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Abstract. Let F be a foliation on a projective manifold X with �KF nef. Assume that either F

is regular, or it has a compact leaf. We prove that there is a locally trivial fibration f WX ! Y and
a foliation G on Y with KG � 0 such that F D f �1G .
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1. Introduction

From the viewpoint of the minimal model program, complex projective manifolds X
could be classified according to the numerical behavior of their canonical classes KX .
When KX � 0, Yau proved the Calabi conjecture, which confirms the existence of
Kähler–Einstein metrics on X . The universal cover of X then admits a decomposition,
known as Beauville–Bogomolov decomposition (e.g. [5]), as the product of an affine
space, of holomorphic symplectic manifolds, and of simple Calabi–Yau manifolds.

In a more general setting, if we assume that �KX is nef, then Demailly–Peternell–
Schneider conjectured an analogous uniformization. The conjecture was recently settled
in [7, 8], based on the positivity of direct images established in [29]. More precisely, the
universal cover of X is isomorphic to the product of an affine space, of holomorphic
symplectic manifolds, of simple Calabi–Yau manifolds, and of a rationally connected
projective manifold with nef anticanonical class.

In [7] mentioned above, the Albanese morphism albX WX ! Alb.X/ was investigated.
When �KX is nef, such a morphism is known to be a fibration by [33]. It was also proved
that albX is semistable in codimension 1 (see [34]) and equidimensional (see [26]). In
particular, the relative canonical classKX=Alb.X/ is the same asKF , the canonical class of
the foliation F induced by albX . Since Alb.X/ is an abelian variety, the nefness of �KX
is then transposed to the nefness of �KF .

It is natural to expect similar structural results in the context of foliations on projective
manifolds. Indeed, foliations with zero canonical class have already been broadly studied
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(e.g. [15–17,25,30,32]). Foliations with nef anticanonical class have been investigated as
well (e.g. [6,8,13,14]). In particular, for regular foliations with semipositive anticanonical
class, Druel proved in [14] that one can reduce the problem to the case of foliations with
zero canonical class. An analogous statement for foliations with nef anticanonical class
was conjectured by Cao and Höring. The main objective of this paper is to prove this
conjecture.

Theorem 1.1. Let F be a foliation on a projective manifold X with �KF nef. Assume
that either F is regular, or it has a compact leaf. Then there is a locally trivial fibration
f WX ! Y with rationally connected fibers. Moreover, there is a foliation G on Y with
KG � 0 such that F D f �1G .

We also obtain the following corollary.

Corollary 1.2. Let F be a foliation on a projective manifold X with �KF nef. Assume
that F has a compact leaf. Then it is regular and there is a regular foliation E such that
TX D F ˚ E .

A key ingredient for the proof of Theorem 1.1 is the following theorem, which reduces
the situation to the case of algebraically integrable foliations. It follows directly from a
series of Druel’s works.

Theorem 1.3. Let F be a foliation on a projective manifold X with nef anticanonical
class �KF . Assume that either F is regular, or it has a compact leaf. Then the following
properties hold:

(1) The algebraic part Falg �F has a compact leaf, and is induced by a dominant almost
holomorphic rational map 'WX Ü Y .

(2) Let Frc be the foliation of the relative MRC fibration of '. ThenKFrc � KFalg � KF .

For algebraically integrable foliations, we will prove the following statements, which
extend the results in [6, 8]. Together with Theorem 1.3, they will imply Theorem 1.1.

Theorem 1.4. Let F be an algebraically integrable foliation on a projective manifold X
with �KF nef. Assume that F has a compact leaf. Then there is a foliation G on X such
that TX D F ˚ G .

Corollary 1.5. Let F be an algebraically integrable foliation on a projective manifoldX
with �KF nef. Assume that F has a compact leaf. Then it is induced by an equidimen-
sional fibration f WX ! Y . If moreover F is rationally connected, then f is a locally
trivial family.

The paper is organized as follows. We will work over C, the field of complex numbers,
throughout. In Section 2, we recall the basic language of foliations. In Section 3, we
prove several elementary results about numerically flat vector bundles. In Section 4, we
collect some powerful tools developed in [6]. Then we construct an appropriate semistable
reduction for a foliation with nef aniticanonical class in Section 5. Finally, we finish the
proofs of the theorems in Section 6.
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2. Foliations

In this section, we gather some basic properties concerning foliations on complex alge-
braic varieties. For more details on the notion of foliations, we refer to [3, Section 3].

A foliation on a normal varietyX is a coherent subsheaf F � TX , where TX D .�1X /
�

is the reflexive tangent sheaf, such that

(1) F is closed under the Lie bracket,

(2) F is saturated in TX , that is, the quotient TX=F is torsion-free.

The canonical class KF of F is any Weil divisor on X such that OX .�KF / Š det F . In
particular, the first Chern class c1.F / is equivalent to �KF . Let Xı be the largest open
subset of the smooth locus of X such that F jXı is a subbundle of TXı . The singular locus
of F is defined to be X nXı. When X D Xı, we say that F is a regular foliation of X .
A leaf of F is a maximal connected and immersed holomorphic submanifold i WL ,! Xı

such that the differential map
di WTL ! i�F

is an isomorphism. A leaf is called algebraic if it is open in its Zariski closure in X . The
foliation F is said to be algebraically integrable if its leaves are algebraic.

Let F be a codimension q foliation on an n-dimensional normal variety X . The nor-
mal sheaf NF of F is the reflexive hull .TX=F /��. The q-th wedge product of the
inclusion N �

F
! .�1X /

�� gives rise to a non-zero global section ! 2 H 0.X; .�
q
X ˝

det NF /
��/; whose zero locus has codimension at least 2 in X . Moreover, ! is locally

decomposable and integrable. To say that ! is locally decomposable means that, in a
neighborhood of a general point of X , ! decomposes as the wedge product of q local
1-forms, ! D !1 ^ � � � ^ !q . To say that it is integrable means that for this local decom-
position one has d!i ^ ! D 0 for every i 2 ¹1; : : : ; qº.

The integrability of ! is equivalent to the condition that F is closed under the
Lie bracket. Conversely, let L be a reflexive sheaf of rank 1 on X , and let ! 2
H 0.X; .�

q
X ˝ L/��/ be a global section whose zero locus has codimension at least 2

in X . Suppose that ! is locally decomposable and integrable. Then the kernel of the
morphism TX ! .�

q�1
X ˝ L/�� given by the contraction with ! defines a foliation of

codimension q on X . These constructions are inverse of each other.
Let X and Y be normal varieties, and let 'WX Ü Y be a dominant rational map that

restricts to a morphism f ıWXı! Y ı, whereXı �X and Y ı � Y are smooth open dense
subsets. Let G be a foliation on Y . Then the pullback foliation '�1G on X is induced by
.df /�1.f �G / on Xı, where

df WTXı ! f �TY ı

is the differential map of f .
Assume that F is an algebraically integrable foliation on a normal variety X . Then

there is a unique normal variety V in the normalization of the Chow variety of X , whose
general points parametrize the closures of general leaves of F . LetU be the normalization
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of the universal family over V . Then the natural projective fibration U ! V is called the
family of leaves of F . For more details, see for example [2, Lemma 3.2].

As a consequence, a foliation F is algebraically integrable if and only if there is a
dominant rational map 'WX Ü Y to a normal variety such that F D '�10Y , where 0Y
is the foliation by points on Y . In this case, we say that F is the foliation induced by '.

For foliations induced by equidimensional fibrations, we have the following fact.

Lemma 2.1. Let 'WX ! Y be an equidimensional morphism between normal varieties,
and F the foliation induced by '. Let Y 0 ! Y be a finite dominant morphism with Y 0

normal. Let X 0 be the normalization of X �Y Y 0. If F 0 is the foliation induced by the
natural projectionX 0! Y 0, and if pWX 0!X is the natural finite morphism, thenKF 0 D

p�KF .

Proof. LetD be any prime divisor inX . We only need to show thatKF 0 D p
�KF around

a general point of p�1.D/.
If D is not contained in the branched locus of p, then p is locally a diffeomorphism

around a general point of p�1.D/. ThusKF 0 Dp
�KF around a general point of p�1.D/.

Assume that D is contained in the branched locus of p. In this case, D must be F -
invariant by the construction of X 0. We can then apply [15, Lemma 3.4] to show that
KF 0 D p

�KF around a general point of p�1.D/. This completes the proof.

