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Abstract. In this paper, we relate the theory of quasi-conformal maps to the regularity of the solu-
tions to nonlinear thin-obstacle problems; we prove that the contact set is locally a finite union of
intervals and apply this result to the solutions of one-phase Bernoulli free boundary problems with
geometric constraint. We also introduce a new conformal hodograph transform, which allows to
obtain the precise expansion at branch points of both the solutions to the one-phase problem with
geometric constraint and a class of symmetric solutions to the two-phase problem, as well as to
construct examples of free boundaries with cusp-like singularities.

Keywords: regularity for free boundary problems, Alt–Caffarelli–Friedman problem, nonlinear
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1. Introduction

This note is dedicated to the analysis of the branch singularities arising in two different
types of free boundary problems in dimension two: nonlinear thin-obstacle problems and
one-phase Bernoulli problems with geometric constraint. In the last part of the paper,
we will present some results about branch points of the two-phase problem.

Our main motivation is the description of the structure of branch points arising in free
boundary problems of the Bernoulli type. Our main model example is the following one-
phase problem with geometric constraint, which for simplicity we state for nonnegative
functions u defined on the unit ball B1 in Rd :

�u D 0 in �u � B1 \ ¹xd > 0º
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with boundary conditions

u D 0 on B1 \ ¹xd D 0º;

jruj D 1 on @�u \ ¹xd > 0º;

jruj � 1 on @�u \ ¹xd D 0º;

in which
�u WD ¹u > 0º

and the geometric constraint is the inclusion�u � B1 \ ¹xd > 0º. The (optimal) C 1;1=2-
regularity of the free boundary @�u \B1 for this specific problem was proved by Chang-
Lara and Savin in [4]. On the other hand, as in the case of other Bernoulli free boundary
problems, such as the two-phase problem [9] and the vectorial problem [19], the C 1;˛-
regularity of the free boundary @�u \ B1 by itself does not give any information on the
contact set

@�u \ ¹xd D 0º \ B1;

nor the structure of its relative boundary in B1 \ ¹xd D 0º, which is the set of points at
which @�u branches away from ¹xd D 0º. In dimension two, it is natural to expect that
this set is discrete and that around each branch point the set ¹u D 0º \ ¹xd > 0º forms
a cusp. This is precisely the content of one of our main results, Theorem 1.1.

We will study these singularities in two different ways. Firstly, we will prove that
branch singularities for minimizers of a general nonlinear thin-obstacle problem are iso-
lated, using the theory of quasi-conformal maps, and then we will deduce the same result
for solutions of the problem above via a hodograph transform. Secondly, we will introduce
a conformal hodograph transform and use it to deduce the result directly. This second
method has two advantages: it allows us to give a precise description of the cuspidal
behavior of the free boundary at branch singularities and moreover, being reversible, it
allows to show that solutions of the two-dimensional one-phase problem with obstacle are
in a one-to-one correspondence with solutions to the thin-obstacle problem, thus produc-
ing many examples of cuspidal singularities. Finally, we will describe a special symmetric
situation in which our techniques are applied to the branch points of solutions to the two-
phase problem. Extending our results to the general two-phase situation seems to require
an entirely new idea, which is similar in spirit to an analog of Almgren’s center manifold
for this problem (see [3]).

The quasi-conformal technique is needed to prove Theorem 1.1 and it is the only one
available there. On the other hand, the conformal hodograph transform is the only tech-
nique which allows to give the precise analytic expansion in Theorems 1.3 (b) and 1.6 (b),
and to construct the corresponding examples in Theorems 1.4 and 1.8. Both techniques
can be used to prove Theorems 1.3 (a) and 1.6 (a).

We wish to remark that such precise results at branch points, that is, singular points at
which the tangent to the free boundary is a plane, usually with multiplicity, are quite rare.
To our knowledge, the only such examples are the results of Chang on two-dimensional
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area minimizing currents [3, 6–8], of Sakai on the two-dimensional obstacle problem
[17, 18], and of Lewy on the two-dimensional thin-obstacle problem ([16], and also [15]
for a less precise result); like in the present paper, all these results are two-dimensional.

