram
. T
TX, x TX X

g — TG )

In particular, symplectic leaves of X are contained in the preimages 1~ !(Gy). Since X is
non-degenerate, it is enough to prove that if y € g is such that ag(y) is in the image of a,
then a(y) is in the image of n)ﬁ(.

By Proposition 2.7 the moment map u: X — Ggrs is Poisson, so we have a commu-

tative diagram
.
T X,x TX X

M*T ldux
)

STS
TG i — Toum

Since ag(y) is in the image of a, by Proposition 2.4 the element ag (y) lies in the
image of ]TgTS: Tg, e e TG, u(x) and hence a(y) is in the image of nﬁ, by the above
commutative diagram. |
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In particular, under the above assumptions 1~ (G°) C X is an open symplectic leaf.
We will now use this observation to show that the Hamiltonian reduction of a non-
degenerate Poisson G-variety is symplectic. Denote by 7: = 1(§) — X // G the projec-
tion.

Proposition 2.16. Ler X be a non-degenerate Poisson G-variety equipped with a moment
map u: X — G and £ € G° C G a point lying in the center. Suppose U C u~1(§) and
V C X//G are open subsets such that w: U — V is a G-torsor. Then V C X//G isa
smooth symplectic variety.

We omit the proof, which is standard.
In most examples we will consider the G-action on X has a generic stabilizer, so let
us explain how to deal with that.

Proposition 2.17. Let G be a factorizable Poisson—Lie group, X a Poisson G-variety,
and Gy, C G a normal subgroup which acts trivially on X. Assume the pairing on g
restricts to a non-degenerate pairing on Qgap. Denote G = G/ Ggp.

(1) If u: X — G is a moment map for the G-action on X, then ji: X - G — G is a
moment map for the G-action on X .

(2) If X is a non-degenerate Poisson G-variety, then it is a non-degenerate Poisson G-
variety.

Proof. (1) Letr € g ® g be the classical r-matrix defining the factorizable Poisson-Lie
structure on G and denote by 7 € g ® g its image. Then it is still a classical r-matrix and
by assumption its symmetric part is non-degenerate. Therefore, G inherits the structure
of a factorizable Poisson-Lie group.

.

is commutative. Therefore, @(G) — O(G) is g-equivariant, which implies the first claim.
(2) The image of ¢ — I'(X, Tx) coincides with the image of g — I'(X, Tx) which
implies the second claim. u

Moreover, the natural diagram

EB—>@

Recall that the usual moment map on a symplectic G-variety is unique up to addi-
tion of a character. A similar statement is true for multiplicative moment maps on non-
degenerate Poisson G-varieties.

Proposition 2.18. Let X be a connected non-degenerate Poisson G-variety and let
1, 2. X — G be moment maps. Then there is an element g € G* landing in the center
Z(G) C G under the map G* — G such that j12(x) = g1 (x).
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Proof. Consider an open dense subset U = u71(G°) N u;1(G°) C X. It will be enough
to establish the claim on this open subset.

We have j1, t2: U — G°. We may choose a connected étale cover U — U and lift
the moment maps as

UL, G*

|

UL 60
Let 8 € Q1(G*; g*) be the left-invariant Maurer—Cartan form on G*. It is shown

in [2, Example 5.1.3] (see also [64, Lemma 4.22]) that the moment map equation (2.1)
reduces to

a(v) = 7y (77 (6.)).

where v € g anda: g — I'(U, Tg) is the action map. By Theorem 2.15, U is symplectic,
so the above equation implies that

A3(0.0) = 33(6.v).

If we write fip(x) = g(x)/i1(x) for some function g: U — G*, then the above equation
implies that g is locally constant. Since U is connected, g is constant. Therefore, u(x) =
g1 (x) for some g € G*. Since both 111 and i, are G-equivariant and the map G* — G
is g-equivariant, the image of g € G* under G* — G is invariant under conjugation, i.e.,
it lies in the center Z(G) C G. [

3. Frobenius compatibilities

In this section we spell out a number of compatibility conditions between the quantum
Frobenius homomorphism and each of the following: quantum moment maps, Poisson
orders, and Hamiltonian reductions. We use these compatibilities to sheafify the quantum
Hamiltonian reduction over the classical multiplicative Hamiltonian reduction, and show
that the reduction procedure preserves the Azumaya property on fibers. Throughout this
section we fix a connected reductive group G and a primitive £-th root of unity q.

3.1. Factorizability of the small quantum group
Assumption 3.1. The group G and the number £ satisfy the following conditions:
e {isodd.

o G is a product of groups of the following kinds: GL,, and a simple group whose deter-
minant of the Cartan matrix is coprime to £.

o [f G contains a factor of type G, then £ is not divisible by 3.

The reason we consider these restrictions is due to the following statement.



The quantum Frobenius for character varieties and multiplicative quiver varieties 3039

Theorem 3.2. Suppose (G, {) satisfy Assumption 3.1. Then there is an equivalence
between Rep(G) and the Miiger center of Rep,(G) such that the functor Rep(G) —
Rep, (G) is ribbon. Moreover, there is a factorizable Hopf algebra u,(g), the small quan-
tum group, together with an equivalence of ribbon categories Rep(u4(g)) = Vect ®rep(G)
Rep, (G).

Proof. Let X be the weight lattice of G and let o; € X be the simple roots. Fix a Q-
valued symmetric bilinear pairing on X such that 2 ((Z’[ z’l )) = aj; is the Cartan matrix. We
normalize (—, —) so that the norm squared of a short root is 2. Let

di = (0, 0;)/2.

In general the pairing (—, —) is valued in %Z, where D divides the determinant of
the Cartan matrix. By assumptions £ is coprime to D. Thus, by the Chinese remainder
theorem we may choose v € C such that v® = ¢ and v¢ = 1. For two weights 1, v € X
we set by definition g*¥) = vP®Y) The braiding ow,,w, for Wi, W, € Rep,(G) is
given by

oy W, (W1 ® wo) = g~V O (w1 @ w),
where © is the so-called quasi R-matrix (see [53, Chapter 4]) and w; € W; are vectors of
weights i, v € X respectively.

The simple objects in Rep, (G) are parametrized by dominant highest weights 1 € X.
It is shown in [57, Theorem 4.3] that the Miiger center is the tensor category generated by
simples with highest weight in the sublattice X™ C X defined in the following way:

XM —(AeX|2D\,p) elZVu e X).

Suppose XM = (X . Then Lusztig’s quantum Frobenius map [53, Chapter 35] defines
a monoidal functor Rep(G) — Rep,(G) where objects in Rep(G) have weights in the
lattice X™ which by the above result of [57] lands in the Miiger center.

We note that Fr* is fully faithful by its construction as a pullback along an algebra
homomorphism, so we need only identify its image with the Miiger center. From the
explicit formula for the quasi R-matrix ® it is clear that it annihilates all representations
of the form Fr*(V'). Therefore, Fr*: Rep(G) — Rep,(G) is a braided monoidal functor
iff g+") =1 forall u,v € XM . But £ is coprime to 2D, so 2D(A, i) € £Z implies that
(A, ) € LZ forall A, u € XM The fact that under the condition X™ = X the functor
Fr*:Rep(G) — Rep,(G) is ribbon is proved as in [57, Lemma 6.1].

We will now check the conditions X = £X in our cases.

e Suppose G = GL,,. The weight lattice is X = Z" with generators {e; } such that (e;, e;)
= §;j. The simple roots are o; = ¢; —e;1 for1 <i <n.LetA =) n;e;. Then2(A, ¢;)
=2n;.S0, XM = (X.

e Suppose G is a simple simply-connected group. Then the weight lattice X is generated
by the fundamental weights w;. Let b;; be the inverse of the Cartan matrix a;;. Consider

Qij = (wi.0)) = Y bixbjidrag;.
k.l
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Let Qi_jl be its inverse. Note that if G is simply-laced (i.e., dx = 1), we get ;; = b;; and
Qi_jl = ajj.
Consider A = Y, n;w;. Then A € XM iff

Z(A,wj) = ZZH,‘Q,‘]‘ = ij

for some integers m;j, i.e.,
14
R Ly
ni =7 E Q; mj.
J

By an explicit calculation, one sees that Qi_jl € iZ if G is not of type G, and Qi_jl € %Z
if G is of type G». In these cases £ is coprime to the denominators of Qi_jl, and hence n;
is divisible by £, i.e., XM c (X.

Since £ is coprime to D, 2D{(A, ) is divisible by £ for all A, u € X. Therefore,
(X cxM.

e Suppose G is an arbitrary simple group. The inclusion £X C XM is proved identically
to the simply-connected case.
Now consider the symmetric pairing A: X/{X ® X/¢X — Z/{Z given by

AR, ) =2D(A, ),

which is well-defined due to the inclusion £X C XM . Then XM = (X iff A is non-
degenerate.

Let Xic D X be the lattice spanned by the fundamental weights. The index of X C X
divides D and hence is coprime to £ by assumption. Therefore, the inclusion X /{X —
Xse/€ X is an isomorphism. This means that the pairing A4 is non-degenerate for X iff A
is non-degenerate for X, which we have already checked above.

The equivalence Vect ®rep(G) Rep, (G) = Rep(u4(g)) of ribbon categories is the con-
tent of [6,7] and [57, Section 5]. [

Note that some results related to the previous theorem were previously obtained in
[62], [70, Chapter XI1.6.3], [46]. The case of even £ is considered in [57].

3.2. Good filtrations

We will require at a few places the notion of a good filtration, also known as a dual-Weyl
or co-Weyl filtration on a UqL(g)-module. The reader may safely skip this material at a
first read, and may consult [36,59] for further details.

Let U % (b) denote the quantum Borel subalgebra generated by the Eék)’s and the
quantum Cartan subalgebra.

Definition 3.3. Let A denote a dominant integral weight, regarded as a character of
Uz (@).
R



The quantum Frobenius for character varieties and multiplicative quiver varieties 3041

(1) The Verma module M(A) is the U%-module induced from U(,/Ii (b) to U{% (g),i.e.
_ /L
M) = Ug(8) @yt @) Ca-

(2) The Weyl module A(A) is the universal finitely generated R-module quotient
of M(A), i.e., for any finitely other generated R-module quotient of M(1) — V,
we have a unique factorization M(A) — A(X) — V.

(3) The dual Weyl module V(1) is the U (g)-module coinduced from Ug (b) to U%(g),
ie.,
V(4) = Homy ) (M(0),4),

with left U ;Q (g)-action obtained by precomposing the evident right Uf;Q (g)-action
with the antipode S.

(4) A Weyl filtration on a U };2 (g)-module M is a filtration Fe M with successive quotients
F; / F;_; isomorphic to some A(A).

(5) A good (or dual-Weyl) filtration on a U % (g)-module M is a filtration FeM with
successive quotients F; / F;_; isomorphic to some V(1).

Proposition 3.4 ([59], see also [74, Section A.9]). (1) We have an isomorphism V(L1)*
= A(—wpl).

(2) The tensor product of finite-dimensional modules with good (resp. Weyl) filtration
admits a good (resp. Weyl) filtration.

(3) If Vg is a module with good filtration, then the specialization map (VR)U% — (Vq)UqL
is a surjection.

3.3. Reflection equation algebras

In the geometric representation theory of quantum groups, an important role is played
by a canonical ad-equivariant quantization of the coordinate algebra of G, the so-called
‘reflection equation’ algebra. In particular, the reflection equation algebra is the domain
for quantum moment maps, so its behavior at a root of unity will be important for the
notion of Frobenius quantum moment maps and their Hamiltonian reduction.

3.3.1. Generic parameters. Before discussing the somewhat more complicated behavior
of the reflection equation algebra at a root of unity, we recall the situation for generic
parameters. Specifically, we discuss the relations between the three equivalent construc-
tions of the rational form O,(G) of the reflection equation algebra: (1) the functorial/co-
end construction of Lyubashenko—Majid [54], (2) the matrix coefficient/braided dual for-
mulation of Donin—Kulish-Mudrov [25], and finally (3) the identification with a subal-
gebra of the quantized enveloping algebra of ad-locally finite elements, via the so-called
Rosso isomorphism, due to Joseph—Letzter and Rosso [39,61]. We follow the exposition
of [10].

The functorial/co-end construction works for any presentable rigid braided tensor cat-
egory €. Let T : € ® € — € be the tensor multiplication functor, which we will always
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assume to be cocontinuous. The braiding on € equips 7" moreover with the structure of
a tensor functor, while the cocontinuity of 7 endows it with a right adjoint 7, which is
lax monoidal. It follows that the associated co-end, T TR(1~@), is a bialgebra object in €.
Explicitly, it may be realized as a quotient of the sum of V* ® V, where V' ranges over
all objects of €. In addition, for any object W € € there is a ‘field-goal’ isomorphism
[11, Corollary 4.6]

i TTRAe) @ W = W @ TTR(1e)

given diagrammatically by

WV VvV
— ~ 7 3.1
w %\ G-D
vV W

When € is the category of locally finite modules for a quasi-triangular Hopf
algebra H, then classical results of Majid—Lyubashenko [54] identify the co-end algebra
with the so called braided dual H . This is the subalgebra of H* spanned by matrix coef-
ficients of finite-dimensional H -modules, with a natural multiplication structure which
invokes the braiding on €, hence the universal R-matrix for H.