Let F be a foliation on a normal variety X . There exist a normal variety Y , unique up
to birational equivalence, a dominant rational map 'WX Ü Y with connected fibers, and
a foliation G on Y , such that the following properties hold:

(1) G is purely transcendental, that is, there is no positive-dimensional algebraic subvari-
ety through a general point of Y which is tangent to G .

(2) F D '�1G .

The foliation induced by ' is called the algebraic part of F . For more details, see [25,
Section 2.3].

We will need the following lemma for the proofs of the main theorems.

Lemma 2.2. Let f WX ! Y be a smooth dominant morphism between complex mani-
folds. Let H be a foliation on X whose rank is equal to dim Y . Let qW Y 0 ! Y be a
finite surjective morphism with Y 0 smooth, and let f 0WX 0 ! Y 0 be the base change of f
over Y 0:

X 0 X

Y 0 Y

f 0

p

f

q

Let H 0 D f �1H be the pullback foliation. If H 0 is regular and transverse to every fiber
of f 0, then H is regular and transverse to every fiber of f .

Proof. Set nD dimX and d D dimY . We first notice that it suffices to prove the assertion
in codimension 1 of X . Indeed, let U � X be an open subset whose complement has
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codimension at least 2 in X . If we can prove that H jU is transverse to TX=Y jU , that is,
TU D TX=Y jU ˚H jU , then we must have TX D TX=Y ˚H , for H , TX=Y and TX are
all reflexive sheaves (see [18, Proposition 1.6]). Since f is a smooth morphism, TX=Y is
locally free. Thus this decomposition of TX will imply that H is regular and transverse to
all fibers of f .

Hence by shrinking X , we may assume that H is a subbundle of TX . Let D � X
be the branched locus of p. Then by assumption, none of the components of D is H -
invariant. Therefore, thanks to [15, Lemma 3.4], we get p�.det NH / Š det NH 0 , where
NH and NH 0 are the normal bundles of H and H 0 respectively.

Let x 2 X be a point. We will show that TX=Y and H are transverse at x. The prob-
lem is now local around x. By shrinking X around x, we may assume that there is a
nowhere vanishing holomorphic .n � d/-form ! such that H is the kernel of the con-
traction by !. Then the conclusion of the previous paragraph implies that !0 D p�! is
nowhere vanishing.

It remains to show that, for every local smooth vector field v on X , nowhere vanish-
ing and with values in TX=Y , the contraction vy! is nowhere vanishing. Since f 0 is the
base change of f , it follows that there is a smooth vector field v0 on X 0, nowhere vanish-
ing and with values in TX 0=Y 0 , such that dp.v0/ D v. Moreover, by assumption, v0y!0 is
nowhere vanishing. Since v0y!0 D p�.vy!/, it follows that vy! is nowhere vanishing.
This completes the proof.

3. Numerically flat vector bundles on complex manifolds

The notion of numerically flat vector bundle was introduced in [10]. It plays an impor-
tant role in the proof of local triviality of fibrations. A vector bundle E on a projective
manifold is numerically flat if both E and E� are nef. We recall the following criterion
of being a numerically flat vector bundle for reflexive sheaves (see [4, Corollary 3] and
[27, Theorem IV.4.1]).

Theorem 3.1. Let X be a projective manifold of dimension n and E a reflexive sheaf
on X . Let H be an ample divisor in X . Then E is a numerically flat vector bundle if and
only if the following conditions hold:

(1) E is H -semistable.

(2) c1.E/ �Hn�1 D c1.E/
2 �Hn�2 D c2.E/ �H

n�2 D 0.

A torsion-free (coherent) sheaf E on a complex Kähler manifold .Y; !/ is called
weakly positively curved if the following statement holds. Let Y ı be the locally free locus
of E . For every " > 0, there is a possibly singular Hermitian metric h" of EjY ı such that

p
�1‚h"

.E/ � �"! ˝ IdE on Y ı:

For more details, we refer to [8, Section 2] and [29, Section 2]. The following lemma was
essentially proved in [29, Theorem 2.5.2], [28, Theorem 2.21] and [8, Lemma 2.10].
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Lemma 3.2. Let E be a torsion-free weakly positively curved sheaf on a projective mani-
foldX . LetA be an ample divisor and a > 0 an integer. Then there exists an integerm> 0
such that the natural evaluation map

H 0
�
X; .SymamE/�� ˝OX .mA/

�
! .SymamE/��x ˝OX .mA/x

is surjective for general x 2 X .

Proof. We follow the proof of [28, Theorem 2.21]. We denote byXE the locally free locus
of E . Let�WY !P .E/ be a desingularization of the main component of P .E/, which is an
isomorphism over XE . We let P be the pullback of the tautological line bundle OP.E/.1/

to Y . Let f WY ! X be the natural morphism and Y1 D f �1.XE/. Then Y1 Š P .EjXE
/.

We consider the line bundle L D P˝2a ˝ f �OX .A/.
Since E is weakly positively curved, LjY1

admits a possibly singular metric hL which
has semipositive curvature. Moreover, hL is bounded along a general fiber Yx of f . In
particular, the multiplier ideal sheaf of h˝kL jYx

is trivial for any integer k large enough.
Arguing as for [28, Theorem 2.21], we find that for some integer k large enough, the
reflexive sheaf

..Sym2akE/�� ˝OX .kA//˝OX .kA/ D .Sym2akE/�� ˝OX .2kA/

is generated by global sections over some open dense subset of X . We can then deduce
the lemma by letting m D 2k.

The following assertion is an extension of [8, Proposition 2.11].

Lemma 3.3. LetX be a projective manifold and E a reflexive sheaf onX with c1.E/D 0.
Let X0 � X be an open subset whose complement has codimension at least 2. Assume
that E is locally free over X0. Let Y D P .EjX0

/ and L the tautological line bundle. If the
diminished base locus B�.L/ is not mapped surjectively ontoX0, then E is a numerically
flat vector bundle.

Remark 3.4. We note that, in the previous lemma, even though Y is only quasi-projec-
tive, we can define B�.L/ in the following way. Let A be an ample divisor in X and
f WY ! X the natural morphism. Then we set

B�.L/ D
[
a>0

\
m>0

Bs.L˝am ˝OY .f
�mA//:

Here, for any line bundle M on Y , Bs.M/ is the base locus of H 0.Y;M/, regarded as a
closed subset of Y . Then we see that the locus B�.L/ is not mapped surjectively onto X0
if and only if for any integer a > 0, there exists an integer m > 0 such that the natural
evaluation map

H 0
�
X; .SymamE/�� ˝OX .mA/

�
! .SymamE/��x ˝OX .mA/x

is surjective for general x 2 X .
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Proof of Lemma 3.3. We may assume that dimX > 2. We may also assume thatX0 is the
locally free locus of E . Since E is reflexive, the complement of X0 has codimension at
least 3. Let H be an ample enough divisor in X , and S the complete intersection surface
of very general elements of the linear system jH j. Then S � X0 and EjS is a vector
bundle. By Theorem 3.1 and the Mehta–Ramanathan theorem, it is enough to show that
EjS is numerically flat. The assumptions in the lemma imply that the diminished base
locus of OP.EjS /.1/ is not mapped surjectively onto S . Hence EjS is numerically flat by
[8, Proposition 2.11].

As pointed out in the paragraph after [31, Corollary 3.10], Simpson proved that a
numerically flat vector bundle is indeed flat. In general, there may exist non-isomorphic
flat structures on a holomorphic vector bundle (see Example 3.7 below). In the following
Theorem 3.5, we underline a “canonical” flat structure on a numerically flat vector bundle.
In the remainder of this paper, we will work with it for any numerically flat vector bundle.
We note that such a flat structure is exactly the one obtained from the correspondence in
[31, Section 3].

We recall some basic results about connections on complex vector bundles. Let r be
a smooth connection on a smooth complex vector bundle Q on a complex manifold. If
the curvature of r0;1 is zero, then r determines a holomorphic bundle structure F on Q

such that r0;1 D N@F . Conversely, every holomorphic vector bundle F admits a smooth
connection such that r0;1 D N@F . For more details, see [23, Section 1.3].

A holomorphic vector bundle on a compact Kähler manifold is called Hermitian flat if
it admits a Hermitian metric whose Chern connection is flat. In this case, this connection
is also the Hermitian–Yang–Mills connection, which is unique.

Let E be a numerically flat vector bundle on a projective manifold X . Thanks to
[10, Theorem 1.18], there is a sequence of holomorphic subbundles

0 D E0 � � � � � Ek D E

such that each Gi D Ei=Ei�1 is a Hermitian flat vector bundle with a unique Hermitian
flat connection ri . Such a filtration always splits as a filtration of smooth complex vector
bundles. Hence if we set Q D

Lk
iD1 Gi , then Q is isomorphic to E as smooth vector

bundles. Thus in the following theorem, to construct a connection on E , we work with Q.