Our approach is similar in spirit to the results of Sakai and Lewy, and makes use
of (quasi-)conformal techniques to prove both the local finiteness of the branch set and
to give a precise description of the cuspidal behavior at such points. A possible alterna-
tive approach, which could also be applicable in higher dimensions, would be to look
for a monotone quantity, such as Almgren’s frequency function as done for instance
in Chang’s paper [3]; in fact, for some thin-obstacle problems, as for instance the one
involving the classical Laplace operator, the monotonicity of Almgren’s frequency func-
tion is known (see [2, 15]) and can still be used to get information on the dimension
of the branch set (see [12]). However, the operators we study are not regular enough
to guarantee the monotonicity of the frequency function, and so we were naturally led
to consider (quasi-)conformal techniques. Furthermore, our techniques have the addi-
tional benefit of yielding a very precise local description of the free-boundary at branch
points (see items (b) of Theorems 1.1, 1.3 and 1.6) in a straightforward way, much sim-
pler than the induction procedure that would be needed using the frequency function
as in [3].

Concerning the possible extensions of Theorems 1.1, 1.3 and 1.6 to higher dimen-
sions, we point out that, since the monotonicity of the frequency function does not seem
to hold in none of these cases (and it certainly does not hold in the full generality of
Theorem 1.1), a dimension reduction argument seems completely out of reach.

1.1. Nonlinear thin-obstacle problem

Let B1 be the unit ball in R2 and let

BC1 WD ¹.x; y/ 2 B1 W y > 0º and B 01 D ¹.x; y/ 2 B1 W y D 0º:

Let F WR2 ! R be a C 2-regular function, and let Fj , j D 1; 2 and Fij , 1 � i; j � 2, be
the first and second order partial derivatives of F . Moreover, we identify R2 with the field
of complex numbers C, so we will often think of the functions on R2 D C as functions of
two real variables .x; y/ 2 R2 and at the same time as a function of one complex variable
z D x C iy 2 C.

We consider solutions U 2 C 1.BC1 [ B
0
1/ of the following nonlinear thin-obstacle

problem:

div.rF .rU// D 0 in BC1 ; (1.1)

U � 0 on B 01; (1.2)

rF .rU/ � e2 D 0 on ¹U > 0º \ B 01; (1.3)

rF .rU/ � e2 � 0 on ¹U D 0º \ B 01; (1.4)

where e2 D .0; 1/. Our first main result is the following.



G. De Philippis, L. Spolaor, B. Velichkov 3372

Theorem 1.1 (Nonlinear thin-obstacle). Suppose that U 2 C 1.BC1 [ B
0
1/ is a solution

to (1.1)–(1.4) and that F WR2 ! R is C 2-regular function satisfying

rF .0/ D 0 and r
2F .0/ D Id: (1.5)

Then, the following holds:

(a) The set of branch points

�.U / WD ¹z 2 B 01 W U.z/ D 0; rU.z/ D 0º (1.6)

is a discrete (locally finite) subset of B 01.

(b) For every point z0 2 �.U / (without loss of generality z0 D 0), there are

� a radius r > 0 and a quasi-conformal homeomorphism ‰WBr ! �, between Br
and an open set � � B1, such that

‰ 2 W
1;2

loc .Br IR
2/; (1.7)

Im.‰.z// � 0 on ¹Im.z/ � 0º; (1.8)

j‰.z/ � zj D o.jzj/I (1.9)

� a holomorphic function ˆWB1 ! C of the form

ˆ.z/ D azk CO.zkC1/; where k � 3 and a 2 C; (1.10)

such that we can write the solution U as

U.z/ D Re.ˆ.‰.z//1=2/ for every z 2 Br .z0/: (1.11)

Remark 1.2 (Optimal regularity). We notice that one particular consequence of the pre-
vious theorem is the optimal regularity for solutions of the nonlinear thin-obstacle prob-
lem (1.1)–(1.4). In fact, if U 2 C 1.BC1 [ B

0
1/ is as in Theorem 1.1, then from (1.11),

(1.10) and (1.9) it follows that U 2 C 1;1=2.BC1 [ B
0
1/.