When H = Ug (g) is the rational form of the quantum group (see Section 1.4 above),
€ is the category Repx (G) of locally finite modules for the quantum group Uy, and the
co-end/braided dual algebra is denoted O x (G). Regarded as an algebra in vector spaces
equipped with a compatible Uyx-action, the algebra O x (G) is spanned by the matrix
coefficients of irreducible representations, and admits a Peter—Weyl decomposition,

Ox(G) =P vy W,
A

where the sum is over the dominant integral weights.

If we take H = U jLQ (g), Lusztig’s integral form, we have a natural coaction
A:Ox(G) — UjLQ(g) ® Ox(G) realizing Ox(G) as a U}i(g)-comodule algebra (see
e.g. [43]). Applying the natural evaluation homomorphism @& (G) — R to the second
factor, we obtain the Rosso homomorphism Oz (G) — Uy]i (g) [39]. For h € Ox(G) we
denote the coaction by A(h) = h(1) ® h(2). Then the ‘field-goal’ isomorphism for v € V
is given by

wwh®v) = (h(l) >v) ® ]’l(z).

Finally, let us recall that at generic parameters, the category Rep % (G) is factorizable.
This implies, among other things, that the map O x (G) — Ug (g) is injective, embedding
Oy (G) as a subalgebra of ad-locally finite elements of the quantum group. We note that
this is a strong self-duality property, which holds only for ¢ generic; the failure of this
property at roots of unity, and the precise way in which it fails, will be an important point
for what follows.

3.3.2. Root of unity parameters. Let us now consider the divided powers quantum group
UqL(g), specialized to an odd root of unity, g¢ = 1 with £ > 1. We denote by 04(G) the
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co-end algebra of Rep, (G), defined functorially as in the generic case. Two very special
phenomena occur at this specialization.

The first is that O4(G) develops a large {-center, in addition to its Harish-Chandra
center. This is best understood as a consequence of the quantum Frobenius homomor-
phism, as follows. Firstly, the natural tensor structure on Fr* induces an isomorphism
Fr* o T =~ T o (Fr* ® Fr*) (where we abuse notation and write 7 for tensor multipli-
cation in both tensor categories). Recalling the identifications O(G) = TTR(IRep(G)),
04,(G)=T TR(lRepq(G)) and finally Fr* (1gep(6)) = 1(Rep, (G)), we immediately obtain
a bialgebra monomorphism in Rep, (G),

i : Fr*(0(G)) <= 04(G).

Moreover, because the image of Fr* lies in the Miiger center of Rep, (G), it follows that
Fr*(O(G)) is a central subalgebra of O, (G). It is therefore natural to view O,(G) as a
sheaf of algebras over G.

Remark 3.5. Let us note in passing that, while the above formulation gives a simple
monadic construction of the algebra monomorphism i, which indeed sends the Peter—
Weyl component V* @ V to Fr* (V) ® Fr*(V), it is rather difficult to express it directly
in elementary generators-and-relations terms (for example, see [22, Remarks 3.13, 3.14]).
This monadic formulation of the homomorphism i is exploited repeatedly in Section 4.

The second special phenomenon at a root of unity is that factorizability breaks down.
For this reason, the Rosso map O,(G) — U, qL (g) is not injective. Rather, it factors as a sur-
jection onto the small quantum group u4(g) C U, qL(g), and its kernel is the augmentation
ideal of O(G).

In a similar way, the UqL(g)-coaction on O4(G) is induced from a u4(g)-coaction
on O4(G). Moreover, the u,4(g)-coaction on O(G) C Oy4(G) is trivial. So, for a point
¢ € G we have a u,(g)-comodule algebra

04(G:§) = 04(G) ®o(q) C.
where the @ (G)-action on C is via the character £*: O(G) — C.

Remark 3.6. We note that for any representation V of U, qL(g), the representation V* ® V
has weights entirely in the root lattice. In particular, since 9Q4(G) is a co-end of such
representations, its weights are also contained in the root lattice.

We record the following important modification of the Peter—Weyl theorem.

Theorem 3.7 ([36, 59]). The algebra O4(G) admits a good filtration with successive
quotients

V(—wok) ® V(L)

Proof. In the parallel setting of algebraic groups defined in characteristic p, this is proved
in [36, Proposition 4.20]. Following the discussion in [59], the proof is identical for the
quantum group at a root of unity. ]
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3.4. Quantum moment maps

Let H be a Hopf algebra over a commutative ring k and H' a k-algebra equipped with an
H -comodule and an H-module structure which preserve the algebra structure. We will
be interested in the following three cases:

(1) k=R, H =Ugx(g) and H' = Ox(G).
2 k=C,H = UqL(g) and H' = 04(G).
(3) k =C, H =u4(g) and H = 04(G; ), where £ € G is a point in the center.

Definition 3.8. Let A be an H-module algebra. A map u: H' — A of H-module algebras
is a quantum moment map if for every h € H' and a € A we have

phya = (hay > plhe)), (3.2)
where h(;) ® hx) € H ® H'is the H-coactiononh € H'.

Remark 3.9. Inthe case H = UyLQ (g), H = O%(G) and A € Rep g (G) we may rephrase
the moment map condition as the commutativity of the diagram

®1d

OR(G)® Az ~— Ag ® Ag
x
/

1d®
Ag ® Ox(G) —M> Agr ® Ag
as explained in [64, Theorem 3.10].

Remark 3.10. The first notion of quantum moment maps was due to Lu [50], and is
the case H' = H of Definition 3.8. The notion was generalized in [74, Section 1.5], to
allow H to be replaced by its coideal subalgebra H’ — the main example of interest there
was the coideal subalgebra of ad-locally finite elements.

We take the viewpoint that the natural codomain of a quantum moment map is the
braided dual algebra H' = Ox(G), or its specialization O4(G). At generic parameters,
Ox(G) is indeed identified via the Rosso isomorphism with the subalgebra of locally
finite elements, and so Varagnolo—Vasserot’s notion suffices. At roots of unity, the Rosso
homomorphism still exists but is no longer an embedding, hence we do not wish to
require H’ to be a coideal.

We will also need a construction of fusion of quantum moment maps. Suppose 4, B
are two algebras in Repg (G). Then A ® B is naturally an algebra in Rep, (G) with mul-
tiplication

my®mp

d®0; [ ®1d
(A®B)®(A®B) —— (A®A)Q(B®B) —— A® B, (3.3)



The quantum Frobenius for character varieties and multiplicative quiver varieties 3045

where o4, p is the braiding in Repg (G). The tensor product of algebras equipped with
quantum moment maps also carries a natural quantum moment map, as we show in the
following:

Proposition 3.11. Suppose A and B are two algebras in Repg (G) equipped with quan-
tum moment maps jiq: Ox(G) — A and ug: Ox(G) — B. Then

O2(G) > 02(G) ® Ox(G) 2245 4 g B

is a quantum moment map for A @ B.

Proof. We can represent equation (3.2) following Remark 3.9 diagrammatically as fol-
lows. In place of an arbitrary & € O (G), we write V* ® V, and in place of the element
a in A we consider the entire algebra A. With this notation, the moment map equation
(3.2) reads

A
I

Mu(h(@) = = = (hay > Dplhe)).

M

VvV A

A
|

VvV A
We now compute

A B
|

2% '
[A]|[#]
(hay> (@ ®@b))u(he) = = yd
e #

A B
|

S

/S
a R
Vo4 B V*V A B
4B A B
| | | |
= = W = uh)(a®b). w
> )
ey A B V'V AB

As for classical moment maps, quantum moment maps are used to construct a Hamil-
tonian reduction of A. Fix amap &: H' — k of H-module algebras and denote I’ = ker(£),
the corresponding H -invariant two-sided ideal.
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Definition 3.12. Let A be an H-module algebra equipped with a quantum moment map
u: H — A. The quantum Hamiltonian reduction is

AJJH = (A/ApI')H.

Note that I, = Au(I’) C Ais only aleft ideal, so A/Au(I”) is merely an A-module.
Nevertheless, 4 // H carries a natural algebra structure that we explain presently. For
a € A, we write [a] for the image of a in A/1,.

Proposition 3.13. Leta.b € A, and suppose [a] and [b] lie in A [ H. Then [ab] also lies
in A // H. There is a well-defined algebra structure on A // H given by

Af[H@AJJH > AJ/H. [a]® [b] — [ab].

Proof. To show that the element [ab] € A/, liesin A // H., first note that, for any & € H,
we have h > a € e(h)a + 1, and similarly for b. Consequently,

h>ab = (hgyra)(hpe)>b)
€ (ethaya + 1g)(elh@)b + 1g) = e(h)ab +aly + 1,0 + 1.

Since 1, is a left ideal, we have al, < I,. We show below that /,b C I,;. From this it
follows that h > ab € e(h)ab + I, and so [ab] liesin A/ H .

Next, we prove that I;b C I,. It suffices to show that u(h)b € I, for all h € I'.
Fix h € I’ and recall the moment map equation: u(h)b = (hq) > b)u(h)). The fact
that [b] lies in A//H implies that k() > b = e(h())b + x for some x € I,. We write
x =) ; xiju(h;) for some x; € A and h; € I’. We have

p(b = (hay > b)phe) = etha)bp(hey) + Y xin(hi) (b))
= bu(h) + inﬂ(hih(z))«

In the last expression, the first term lies in I, since h € I, and the second term lies in 1
since each £; is in the two-sided ideal I’. We conclude that I,b C I,.

It remains to show that the product map is well-defined, that is, [ab] is independent of
the lifts of [a], [b] € A/ I, to A.Indeed, if a’, b’ € A are such that [a] = [a] and [b] = [b'],
then a’b’ is contained in (¢ + I;)(b + 1) = ab +aly; + I;b + I, = ab + I, and so
[a’'b'] = [ab]. (]

3.5. Frobenius Poisson orders and their quantum Hamiltonian reduction

In this section we combine Poisson and associative algebras into the notion of a Poisson
order and, correspondingly, classical and quantum moment maps into the notion of a
Hamiltonian Frobenius Poisson order. Finally, we explain that the quantum Hamiltonian
reduction of a Hamiltonian Frobenius Poisson order carries naturally the structure of a
Poisson order.
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Definition 3.14. A Poisson order is given by the following data:
An algebra A.

e A commutative algebra Z equipped with a Poisson structure. We denote Z = Spec Z.

A central embedding Z C A such that A is finitely generated as a Z-module.
A C-linear map D: Z — Der(A) which satisfies

D(z1)(z2) = {z1, 22}
forevery z1,2z, € Z.

Remark 3.15. We will identify Poisson order structures where D differs by inner deriva-
tions. See Proposition 3.24 for our source of Poisson orders where the corresponding
structure D is only defined modulo inner derivations.

We have the following important theorem about Poisson orders [18, Theorem 4.2].

Theorem 3.16. Suppose (A, Z = O(2)) is a Poisson order with Z smooth. Moreover,
assume Zy C Z is an open symplectic leaf. Then A|z, is locally free and its fibers at any
two closed points are isomorphic as algebras.

Definition 3.17. A Frobenius Poisson order is given by the following data:

An algebra 4, € Rep,(G).

e A Poisson algebra Z equipped with a Poisson G-action. As before, we have a Poisson
G-variety Z = Spec Z.

e A central embedding Fr*(Z) C A, in Rep,(G).

e Alinear map D:Z — Der(A4,) giving (A4, Z) the structure of a Poisson order.

Remark 3.18. Since the R-matrix on UqL (g) is expressed via the generators of the small
quantum group, the subalgebra Fr*(Z) C A, is central in Rep, (G) if and only if it is
central in the category of vector spaces.

We may now define the notion of a moment map for a Frobenius Poisson order.

Definition 3.19. Let (4,, Z) be a Frobenius Poisson order. We say it is weakly G-
Hamiltonian if there is a quantum moment map puy: O4(G) — A4 (Definition 3.8) and a
classical moment map pu: Z — G (Definition 2.6) such that the diagram

z—1 4,
I
0(G) —— 04(G)
commutes.

Definition 3.20. A G-Hamiltonian Frobenius Poisson order is a weakly G-Hamiltonian
Frobenius Poisson order which satisfies the following properties:
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(1) D(z)(gq(h)) = Oforevery z € Z%and h € 04(G).
(2) D(z)(—): Ay — Ag is U;‘(g)—equivariant for every z € ZG.

An important observation for us is that, given a weakly G-Hamiltonian Frobenius
Poisson order, its quantum Hamiltonian reduction contains a natural central subalgebra,
which identifies with the classical Hamiltonian reduction of Z by G.

In more detail, choose a character £, of O4(G), and denote its restriction to @ (G)
by &. Then &, induces a character of 04(G;§) = O4(G) ®pc) C. Denote by I, C Ay
the quantum moment map ideal consisting of elements of the form a4 (k) where a € A,
and i € O4(G) is such that &, (h) = 0. We may identify

Aq [JUE@) = (44/1)% @ = (A4 ®0(G) C) ®o,(G:t) €)' @) (3.4)

In other words, we may perform the quantum Hamiltonian reduction of A in stages, first
with respect to u,4(g) and then with respect to G.