Theorem 3.5. With the notation above, there is a unique flat connection rF on the com-
plex vector bundle Q such that

(1) rF induces a holomorphic structure F on Q, which is isomorphic to E as a holo-
morphic vector bundle;

(2) if ¹Fiº is the filtration of holomorphic subbundles on F , induced by ¹Eiº and the
isomorphism of item .1/, then ¹Fiº is compatible with rF ;

(3) the .1; 0/-part r1;0
F

is
Lk
iD1 r

1;0
i .

Proof. The existence of rF goes back to [31, Section 3]. We also refer to [11, Section 3]
for a more explicit construction. For uniqueness, we will proceed by induction on the
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length k of the filtration. If k D 1, then the connection is the unique Hermitian flat con-
nection.

Now we assume the uniqueness for lengths smaller than k. Let ra and rb be con-
nections on Q which satisfy the relevant conditions. By assumption, ra and rb induce
isomorphic holomorphic structures. Such an isomorphism corresponds to some smooth
automorphism ' of Q. By induction, its restrictions to

Lk�1
iD1 Gi and to

Lk
iD2 Gi are the

identity maps. Therefore, item (2) of the theorem implies that there is some smooth func-
tion � with values in G �

k
˝ G1 such that ' is of the shape

' D IdQ C �;

where we view � as a smooth endomorphism of Q: Hence

r
0;1
b
D r

0;1
a Cr

0;1
k!1

�;

whererk!1 is the Hermitian flat connection on G �
k
˝G1 induced byr1 andrk . Sincera

andrb have the same .1;0/-part, it follows thatrb DraCr
0;1
k!1

�. We write ıDr0;1
k!1

�.
The conditions on flatness imply that

rk!1ı D 0:

Since rk!1 is a Hermitian flat connection, the @N@-lemma implies that ı D 0. Conse-
quently, ra D rb .

Remark 3.6. We note that Theorem 3.5 holds for any filtration

0 D E0 � � � � � Ek D E

on E such that each graded piece Ei=Ei�1 is Hermitian flat. Indeed, we will prove later
that the connection in the theorem is independent of the choice of the filtration; see Corol-
lary 3.10 and Remark 3.11 below.

Example 3.7. In general, a holomorphic vector bundle may have non-isomorphic flat
structures, all compatible with the holomorphic structure. Let X be an elliptic curve and
E D OX ˚OX . We write e1 and e2 for the generators of the two summands of E . We note
that �1X Š OX . For any constant holomorphic 1-form s 2 H 0.X;�1X /, we can define a
flat connection rs on E as follows:

rs.f e1 C ge2/ D df e1 C dge2 C gse1;

where f;g are arbitrary smooth functions onX . Then .E;rs/ and .E;r0/ are isomorphic
as flat vector bundles if and only if s D 0. Furthermore, the unique connection satisfying
the conditions of Theorem 3.5 is r0.

Until the end of this paper, a connection on a holomorphic vector bundle is always
assumed to be compatible with the holomorphic structure. We say that a flat connection
on a numerically flat vector bundle E satisfies the conditions of Theorem 3.5 if it is induced
by the isomorphism E Š F of Theorem 3.5.
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Lemma 3.8. Let E be a numerically flat vector bundle on a projective manifold X . Let
rE be a flat connection on E which satisfies the conditions of Theorem 3.5. Then any
section s 2 H 0.X;E/ is parallel with respect to rE .

Proof. We first note thatr0;1
E
sD 0 as s is holomorphic. It remains to show thatr1;0

E
sD 0.

There is a sequence of subbundles

0 D E0 � � � � � Ek D E

such that each Gi D Ei=Ei�1 is an irreducible Hermitian flat vector bundle with connec-
tion ri . We will argue by induction on the length k. If E is irreducible Hermitian flat,
then it is slope stable. Hence either E Š OX or s D 0. In both cases, s is constant and
rEs D 0.

Now we assume the statement is true for lengths smaller than k. We have the exact
sequence

0! Ek�1 ! E ! Gk ! 0:

If s 2 H 0.X; Ek�1/ then r1;0
E
s D 0 by induction. Assume that s … H 0.X; Ek�1/.

Then Gk Š OX as it is an irreducible Hermitian flat vector bundle which admits a
non-zero global holomorphic section. In this case, the exact sequence above splits and
E Š Ek�1 ˚ Gk as holomorphic vector bundles. We can decompose s D s0 C s00 accord-
ing to this direct sum. From item (3) of Theorem 3.5, we see that

r
1;0
E
D .rE jEk�1

/1;0 ˚r
1;0
k
;

where rk is the unique Hermitian flat connection on Gk ŠOX . Then we have r1;0
k
s00 D 0,

and .rE jEk�1
/1;0.s0/ D 0 by induction. Hence r1;0

E
s D 0.

Remark 3.9. It is indispensable to specify the connection in Lemma 3.8. For instance,
we consider a flat vector bundle .E;rs/ on an elliptic curve X defined in Example 3.7,
such that s is a non-zero constant holomorphic 1-form. The generator e2 can be viewed
as a section e2 2 H 0.X;E/. Then rse2 D se1 is not zero. That is, e2 is not parallel with
respect to rs .

Corollary 3.10. Let 'WE! G be a generically surjective morphism between numerically
flat vector bundles on a projective manifold X . Then ' is surjective.

Assume further that E and G are equipped with flat connections rE and rG respec-
tively, which satisfy the conditions of Theorem 3.5. Then ' is a morphism of flat vector
bundles.

Proof. To prove that ' is surjective, it is enough to show that the induced morphism

OX ! .det G /˝ .
Vl

E�/

does not vanish at any point of X . Here l is the rank of G . Since .det G �/˝ .
Vl

E/ is
numerically flat, hence nef, the statement follows from [10, Lemma 1.16].
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For the second part of the corollary, we may identify ' with an element of
H 0.X;E� ˝ G /. If

0 D E0 � � � � � Ek D E� and 0 D F0 � � � � � Fl D F

are filtrations whose graded pieces are Hermitian flat vector bundles, then we have a
filtration

0 D G0 � � � � � Gt D E� ˝ F

such that
Gs D

M
iCjDs

.Ei ˝ Fj /:

Furthermore, for each s we have

Gs=Gs�1 Š
M
iCjDs

.Ei=Ei�1 ˝ Fj =Fj�1/:

As a result, the graded pieces of the filtration ¹Gsº are Hermitian flat vector bundles. We
can then verify that the tensor connection rE�˝G on E� ˝ G satisfies the conditions of
Theorem 3.5 as well. Hence Lemma 3.8 implies that ' is parallel with respect to rE�˝G .
It follows that, for any local smooth section � of E , we have

rG .'.�// D '.rE�/C .rE�˝G /'.�/ D '.rE�/:

In other words, ' is a morphism of flat vector bundles.

Remark 3.11. If we take for ' the identity endomorphism of E in the previous corollary,
then we may deduce that a connection satisfying the conditions of Theorem 3.5 is unique,
independent of the choice of the filtration ¹Eiº.

The lemma below reveals a relation between locally trivial families and flat holomor-
phic vector bundles.

Lemma 3.12. Let .E;rE/ be a flat vector bundle on a complex manifold X . Assume that
there is a surjective morphism of graded commutative OX -algebrasM

p>0

SympE !
M
p>0

Qp;

such that Q0 D OX and each graded piece SympE ! Qp is a morphism of flat vector
bundles. Then

f WZ D ProjOX

M
p>0

Qp ! X

is a locally trivial family over X . Moreover, the connection rE induces a foliation G on
Z such that TZ D G ˚ F , where F is the foliation induced by f .
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Proof. We consider the following commutative diagram, where the vertical arrows are
product maps:

SymiE ˝ SymjE Qi ˝Qj

SymiCjE QiCj

Since the horizontal maps and the left vertical map are morphisms of flat vector bundles,
and since the horizontal maps are surjective, we see that Qi ˝Qj !QiCj is a morphism
of flat vector bundles as well.