In the case of the classical thin-obstacle problem in which the operator is the Lapla-
cian, that is, F .x; y/ D x2 C y2, parts (a) and (b) of Theorem 1.1 were obtained by
Lewy in [16]; moreover, in this case, claim (a) can also be obtained by means of Alm-
gren’s monotonicity formula (see [2,15]); we also notice that for the classical thin-obstacle
problem, the map ‰ from Theorem 1.1 is the identity.

However, in order to apply this result to the one-phase problem described in the next
subsection, we will be interested in solutions u of the thin-obstacle problem with

F .x; y/ WD
x2 C y2

1C y

and for which ru 2 C 0;1=2 and no better. In particular, it is easy to check that U is
a solution of an equation of the form

div.A.x/rU/ D 0;
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where A.x/ is no better than C 0;1=2. For these types of equations, the results in [14]
cannot be applied (and actually are known to fail), so in order to obtain our result we need
to exploit the “quasi-linear” structure of the problem and our approach, based on the use
of quasi-conformal maps, seems to be more suitable, although limited to dimension two.

1.2. One-phase problem with geometric constraint

Next, we consider the one-phase problem constrained above a hyperplane, that is, let
uWB1 \ ¹xd � 0º ! R be a continuous nonnegative function solution of the problem

�u D 0 in �u WD ¹u > 0º � B1; (1.12)

u D 0 on B1 \ ¹xd D 0º; (1.13)

jruj D 1 on @�u \ ¹xd > 0º; (1.14)

jruj � 1 on @�u \ ¹xd D 0º: (1.15)

In the recent paper by Chang-Lara and Savin [4], it was shown that if u is a viscosity
solution of this problem (that is, if the boundary conditions (1.14) and (1.15) are intended
in viscosity sense), then in a neighborhood of any contact point x D .x0; 0/ 2 @�u \

¹xd D 0º, the boundary @�u is a C 1;˛-regular graph over the hyperplane ¹xd D 0º. More
precisely, in a neighborhood of a point z0 2 @�u \ ¹xd D 0º, the boundary @� is aC 1;1=2-
regular surfaces, that is, there are a radius � > 0 and a C 1;1=2-regular function

f W B 0�.z0/! Œ0;C1/

such that, up to a rotation and translation of the coordinate system, we have´
u.x/ > 0 for x 2 .x0; xd / 2 B�.z0/ such that xd > f .x0/;

u.x/ D 0 for x 2 .x0; xd / 2 B�.z0/ such that xd � f .x0/:
(1.16)

We denote by C1.u/ the contact set of the free boundary @�u with the hyperplane
¹xd D 0º,

C1.u/ WD ¹xd D 0º \ @�u;

and by B1.u/ the set of points at which the free boundary separates from ¹xd D 0º,

B1.u/ WD ¹x 2 C1.u/ W Br .x/ \ .@�u n ¹xd D 0º/ ¤ ; for every r > 0º:

By �1.u/ we denote the set of points in C1.u/ at which u has gradient precisely equal to 1

�1.u/ WD ¹z 2 C1.u/ W jruj.z/ D 1º: (1.17)

We notice that a priori the set C1.u/ is no more than a closed subset of ¹xd D 0º. More-
over, if at a point x D .x0; 0/ we have that jruj.x0; 0/ > 1, then this point is necessarily
in the interior of C1.u/ in the hyperplane ¹xd D 0º. Thus,

�1.u/ contains all branch points, B1.u/ � �1.u/.



G. De Philippis, L. Spolaor, B. Velichkov 3374

Theorem 1.3 (Analyticity at the branch points in the one-phase problem with obstacle).
Let u be a solution of problem (1.12)–(1.15) in dimension d D 2. Then, the following
holds:

(a) �1.u/ is locally finite and C1.u/ is a locally finite union of disjoint closed intervals
of the axis ¹x2 D 0º.