Ay ®o(G) C defines a sheaf of algebras over w1 (€). Denote by &¢ the sheaf of
algebras over ! (£) obtained as the quantum Hamiltonian reduction

&% = (44 ®0(6) C) [Juq(g).

Denote by Af the sheaf of algebras on Z//G defined by Aq//U(;(g). By (3.4) we have
an isomorphism of algebras
AS = 7, (65)0

over Z // G.

Furthermore, we obtain a Poisson structure on Z // G by Proposition 2.9, an
algebra structure on A //UX(g) by Proposition 3.13 and a central embedding Z //G C
Ay // U;(g). We will now show that this can be enhanced to the structure of a Poisson
order.

Proposition 3.21. Suppose (Ay4, Z) is a G-Hamiltonian Frobenius Poisson order where
Z is Noetherian. Then (Aq /U;‘(g), Z//G) is a Poisson order.

Proof. Let I C O(Z) be the ideal of functions vanishing on =1 (§) and 1, C A, the left
ideal of elements of the form a4 (h) witha € A; and h € O4(G) with §,(h) = 0.
Recall from Proposition 2.9 that the Poisson structure on @ (Z // G) is uniquely char-
acterized by the property that O(Z //G) = Z%/19 « ZC C Z is a diagram of Poisson
algebras.
Consider z € Z% and ay,(h) € I,. Then

D(z)(apq(h)) = D(z)(@)pg(h) + aD(z)(1q(h)) = D(z)(a)iq(h).
Therefore, D(z)(1;) C I, and hence D descends to a map

D:Z9® A,/1, — Ag/l,.
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Consider an elementa € A, and [a] € (4,4/ Iq)Uf% (@ whose images in A4/ 14 coincide.
Then for i € UqL(g) we have h>a = e(h)a + 1. Forz € 76 we therefore get

hve D(z)(a) = D(z)(h>a)
= &(h)D(z)(a) + D(2)(I4)
=e(h)D(z)(a) + 1.

In other words, D(z)(a) descends to (4,/1,)V4® and so D gives a linear map
D:2°® (Aq/[q)UqL(g) - (Aq/]q)U‘%(g).

By construction, D defines a linear map D: Z¢ — Der(A4 / U;(g)) and restricts to
the Poisson bracket Z% @ ZG/1¢ — Z%/16 on Z%/1¢ = (Z/1)¢ C Ay [/Uk(g).
Since Z¢ — ZC /19 is surjective, this defines the required structure of a Poisson order.

By assumption A, is finitely generated over Z. Therefore, A, /1, is finitely gener-
ated over Z/I. Since Z /I is Noetherian, (44/14)*? @ c Aq4 /14 is also finitely gener-
ated over Z /1. Since G is reductive, we conclude that ((44/14)"*¢ @)% = A J/Uk(g) is
finitely generated over (Z/1)¢ = Z //G. n

3.6. Classical degenerations of quantum algebras

The notion of a G-Hamiltonian Frobenius Poisson order requires strong compatibility
between several structures. In this section we show that these compatibilities arise very
naturally when specializing algebras from Reps (G) to Rep,(G). We begin by showing
that degenerating U :,,Ii (g) at a root of unity induces extra structures on G, such as the
Poisson-Lie structure (see [24, Section 8]). Recall from [53, Chapter 32] that to construct
the braiding on Rep(G) we need to fix a bilinear pairing on (—, —) on the character
lattice. We normalize it so that the short roots have square length 2.
Let Vg, Wg € Repg(G) be two representations flat over R and let

Ryawz:Va @ Wg = Va @ Wg

be the isomorphism given by the braiding in Rep (G ) precomposed with the tensor flip.
Let w: Vg — V, be the specialization map taking ¢ to ¢, and similarly for Wg. Moreover,
assume we have two representations V, W € Rep(G) and embeddings Fr* (V) C V, and
Fr*(W) C W,.

Choose an element v @ w € Vg ® Wg such that

T)@nrw)e VW CV,W,.

Then
Ryg wg(V ® W)= = 7(v) ® w(Ww)

since Fr*: Rep(G) — Rep,(G) is braided monoidal and the braiding on Rep(G) is the
tensor flip.
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Proposition 3.22. With the above assumptions we have

r(r(v) ® m(w)) = JT(RVR’W‘R(” ®w) —v ®w),

t—q

wherer = =202 ryq € g ® g and ryq is the standard r-matrix from Example 2.5 defined

by the bilinear pairing £*>(—, —) on g.

Proof. Let us recall the precise construction of the braiding on Repg (G) from [53, Chap-
ter 32]. Fix a reduced expression for the longest element of the Weyl group which gives
rise to an ordering of the set A4 of positive roots. For a positive root « € Ay let dy, =
(o, &) /2. Consider the quasi R-matrix (see [53, Chapter 4] and [41,47])

® = 1_[ Z(_l)nt—n(n—l)da/Z{n}aFogn) ® Eo(zn)’
(¥€A+ n

where

n
{n}a — H([ad“ _ t—ada)‘
a=1
If we assume that v € Vg, w € Wg have weights © and v respectively, then
Rygawe(V @ w) = t_(“’”)G)(v ® w).

By our assumption on the group G, under the quantum Frobenius map the character lattice
of G used in the definition of Rep(G) is the £-scaled character lattice used in the definition
of Rep, (G). Therefore, g~ =1,

Since V, W € Rep(G), the only terms in ® not vanishing to order ¢ — ¢ occur for
n = {. Therefore, the linear term in ¢ — g coming from © is

202
—T= Y (da fu ® €0)((v) ® 7(W)).

q aeA+

The linear term in f — ¢ coming from ¢ ~**) is —g~! (1, v). Combining the two terms
we exactly recover the formula for the standard r-matrix rgyq. [

Next, we show that g carries a natural structure of a factorizable Lie bialgebra. Let
p:Ug(g) — Uy(g) be the specialization map taking 7 to g. Since Ug(g) is free as an
R-module, we may choose an isomorphism Ug (g) = U, (g) ®c R which is the identity
att = ¢. For an element x € UyL2 (g) such that Fr(p(x)) € g C U(g), we find that

Ax) — AOP(X)))

8(m(x)) =Fr(p( g

defines a Lie cobracket on g (see e.g. [27, Proposition 9.1]). Since the braiding on
Repx (G) is an isomorphism of U 3Ii (g)-modules, by Proposition 3.22 we get

S(r(x) =[rax)®1+1Q x(x)],
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i.e., 6 defines a factorizable Lie bialgebra structure. In particular, we obtain a factorizable
Poisson-Lie structure on G.

Suppose Ag is an R-algebra. Denote by m: Ag — A, evaluation at ¢, and fix an
arbitrary C-linear section 0: Ay, — Ag to 7.

Proposition 3.23 ([18, Section 2.2], [35, Proposition 2.6 (2)]). Suppose that Ag is flat as

an R-module and fix a central subalgebra Z C Ay.

(1) There exists a linear map D : Z — Der(Ay) satisfying

0(2)a(x) —o(x)o(2)
I—q

forall x € Ay, z € Z. The linear map D is independent of the section o up to an

D(z)(x) = 7{( (3.5)

inner derivation.
(2) Ifin addition D(Z)(Z) C Z, then (A4, Spec(Z)) defines a Poisson order.
(3) The condition in (2) is automatic in the case Z = Z(Ay).
Proposition 3.24. Suppose Ag and Z C Ay satisfy the assumptions of Proposition 3.23.
In addition, we make the following assumptions:
e Ag is an algebra in Rep g (G).
o Z CAyis UqL(g)-equivariant and uy(g)-invariant.
Then (A4, Z) is a Frobenius Poisson order.
Proof. Since Z is u4(g)-invariant, it becomes an algebra in Rep(G). So, we have an
infinitesimal action map a: ¢ — Der(Z). To show that Spec(Z) is a Poisson G -variety, it

is enough to work infinitesimally and show that Z is a Poisson g-algebra, i.e., for every
x €ganda,b € Z we have

xA{a, b}y —{x.a,b} —{a,x.b} = (xp1.a)(x[2).b),

where §(x) = x[1] ® X[z] is the Lie cobracket on g.
The fact that Ag is an algebra in U (,/Ii (g) gives the relation

hl>(ab)=/’l(1)l>a°h(2)l>b

forh € U(,/Ii(g) and a,b € Ag. Now suppose n(a), n(b) € Z and Fr(p(h)) = x € g C
U(g). Taking the commutator we get

h > [a,b] = h(l) l>a-h(2) l>b—h(1) l>b-h(2) >a.
This relation is trivial modulo (¢ — ¢) while the (¢ — ¢) term gives
xA{n(a),n(b)} = {x.n(a), w(b)} + {m(a), x.w(b)} + (xp11.7(a))(X[2). (D). m

We will now show that the degeneration at a root of unity is compatible with fusion.
Suppose Ag, Bg are two algebras in Repg (G). Then Ag ® Bg is naturally an algebra in
Repr(G). Let p: Ag — Ay and p: Bg — B, be the maps given by evaluation at t = g.
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Suppose Ar, B are flat over R. Suppose Z4, C Ay and Zp, C B, are two cen-
tral U;‘(g)-equivariant and u,(g)-invariant subalgebras. Then Z4, ® Zp, C 4, ® B,
is central. So, by Proposition 3.24 we obtain a Frobenius Poisson order structure on
(Aq ® By, Spec(Z4,) x Spec(Zp,)).

Proposition 3.25. The Poisson G-variety structure on Spec(Z 4,) x Spec(Z g,,) obtained
by degenerating the algebra Ag ® Bg coincides with the fusion of the Poisson G-vari-
eties Spec(Z 4,)) and Spec(Zp,)).

Proof. By definition, the Poisson structure on Z 4, ® Zp,, is given as follows. Suppose
m(z1),m(z2) € Z4, and w(wy), m(w2) € Zp,. Then

(z1 @ w1) (22 @ w2) — (22 ® W) (21 ® wy)
t—q '
The product on the right-hand side is the braided tensor product of algebras given by

equation (3.3) defined using the braiding on Rep g (G). Its first-order term in (¢ — ¢) can
therefore be read off from Proposition 3.22 and we get

{m(z1) @ m(wy), 7(22) @ w(w2)} = n(

{m(z1) ® w(w1), 7(22) ® w(w2)} = {7(z1), 7(22)} ® w(w1)7w(Ww2)
+ 7(z1)7(z2) Q@ {m(w1), w(w2)}
—w(z1)m(w2) - a(r)(7(z2) ® w(wy))
+ m(z2)7w(w1) - a(r)(m(z1) ® w(w2)),

which coincides with the fusion as defined in Proposition 2.14. ]
Finally, a degeneration of quantum moment maps gives rise to classical moment maps.

Proposition 3.26. Suppose Ag and Z C Ay satisfy the assumptions of Proposition 3.24.
In addition, suppose there is a quantum moment map ug: Ox(G) - Ag and a G-
equivariant map . 2 — G such that the diagram

04(G) 1 4,
0G) 7

commutes. Then p is a moment map for the Poisson G-action on Z and (Aq, Z) is a
weakly G -Hamiltonian Frobenius Poisson order.

Proof. Let us first check that p satisfies the classical moment map condition (2.1). Con-
sider z € Ag and h € O g (G). The quantum moment map equation gives

pr(h)z = (hay > z)pg(he),
which is equivalent to

[tz (). 2] = (hay > z — e(h@)2) g (h2)-
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If we assume 7(z) € Z C Ay and w(h) € O(G) C O4(G), the above equation is trivial
modulo (¢ — ¢g) while the linear (t — ¢) term gives

{nG(h), m(2)} = Y pla@e’).x(h)e;.x(2),

where we use the fact that p(mw(h)) = pg(w(h)) by assumption and that the first-order
term in k() > z — e(h(1))z gives the g*-action on O(G) (see [64, Theorem 4.27] for a
similar degeneration at g = 1). u

Observe that the classical moment map u: Z — G in the above statement is unique
if it exists and its existence boils down to the following property of the quantum moment
map: (g (O(G)) C Z. We will now show that if Z is the whole center, this condition is
automatic.

Lemma 3.27. Suppose A, is an algebra in Rep,(G) equipped with a quantum moment
map flg: Og(G) — Aq. Then pg(O(G)) C Z(Ay).

Proof. Recall that for W € Rep, (G) we have the field-goal isomorphism 7y : 04 (G) @ W
— W ® O4(G) given by (3.1). The subalgebra O(G) C O4(G) is generated by V* @ V
where V' lies in the Miiger center of Rep, (G). Therefore, 5y on O(G) C O4(G) restricts
to the braiding O(G) ® W — W ® O(G) in Rep, (G). Since O(G) lies in u,4(g)-invari-
ants of O4(G), the above braiding in Rep,(G) coincides with the tensor flip. Then the
claim follows immediately from the interpretation of the quantum moment map equation
using the field-goal isomorphism given by Remark 3.9. ]

We end with an important result which explains when a weakly G-Hamiltonian Frobe-
nius Poisson order is in fact G-Hamiltonian.