Let � W zX ! X be the universal cover of X . Then the connection rE determines iso-
morphisms

��E Š E ˝O zX and ��Qp Š Qp ˝O zX ;

where E and Qp are complex vector spaces equipped with �1.X/-actions. Moreover,
under these isomorphisms, the natural morphismM

p>0

Symp��E !
M
p>0

��Qp

is induced by a surjective �1.X/-equivariant morphism of graded commutative C-
algebras M

p>0

SympE !
M
p>0

Qp:

Let I be the kernel of the latter morphism and

F D Proj
M
p>0

Qp:

Then F is the subvariety of P .E/ with graded ideal I . Since I is stable under the �1.X/-
action, we see that F is stable under the natural �1.X/-action on P .E/. Hence we obtain
an induced polarized �1.X/-action on F . Moreover, there is a �1.X/-equivariant iso-
morphism Z �X zX Š F � zX . This shows that Z is locally trivial. The relative tangent
bundle zG of the natural projection F � zX ! F is �1.X/-equivariant. Hence it descends
to a foliation G on Z. Furthermore, we have TZ D G ˚ F .

Remark 3.13. The foliation G in the previous lemma has the following alternative
description. The flat connection rE induces a flat Ehresmann connection on P .E/, which
can be viewed as a foliation H on P .E/. By construction, we have a natural embedding
Z ! P .E/ of fiber bundles over X . Then H induces an Ehresmann connection on Z,
which is exactly G .

The following proposition on representations of fundamental groups is an application
of [24, Theorem 4.8].
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Proposition 3.14. Let f WX ! Y be a proper fibration between smooth complex alge-
braic varieties. Assume that for every prime divisor B in Y , there is an irreducible
component of f �B which is reduced and dominates B . Let � be a linear representation
of the fundamental group �1.X/. If � induces a trivial representation on general fibers
of f , then � factors through �1.Y /.

Proof. By removing from Y some closed subset of codimension at least 2, we may
assume that f is equidimensional. Let F be a general fiber of f , and H � �1.X/ the
intersection of all normal subgroups of finite index which contain the image of �1.F /.
Since a linear group is residually finite, and since Ker.�/ contains the image of �1.F /,
we find that H � Ker.�/.

We writeK for the kernel of the surjective morphism � W�1.X/! �1.Y /. The propo-
sition is equivalent to the inclusion

K � Ker.�/:

From the previous discussion, it is enough to show that K � H . Let G � �1.X/ be a
normal subgroup of finite index which contains H . We need to show that it contains K.
Let pWX.G/! X be the finite étale cover corresponding to G, and � W Y.G/! Y the
normalization of Y in the function field of X.G/. Since G contains the image of �1.F /,
the morphism p is a trivial cover over F .

By assumption, for any prime divisor B in Y , the pullback f �B has a reduced com-
ponent. It follows from [24, Lemma 4.8.4] that � is étale (we note that the proof of
[24, Lemma 4.8.4] does not require Y to be proper). Then � corresponds to a sub-
group M � �1.Y / of finite index. Since p is a trivial cover over F , it follows that
X.G/ Š X �Y Y.G/. Therefore G D ��1.M/, and hence it contains K. This completes
the proof.

We also need the following lemma for the proofs of the main theorems.

Lemma 3.15. Let f WX ! Y be a surjective morphism between smooth quasi-projective
varieties. Assume that its general fibers are proper connected. Let V and W be vector
bundles on Y . If there is an isomorphism 'W f �V Š f �W on X , then ' descends to an
isomorphism �WV Š W on Y .

Proof. We only need to show that ' descends to a morphism �WV ! W on Y . Indeed,
since f WX ! Y is surjective, if � exists then it must be an isomorphism.

The morphism ' can be viewed as an element in H 0.X; f �.V� ˝W//. By the pro-
jection formula, we have

f�f
�.V� ˝W/ Š V� ˝W ˝ f�OX :

Hence it is enough to show that f�OX Š OY .
Let V � Y be any non-empty open subset and U D f �1.V /. We consider a holomor-

phic function � on U . By assumption, there is an open dense subset V0 � V such that f
has proper connected fibers over V0. Hence � jU0

descends to a holomorphic function �0
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on V0, where U0 D f �1.V0/:We have to show that �0 can be extended to a holomorphic
function � on V . By Riemann’s removable singularity theorem, it is enough to show that
�0 is locally bounded over V . We also note that, by Hartogs’ theorem, we may shrink V
and assume that f is equidimensional.

Let y 2 V be a point. Let Z � X be the complete intersection of general very ample
divisors such that dimZ D dimY . By shrinking V around y if necessary, we may assume
that Z \ U is quasi-finite over V . Then the morphism

f jZ\U WZ \ U ! V

is an open morphism with respect to the analytic Euclidean topology. Let x 2 Z \ U
be a point lying over y, and U 0 � Z \ U a Euclidean open neighborhood of x. Then
V 0 D f .U 0/ is a Euclidean open subset of V containing y. Since � is holomorphic, we
may assume that � jU 0 is bounded. Hence �0jV0\V 0 is bounded. That is, �0 is bounded
around y. This completes the proof.

4. Algebraically integrable foliations with semistable leaves and nef anticanonical
classes

Algebraically integrable foliations with nef anticanonical classes induced by rational
maps which are semistable in codimension 1 are well studied in [6–8]. Their results are
crucial for the proofs of the main theorems in the present paper. For the reader’s conve-
nience, we summarize some of them here.

Throughout this section, we consider the following situation:

� X

Y

'

�

The morphism 'W�! Y is a fibration between projective manifolds, and � is a birational
morphism onto a normal projective variety X . We make the following assumptions.

(1) The �-exceptional locus E is pure of codimension 1, and it does not dominate the
base Y .

(2) Every '-exceptional divisor is �-exceptional.

(3) There is a �-exceptional Q-divisor E 00 such that �K�=Y CE 00 is nef.

(4) For every prime divisorB � Y , any non-reduced component of '�B is �-exceptional.

(5) There is a finite group G acting on the varieties � , Y and X such that the morphisms
' and � are G-equivariant. Furthermore, the quotient X=G is Q-factorial.

We recall that a prime divisor in � is '-exceptional if its image has codimension
at least 2 in Y . If E 00 D

P
aiEi is the decomposition into prime divisors, then we set

jE 00j D
P
jai jEi . The main objective of this section is to prove the following proposition.
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Proposition 4.1. With the assumptions above, for every prime divisor B � Y , at most
one irreducible component of '�1.B/ is not contained in the �-exceptional locus.

The proof of the proposition is postponed to the end of the section. We fix a sufficiently
ample,G-invariant divisorA in � , so thatA is '-relatively very ample, and for each p> 1,
the natural morphism

Symp'�O�.A/! '�O�.pA/

is surjective. Let Y0 � Y be a Zariski open subset such that the following properties hold:

� The fibration ' is equidimensional over Y0.

� For any prime divisor B � Y , the preimage '�1.B/ is contained in the �-exceptional
locus if and only if B � Y n Y0.

Remark 4.2. In [6, Section 3], Y0 is defined as the largest open subset which satisfies
these properties. However, for later use in this paper, we need to remove from Y0 some
closed subset of codimension at least 2. Therefore we define Y0 in this way.

Lemma 4.3 ([6, Lemma 3.5]). Let L be a '-relatively big Cartier divisor in � , and
P a Q-divisor in Y . Assume that L� '�P is pseudoeffective. Then for any large enough
integer c,

'�O�.LC cE
00/ � P

is weakly positively curved if it is not zero. That is, for a fixed Kähler form !Y on Y, and a
real number " > 0, there is a possibly singular Hermitian metric h" on '�O�.LC cE 00/
such that

p
�1‚h"

.'�O�.LC cE
00// � .ˇ � "!Y /˝ Id'�O� .LCcE 00/

over the locally free locus of '�O�.L C cE 00/. Here ˇ is a smooth closed .1; 1/-form
representing P .

Lemma 4.4. Let L be a '-relatively big, G-invariant divisor in � , and let m > 0 be an
integer. Then the Q-divisor

L �
1

r
'�c1.'�O�.LCmE//

is the sum of a pseudoeffective divisor and a �-exceptional divisor. Here r is the rank of
'�O�.LCmE/.

Proof. Let AY be a G-invariant ample divisor in Y . At the end of the proof of [6,
Lemma 3.6], it was shown that, for any integer p > 0, there is an effective �-exceptional
divisor Fp such that the Q-divisor

L �
1

r
'�c1.'�O�.LCmE//C

1

rp
'�AY C Fp
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is Q-linearly equivalent to an effective divisor Hp . Replacing Fp by the sum of its G-
orbits, we may assume that Fp is G-invariant. Since L and E are G-invariant, and ' is
G-equivariant, we see that, for any element g 2 G, there is a linear equivalence

c1.'�O�.LCmE// � g
�c1.'�O�.LCmE//:

Hence, replacing c1.'�O�.LCmE// by

1

jGj

X
g2G

g�c1.'�O�.LCmE//;

we may assume that it is represented by a G-invariant Q-divisor. It then follows that
Hp �Q g�Hp for any g 2 G. Replacing Hp by 1

jGj

P
g2G g

�Hp , we may assume that it
is G-invariant as well.