(b) For every point z0 2 �1.u/, one of the alternatives in Figure 1 holds, that is,

(b.1) z0 is an isolated point of C1.u/ and, in a neighborhood of z0, the free boundary
@�u is the graph of an analytic function that vanishes only at z0;

(b.2) z0 lies in the interior of C1.u/ and there is r > 0 such that u is harmonic
in Br .z0/ and jruj > 1 at all points of ¹x2 D 0º \ Br .z0/ except z0;

(b.3) z0 is an endpoint of a non-trivial interval in the contact set C1.u/; moreover,
there are an interval I� D .��; �/ and an analytic function �W I� ! R such
that �.0/ > 0 and, up to setting z0 D 0 and rotating the coordinate axis,

f .x/ D

´
0 if x � 0;

xk=2 �.x/ if x < 0;
(1.18)

where f is the function from (1.16).

�u D 0

u > 0

jruj > 1

jruj D
1

u D 0

�u D 0

u > 0
jruj D 1 jr

uj
D
1

u D 0

�u D 0; u > 0

jruj > 1 jruj > 1

jruj D 1„ ƒ‚ …
u D 0

Fig. 1. Branch points for one-phase with obstacle.

As we mentioned above, we will give two proofs of this result. The first will be
obtained combining Theorem 1.1 with the standard hodograph transform. The second
proof instead, more geometric in spirit, will be achieved via a conformal hodograph
transform. This proof has the advantage of being reversible, thus allowing us to construct
examples of solutions and free boundaries with any prescribed cuspidal behavior (without
invoking any fixed point argument, as usual in the literature).

Theorem 1.4 (Cuspidal points for one-phase problem). For any positive integer n 2 N,
there exists a solution of (1.12)–(1.15) in dimension d D 2 such that (1.18) in Theorem 1.3
holds with k D 4n � 1.

We point out that Theorems 1.3 and 1.4 can be deduced, respectively, from Theo-
rems 1.6 and 1.8 below by performing an odd reflection.
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1.3. Symmetric two-phase problem

Finally, we consider solutions to the two-phase free boundary problem in viscosity sense,
that is, we let uWB1!R be a continuous function and denote by uC and u� the functions

uC D max¹u; 0º and u� WD min¹u; 0º;

and by �Cu and ��u the sets

�˙u WD ¹˙u > 0º:

Notice that with this notation, u� is negative. Then u is a viscosity solution of the problem

�u D 0 in �Cu [�
�
u ; (1.19)

jruCj D 1 on @�Cu n @�
�
u \ B1; (1.20)

jru�j D 1 on @��u n @�
C
u \ B1; (1.21)

jruCj D jru�j � 1 on @�Cu \ @�
�
u \ B1: (1.22)

In [9], we proved that if u is a viscosity solution of this problem in any dimension d � 2,
then in a neighborhood of any two-phase point

x0 2 @�
C
u \ @�

�
u \ B1;

both free boundaries @�Cu \ B1 and @��u \ B1 are C 1;˛-regular. Thus, by the classical
elliptic regularity theory, also the functions u˙ are C 1;˛-regular on x�Cu \B1 and x��u\B1,
respectively, and equations (1.19)–(1.22) hold in the classical sense.

We will denote by C2.uC; u�/ the two-phase free boundary, which is the contact
set between the free boundaries @�Cu and @��u , and by O˙ the remaining one-phase
parts:

C2.uC; u�/ WD @�
C
u \ @�

�
u \ B1 and O˙ WD .@�

˙
u \ B1/ n C2.uC; u�/:

We notice that the set C2.uC; u�/ is closed, while OC and O� are relatively open subsets
of @�˙u \ B1, respectively. We define the set of branch points B2.uC; u�/ as the set of
points at which the two free boundaries @�˙u are separated, that is,

B2.uC; u�/ D ¹x 2 C2.uC; u�/ W Br .x/ \O˙ ¤ ; for every r > 0º: (1.23)

By C 1-regularity of u˙, if x 2 .@�Cu [ @�
�
u / \ B1 is such that

jruCj.x/ > 1 or jru�j.x/ > 1;

then it is necessarily a two-phase non-branch point x 2 C2.uC; u�/ nB2.uC; u�/. In par-
ticular, this implies that the set