Proposition 3.28. Suppose Ag and Z satisfy the assumptions of Proposition 3.26. In
addition, suppose that the morphism (A ;'R)U}/‘?(g) — (Aq)Ufk @) is surjective. Then (Ag. Z)
is a G-Hamiltonian Frobenius Poisson order.

Proof. We have Z6 C (Aq)U5 @ and so we may consider lifts of elements of Z¢ to

U z,/L? (g)-invariant elements of Ag in the definition of D. Now consider z € (4 R)Ub?(g)
such that (z) € Z%,a € Aand h € U(g). Then

hve(z,a] = [z,h>al.

This shows that D(;r(z))(—) is UqL(g)—equivariant.
For h € O®(G) we have
pr(h)z = zpg(h)
by the quantum moment map equation. Therefore, D (7(z)) (g (r (h))) = O. ]

3.7. Hamiltonian reduction of matrix algebras

Before we state our main result on Azumaya algebras, we will prove two preliminary
claims on matrix algebras and their reductions.
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Let k be a commutative ring, H a Hopf k-algebra and H' a k-algebra together with a
structure of an H -module and an H -comodule as in Section 3.4. The following proposi-
tion is a version of [12, Lemma 3.4.4] and [74, Proposition 1.5.2].

Proposition 3.29. Let R be a commutative k-algebra and V a finitely generated pro-
Jective R-module. Suppose &: H' — k is a map of H-module algebras such that the

composite
1dQE

A
H—>H®QH —H
is an isomorphism. Suppose A = Endgr(V') is an H-module algebra equipped with a
quantum moment map . H' — Endg (V). Denote by (V*)g: the module of &-twisted
H'’-coinvariants. Then we have an isomorphism of R-algebras

Endg(V)//H = Endg((V*)g)*.

We believe the proof is well-known to experts, but as we did not find a satisfactory
reference, we include a proof here.

Proof of Proposition 3.29. We begin by computing the coinvariants Endg (V) ®pg’ k.
The moment map u: H' — Endg (V) gives V the structure of an H’-module. Since we
are considering the H'-action on Endg (V') given by right multiplication, it is given by
precomposition with the moment map, i.e., H' acts on the source. Since V is finitely gen-
erated projective, we may identify Endg (V) =~ Endg(V *)°P, where now the H’-action
is on the target. Since V* is also finitely generated projective, Homg(V*, —) preserves
colimits, and hence

Endgr(V*) g k = Homg(V*,V* ®gs k) = Homg(V*, (V*)g).
Fora € A ®p’ k the quantum moment map equation gives
ph)a = (hqy > a)§(he)).

Since the map H' — H given by h +— h)€(h(2)) is an isomorphism by assumption, we
may identify H -invariants with £-twisted H'-invariants where H' acts on A ® g7 k on the
left. The functor Homg (—, (V*)g-) sends coinvariants to invariants, so we conclude

Endr(V*)™ [/ H = (Endg(V*)* @ k)" = Homg((V*)ar, (V)p)™®.

Now suppose € is a braided tensor category and V' a dualizable object. Then the
internal endomorphism algebra E(V) = V ® V* carries a natural algebra structure, where
V* is the left dual of V. We then have the following result [73, Proposition 2.3], which
states that the braided tensor product of matrix algebras is again a matrix algebra.

Proposition 3.30. Let € be a braided tensor category and V, W € € dualizable objects.
Then the morphism

p=1Qowew v VOWRIW*QV* > VRV*QWQW*
defines an isomorphism of algebras E(V W) = E(V) ® E(W).
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3.8. Summary of results

Let us now assemble all the tools above to state our main general result, a framework for
constructing Azumaya algebras via quantum Hamiltonian reduction. We fix the following
data:

Ag is an algebra in Repz (G) flat over . Denote by A, its specialization at t = g.

Ur:Ox(G) - Ag is a quantum moment map.

e Z C Ay is a central, UqL(g)—equivariant and u,(g)-invariant subalgebra. Set Z =
Spec(Z). We assume that Z is smooth and connected and A, is a finitely generated
projective Z-module.

Gyab C G is a normal subgroup which acts trivially on Z and such that the pairing on g
restricts to a non-degenerate pairing on gg ., C g. Denote G = G/ Ggp.

Lemma 3.31. Suppose p € Z is a closed point such that Ay |, is a matrix algebra. Then
Z coincides with the center of Aq.

Proof. By assumption A, is a finitely generated projective Z-module. The Azumaya con-
dition is open, so there is an open dense subset Z° C Z such that A,|zo is Azumaya
over Z°. In particular, the center of A;|ze coincides with @ (Z°).

Now suppose z € Z(A,). Then its image in A, |zo is also in the center, i.e., it lies
in O(Z°). The image of z under A4; — A,/Z is therefore zero generically on Z and
since A4/ Z is flat over Z, it has to be zero. [

Since Z = Z(Ay), Proposition 3.23 provides the structure of a Poisson order on
(Ag4. Z). Moreover, combining Lemma 3.27 and Proposition 3.26 we see that (4,, Z) is a
weakly G -Hamiltonian Frobenius Poisson order with a classical moment map u: Z — G.
We fix the following additional data:

e Gy C G is a subvariety such that the composite Gy — G — G is étale and such that
the moment map u: Z — G factors through Gy.

e £,:0,4(G) — Cisamap of U;(g)—module algebras. Denote by £ € G the point corre-

sponding to the composite O(G) — O4(G) i C. We assume £ lies in the intersection
of the big cell G° C G and Gy C G.

o U C u~!(§) is a non-empty open subset consisting of stable points (i.e., each point lies
in a closed G-orbit) with stabilizer Gyup. Let M C Z // G denote the image of U under
the projection =1 (§) - Z // G. Note that by Luna’s étale slice theorem the projection
U — ME is a G-torsor (see [26, Proposition 5.7]).

Theorem 3.32. Consider Ag, jLq,§q.Z,U as above and assume that the map (A R)U%(g)
— (Aq)UqL @ is surjective. Then (Aq. 2) defines a G-Hamiltonian Frobenius Poisson
order. Assume further that:

(1) The Poisson G-variety structure on Z is non-degenerate.
(2) Gy acts trivially on (Aq/lq)"q(g).
(3) The point p from Lemma 3.31 lies in u='(G°).
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Then Ag is a sheaf of Azumaya algebras over w=Y(G®) and its Hamiltonian reduction
Af | & is a sheaf of Azumaya algebras over ME C Z//G.

Proof. By Proposition 3.28 the pair (A4, Z) is a G-Hamiltonian Frobenius Poisson order.
By Theorem 2.15, u~'(G®°) C Z is an open symplectic leaf, which is clearly smooth.
Therefore, by Theorem 3.16 the sheaf A, is Azumaya over =1 (G°).

Denote [i: X — G — G which is a moment map for the G-action on X by Proposi-
tion 2.17. Let £ € G be the image of £ under G — G. By assumption =" (§) — ' (§)
is étale. Therefore, applying Proposition 2.16 to the G-Hamiltonian reduction we deduce
that the G-Hamiltonian reduction M is a smooth symplectic variety.

By Proposition 3.24, 4A¢ defines a Poisson order over Z // G. Since M¢ is symplectic
(in particular, smooth), Theorem 3.16 implies that to establish an Azumaya property it is
enough to establish it generically. Since 7: U — M? is a G-torsor, we have 7 * (Af| ME)
= &|y. Therefore, the Azumaya property of A% over M? is equivalent to that of & over U,
which is therefore also enough to establish generically.

Let &, ! be the character of O,(G) obtained by precomposing &, with the antipode
on O4(G). Then the unit algebra C € Rep, (G) carries a moment map Eq_l: 0,(G) — C.
Let us denote it by C g-1- Then we may identify the quantum Hamiltonian reduction of A
along &, with the quantum Hamiltonian reduction of A ® C £ along the trivial character
€:04(G) — C. In particular, this allows us to assume £, = ¢ and § = e € G is the identity
element.

Choose an étale cover p: Y — U over which A,/I splits as End('V) for a vec-
tor bundle V over Y. The pullback p*& is given by the Hamiltonian reduction
End('V) // u4(g). By Theorem 3.2, u,(g) is a factorizable Hopf algebra, so the Rosso
homomorphism o0,4(G;e) — u4(g) is an isomorphism. Therefore, by Proposition 3.29,
End(V) //uy(g) = End(W), where W = (V)3 ()- The sheaf W is coherent over a smooth
scheme, so by generic flatness (see [32, Théoreme 6.9.1]) it is generically a vector bundle.
Therefore, p*& is generically a matrix algebra over Y, so & is generically an Azumaya
algebra over U. ]

Lemma 3.33. Suppose (Ay, Z) is a G-Hamiltonian Frobenius Poisson order. Then the
Azumaya locus of Ag is contained within w1 (G°).

Proof. Recall from [38, 39, 42] that we have an element denoted K~ in O4(G), which
acts diagonalizably on weight vectors v; via K~?v; = ¢~‘»*)v;. When ¢ is generic, this
element corresponds to a monomial in Uy (t) under the Rosso isomorphism, but it is well-
defined as an element of O, (G) for all g. The element K £0 lies in the central subalgebra
O(G) C O4(G), where it generates the vanishing ideal of the complement to G° C G.
Now let p € Spec(Z) be any point in the preimage of the complement G \ G° of the
Bruhat cell. Then py(K™") defines a non-zero element of the fiber, which g-commutes
with elements of A, and therefore defines a non-zero two-sided ideal in the fiber. This
ideal is proper, because (K )¢ is zero by assumption. Since finite-dimensional matrix
algebras cannot contain non-trivial two-sided ideals, we conclude that p cannot lie in the
Azumaya locus. L]
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4. Quantum character varieties

In this section we implement the program of of Section 3 to show that quantum character
varieties of closed surfaces form Azumaya algebras over their classical degenerations. We
begin by recalling the construction of quantum character stacks and varieties, referring
to [10] for more details.

Let Mﬁdgr denote the topological category with objects being oriented surfaces (pos-
sibly with boundary), and with morphisms being oriented embeddings. Let Diskgr denote
full subcategory consisting of disjoint unions of disks; hence Diskgr is a model for the
framed E,-operad.

A ribbon tensor category 4 determines a functor from Diskgr to the (2, 1)-category
Pr of locally presentable linear categories. Examples include Rep g (G) for generic quan-
tum parameter, the category Rep(G) of representations of Lusztig’s integral form, its
specialization Rep, (G) at a root of unity parameter g, and finally Rep(G) in the classical
case — in this latter case the ribbon element is the identity natural isomorphism of the
identity functor. The factorization homology of oriented surfaces with coefficients in # is
the canonical ‘left Kan’ extension,

. A
Dlskgr Pr
7
/
/
/
/ S [g A
/
/
2
MAdg,

For any surface S, the embedding of the empty surface into S induces a distinguished
object Distg in |, g . In the case A = Rep(G), Distg is simply the structure sheaf,
O(Chfé (S)), of the character stack (recall that we regard quasi-coherent sheaves on a
quotient stack as G-equivariant objects on the framed character variety). Following [10],
in the case A = Rep,(G), we call Dists the quantum structure sheaf. To alleviate nota-
tion, we will call the classical distinguished object Distfgl, and the quantum distinguished
object Distg.

If S° is a surface with boundary, the designation of an interval on the boundary deter-
mines on |, go o the structure of an #-module category, and allows us in particular to
define internal homomorphisms. We denote

Age = End(0%,) € A,

where End denotes the internal endomorphism algebra. The algebra Ago is a deformation
quantization of the coordinate algebra of the framed character variety; it was computed
in [10] in terms of Alekseev—Grosse—Schomerus algebras [1]. We will denote by A?o the
JR-algebra obtained by replacing Rep,(G) by Repz (G) in the above construction.

If S is a closed surface, we consider the quantum character variety to be End(Distg),
the global algebra of endomorphisms in |, s Repy (G).
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4.1. The Frobenius Poisson order

By its construction as a left Kan extension, factorization homology is functorial both in
the surface S (under embeddings), and in the braided tensor category + (under ribbon
tensor functors). Hence the quantum Frobenius functor induces a further functor

/;Fr*:/SRep(G)%/;Repq(G),

for any surface S. Moreover, this functor is pointed with respect to the distinguished
objects Distg: it means that we obtain a canonical isomorphism in |, 5 Rep, (S),

(/S Fr*) (Dist§) = Dists .

For the remainder of this section, let us adopt the following convention: S will hence-
forth denote a closed connected surface of genus g, and S° = S\ D will denote the surface
with boundary obtained by removing a disk D from S.

By the above discussion, | g0 Rep(G) is a Rep(G)-module category while
/. g0 Rep,(G) is a Rep,(G)-module category. In addition, we obtain an embedding of
algebra objects in Rep, (G),

Fr*(O(Ch%(S°))) — Ago. (4.1)

It follows from the fact that Rep(G) lies in the Miiger center of Rep, (G) that the embed-
ding (4.1) is central. Note that we may identify

O(ChE(S°)) = O(G*®)
as a G-representation, and by [10, Theorem 5.14] we have
AR, = 02(G)®*
as an object of Rep (G). In particular, A?o is flat over R.