Let �W� ! X=G and qWX ! X=G be the natural morphisms. We see that

��

�
L �

1

r
'�c1.'�O�.LCmE//C

1

rp
Fp

�
D ��

�
L �

1

r
'�c1.'�O�.LCmE//

�
is a G-invariant Q-divisor in X . Hence there are Q-divisors D, A0Y and H 0p in X=G such
that q�H 0p D ��Hp , q�A0Y D ��.'

�AY / and

q�D D ��

�
L �

1

r
'�c1.'�O�.LCmE//

�
:

It follows that
D C

1

rp
A0Y �Q H 0p > 0:

By letting p !1, we deduce that D is pseudoeffective. Since X=G is Q-factorial, we
conclude that there is some �-exceptional divisor F such that

L �
1

r
'�c1.'�O�.LCmE// D �

�D C F:

This completes the proof of the lemma.

Lemma 4.5. There is some positive integer m0 such that for any integer m > m0, the
torsion-free sheaf '�O�.A C mE/ has the same rank rm0

. Moreover, for any effective
�-exceptional divisor zE, the natural morphism

det.'�O�.ACm0E//! det.'�O�.ACm0E C zE//

is an isomorphism over Y0:

Proof. The fact that the ranks are constant follows from the assumption that E does not
dominate Y . For the other assertion, it is enough to apply [6, Proposition 3.7 (ii)] by letting
p D 1.
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Lemma 4.6. SetM D ACm0E. Let p > 0 be an integer and s the rank of '�O�.pM/.
Then for any effective �-exceptional divisor zE,

1

rm0

c1.'�O�.M// �
1

ps
c1.'�O�.pM C zE//

is the sum of a pseudoeffective divisor and a divisor supported in Y n Y0.

Proof. By replacing A by pA in Lemma 4.5, we deduce that there is an integer k > 0

such that if m > k, then the morphism

det.'�O�.pM C kE//! det.'�O�.pM CmE//

is an isomorphism over Y0.
Since E is �-exceptional, it does not dominate Y by assumption. Therefore the

sheaf '�O�.pM C pkE/ has the same rank as '�O�.pM/, which is s. By applying
Lemma 4.4 (with L D pM ), there is some integral effective �-exceptional divisor Q
such that the Q-divisor

M C kE CQ �
1

ps
'�c1.'�O�.pM C pkE//

is pseudoeffective. Hence by Lemma 4.3, there is some integer c > 0 such that

'�O�.M C kE CQC cE
00/ �

1

ps
c1.'�O�.pM C pkE//

is weakly positively curved. That is, for a fixed Kähler form ! on Y , for each " > 0, there
is some possibly singular Hermitian metric h" on '�O�.M C kE CQC cE 00/ such that
p
�1‚h"

.'�O�.M C kE CQC cE
00// � .ˇ � "!Y /˝ Id'�O� .MCkECQCcE 00/

over the locally free locus of '�O�.M C kE CQ C cE 00/, where ˇ is a smooth .1; 1/-
form representing 1

ps
c1.'�O�.pM C pkE//. By taking the determinant, we find that

c1.'�O�.M C kE CQC cE
00// �

rm0

ps
c1.'�O�.pM C pkE//

is pseudoeffective. Then so is

c1.'�O�.M C kE CQC cjE
00
j// �

rm0

ps
c1.'�O�.pM C pkE//:

By Lemma 4.5, we see that c1.'�O�.M C kE CQ C cjE 00j// � c1.'�O�.M// is
supported in Y n Y0. Hence

c1.'�O�.M// �
rm0

ps
c1.'�O�.pM C pkE//

is the sum of a pseudoeffective divisor and a divisor supported in Y n Y0.
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Finally, if zE is an arbitrary effective �-exceptional divisor, then there is some integer
k0 > k such that zE 6 pk0E: It follows that

c1.'�O�.pM C pk
0E// � c1.'�O�.pM C zE//

is effective. From the assumption of the first paragraph, we see that

c1.'�O�.pM C pkE// � c1.'�O�.pM C pk
0E//

is supported in Y n Y0. Thus we deduce that

c1.'�O�.M// �
rm0

ps
c1.'�O�.pM C zE//

is the sum of a pseudoeffective divisor and a divisor supported in Y n Y0.

We define the following Q-divisor on �:

zA D ACm0E �
1

rm0

'�c1.'�O�.ACm0E// DM �
1

rm0

'�c1.'�O�.M//:

By Lemma 4.4, there is some integral �-exceptional effective divisor F such that zAC F
is pseudoeffective.

Lemma 4.7. With the notation above, let p > 0 be an integer. Then the direct image

V D '�O�.cjE
00
j C prm0

. zAC F //

is weakly positively curved for any integer c large enough. Moreover, c1..'�V/��/ is
supported in the �-exceptional locus, in the following sense. For any ample divisors
D1; : : : ;Dn�1 on X , we have

c1..'
�V/��/ � ��D1 � � ��

�Dn�1 D 0;

where n is the dimension of � .

Proof. Since zAC F is pseudoeffective, by Lemma 4.3 the direct image

'�O�.cE
00
C prm0

. zAC F //

is weakly positively curved for any large enough integer c. We note that there is a natural
injective morphism

'�O�.cE
00
C prm0

. zAC F //! '�O�.cjE
00
j C prm0

. zAC F //;

which is generically an isomorphism. Hence V is weakly positively curved as well by
[8, Proposition 2.5].

To finish the proof, we fix some c so that V is weakly positively curved. Then c1.V/
is pseudoeffective. By definition, we have

cjE 00j C prm0
. zAC F / D cjE 00j C prm0

F C prm0
M � p'�c1.'�.O�.M///:

By applying the projection formula, this implies that

�c1.V/ D spc1.'�O�.M// � c1
�
'�O�.cjE

00
j C prm0

F C prm0
M/

�
;
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where s is the rank of V . By Lemma 4.6, �c1.V/ is the sum of a pseudoeffective divi-
sor and some divisor supported in Y n Y0. Since every '-exceptional divisor is also
�-exceptional, and every divisor in � lying over Y n Y0 is �-exceptional, it follows that
both c1..'�V/��/ and �c1..'�V/��/ can be written as the sum of a pseudoeffective divi-
sor and a �-exceptional divisor. Therefore

c1..'
�V/��/ � ��D1 � � ��

�Dn�1 D 0

for any ample divisors D1; : : : ;Dn�1 on X .

We can then deduce the following corollary. The additional condition ci C cj 6 ciCj
can be obtained by induction on p.

Corollary 4.8. Set c0 D 0. There is a sequence ¹cpºp>0 of non-negative integers such
that the direct image sheaves

Vp D '�O�.cpjE
00
j C prm0

. zAC F //

are weakly positively curved. Moreover, c1..'�Vp/��/ is supported in the �-exceptional
locus, and ci C cj 6 ciCj for any i; j > 0.

Remark 4.9. The sheaves Vp carry geometric properties of � as follows. Let

Lp D cpjE
00
j C prm0

. zAC F /

for all p > 0. Then Vp can be viewed as the complete '-relative linear system of the
divisorLp . In particular, V1 induces a rational map gW� Ü P .V1/. Since zA is sufficiently
ample on a general fiber of ', and since neither E 00 nor F dominates Y , we see that L1 is
sufficiently ample on general fibers of '. It follows that g is a birational map to its image.
We denote by Z the (closure of the) image of g. We have the following morphisms of
graded OY -algebras: M

p>0

SympV1 !
M
p>0

'�O�.pL1/!
M
p>0

Vp:

If A is the image of the first arrow above, then Z Š ProjOY
A. In general, it is not trivial

to compute A and henceZ. In the situations considered in this paper, we manage to prove
that A D

L
p>0 Vp over some open dense subset of Y .

Corollary 4.10. Assume that � DX and ' is equidimensional. ThenX is a locally trivial
family over Y .

Proof. Under the assumption, F and E 00 are all zero. Let Lp D prm0
. zA/ for all p > 0.