�2.uC; u�/ WD ¹x 2 C2.uC; u�/ W jruCj.x/ D jru�j.x/ D 1º; (1.24)

contains the set of branch points B2.uC; u�/.
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In dimension d D 2, @�˙u are locally parametrized by two C 1;˛ curves. Precisely,
suppose that z0 D .x0; y0/ 2 C2.uC; u�/, without loss of generality we may assume that
z0 D .0; 0/, and that there are an interval I� WD .��; �/ and two C 1;˛-regular functions

f˙W I� ! R;

such that

fC � f� on I� and fC.0/ D f�.0/ D @xfC.0/ D @xf�.0/ D 0;

and, up to rotations and translations,8̂̂<̂
:̂
u.x; y/ > 0 for .x; y/ 2 I� � I� such that y > fC.x/;

u.x; y/ D 0 for .x; y/ 2 I� � I� such that f�.x/ � y � fC.x/;

u.x; y/ < 0 for .x; y/ 2 I� � I� such that y < f�.x/:

(1.25)

Thus, in the square I� � I�, the one-phase parts OC and O� of the free boundary are the
union of C 1;˛-regular (actually analytic) graphs over a countable family of disjoint open
intervals

O˙ WD
[
i2N

� i˙;

where for every i 2 N, there is an open interval Ii � I� such that

� i˙ D ¹.x; f˙.x// W x 2 Iiº: (1.26)

Definition 1.5 (Symmetric solutions of the two-phase problem). In dimension d D 2,
we will say that a continuous function uWB1 ! R is a symmetric solution to the two-
phase problem if u satisfies (1.19)–(1.22) and moreover

H1.� iC/ D H1.� i�/ for every i 2 N such that Ii � I�:

The main result of this section is the following.

Theorem 1.6 (Cuspidal points for the symmetric solutions of the two-phase problem).
Let uWB1 ! R be a viscosity solution of the two-phase problem (1.19)–(1.22). Then the
following holds:

(a) If u is symmetric in the sense of Definition 1.5, then the singular set �2.uC; u�/

defined in (1.24) is locally finite, so in particular the two-phase free boundary

C2.uC; u�/ D .@�
C
u [ @�

�
u / \ B1

is a locally finite union of disjoint C 1;˛-arcs;

(b) If z0 2 �2.uC; u�/ is an isolated point of �2.uC; u�/, then one of the alternatives in
Figure 2 holds, that is,

(b.1) z0 is an isolated point of C2.uC; u�/ and, in a neighborhood of z0, the free
boundaries @�Cu and @��u are analytic graphs meeting only in z0;
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(b.2) z0 lies in the interior of C2.uC; u�/ and moreover there is r > 0 such that
�u D 0 in Br .z0/ and jruj > 1 at all points of ¹u D 0º \ Br .z0/ except z0;

(b.3) z0 is an endpoint of a non-trivial arc in C2.uC; u�/, and there are an interval
I� D .��; �/, a constant k 2 N, k � 3, and an analytic function �W I� ! R
such that �.0/ ¤ 0 and, up to setting z0 D 0 and changing the coordinates,

fC.x/ � f�.x/ D

´
xk=2 �.jxj1=2/ if x � 0;

0 if x � 0:
(1.27)

Precisely, there are analytic functions ˆ, ˇ˙ and ‚ such that for every x � 0

f˙.x/ D ˆ.x C jxj
5=2ˇ˙.jxj

1=2//˙‰.x C jxj5=2ˇ˙.jxj
1=2//; (1.28)

where ‰ is of the form ‰.x/ D jxj3=2‚.x/.

u D 0
jruj > 1 jr

uj
D
1

jruj D
1

u > 0

u < 0

u D 0u D 0
jr
uj
D
1

jr
uj
D
1

u > 0

u < 0

jruj > 1

jruj > 1

jruj D 1„ ƒ‚ …u > 0

u < 0

Fig. 2. Branch points for two-phase.

Notice that (a) of the previous theorem requires that the function u is symmetric in the
generalized sense of Definition 1.5, while (b.3) is always true at isolated branch points.
The question of whether the statement of Theorem 1.6 (a) is true without the generalized
symmetry assumption is extremely interesting and would probably require the introduc-
tion of new techniques.