Lemma 4.1. Ago is a finitely generated @(Chfé (S°))-module.

Proof. By [24, Theorem 7.2], O4(G) is finitely generated over O(G). But Ago =
O,(G)®?¢ considered as an O(G)®?8-module is a tensor product of finitely generated
modules, so it is also finitely generated. ]

Lemma 4.2. The fiber of the algebra Ago at the trivial local system on Chf(r; (S)isa
matrix algebra.

Proof. The main observation is that the fiber of Ago at the identity is itself an instance of
adistinguished object in factorization homology, namely it is the algebra A5, the internal
endomorphism algebra of the distinguished object in the factorization homology category
of §° with coefficients in the braided tensor category Vect ®gep(G) Rep, (G). By [7] this
category is equivalent to Rep(u4(g)).
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Recall the notion of an elliptic double Eg from [17] associated to a quasi-triangular

Hopf algebra H. The results of [10] therefore give an isomorphism
Sm o~ ég
Ase = Byt

the braided tensor product in Rep(u4(g)) of the elliptic double E,(q). By [17, Theo-
rem 5.6] the elliptic double £, (4) is isomorphic to the Heisenberg double since u,(g) is
factorizable. By the definition of the Heisenberg double, £, (q) acts faithfully on u,(g)
and hence (comparing dimensions) we have an isomorphism

Ey, () = End(ug(g)).

But the braided tensor product of matrix algebras is a matrix algebra by Proposition 3.30.
(]

In particular, by Lemma 3.31 we conclude that O (Chfé (S°)) coincides with the center
of Ago. But then by Proposition 3.23, we obtain the structure of a Frobenius Poisson order
on the pair (Ago, Chfé (S°)).

Proposition 4.3. The Poisson G-variety Chfcr; (S°) is non-degenerate.

Proof. Recall from [28] that Chfé (S°) carries a natural Poisson structure coming from a
classical r-matrix on g. Using Proposition 3.22, one can generalize [10, Theorem 7.3] to
show that the Poisson structure on Chfé (S°) obtained by Proposition 3.23 coincides with
the Fock—Rosly Poisson structure associated to the classical r-matrix in Proposition 3.22.

We may construct the surface S° by fusing together cylinders. By Proposition 3.25 this
means the Poisson structure on Chfé (S°) is given by the fusion of the framed character
varieties for a cylinder.

The Fock—Rosly Poisson structure on the cylinder is twist equivalent to the quasi-
Poisson (G x G)-variety D(G) (see [3, Example 5.4]), which is non-degenerate by
[3, Example 10.5]. [

4.2. The Frobenius quantum moment map

Let us now recall how to compute the quantum character variety of a closed surface in
terms of quantum Hamiltonian reduction following [11]. Let Ann be the annulus and
consider the embedding Ann C S° as a closed neighborhood of the boundary. We may
identify [, —Repg(G) with the category of O&(G)-modules in Repg(G). Moreover,
/. Ann R€PR (G) carries a natural monoidal structure coming from stacking of annuli. More-
over, embedding of the disk into the annulus gives a monoidal functor Repg(G) —
fAnn Repﬂ (G)

By functoriality of factorization homology, we get the structure of a [, Repz(G)-
module category on |, g0 Rep®(G). In particular, taking the internal endomorphism
algebras of the distinguished objects gives a map

nr:0g(G) — A%,
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of algebras in Rep (G). By [11, Proposition 4.2] and [64, Proposition 3.6] it satisfies the
quantum moment map equation (3.2).

Finally, by [11, Theorem 5.4] we may identify the quantum character variety of the
closed surface as a quantum Hamiltonian reduction:

End(Distd) 2 A% //Uk(g).

and similarly for its specialization at t = q.

Combining Lemma 3.27 and Proposition 3.26 we find that (Ago, Chg (8°)) is a
weakly G-Hamiltonian Frobenius Poisson order. In particular, there is a classical moment
map u: Chfé (8°) — G. We will now identify this moment map explicitly.

Proposition 4.4. The classical moment map [i: Chfé (S°) = G*¢ — G is given by

g
RO Y1 X, vg) = [ [l il
i=1
Proof. Consider the category Al consisting of two objects and a single morphism
between them. The (2, 1)-category Fun(A!, Pr) carries a natural symmetric monoidal
structure given by the pointwise tensor product. Then the braided tensor functor
(Rep(G) — Rep,(G)) defines a functor Diskgr — Fun(Al, Pr). Since colimits in
Fun(A!, Pr) are computed pointwise, the factorization homology is also computed point-
wise.
By functoriality of factorization homology we get a morphism

(Rep(G) — Rep, (G)) — / (Rep(G) — Rep, (G))
Ann Seo

in Fun(A', Pr), i.e., a commutative diagram

Jann REP4(G) — [g0 Rep, (G)

T T

Jann REP(G) — [0 Rep(G)

of pointed categories. Computing the internal endomorphisms of the distinguished
objects, we get the commutative diagram

0,(G) —— Asgo

]

O(G) —— O(G?¢)

Since the map O(G) — O,(G) is injective, the classical moment map is given by the
bottom morphism. But it is induced by the homomorphism 7 (Ann) — 71 (S°) given by
monodromy around the boundary. |
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4.3. Proof of Theorem 1.1

Consider the open subvariety Chg’ g(’Od(S ) C Chg (S) consisting of points whose G-orbit
is closed and whose G-stabilizer is the center (see e.g. [67]). This locus is empty when
g = 0, 1, but otherwise non-empty. Denote by Ch‘g’ Od(S ) C Chg(S) its image under the
quotient map.

We are now ready to prove our main theorem about character varieties, Theorem 1.1,
which we recall here:

Theorem 4.5 (Theorem 1.1). Let G be a connected reductive group and q a primitive
L-th root of unity, which together satisfy Assumption 3.1. Let S be a closed topological
surface of genus g, and denote by S° the surface obtained by removing some open disk
from §.

(1) The moduli algebra Aso is finitely generated over its center, which is isomorphic to
the coordinate ring of the classical framed G-character variety Chg (S°) = G2,

(2) The Azumaya locus of the moduli algebra Ago coincides with the preimage of the
open cell G° C G under the classical moment map Chfé ($°) = G.

(3) The quantized character variety of the closed surface S is finitely generated over its
center, which is isomorphic to the coordinate ring of the classical character variety.
It may be constructed as a Frobenius quantum Hamiltonian reduction of Ago.

(4) The quantized character variety of the closed surface S is Azumaya over the entire
‘good locus’ CthOOd(S) C Chg(S).

Proof. The first statement is established in Lemma 4.1. The containment of the Azumaya
locus within = (G°) is Lemma 3.33. To confirm the remaining statements, we will use
Theorem 3.32, and hence we need only confirm the assumptions of that theorem.

We take for Ag the algebra A‘?o, and for &, the counit ¢, of O,(G), lying over the
identity element e € G viewed as a character on O(G). For Z we take O(Chg (S°)).
For Gy, we take the center Z(G) C G.

The moment map u: Chfé (8°) — G is a product of commutators, so it lands in the
derived subgroup Gy = Gy C G. Note that Gge; C G — G/Z(G) is étale.

The classical character variety Chfcr; (S8°) is isomorphic to G?£, so it is smooth and
connected. Moreover, by Proposition 4.3 it is a non-degenerate Poisson G-variety, which
proves assumption (1) of Theorem 3.32.

For U we take the locus of ‘good representations’ Chg goOd(S ) C 1~ (e). Note that the
center Z(G) = Gy acts trivially on the whole character variety Chg (S°). By Remark 3.6
the weights of O,(G) lie in the root lattice. Since the quantum algebra 4 go is a tensor
product of the algebras O, (G), the weights of /g0 also lie in the root lattice. Therefore,
the weights of Ageo|,—1, // u4(g) also lie in the root lattice of G, so Z(G) acts trivially,
which proves assumption (2) of Theorem 3.32.

The surjectivity criterion, assumption (3) of Theorem 3.32, can be checked using the
theory of good filtrations. Namely, O (G ) admits a good filtration by Theorem 3.7. Since
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A?o is a tensor product of O (G), by Proposition 3.4 it also admits a good filtration and
hence satisfies the surjectivity criterion. ]

Remark 4.6. We note that the proof of Theorem 4.5 gives a mechanism to compute the
fibers of the algebras Ago and its Hamiltonian reduction over the good locus, even when
g and G do not satisfy Assumption 3.1, i.e., Rep(u4(g)) is not factorizable. We hope to
return to this in future work.

The results are, in a sense, optimal when G = GL,, or SL,, [9, Lemma 2.4].

Proposition 4.7. Suppose G = GL,, or SL,, and g > 2. Then Ch%;md

the smooth locus of Chg(S).

(S) coincides with

4.4. Kauffman bracket skein algebras and the Unicity Conjecture

Let S be an oriented surface and let K4(S) be the Kauffman bracket skein algebra which
is a C[A, A~ !]-algebra (see e.g. [29, Section 3] for recollections). The following is first
proved in [60] (see also [29, Theorem 3.1]).

Theorem 4.8. K4(S) is free as a C[A, A~']-module, with basis given by the set of isotopy
classes of simple multi-curves on S.

Furthermore, we have the following result.

Theorem 4.9. Each spin structure on S induces an isomorphism between the Pois-
son algebra K1(S) equipped with its natural Poisson bracket and the Poisson algebra
O(Chsy, (S)) equipped with its Fock—Rosly (equivalently, Goldman) Poisson structure.

Proof. It is shown in [20, 69] that the Poisson algebra K_;(S) is isomorphic to
O(Chsy, (S)) equipped with the Fock—Rosly Poisson structure.
In addition, Barrett [8, Theorem 1] constructs an isomorphism of C[A4, A_l]—algebras

Ka(S) = K_4(S)

using a spin structure on S.

At A = 1 both algebras become commutative. So, by functoriality of the Poisson
bracket induced on the center (see Proposition 3.23), we obtain an isomorphism of Pois-
son algebras

Kl(S) %K_l(S). u

We will now show that the same Poisson structure appears naturally when we degen-
erate to roots of unity. Fix an odd number £ > 1 and suppose ¢ is a primitive £-th root of
unity. Denote

K (S) = Ka(S)/(A—=0).

A fundamental construction in the study of Kauffman bracket skein modules at root of
unity parameters is the following statement [14].
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Theorem 4.10. There exist injective homomorphisms
Fr9: K1 (S) — Z(K¢(S)),
natural for surface embeddings.

In [29, Theorem 4.1], the quantum Frobenius map Fr® was proved to be an isomor-
phism onto the center in many cases. The particular case of their theorem we will require
is as follows:

Theorem 4.11. Suppose the surface S is closed. Then Fr® is an isomorphism.

Therefore, Proposition 3.23 provides a Poisson order structure on (K¢(S), K1(S)).
So, for every £ we obtain a Poisson structure on the same algebra K;(S).

Lemma 4.12. Let S° be a surface obtained by removing some disk from a closed sur-
face S. Then (K¢(S°), K1(S°)) is a Poisson order.

Proof. We would like to apply Proposition 3.23 (3) directly to conclude that K;(S)
is closed under the Poisson bracket, but because S° is not closed, Fr'? (K;(S°)) #
Z(K¢(S5°)), so the criterion does not apply. Neither will it suffice to embed S° back into
the closed surface S, because the induced map on skein algebras has a kernel. Instead,
let us embed S° into a surface T' of genus 1 greater than S, so that by Theorem 4.8 the
induced map K4(S°) — K4(T) is injective. Since T is closed and Fr® is natural for
surface embeddings, we may indeed apply Proposition 3.23 (3), to conclude that

{FrO (K1 (5°)). FrO (K (5°))} ¢ FrO(K1(T)) N K¢ (S°) = FriP(K1(S°)),
as desired. ™

Proposition 4.13. The Poisson structure on K1(S) in the Poisson order (K¢ (S), K1(S))
is independent, up to a factor, of the order £ of the root of unity.

Proof. The claim is trivial if S has genus 0, so we will assume that it has genus > 1. Let
us first denote by S° the surface obtained from S by removing some disk.

Choose o such that =2 = ¢. By [13, Theorem 1] (see also [55]), any suitable trian-
gulation A of S° determines an algebra embedding

TiR: K¢ (S°) — T,

of the Kauffman bracket skein algebra into a quantum torus TZA. Here by quantum torus
we mean that TZA is presented with invertible generators Xy, ..., X,, for some r, with
relations X; X; = ¢"i/ X; X;, for some skew-symmetric integer matrix (n;;).

On the quantum torus we have a simple quantum Frobenius homomorphism,

O 78 — Z(T8),

which sends each generator X; of the ring TIA to the £-th power of the corresponding

-~

generator in J ZA' In particular, by Proposition 3.23 we obtain the structure of a Poisson
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order on (T;A, TIA). It is straightforward to see that the induced Poisson bracket on TIA
depends on £ only up to an overall scalar factor.
By [14, Theorem 21] we have a map of Poisson orders

Tr® Twzz. K+(S°). K1(S° A A
(rA’ rA )( Z( )’ 1( ))c_)(Jg- 7\/1 )

Since any skein in S is isotopic to one missing the disk, the map p: K4(S°) — K4(S)
is surjective. By naturality of Fr®) under surface embeddings (Theorem 4.10) we have a
map of Poisson orders

p:(K¢(S°), K1(8%) = (K¢(S), K1(S)).