Then L1 is '-relatively very ample, Lp D pL1, and � Š ProjOY

L
p>0 Vp . Moreover,

thanks to Corollary 4.8, each Vp is reflexive, weakly positively curved, and with zero first
Chern class. Hence they are numerically flat vector bundles by [6, Proposition 2.6]. We
note that the morphism SympV1!Vp is surjective for all p sinceA is sufficiently ample.
Thus � D ProjOY

L
p>0Vp is a locally trivial family by Lemma 3.12. This completes the

proof of the corollary.
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Proof of Proposition 4.1. We writeLpD cpjE 00jCprm0
. zACF / for every integer p> 0.

Then pL1 6 Lp for all p by construction. We denote by Up the direct image sheaf
'�O�.pL1/. Then there are natural morphisms of coherent sheaves on Y

SympV1 ! Up ! Vp:

Since L1 is sufficiently ample on a general fiber of ', and since E 00 does not dominate Y ,
we see that the morphisms above are generically surjective.

We recall the assumption that every '-exceptional divisor is �-exceptional. LetC ��
be the strict transform of a very general complete intersection curve in X . Then '�Vp
and '�Up are all locally free around C and c1.'�VpjC / D 0. Let j W C ! Y be the
natural morphism. Then the weakly positively curved sheaves j �Vp are numerically flat
vector bundles by [8, Proposition 2.11]. We may assume that they are flat bundles with
connections satisfying the conditions of Theorem 3.5. Therefore the generically surjective
morphisms

j �SympV1 ! j �Vp

must be surjective by Corollary 3.10. As a consequence, the morphisms

j �SympV1 ! j �Up

are surjective morphisms between numerically flat vector bundles as well, and j �Up Š

j �Vp . Then by Corollary 3.10 and Lemma 3.12, the variety

UC D ProjOC

M
p>0

j �Up

is a locally trivial family over C .
Let �C D � �Y C . We consider the following commutative diagram:

�C �

C Y

'C

i

'

j

There are natural injective morphisms

j �Vp ! .'C /�.i
�O�.Lp// and j �Up ! .'C /�.i

�O�.pL1//;

which are all generically surjective. Indeed, j �Up can be viewed as a linear subsystem
of the '-relative complete linear system .'C /�.i

�O�.pL1//. We hence obtain a rational
map

gC W�C Ü UC

which is induced by the '-relative linear subsystem j �U1 � .'C /�.i
�O�.L1//.

Since L1 is the sum of a '-relatively sufficiently ample divisor and an effective
�-exceptional divisor, it follows that the '-relative linear system U1 separates the points
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of � lying outside the �-exceptional locus. Thus, if DC is a prime divisor in �C which
is contracted by gC , then i.DC / is contained in the �-exceptional locus. We also remark
that general fibers of 'C and general fibers of UC ! C are the same. Hence every fiber
of the locally trivial family UC ! C is irreducible. Thus, for every point c 2 C , the fiber
'�1C ¹cº has at most one irreducible component which is not gC -exceptional. In conclu-
sion, such a fiber has at most one irreducible component which is not contained in the
�-exceptional locus.

For a prime divisor B � Y , if B \ Y0 ¤ ;, we denote by B1; : : : ; Bt the irreducible
components of '�B: Assume that B1 is not contained in the �-exceptional locus. Then
B1 dominatesB . Since C is very general, we may assume that j.C /meets a general point
of B . The previous paragraph then implies that, for i ¤ 1, either Bi \ �C is contained in
the �-exceptional locus, orBi is '-exceptional. In the latter case,Bi is also �-exceptional.
If B is contained in Y n Y0, then '�1.B/ is contained in the �-exceptional locus by
assumption. This completes the proof.

5. Construction of semistable reductions

Throughout this section, let F be an algebraically integrable foliation on a projective
manifold X with �KF nef. Assume that F has a compact leaf. Let f WU ! V be the
family of leaves, with U and V normal, and consider the diagram

U X

V

f

e

Then f is smooth over some open dense subset of V . The goal of this section is to
construct an appropriate semistable reduction, which will serve for the proofs of the main
theorems. We first observe the following statement.

Lemma 5.1. With the notation above, for any prime divisor B � V , e.f �1.B// has at
most one irreducible component of codimension 1.

Proof. By [1, Theorem 0.3], weak semistable reductions for the fibration f exist. In
particular, there is a generically finite projective surjective morphism �W Y ! V with Y
smooth, and there is a desingularization � of the main component of U �V Y ,

� U X

Y V

'

�

f

e

�

such that for every prime divisor divisor BY � Y , any non-reduced component of '�BY
is �-exceptional.
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We may assume that the morphism � is Galois of group G over the generic point of V ,
and there is a natural action ofG on Y . We assume further that � is aG-equivariant desin-
gularization, and the morphism ' isG-equivariant. We also assume that the �-exceptional
locus is pure of codimension 1, and we denote it by E as a reduced divisor. In particu-
lar, E is G-invariant. Since f is smooth over the generic point of V , we may assume
that � ! U �V Y is an isomorphism over the smooth locus. In particular, E does not
dominate Y .

Let F 0 be the foliation on � induced by '. On the one hand, by Lemma 2.1, there is
some �-exceptional divisor E1 such that

KF 0 D �
�KF CE1:

On the other hand, the semistability assumption implies that there is an open subset W �
� on which ' is smooth and every component of � nW is either a �-exceptional divisor,
or of codimension at least 2 in � . Thus there is some �-exceptional divisor E2 such that

KF 0 D K�=Y CE2:

In conclusion, there is a �-exceptional divisor E 00 such that

�K�=Y CE
00
D ��.�KF /;

which is nef by assumption. Let � W� ! X 0 be the Stein factorization of �. We note that
X 0=G D X , which is smooth. Therefore, we can now apply the techniques of Section 4
to the diagram

� X 0

Y

'

�

Let B � V be a prime divisor and B 0 be a component of ��1.B/ which dominates B .
By Proposition 4.1, there is at most one component of '�1.B 0/ which is not in the �-
exceptional locus. Since � is a desingularization of the main component of the fiber
product Y �V U , this implies that the preimage f �1.B/ has at most one divisorial com-
ponent which is not contained in the e-exceptional locus.

Next we will prove the following construction.

Lemma 5.2. There is a generically finite, projective surjective morphism �WY !V with Y
smooth such that if � is a desingularization of the main component of U �V Y ,

� U X

Y V

'

�

f

e

�
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then for every prime divisor BY � Y , the preimage '�BY has at least one reduced com-
ponent which dominates BY , and any non-reduced component of '�BY is �-exceptional.
Moreover, for any prime divisor B in V , contained in the discriminant of �, either

(1) e.f �1.B// has codimension at least 2 in X , or

(2) f is smooth over the generic point of B , or

(3) e.f �1.B// has a unique irreducible component D of codimension 1, and � is étale
over the generic point of D.

Furthermore, � is Galois of group G over the generic point of V , and there is a natural
action of G on Y .

We recall that the discriminant of � is the locus in V over which � is not smooth. With
this construction, we have the following property.

Corollary 5.3. IfD is a prime divisor in X contained in the discriminant of �, then there
is a prime divisor B in V such that f is smooth over the generic point of B , and that D
is the unique component of e.f �1.B// which has codimension 1.

Proof. Let DU be the strict transform of D in U . Then the natural morphism � ! U is
branched at the generic point of DU . Since � is a desingularization of the fiber product
Y �V U , we see that DU is vertical over V . Then B D f .DU / is a prime divisor in V
since f is equidimensional. Thus we are in the case of item (2) of Lemma 5.2. This
completes the proof of the corollary.

Proof of Lemma 5.2. We note that f is smooth over the generic point of V . Let V 0 ! V

be a desingularization such that there is a simple normal crossing divisor � in V 0 such
that the natural morphism f 0WU 0 ! V 0 is smooth over V 0 n Supp�. Here U 0 is the nor-
malization of the main component of U �V V 0.

Let B1; : : : ; Bk be all the components of � such that f 0�Bi has a component Di
which is not exceptional over X . Lemma 5.1 shows that such a component Di is unique
in f 0�Bi . Let BkC1; : : : ; Bl be the other components of �. Let Dj be an irreducible
component of f 0�Bj for j D k C 1; : : : ; l . We denote by mi the multiplicity of Di in
f 0�Bi for i D 1; : : : ; l .

By Kawamata’s covering trick (see [21, Theorem 17] or [22, Theorem 1-1-1]), there is
a finite Galois cover � WY ! V 0 with Y smooth such that ��Bi is pure of multiplicity mi
for i D 1; : : : ; l . Let � be a desingularization of Y �V 0 U 0. Then by construction, the
natural morphism � ! U 0 is étale over the generic point of Di for all i (see for example
[9, Lemma A.3]). Moreover, for every prime divisor BY � Y , the preimage '�BY has
at least one reduced component which dominates BY . We also see that any non-reduced
component of '�BY is �-exceptional.