We also have the following result, which simply follows from the fact that if z0 is an
isolated point of B2.uC; u�/, then it is also an isolated point of �2.uC; u�/ for which
Theorem 1.6 (b.2) does not hold.

Corollary 1.7 (Isolated cuspidal points of two-phase problem). Let u be a solution of the
two-phase problem as in Definition 1.5. If z0 2 B2.uC; u�/ is an isolated point of the set
B2.uC; u�/ defined in (1.23), then at least one of points (b.1) and (b.3) is true at z0.

We will prove Theorem 1.6 in Section 5, where we will also discuss the obstructions
in applying the conformal hodograph transform to the study of the branch points of the
two-phase problem in the absence of symmetries or in the presence of weights �˙ on the
volume of the positivity and the negativity sets.

Finally, as in Theorem 1.4, by reversing the argument from the proof of Theorem 1.6,
we can construct two-phase cusps with prescribed behavior.
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Theorem 1.8 (Cuspidal points for two-phase problem). For any positive integer n 2 N,
there exists a solution of (1.19)–(1.22) in dimension d D 2 such that (1.27) holds with
k D 4n � 1 and (1.28) holds with ˆ.x/ D xm C o.x/, where m � 2.

The particular case ˆ � 0 is an immediate consequence from Theorem 1.4 as a so-
lution of the one-phase problem, together with its reflection, gives a solution of the two-
phase one. However, the same method provides also non-symmetric examples in which
the asymmetry is given by the function ˆ.

We notice that the examples constructed in Theorem 1.8 are minimizers of the two-
phase functional. Indeed, any flat monotone solution to (1.19)–(1.22) is unique and so it
minimizes the two-phase functional; we prove this in Appendix A as a direct consequence
of the maximum principle. We refer to the recent work [5] for some interesting examples
of almost-minimizing free boundaries.

2. Nonlinear thin-obstacle problem

In this section, we prove Theorem 1.1 using the theory of quasi-conformal map.

2.1. Notation and known results

Let U 2 C 1.BC1 [ B
0
1/ be a solution of the thin-obstacle problem (1.1)–(1.4), where the

function F WR2 ! R is C 2-regular.

2.1.1. Variational inequality formulation. System (1.1)–(1.4) can be equivalently written
in the form of a variational inequality. Precisely, the following are equivalent:

(1) U 2 C 1.BC1 [ B
0
1/ and satisfies (1.1)–(1.4);

(2) U 2 H 1
loc.B

C
1 [ B

0
1/ (that is, u 2 H 1.BCr / for every r < 1) andZ

B
C

1

rF .rU/ � r.U � v/ dx � 0 for every v 2KU ; (2.1)

where KU is the convex set

KU WD
®
v 2 H 1

loc.B
C
1 [ B

0
1/ W v � 0 on B 01; v D U in a neighborhood

of @B1 \ ¹xd > 0º
¯
:

Indeed, the implication .1/ ) .2/ follows simply by an integration by parts, while
.2/) .1/ was proved by Frehse [13]. In particular, if U 2 H 1.BC1 / minimizes the inte-
gral functional

I.v/ WD

Z
B

C

1

F .rv/ dx (2.2)

among all functions in KU , then U satisfies the variational inequality (2.1).
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2.1.2. Higher regularity of the solutions. It was proved by Frehse in [13, Lemma 2.2] that
if U 2 H 1.BC1 / is a solution of the variational inequality (2.1), then U is in H 2.BCr / for
every r < 1. Moreover, in [10, Theorem 4.1] it was shown that the solution U is actually
in C 1;˛.BC1 [ B

0
1/ for some ˛ > 0.

2.2. Local finiteness of the set of branch points

In this subsection, we prove Theorem 1.1 (a). We introduce a special function Q that
we prove to be quasi-regular in the half-ball, then we obtain Theorem 1.1 (a) by apply-
ing Stoïlow’s factorization theorem for quasi-conformal and quasi-regular maps (see [1,
Chapter 5]).