Consider a pair of elements f, g € K;(S). Our goal will be to show that { f, g} is
independent of £ up to a factor. Since p: K;(S°) — K;(S) is surjective, we may find the
lifts f, g € K1(S°) of f, g which we assume are independent of £.

2 ~ 2
The Poisson bracket {Tr‘zz f), Trﬁg (g)} is independent of £ up to a factor. Since

2 ~
Tr“A’Z 1 Kq1(S°) — TlA is Poisson, the same claim holds for { f, g}. Since p: K1(S°) —
K, (S) is Poisson, the same claim also holds for { f, g}. |

Remark 4.14. In a previous version of this paper, Proposition 4.13 was incorrectly
attributed to the literature. We are grateful to Thang Le for bringing this to our attention,
and suggesting that we add a complete proof.

Theorem 4.15 (Theorem 1.2). The skein algebra K¢(S) is Azumaya over the whole
smooth locus of Chst, (S).

Proof. It is shown in [29, Theorem 2] that K¢ (S) is generically Azumaya over Chsr, (S).
Consider the open symplectic leaf in Chgy,(S) (which is, in particular, smooth). Since
(Ke(S), O(Chsi,(S))) is a Poisson order, by Theorem 3.16, K¢ (S) is Azumaya over the
open symplectic leaf in Chgy, (S). To prove the claim, we have to establish that the open
symplectic leaf coincides with the smooth locus.

The case g = 0 is trivial.

Suppose g = 1. We have an isomorphism Chgp, (S) = (C* x C*) / Z where Z acts
on each factor by z; > z; ! In particular, the smooth locus is the locus of pairs (z1, z2)
where z; # %1. The Poisson structure on Chgy, (S) comes from the standard symplectic
structure on C* x C*. Since the map C* x C* — Chgy, (S) restricts to a Z,-torsor over
the smooth locus, we deduce that the Poisson structure on the smooth locus is symplectic.

Suppose g > 2. Then by Proposition 4.7 the open symplectic leaf coincides with the
smooth locus. ]

5. Quantized multiplicative quiver varieties

We now recall the definition of the multiplicative quiver variety, following [23, 76], and
its quantization, following [37]. We subsequently implement the program of Section 3,
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in order to deduce that quantized multiplicative varieties define sheaves of Azumaya
algebras over classical multiplicative quiver varieties. Throughout this section, ¢ denotes
a primitive root of unity of order £, where £ > 1 is odd.

5.1. The classical multiplicative quiver variety

Let Q = (E, V) be a finite quiver. The doubled quiver O has the same vertex set V = V.
but with an additional ‘dual’ edge eV : j — i, for each edge e : i — j of O, s0 E =
EUEY.Fore e E, set g(e) to be equal to 1 if e € E and —1 if e € EV, and write
o =ua(e) € Vand B = B(e) € V for the source and target of e. Fix a dimension vector
d = (dy)vev € (Zs0)". B

A framed representation of Q with dimension vector d is an assignment of a linear
map C% — C98 to each edge e € E. The moduli space M (Q, d) of framed represen-
tations of Q is therefore a Cartesian product of spaces of matrices,

M:(0,d) = 1_[ Mat(e) x Mat(e"), where Mat(e) = Homg (C%, C96).
ecE

The group G = GLq = [[, GLg4, acts on M (Q, d) by change of basis at each vertex.

Let M (Q,d)° denote the Zariski open locus of M. (@, d) on which the determinants
of the matrices Idy + X,v X, are non-vanishing for all e € E. We have a multiplicative
moment map

—
i Mi(Q.d)° > GLa. X > [ ] (Mo + Xev Xe)©. (5.1
ecE

Fix a function § : V — C*, satisfying [ [, & = 1, which we regard as a collection £ =
(§v)vev € GLq of scalar matrices. Fix a character 6: G — C*. Denote by Cy € Rep(G)
the corresponding one-dimensional representation.

Definition 5.1. The multiplicative quiver variety is the GIT Hamiltonian reduction

M(Q.d.£.6) = Mi(Q.d)° [/, GLa

= 7' (®)/, 6La = Proj(D 0 ' E) ® Ce"”)GLd‘

m=0

Recall the notion of §-semistable and §-stable points of the G-variety i~ ! (&) (see
[56, Chapter 1] and [40, Section 2]). Then &~ ! (§) /9 G may be identified with the quotient
of the open subset of 1! (&) of f-semistable points by a certain equivalence relation. In
particular, we obtain a surjective morphism

7T = N6 ;6

Definition 5.2. The stable multiplicative quiver variety M*(Q,d, &,0) C M(Q,d, &, 0)
is the image of the #-stable points of =1 (£).
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Note that by construction we have a projective surjection i~ (£) /QG — 1) / G,
which is an isomorphism for 6 trivial. The construction of a Poisson structure on
(3 /eG mimics the construction of the Poisson structure on i~ (£) / G given by
Proposition 2.9.

Remark 5.3. The multiplicative quiver variety was constructed first in [23] as a moduli
space of representations of a multiplicative preprojective algebra. The construction as a
multiplicative Hamiltonian reduction was accomplished in [71, 72], using the formalism
of quasi-Hamiltonian moment maps. See Remark 5.24 for more details.

Example 5.4. An important special case is when 6 = 0. Then it is well-known (see
e.g. [31]) that every representation of Q is semistable, and that only the simple repre-
sentations are stable. For general 6, A. King [40] gave a purely algebraic description of
0-(semi)stability in terms of excluded ‘slopes’ of subrepresentations.

Remark 5.5. It can often happen that M*(Q, d, &, 0) is empty altogether — for instance
when 68 = 0, not every dimension vector supports a simple representation of the prepro-
jective algebra. At the other extreme, it can happen that the semistable and stable loci
coincide. In this case M(Q,d, &, 0) defines a symplectic resolution of M(Q,d, &, 0), by
results of [65]. Crawley-Boevey and Shaw [23] have given an explicit characterization for
when the stable locus is non-empty in terms of a certain root datum on the quiver; we
refer to [65] for the complete statement.

5.2. The quantization of Mu(Q,d)

We recall the quantizations of the framed moduli space and the multiplicative quiver
variety, following [37, Section 3], and we describe a straightforward extension of the
construction to non-trivial GIT quotients. We begin by recalling the quantization of the
framed moduli space.

Definition 5.6 ([37, Example 4.8]). The algebra O, (IX — A;I) is the algebra generated

over C by elements x; and 8L, for 1 <ik <M and 1 < j,1 < N, organized into an

N x M matrix X and an M x N matrix D, with relations given by the following matrix
equations:

RX> X1 = X1 X2Ro1,
RD> Dy = D1 D3Ry,
DR7'X; = X\RD, + Q. where Q=) Ei®E].
N Mo . . . .
Define Dy(® — @) as the non-commutative localization at the quantum determinants

det, of the following matrices:

g¥ :=1d+ (¢ — ¢ Y DX,
g? =1d+ (g —q HXD.
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Lemma 5.7. In coordinates, x} and 35‘ satisfy

xbox] = gt mnx] x4+ 0(n —m)(g — g~ xl i >J),
xbxh =g xlxl (m > n),
3,07 = g% )%, + 0(n —m)(q — ¢~ ")}, 0, i > J).
o0, =q 1ol ol, (m > n),
Oyx] = qintmxJol 4 8ing®m(g —q™) > x] oD,
p>i
+8m(g® = 1) Y 05x2 + q8inbjm.
p<j

We recall the following PBW basis theorem for the algebra D, (1: — 1\.4)

Theorem 5.8 ([37]). The ordered monomials (in any fixed ordering) of the form
()" e - @) o )

define a basis of the algebra Dy (Z.V — A.l)

Definition 5.9. The algebra D, (1:] ‘O) is generated over C by elements a'i" and dl:i ,
organized into N x N matrices A and D, with relations given by the following matrix

equations:

Ry1A1RD3 = A2R>1A1R, R1D1RD; = D3Ry Dy,
Ry1D1RAy = A3R31 D1(R21) ™.

The algebra D, (’2’ ‘O)o is the localization at the element det, (A)det, (D), which is a g-
central element.

Remark 5.10. An important observation is that D, (IX ‘O)O is precisely the algebra
A2\ p2 for the group GLy .

Definition 5.11. Let Q be a quiver equipped with a dimension vector d. Let e be an edge
of O withd, = N and dg = M. Set

N M, .. .
i)q(o—>o) if e is not a loop,

N

Dy (Mat(e)) :=
Dy( ) if e is aloop (so dy = dg = N).

Definition 5.12. Let Rep,(GLq) denote the Deligne-Kelly tensor product of the cate-
gories Rep, (GLy, ),
Rep,(GLqg) = U§VRepq (GLg,).

We regard Rep, (GLq) as a braided tensor category with the product braiding. The tensor
product of Frobenius homomorphisms gives functors

Fr*:Rep(GLq) — Rep,(GLqg), Fr.:Rep,(GL4) — Rep(GLq).
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Remark 5.13. In other words, an object of Rep, (GLq) is a vector space equipped with
commuting actions of U qL (glq,) for each v € V. The tensor product and braiding on each
such module is induced componentwise, meaning in particular that the universal R-matrix
is simply the product of those for each v.

The quantized edge algebras O, (’2’ — Aol) and D, (’2’ ‘O) were each defined invariantly
as an algebra in Rep,(GLq) as a quotient of a tensor algebra by the image of a certain
morphism mimicking the Weyl algebra relations (see [37, Section 3.2]). We now recall
the definition of the quantization of the moduli space M. (Q, d) of framed representations

of 0.
Definition 5.14 ([37]). Let Q be a quiver with dimension vector d. The algebra

DyMat(Q, d)) (respectively D, (Mat(Q, d))°) is the braided tensor product in
Rep, (GLq) of the corresponding edge algebras:

D;Mat(Q,d)) = Q) Dy (Mat(e)), Dy(Mat(Q,d))° = Q) Dy (Mat(e))°.

ecE ecE
Definition 5.15. The quantum moment map

Kq: Oq(GLa) — Dy (Mat(Q, d))°

is the braided tensor product of moment maps O4(GL4, x GLg,) — Dy (Mat(e)), each
given by the formulas

nalay ®a) = (8 + (g —q*)Zazx}‘)_l(af +g-q7) Y xok).
k k

It is proved in [37, Propositions 7.11 and 7.12] that each u4: O4(GL4g, X GLgy) —
D, (Mat(e)) defines a quantum moment map in the sense of Definition 3.8, so by Propo-
sition 3.11, pg: O4(GLgq) — Dy (Mat(Q, d))° is also a quantum moment map.

Remark 5.16. A priori, the definitions of £,(Mat(Q, d)) and 1, depend on an orien-
tation of Q, as well as a total ordering of the edges of Q; however, in [37], canonical
isomorphisms are constructed identifying the different choices compatibly.

5.3. The Frobenius Poisson order on D4(Mat(Q, d))

We now turn to the construction of the Frobenius Poisson order structure on

Dy Mat(Q, d)).

Lemma 5.17. Fixi, j, n, and m. For r > 1, define the following quantities:

ay = Sinqﬁjmr(qr _ q—r)’ br — Sjmqﬁi,,(r—l)+l(qr _q—r)7
q2r —1
cp = 8in8jm(q2r _ 1)(1 _ q—z(r—l)), dr = (SinSjmm,

tr =00 —m)(g> " —q7").
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N M
Forr,s > 1, the following identities hold in i)q(o — e )

Xh ()" = " ()Y Xk, + () T x> ),
(2" x) = g ] () + texfxb )T > ).
O, (30 = q @) o, + (3] ol 0L (> ),
@) 8] = q %) (3 ) + 1,05,8L (30 )" (> ),

()" () = ¢ 7" () (xp)" (m > n),
(0,) (@3)° = q 7" (3})* (3},)" (m > n),
ain(xl{)r :q(Sin‘i‘é‘jm)"(xi{)rain +ar2(x’{)r—1x;narp;1 +br Z(xé')r—laé/x’f/
p>i r'<j

+cr Z (x;")’_zx;"ag,x,f/ +dp(xH!
p>n,p’<m
@) ) = g T @) +a, > xmop @) 7+ by Y 3 x (35,) !
p>i p'<j
e Y hxE0R3,) 2+ dp(3,)

p>n,p'<m

Proof. We give a proof of the identity involving 9!, (x,{)’ ; the justification of the other
identities is similar or easier. We proceed by induction on r. The base case r = 1 follows
from definitions. Now, if p > i = n, then

, . I , ,
X)o7 = g% xIx ] 07 + 8jm(q = 1) Y x) 00 xr
p'<j
and if p’ < j = m, then
i P i Sin—1,jqi P -2 jqp P’
ap’xi xé =gq in 'xzap"xi +81n(1_q )lej,ap/xi .
p>i

. ;o o ,
Finally,if p >i =nand p’ < j = m, then x; 85,xf x} =q7%x! x} Bg,xip . We write
ai”(xz)r — q(5in+8jm)r(xr]l')rain +a, Z (xrjl')r—lx;narlil
p>i

b Y )TN e Y ()P0l de(x))!

p'<j p>n,p’'<m
for some a,, by, ¢y, d, in C. Straightforward computations imply the recursive relations
Ary1 = qum_lar + Sinq(l-i-(gjm)r-i-tgjm (q _ q—l),
bry1 = qain_lbr + Sjmq(l+8in)r(q2 -1,

Cr4+1 = SinSJ'm(qz — 1)61,- + (1 — q_z)br + q_zcr,
dry1 =dr + Singjqur—H'
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From the initial conditions a; = Sinqafm (g—qY).b1= jm(q2 —1),¢; =0,and d; =¢q,
one deduces the formulas in the statement. [

Corollary 5.18. As an object of Rep,(GLuy), Oy (IX — A") is isomorphic to the tensor
product
(Symg—1 (CM)*)®N,

while as an object of Rep,(GLy), 04 (IX — 1\.4) is isomorphic to the tensor product
(Sym, (CY))®M,
where we denote

Symy(V) = T(V)/(ov,y —q). Symg—1(V) =T(V)/(ov,y —q ).