Let �W Y ! V be the natural morphism. To complete the proof, let B be a prime
divisor in V , contained in the discriminant of �. Assume that e.f �1.B// has an irreducible
component D of codimension 1. Then D is unique by Lemma 5.1. Assume furthermore
that f is not smooth over the generic point of B . Then we need to prove that B satisfies
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item (3) of the lemma. From the second paragraph of this proof, the strict transform of B
in V 0 is one of the elements in ¹B1; : : : ;Bkº, say B1. The previous paragraph implies that
� ! U 0 is étale over the generic point ofD1. SinceD1 is the strict transform ofD in U 0,
we conclude that �W� ! X is étale over the generic point of D.

6. Proofs of the main theorems

In this section, we will finish the proofs of the theorems of the introduction. We first recall
the demonstration of Theorem 1.3.

Proof of Theorem 1.3. Thanks to [13, Lemma 6.2], the algebraic part Falg of F has a
compact leaf. This proves item (1). We can now apply [13, Proposition 6.1] to show that
KF � KFalg .

As in [14, Claim 4.3], we then deduce that KF � KFrc . We note that the foliation Frc

here corresponds to the foliation H in [14, Claim 4.3 and definition at the bottom of
p. 316]. Furthermore, in [14, Claim 4.3], the foliation F is assumed to have semipositive
anticanonical class, but its proof only uses the fact that �KF is nef.

We will give the proofs of Corollary 1.5, Theorem 1.1 and Corollary 1.2 by assuming
Theorem 1.4.

Proof of Corollary 1.5. By Theorem 1.4, F is a direct summand of TX . Then [20, Propo-
sition 2.5] implies that there is a morphism � fromX to the Chow scheme ofX that sends
a leaf C of F to the cycle class ŒjGC jC �, where jGC j is the cardinality of the holonomy
group of C . Since X is irreducible, the image of � is irreducible as well. This shows that
every leaf of F has the same dimension.

If we assume further that general leaves of F are rationally connected, then f is a
smooth morphism by [19, Corollary 2.11]. Then this fibration is a locally trivial family
over Y (see Corollary 4.10).

Example 6.1. If the leaves of F are not rationally connected, then the fibration f WX!Y

in Corollary 1.5 might not be smooth. Let G D Z=2Z. Then there is a G-action on P1

which has exactly two fixed points. Let E be an elliptic curve equipped with a free G-
action. We setX D .E �P1/=G, where the quotient is with respect to the diagonal action.
ThenX is smooth. There is a natural fibration f WX ! Y D P1=G. Then f is not smooth
and the foliation into curves induced by f is nef.

Proof of Theorem 1.1. We note that Frc has a compact leaf. By Theorem 1.3, we find
that �KFrc � �KF is nef. Hence by Corollary 1.5, Frc is induced by a smooth fibration
f WX ! Y . Moreover, this fibration is a locally trivial family over Y . It follows that there
is a foliation G on Y such that F D f �1G (see for example [2, Lemma 6.7]). From
�KFrc � �KF , we deduce that KG � 0. This completes the proof of the theorem.
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Proof of Corollary 1.2. By Theorem 1.1, there is a locally trivial fibration f WX ! Y and
a foliation G on Y with KG � 0 such that F D f �1G . Since F has a compact leaf, so
does G . Hence by [25, Theorem 5.6], G is regular, and TY D G ˚H for some regular
foliation H on Y . In particular, F is regular as well.

Let Ff be the foliation induced by f . We observe that �KFf
� �KF is nef. By

Theorem 1.4, there is a regular foliation K on X such that TX D K ˚ Ff . Then the
natural map K ! f �TY is an isomorphism. We set

E DK \ f �1H :

Then E is a regular foliation and we verify that TX D F ˚ E .

The remainder of this section is devoted to the proof of Theorem 1.4. We will divide
it into several steps.

6.A. Setup

Until the end of the section, we will consider the following situation. Let F be an alge-
braically integrable foliation with nef anticanonical class �KF on a projective mani-
fold X . Assume that F has a compact leaf. Let f WU ! V be the family of leaves with U
and V normal. We take a generically finite morphism �W Y ! V , and a desingularization
� of the main component of U �V Y , as in Lemma 5.2:

� U X

Y V

'

�

f

e

�

Then for every prime divisor BY � Y , the preimage '�BY has at least one reduced com-
ponent which dominates BY , and any non-reduced component of '�BY is �-exceptional.
Moreover, for any prime divisor B in V , contained in the discriminant of �, either

(1) e.f �1.B// has codimension at least 2 in X , or

(2) f is smooth over the generic point of B , or

(3) e.f �1.B// has a unique irreducible component D of codimension 1, and � is étale
over the generic point of D.

We note that, by construction, every '-exceptional divisor is �-exceptional as well.
The morphism � is Galois of group G over the generic point of V , and there is a natural
action of G on Y . We assume further that � is a G-equivariant desingularization, and
the morphism ' is G-equivariant. We also assume that the �-exceptional locus is pure of
codimension 1, and we denote it by E as a reduced divisor. Since f is smooth over the
generic point of V , we may assume that �! U �V Y is an isomorphism over the smooth
locus. In particular,E does not dominate Y . Let � W�!X 0 be the Stein factorization of �.
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We note that X 0=G D X , and we have the following diagram:

� X 0 X

Y

'

�

� q

We denote by F 0 the foliation on � induced by '. On the one hand, by Lemma 2.1,
there is some �-exceptional divisor E1 such that

KF 0 D �
�KF CE1:

On the other hand, by the semistability assumption, there is some �-exceptional divi-
sor E2 such that

KF 0 D K�=Y CE2:

In conclusion, there is a G-invariant �-exceptional divisor E 00 such that

�K�=Y CE
00
D ��.�KF /:

Since �KF is assumed to be nef, we can apply the techniques of Section 4 to the diagram

� X 0

Y

'

�

Let V0 � V be a Zariski open subset such that

� � is finite over V0,

� for any prime divisor B � V , the preimage f �1.B/ is contained in the e-exceptional
locus if and only if B � V n V0.

Let Y0 D ��1.V0/. We pick a sufficiently ample divisor A on � . We will assume that A is
G-invariant. More precisely, we assume that

A D ��N CEA;

where N is a sufficiently ample divisor on X , and EA is �-exceptional and G-invariant.
We define the following Q-divisor, with m0 and rm0

as in Lemma 4.5:

zA D ACm0E �
1

rm0

'�c1.'�O�.ACm0E//:

We remark that zA is G-invariant as well. By Lemma 4.4, there is an effective divisor F
such that zA C F is pseudoeffective. Replacing F by the sum of its G-orbits, we may
assume that F is G-invariant.
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As in Corollary 4.8, we choose a sequence ¹cpºp>0 of non-negative integers with
c0 D 0 such that the direct image sheaves

Vp D '�O�.cpjE
00
j C prm0

. zAC F //

are weakly positively curved. The first Chern class c1..'�Vp/��/ is supported in the
�-exceptional locus for every p. Furthermore, ci C cj 6 ciCj for any i; j > 0. By con-
struction, every Vp is G-linearized.

6.B. Flatness about Vp

If X 0 is smooth, then the reflexive hull .��.'�Vp//�� will be a numerically flat vec-
tor bundle, being weakly positively curved with zero first Chern class (see [6, Proposi-
tion 2.6]). In general X 0 is not smooth, and the smoothness condition lies on X instead.
Hence, we aim to descend .'�Vp/�� to X . We consider the diagram

� X 0 X

Y

'

�

� q

Lemma 6.2. Let Xı � X be the largest Zariski open subset such that � is a finite mor-
phism over Xı. Let �ı D ��1.Xı/. Then there is a reflexive sheaf Ep on X such that
.��Ep/

��j�ı Š .'
�Vp/

��j�ı .

Proof. We note that �ı=G Š Xı and .'�Vp/�� is G-linearized. To prove the existence
of Ep , we need to verify that .'�Vp/�� satisfies Kempf’s descent condition (see [12,
Théorème 2.3]). More precisely, let � be a prime divisor in X , contained in the discrimi-
nant of �. It is enough to show that, for a general point x 2 �, a point  2 � lying over x,
and a stabilizer � 2 G , the action of � on the fiber .'�Vp/�� is trivial.

We note that the divisor ƒ D f .e�1� �/ is contained in the discriminant of �WY ! V .
By construction (see Lemma 5.2 and Corollary 5.3), the fibration f is smooth over the
generic point of ƒ. In particular, there is an open neighborhood S of the generic point
of ƒ such that � is equal to the fiber product U �V Y over S . Let T D ��1.S/. We may
assume further that Vp is locally free on T . We have the following commutative diagram:

� U X

Y V

'

�

f

e

�
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We recall that

Vp D '�O�.cpjE
00
j C prm0

. zAC F //;

zA D ACm0E �
1

rm0

'�c1.'�O�.ACm0E//;

and A D ��N CEA. Let

zN D N �
1

rm0

f �c1.f�OU .e
�N//

be a Q-divisor in U . Since T ! S is flat, and since the �-exceptional locus does not meet
'�1.T /, we obtain

VpjT Š �
�.f�OU .prm0

zN//jT :

Moreover, such an isomorphism isG-equivariant. Since x is general in�, the point  lies
in '�1.T /. Hence the action of � on .'�Vp/�� is trivial. This completes the proof of the
lemma.

Lemma 6.3. With the notation above, each Ep is a numerically flat vector bundle. In
particular, we may assume that Ep is equipped with the flat connection satisfying the
conditions of Theorem 3.5.

Proof. We fix some p > 0. For simplicity, we write E D Ep and V D Vp . We first remark
that c1.E/ D 0 since c1..'�V/��/ is supported in the �-exceptional locus.

By shrinking Y0 if necessary, we may assume that V is locally free on Y0. We recall
that �ı � � is the largest open subset on which � is finite. By assumption, Y0 n '.�ı/
has codimension at least 2, and ' is equidimensional over Y0. Set �ı0 D �

ı \ '�1.Y0/.
Then the complement of �.�ı0/ has codimension at least 2 in X 0. Let X 00 be the largest
G-invariant open subset of �.�ı0/ on which q�E is locally free. Then its complement has
codimension at least 2 in X 0 as well. Moreover, the rational map  WX 0 Ü Y induces a
morphism  WX 00 ! Y0 such that .q�E/jX 0

0
Š . �V/jX 0

0
. Let X0 D q.X 00/: We have the

following commutative diagram:

P .V jY0
/ P .q�EjX 0

0
/ P .EjX0

/

Y0 X 00 X0

finite

 q

Since V is weakly positively curved, by Lemma 3.2 for any ample divisor AY in Y and
any positive integer a there is some integer m > 0 such that the natural evaluation map

H 0
�
Y; .SymamV/�� ˝OX .mAY /

�
! .SymamV/��y ˝OX .mAY /y

is surjective for general y 2 Y .
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Therefore, for every ample divisor AX in X and any positive integer a, there is some
integer m > 0 such that

H 0
�
X 00;Symam.q�E/˝OX .mq

�AX /
�
! Symam.q�E/x ˝OX .mq

�AX /x

is surjective for general x 2 X 00. As a consequence, the diminished base locus of
OP.q�Ej

X0
0
/.1/ is not mapped surjectively onto X 00. Hence the diminished base locus of

OP.EjX0
/.1/ is not mapped surjectively onto X0 either, for q is a finite morphism. Thus E

is numerically flat by Lemma 3.3.

Lemma 6.4. There is a flat vector bundle Wp on Y such that ��Ep D '�Wp . Moreover,
there is a natural isomorphism between WpjY0

and V��p jY0
.

Proof. By assumption ��Ep is equipped with the flat connection r��Ep
of Theorem 3.5.

Since �ı contains general fibers of ', by the definition of Ep (see Lemma 6.2) the restric-
tion of ��Ep to a general fiber of ' is trivial as a holomorphic vector bundle. From the
uniqueness of Theorem 3.5, we see that r��Ep

induces the trivial connection on the
restriction of ��Ep to a general fiber of '. Therefore, the representation of the funda-
mental group �1.�/ corresponding to .��Ep;r��Ep

/ induces a trivial representation of
the fundamental group of a general fiber of '. Then Proposition 3.14 implies that there is
a flat vector bundle Wp on Y such that ��Ep D '�Wp .

Finally, we remark that Y0 n '.�ı/ has codimension at least 2 in Y0. Hence Lemma
3.15 implies that there is a natural isomorphism between WpjY0

and V��p jY0
.

6.C. Decomposition of the tangent bundle

Let rWp
be the flat connection on Wp , induced by the flat connection on Ep . Then it satis-

fies the condition of Theorem 3.5, and is G-equivariant. Consider the following diagram:

� X 0 X

Y

'

�

� q

Lemma 6.5. There is a surjective morphism of commutative graded OY -algebrasM
p>0

SympW1 !

M
p>0

Wp:

Moreover, each graded piece is a morphism of flat bundles.

Proof. For any integers p; i; j > 0, there are natural morphisms SympV1 ! Vp and
Vi ˝ Vj ! ViCj . They are generically surjective since zA is sufficiently ample on a gen-
eral fiber of '. Furthermore, these morphisms are all G-equivariant. We can then obtain



Foliations whose first Chern class is nef 2981

generically surjective morphisms

SympE1 ! Ep and Ei ˝ Ej ! EiCj :

By Corollary 3.10, they are surjective morphisms of flat vector bundles.
Moreover, the following natural diagram is commutative:

SymiV1 ˝ SymjV1 Vi ˝ Vj

SymiCjV1 ViCj

We then deduce that M
p>0

SympE1 !
M
p>0

Ep

is a surjective morphism of commutative graded OX -algebras.
By construction, we have ��Ep D '�Wp for any p. Hence we obtain an induced

surjective morphism of commutative graded OY -algebrasM
p>0

SympW1 !

M
p>0

Wp:

This completes the proof of the lemma.

We are now ready to finish the proof of Theorem 1.4.

Proof of Theorem 1.4. By Lemmas 6.5 and 3.12, the variety

Z D ProjOY

M
p>0

Wp

is a locally trivial family over Y . Furthermore, the connection rW1
induces a foliation GZ

on Z, which is transverse to the fibers of Z ! Y .
By removing some closed subset of codimension at least 2, we assume that V1 is

locally free on Y0. By Lemma 6.4, there is a natural isomorphism between WpjY0
and

V��p jY0
. Since SympW1 ! Wp is surjective, we conclude that the natural morphism

SympV1jY0
! VpjY0

is surjective, and VpjY0
Š WpjY0

is locally free for any p > 0.
We recall that Vp D '�O�.Lp/, where

Lp D cpjE
00
j C prm0

. zAC F /:

In particular, the morphism SympV1 ! Vp factors through '�O�.pL1/. Therefore, we
obtain isomorphisms

'�O�.pL1/jY0
Š VpjY0

Š WpjY0
:
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Hence, there is a natural rational map

 W� Ü Z;

induced by the '-relative linear system V1 of the line bundle O�.L1/. Since L1 is the
sum of a '-relatively sufficiently ample divisor and an effective �-exceptional divisor, we
see that  only contracts �-exceptional divisors. In particular, up to a closed subset of
codimension at least 2, the restriction

 j�ı W�
ı Ü Z

is an isomorphism onto its image. We recall that �ı � � is the largest open subset such
that �j�ı is finite.

The foliation GZ induces a foliation G� on � . Then G� is transverse to F 0 over �ı. We
recall that F 0 is the foliation induced by 'W� ! Y . Furthermore, GZ is G-linearized as it
is induced by the G-equivariant connection rW1

(see Remark 3.13). Hence G� descends
to a foliation G on X .

We will show that TX D F ˚ G : For rank reasons, it is equivalent to show that F

and G are transverse. It is enough to show this in codimension 1 of X . First we note that,
on X1 � X , the largest open subset over which � is étale, they are transverse, because
their pullbacks are transverse in ��1.X1/ � �ı.

Now we consider a prime divisor D in X contained in the discriminant of �. By
construction (see Lemma 5.2 and Corollary 5.3), there is a prime divisor B in V such
that f is smooth over the generic point of B , and D is the unique component of e.f �B/
which has codimension 1. We have the following commutative diagram:

� U X

Y V

'

�

f

e

�

Let V1 be an open neighborhood of the generic point of B such that f is smooth over V1.
We write Y1 D ��1.V1/ and U1 D f �1.V1/. There is an open subset U2 � U1 such that
ejU2

is an isomorphism onto its image and e.U2/ contains the generic point of D. We
remark that '�1.Y1/ Š U1 �V1

Y1 and U2 �V1
Y1 � �

ı. Since G� is transverse to F 0

over �ı, from Lemma 2.2 we deduce that G je.U2/ is transverse to F je.U2/. This completes
the proof of the theorem.
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