Proof. We prove the first statement, the second being identical. For i = 1,..., N, let
N M 1 .
@q(o — e ) ) denote the subalgebra generated by the xl.] for j =1,..., M. Inspection

of the defining relations gives an isomorphism

N M
04(® > ), = Symg-1 ((C)").
The PBW basis Theorem 5.8 implies an isomorphism of objects

(9q(1X—>A-4)=(9q(¥—’Af)(l)‘g’"'@@q(lz_’ﬂf)(m' .

Proposition 5.19. The algebras Dy (s — o), Dy('e O)°, D,;(Mat(Q. d)) admit good
filtrations.

Proof. The PBW theorem gives an isomorphism J)q(lz — Aol) x~ (Dq(lz — A;I) ®

04 (A;I — 1;]) By the preceding proposition, we need only construct a good filtration of
the g-symmetric algebras. We note that each summand Sym]; (V) identifies with the coin-
variants for the finite Hecke algebra action on V®k, hence it is dual to the invariants
A(kwpy_1) of the finite Hecke algebra action on V*®¥ and hence it is isomorphic pre-

cisely to a dual-Weyl module V(kw;). The claim for D, (]z 9)° follows similarly from
the tensor decomposition D, (Iz ‘O)o =~ 04(GLy) ® O4(GLYy), and then application of

Theorem 3.7. Finally, the good filtration on each edge algebra tensors to give a good
filtration on D, (Mat(Q, d)), by applying Proposition 3.4. |

Lemma 5.20. Suppose q is a primitive £-th root of unity with £ > 1 odd. Then the Frobe-
nius pushforward of the representation Sym,, (CN) of UqL(gI N) is naturally identified
with the symmetric algebra of the defining representation CN of gl n- That is,

Fr(Sym, (CN)) = Sym(CM).
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Proof. The Frobenius pushforward functor is the functor of taking small quantum group
invariants. We show that the small quantum group invariants of Sym,, (CN) can be iden-
tified with the subspace Sy consisting of polynomials in the £-th powers xf, cees xi,. This
subspace can be naturally identified with Sym(C*), and the induced action of the classi-
cal enveloping algebra on S; matches the usual one on Sym(C¥).

By definition we have the following formulas for the divided power generators of

Sn

Uk (g) on the generators x," of Sym, (CV):

g*rxyt ifn=j,

Kixjn =4 q5nxyr ifn=j—1,
X otherwise,
Sn | _
oot ifi=n—1
() sp _ [ xn_l.xn 1t =n s
Ei Xp = rlq
0 otherwise,
Sn- Sn—rF .r :
fi=n+1
(") sp _ |: Xno Xpyp 1 ’
Foxy = rlq
0 otherwise.

Here,n,j € {l,...,N}, s, € Zsg,andi € {1,..., N — 1}. We note the identity

=0 )

where r = ro + rif and s = 59 + 51£ for 0 < rg, 59 < £ — 1. Thus, a polynomial is
invariant for K; if and only if each of its monomial summands is invariant for K;. From
the identities above for the action of K;, we see that the condition that all K; act on a
monomial ]_[,1,\7:1 x;" by the scalar 1 is equivalent to the condition that each sy, is divisible
by £. Thus, the invariants are contained in Sy. Similarly, the formulas for the action of
the divided powers show that Sy is indeed invariant for the E; and F;. As is well-known,
the classical enveloping algebra U(gl ) has a presentation in terms of Serre generators
E;, F;,and Hj fori =1,...,N —land j = 1,..., N. We have Fr(Ei(r)) = F; and
Fr(Fi(')) = F;. Thus, the induced action of gl on Sy is the same as the usual action of
gl on Sym(C™). |

We are now ready to state the main result of this section:

Theorem 5.21. Let g be a primitive £-th root of unity, where £ > 1 is odd.
(1) We have a central, U;‘(QIN x glyy)-equivariant embedding

Fr*(O(Mat(e) x Mat(e"))) < Dy, (1.V — 1\.4)
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(2) We have a central UqL(gI N )-equivariant embedding

Fr*(O(GLy x GLy)) < D, (e 9)°,
(3) We have a central, U ;‘ (alq)-equivariant embedding

Fr* (0 (Mu(Q,d))) — Dy(Mat(Q,d)),
(4) We have a Frobenius Poisson order structure on (i)q (IX — A;I), M (Q, d))

Proof. For the central subalgebra asserted in (1), we let Z C D, (IX — Aol) be the sub-
algebra generated by the £-th powers (x})z’ (8?‘ )¢ of all generators. Inspecting formulas
(5.17), we note that commutators with all £-th powers of generators vanish when ¢¢ = 1,
i.e., the subalgebra Z is central. Clearly it is isomorphic as an algebra to

O (Mat(e) x Mat(e")).

Hence to complete the proof of (1), it remains to prove equivariance for the action

of the restricted quantum group. The algebra D, (IX — Ao/I) is isomorphic as a UqL (aly)-
module (that is, upon forgetting the UqL(gI )-action) to a tensor product of 2M copies
of the g-symmetric algebra Sym, (CN), where each subalgebra is determined by fix-
ing the lower indices. Hence the equivariance of the inclusion follows immediately from
Lemma 5.20.

Finally, to conclude the proof of (1), it follows from Lemma 5.20 that the small quan-
tum group invariants contain the £-th powers of the generators and the induced action of
the classical enveloping algebra U(gl /) on the copy of O (Mat(N, M) x Mat(M, N)) they
generate coincides with the action induced from GLy acting on the space Mat(N, M) by
multiplication. A similar observation holds for the action of U qL (alpy) (here g is replaced
by ¢!, because the defining representation is replaced by its dual), and we conclude that
the embeddings in the statement of the theorem are equivariant for the restricted quantum
group.

Claim (2) has already been proved in Section 4, because the algebra D, (]X ‘O)o is
isomorphic (as an algebra object of Rep, (G)) to the framed quantum character variety of
the punctured torus, ATz\ p2, for GLy.

Claim (3) now follows from the fact that 9, (Mat(Q, d)) is a braided tensor product
of its edge algebras; this implies easily that the central subalgebras of each edge algebra
isU (}“ (alq)-equivariant, and u, (gl4)-invariant. This further implies that the central subal-
gebra on each edge is in fact central in the whole algebra, as the braided tensor product
commutativity relations become trivial on u,4(gl4)-invariant subalgebras.

Finally, to prove claim (4), we appeal to Proposition 3.24. Combining Proposition 5.19
and Proposition 3.4 establishes the required surjectivity, so we need only show that the
resulting derivation D on O, (Mat(Q, d)) preserves Z. For this, we can compute directly

with the relations of Lemma 5.17 to see that, on each edge algebra D, (IX — A;[), the
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derivation of Proposition 3.23 restricts on Z to give the Poisson bivector

9

(Smnynym+29(n—m)ymyn)— = Vv — -

9 9 9 9

5mn 20 - — N — — ! l e —

+i>§,m( i+ 200 =)z )azin A

+2 Z ((Sln “I‘Sjm)y;{Zin +5in Zylfzrﬁ
i,j,m,n p>i
. 8in8jm 9 9

§; poiog MM ) T A~ (5.2
+ ,m;ynZﬁ(qz_l)e o Moy O

Meanwhile, we know that the derivation preserves the central subalgebra on loop
edges, as is proved in Section 4.1. And now once again the claim for D, (Mat(Q, d))
follows by considering braided tensor products. ]

Remark 5.22. The direct check that D(Z)(Z) C Z given here can be avoided: The-
orem 5.25 below gives the existence of a single Azumaya point, and Z = Spec(Z) is
smooth and connected. Hence Lemma 3.31 implies that Z is the center of D, (Mat(Q,d)),
and then the desired containment follows by Proposition 3.23.

5.4. Non-degeneracy of the Poisson G-variety Mg(Q,d)

We are now going to analyze the non-degeneracy of the Poisson GLg-variety structure on
M (Q,d) given by Theorem 5.21.

Consider the quiver (Q,d) = (o — e ) From formula (5.2) it is clear that the Poisson
structure is independent of £ up to scale. So, it is enough to analyze the non-degeneracy
of the Poisson structure for ¢ — 1. Let rps and ry be the classical r-matrices on gl ,, and
gl 5 respectively. By our convention the symmetric parts of rps and ry are given by P /2,
where P:CM @ CM — CM @ CM is the flip v ® w — w ® v and similarly for CV.

Then the ¢ — 1 limit of the relations in Definition 5.6 gives the following Poisson
structure on Mg (Q, d):

X1, X2} = rv X1 X2 — X1 X2(rm )21,

{D1, D2} = ruy D1 D3 — D1D2(rn)o21,

{X],Dz} = —Dz?‘NXl —_ XlrMD2 — Q
Here the relations hold in @ (Mg (Q, d)) tensored with Hom(C¥ @ CM CYN @ CV) in
the first line, Hom(CY ® C¥,CM ® CM) in the second line, and Hom(C* ® C¥V,

CM @ CN) in the last line, and Q: CM @ CN — CM ® CV simply denotes the identity
map.

Theorem 5.23. Let Q be an arbitrary quiver. The Poisson GLg-variety My(Q, d)° is
non-degenerate.
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Proof. By Definition 5.14 and Proposition 3.25, M (Q, d)° is obtained by the fusion of
the corresponding varieties for a single edge. But by Proposition 2.14 fusion preserves
non-degeneracy, so it is enough to prove non-degeneracy of Mg (Q,d)° when Q is a
single edge. When Q is a single loop, the result follows from Proposition 4.3. So, we just

have to analyze the case (Q,d) = (’2’ — Ao/l)

Let a: gly ® gl — T'(Me(Q, d), T (0,0) be the inﬁnitesimal action map and
consider the new bivector 7 = 7w + a(rpr + ry) € I'(Mg(0Q, d), T (Q d)) (note that
it is no longer antisymmetric). The corresponding biderivation {—, —}’ is given by the
following formulas:

{X1. X2} = X1 X2 P,
{D1,D;} = —-D1D,P,
{X1, D2} = -Q
{D>,X1}Y = D,PX; + X PD, + Q.
By Proposition 2.13 the non-degeneracy of the Poisson G-variety M (Q, d) is equiv-

alent to the condition that this matrix, which we will denote by M, is invertible. Writing
it out in coordinates, we have

iy = —ylyt = (Mxx)?,
{z] .2y = —z]zl = Mpp)]}.
/.2y = —818) = (Mxp)}.
{2k, y/YV = szy, 8+ sz vist +8/8t = (Mpx)Y.

‘We have a block form

M= (MXX MXD)
Mpx Mpp)~

Since My p is a scalar matrix, we have det(M) = det(Mpp Mxx — Mxp Mpy). We get
(Mpp Mxx)}; = (DX){(XD)!,
(MxpMpx); = —(DX)[8] — (XD)}8] - 6/8].
and hence
(Mpp Mxx — Mxp Mpx)}y = (DX)] + §))(XD)} + 8)).

In other words, Mpp Mxx — MxpMpx:CM @ CN — CM @ C¥ is the tensor product
of 1+ DX:CM - CM and 14+ XD:CVN — CV . Wehave det(1 + DX) = det(1 + XD),
SO

det(M) = det(1 + DX)N M.

In particular, it is invertible on the locus M (Q,d)° C M (Q,d). [
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Remark 5.24. Van den Bergh [71] defined a natural quasi-Poisson structure on M (Q,d)
using the theory of double quasi-Poisson structures. In particular, he shows that his quasi-
Poisson structure is non-degenerate on Mg (Q,d)° C Mg (Q, d) (see [72, Proposition
8.3.1]). We expect that the twist of his quasi-Poisson structure with respect to the anti-
symmetric part of the r-matrix coincides with the Poisson structure studied in this paper
which is obtained by degenerating the quantization given in [37].

5.5. An Azumaya point on Mg (Q,d)

Let Qg be the Kronecker quiver with dimension vector d = (M, N). Recall from Def-
inition 5.6 the algebra D, (IX — A;[), which has generators x} and 9, for 1 <i,p <M
and 1 < j,r < N.Recall also that we organize these generators into an M x N matrix X
and an N x M matrix D. Similarly, set X! to be the M x N matrix with entries (x;)z
and D! to be the N x M matrix with entries (8;’)? We fix ¢ to be a primitive £-th root
of unity, where £ > 1 is odd. By Theorem 5.21, the entries in Xl and DIl generate a
central subalgebra Z; isomorphic to the coordinate algebra of Mat(M, N) x Mat(N, M).
The quotients

A=D,(0 > 9)/ (DY =0) and M=D,(e—¢)/(D =0)

of Dy (12’ — Ao/l) by the ideal generated by the entries of D! and the ideal generated by
the 3’s are each modules for the quotient Z; /(D] = 0). The former is in fact an algebra
over Z¢/ (D = 0), and by the following theorem, it is the endomorphism algebra of the
latter:

Theorem 5.25. (1) The left multiplication action induces isomorphisms
N M ~ N M
Dy(e — o)/(D[e] = 0) = Endz,;(pta—q)(Dy(® — ¢)/(D = 0)),

Therefore, the fiber D, (]X — A;I)/(D[e] =0, X1 = 0) of the sheaf defined by
D, (’l’ — A‘I) over zero in Mat(M, N) x Mat(N, M) is a matrix algebra.

(2) The fiber of M(Q,d) over the zero representation is a matrix algebra.

Proof. For (1) we observe that the module M is of rank ¢MN over Z := Z,/(D¥] = 0)
with basis given by the (ordered) monomials

- - 1 1 M

F(F) 1= (xM)N (xh_ ) N=1 - (M)
where 7 = (rh,rh_,.... 1. r%, ..., rM) ranges over the elements in {0, ..., ¢ — 1} x
{0,...,€ — 1}. Clearly the element 1 is a cyclic generator for the module; hence our

strategy is to show that we can reach 1 from an arbitrary element of M using the A-
action, and hence conclude that M is an irreducible representation of A of the correct
dimension.
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Note that 7 is constantly zero if and only if X(#¥) = 1. An arbitrary element of M can

be expressed as
F=) zk()
;

for some z; € Z. Define a total order on the set S = ([1, M] x [1, N]) LI {0} by

n>mor

(Jom) =0, (G.n) > (j.m) if{ o
n=mandi < j,

for any i, j € [1, N] and any m, n € [1, M]. The leading index of the monomial X () is
defined as
LI(x(¥)) = max{(i,n) | r, #0} € S

if x # 1, and LI(1) = 0 € S. The leading index of an element y = ) - zzx(7) is defined
as
LI(y) = max {LI(x(7)) | zz #0} € S

if y # 0, and LI(0) = 0.
Lemma 5.26. Forany p, 1 < p < M, the element

M

°)
can be expressed as a sum of elements, each divisible on the right by some 3;,, where
(p'.s) = (p.i).

i N
2p+1
3;)65 —6ing P € {Dq(o —

Proof. By the defining relations of the algebra, we have
Oy —Sing = ¢ xR o, + 8in(q® = 1) Y_xPy 4 (47 = 1) Y Bk
§>1 p'<p

We proceed by induction on p. From the above expression, the base case p = 1 is clear. If
p > 1, then by the inductive hypothesis, all elements on the RHS are of the desired form
except for (¢ — Din Y_ -, ¢>?' 1. Adding this to the LHS, we obtain §;,¢2?T!. =

Lemma 5.27. Suppose y is the form y = (x;{)rx, where LI(x) < (j,n)and 1 <r <{-—1.
Then
LI(0;, > (¥)) =0 forany (m,i) with (m,i) > (j,n).

Proof. The condition (m,i) > (j,n) implies that we cannot have bothi = n and j = m,
i.e., §;40;m = 0. Using Lemma 5.17, we compute

3, oy = qCimtmr (xIyr (@l x)

tar Y () T rn e x4+ by Y () T ok e ],

p>i p'<j

noting that ¢, and d, vanish since they are divisible by 8;,8m.



The quantum Frobenius for character varieties and multiplicative quiver varieties 3077

We now prove the claim by induction on (j, #) in the totally ordered set S. The base
caseis (j,n) = (1, N). In this case, y = (x}\,)r for some 1 < r < { — 1, and there are no
p or p’ with p > N and p’ < 1. Thus,

3 >y = gCinTomr (xyr @i » 1) = o0.
For the induction step, let y = (x;f)’x, where LI(x) < (j,n)and 1 <r <{—1. Now,
O >y = g T () (3 > X)
tar Y () T ron o x] + by Y () T ok x e x].
p>i p'<j
The inductive hypothesis implies that 3/, > x = 0 and 9%, > x = 0 since (m, p) > (m,i).
Suppose m = j, so that b, is non-zero. Then necessarily i # n. By Lemma 5.26, 8;,x,1,’
can be expressed as a sum of elements, each divisible on the right by some 3;,,, where

(p”,s) = (p’,i) = (m,i). Consequently, this element acts on x as zero, and the inductive
step follows. ]

Lemma 5.28. Suppose y = (x,],‘)’x, where LI(x) < (j,n)and 1 <r <{ —1. Then
0 #LI@! > y) < (j.n).
Proof. We record the following computation:
& > ()" x = > ()" (8 > x)

tar Y ()T X)X+ b Y () T xR e x]

p>i p'<j
o , o
+¢r Z (x))" z[xlﬁalf,x,f > x] 4+ dr(x]) " x.
p>n,p’'<j

We now proceed by induction on (j, n) in the totally ordered set S. The base case is
(j,n) = (1, N). In this case, y = (x}v)’ for some 1 <r < { — 1, and there are no p or
p’ with p > N and p’ < 1. Thus,

q2r -1

WN ey =gl @OV e 1) +d (xh) ! = p—— ()"

which is non-zero. '

For the induction step, let y = (x;, )" x, where LI(x) < (j,n)and 1 <r <{— 1. Lemma
5.27 implies that 8;.’ >x = 0. Now fix p > i and p’ < j. Then Lemma 5.27 also implies
that xlf 97 > x = 0. By Lemma 5.26, for p’ < j, Bz,x,f/ — ¢27'*1 can be expressed as a
sum of elements, each divisible on the right by some 97, where (p",s) = (p',n) > (j,n).
Thus, this element acts on x as 2?1, Finally, LI(x2 x) < (p', p), so 85, > (x2 x) = 0.
What remains in the expression at the beginning of this proof is

i i\T 2r 2p'+1 q2r_1 j\r—1

oo () x=" =1 ¢ +m () x=

p'<j

q* (> —1)

qg—q! ()",

which is non-zero and of leading index at most (j, 7). |
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Lemma 5.29. Suppose LI(y) = (j,n). Then, for somer, 1 <r <{—1,
0 # LI((97)" > y) < (j,n).
Proof. We can write
y = (xi )rx(r) + (xi )(r—l)x(r—l) bt x,’ x(l) 4 X(O)
n n n

for some x® € M with LI(x®) < (j,n) and 1 < r < £ — 1. Then, iterating the compu-
tation in the proof of the previous lemma, we obtain

r r
) [J@ —Dx®,
s=1

which is non-zero. |

2j

nN\F _ q-
ey = (q—q‘l

Lemma 5.30. For any y € M non-zero, there is an element d of Dy, (IX — A;I) such that
d vy is a non-zero multiple of 1, and L1(y) = (j, n).

Proof. Proceed by induction on LI(y) € S. If LI(y) = 0, there is nothing to show. Other-

wise, let (j,n) = LI(y). By the previous corollary we can lower the leading index using

an element of Dy (IX — A") n

To conclude the proof of (1) of Theorem 5.25: we have shown that under the action

N M L .
of !Dq(o — o ) /(DY = 0) on M any element lies in the orbit of 1, and conversely that
1 lies in the orbit of any non-zero element of M. Hence the representation is irreducible.

Since it is a representation whose rank over 7 is equal to the square root of the rank of

Dy (1: N Aol) / (D[e] = 0) as a module over 7, we conclude that the action map

Dy (e = 9)/(DY = 0) — End; (M)

is an isomorphism.
For (2), we once again appeal to the construction of My (Q,d) via braided tensor
products, and the result follows from Proposition 3.30. ]

5.6. The Frobenius quantum moment map
The quantum moment map
Kq: Oq(GLq) — Dy (Mat(Q, d))°

from Definition 5.15 is valid for ¢ a root of unity when working in Rep, (GLq4). We also
have the group-valued moment map

i Me(Q,d)° — GLyg

defined on a Zariski open subset M (Q,d)° of M (Q,d) (see Section 5.1). These two
moment maps fit into a Frobenius moment map structure, as explained in the following
key theorem.
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Theorem 5.31. We have a central, UqL(g[d)-equivariant embedding
O(M:(Q,d)°) — Dy(Mat(Q,d))°
which fits into a commutative diagram

O(M:(Q.d)°) —— Dy (Mat(Q. d))°

O(GLg) —*— 0, (GLq)
where [i* is pullback along the group-valued moment map i. Thus,

(D Mat(Q.d))°, O (M(Q,d)°))

is a G-Hamiltonian Frobenius Poisson order.

Proof. We may apply Proposition 3.28 to conclude that there exists some classical mul-
tiplicative moment map i* making the diagram commute. By Proposition 2.18, the set
of possible multiplicative moment maps associated to our fixed GLg-action is a torsor
over the center of GLg, so we may assume without loss of generality that it recovers the
classical moment map from equation (5.1) exactly. ]

5.7. The quantized multiplicative quiver variety at a root of unity

First, we recall the definition of the quantized multiplicative quiver variety with trivial
GIT character:

Definition 5.32 ([37, Definition 8.1] ). Fix an algebra homomorphism &;: 9,(G) — C
in Rep, (G), and let J¢, denote its kernel. The quantized multiplicative quiver variety
corresponding to the above data is defined as the quantum Hamiltonian reduction of
Dy(Mat(Q, d)) at the ideal J¢,:

A5 (0. d) := Homgep, (GLo)(C. Dg(Mat(Q.d))/I¢,).

We now generalize this to non-trivial GIT characters, to construct a sheaf of algebras
on the multiplicative quiver variety, via a version of quantum Hamiltonian reduction for
non-affine GIT quotients.

First suppose (A4, Z) is a G-Hamiltonian Frobenius Poisson order. Denote as before
by I C Z the classical moment map ideal and by /; C A the quantum moment map ideal.
Recall that (4/1,)*¢® is an algebra with a central subalgebra Z /1. Therefore,

o]

(D /1 © Con)

m=0

is a graded algebra with a central subalgebra

(é Z/I® Ceﬂn)G

m=0
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Definition 5.33. We denote by AE(Q, d) the sheaf of algebras over Z //eG SO con-
structed.

We will say a sheaf of algebras + over a scheme X is a Poisson order if X is a Poisson
scheme and on each open subset of X we obtain the structure of a Poisson order. Then we
get the following variant of Proposition 3.21.

Proposition 5.34. Suppose (A4, Z) is a G-Hamiltonian Frobenius Poisson order where
Z is Noetherian. Then (Ag, Z//OG) is a Poisson order.

5.8. Proof of Theorem 1.4

We are now ready to prove the main result of this section, that the sheaf of algebras con-
structed in the previous section is Azumaya over the entire smooth locus of M(Q,d, £, 6).

Theorem 5.35 (Theorem 1.4). Let £ > 1 be an odd integer, and q a primitive £-th root of

unity.

(1) The algebra Dy;(Mat(Q, d)) is finitely generated over its center, which is isomorphic
to the coordinate ring O (M (Q, d)) of the classical framed multiplicative quiver
variety.

(2) D;Mat(Q,d)) is Azumaya over the preimage in M (Q, d) of the big cell G° C G
under the multiplicative moment map Mg (Q,d) — G.

(3) Frobenius quantum Hamiltonian reduction defines a coherent sheaf of algebras over
the classical multiplicative quiver variety M(Q,d, &, 8), which is Azumaya over the
locus M*(Q,d, &, 0) of O-stable representations.

Proof. We follow the template of Section 3.8. Hence, we let Az be the algebra
Dgr(Mat(Q,d)), and ug be the quantum moment map of Definition 5.15. For Z we take
the central subalgebra constructed in Theorem 5.21. For the Azumaya point p required in
Lemma 3.31, we take the zero representation, as in Theorem 5.25. The first claim of the
theorem now follows from Lemma 3.31.

We prove the remaining two claims together by applying Theorem 3.32. For G, we
take the copy of C* embedded diagonally in GL4. For Gy we take the subgroup of GL4
on which the product of all determinants is 1. We choose for £, the character (§y¢,). We
take for the open subset U the entire stable locus (which we assume is non-empty), on
which G acts with common stabilizer Gggp.

Then assumption (1) of Theorem 3.32 is confirmed in Theorem 5.23, assumption (2)
is clear, since the entire algebra £, (Mat(Q, d)) lies in total degree zero for the grading
given by summing the degrees at all vertices, hence Gy acts trivially on D, (Mat(Q, d)).
Assumption (3) is clear, since &; lives over the identity element in G, which clearly lies
in G°. |
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