Given a solution U WB1 \ ¹y � 0º ! R of (1.1)–(1.4), we consider the function

QW BC1 \ ¹y � 0º ! C; Q.x C iy/ D @xU � iF2.rU.x; y//: (2.3)

We gather the fundamental properties of this function in the next lemma.

Lemma 2.1. The function Q defined in (2.3) satisfies the following properties:

(1) Q2 2 W 1;2.BCr IC/ for every r < 1;

(2) there is r0 > 0 such that, for every r < r0, Q satisfies the Beltrami equation

@xzQ D �.rU;r
2U/@zQ in BCr ;

and if for some ı 2 .0; 1�

kId � r2F .rU.z//k2 � ı for every z D .x; y/ 2 BCr ;

then

j�.rU.z/;r2U.z//j �
ı

p
4 � 4ı � ı2

for every z D .x; y/ 2 BCr ;

where for any real matrix A D .aij /ij , kAk2 WD .
P
i;j a

2
ij /
1=2.

In particular, properties (1) and (2) imply that Q is a quasi-conformal map.

Proof. We first prove (1). By [13], we know thatU 2H 2.BCr / and that jrU j 2L1.BCr /.
Thus, (1) follows directly by the definition of Q. Let us now prove (2).

For simplicity, we set

A WD @xU and B WD F2.rU/:

Thus, Q D A � iB and8̂<̂
:
@xzQ D

1

2
.@x C i@y/.A � iB/ D

1

2
.@xAC @yB/C

i

2
.@yA � @xB/;

@zQ D
1

2
.@x � i@y/.A � iB/ D

1

2
.@xA � @yB/ �

i

2
.@yAC @xB/;
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which implies ´
4j@xzQj

2
D .@xAC @yB/

2
C .@yA � @xB/

2;

4j@zQj
2
D .@xA � @yB/

2
C .@yAC @xB/

2:
(2.4)

We first compute 8̂̂̂̂
<̂
ˆ̂̂:
@xA D @xxU;

@yA D @xyU;

@xB D F12.rU/@xxU C F22.rU/@xyU;

@yB D F12.rU/@xyU C F22.rU/@yyU;

and, using the equation for U , we obtain´
@xAC @yB D .1 � F11.rU//@xxU � F12.rU/@xyU;

@yA � @xB D �F12.rU/@xxU C .1 � F22.rU//@xyU:
(2.5)

For simplicity, we use the following notation:

mij WD ıij � Fij .rU/ for every 1 � i; j � 2;

and

M WD Id � r2F .rU/ D
�
m11 m12
m21 m22

�
:

We also set
kMk22 WD m

2
11 C 2m

2
12 Cm

2
22:

Then, by (2.5) and the Cauchy–Schwarz inequality, we immediately obtain

.@xAC @yB/
2
C .@yA � @xB/

2
� kMk22jrAj

2: (2.6)

In order to estimate j@zQj2 in (2.4), we write

.@xA � @yB/
2
C .@yAC @xB/

2

D .2@xA � .@xAC @yB//
2
C .2@yA � .@yA � @xB//

2

D 4jrAj2 � 4rA �M.rA/C .@xAC @yB/
2
C .@yA � @xB/

2

DW 4jrAj2 CR;

where by (2.5) and (2.6) we have the estimate

jRj � .4kMk2 C kMk
2
2/jrAj

2:

Now, if at some point rA D 0, then

@zQ D @xzQ D 0:

Thus, we can define � as follows:

� D 0 if rA D 0; � D
@xzQ

@zQ
if rA ¤ 0:
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Since A, @xzQ and @zQ are all functions of rU and r2U , � also can be written in terms
of the same variables, that is, � D �.rU; r2U/. We notice that with this definition,
� remains bounded. Indeed,

j�j2 D
ˇ̌̌@xzQ
@zQ

ˇ̌̌2
�

kMk22
4 � 4kMk2 C kMk

2
2

;

so that for r sufficiently small, the conclusion follows.

Proof of Theorem 1.1 (a). Let Q be the function defined in (2.3) and let

S.z/ WD

´
Q.z/2 if Im.z/ � 0;

S.xz/ if Im.z/ � 0:

We notice that

Im.Q2.z// D @xU � F2.rU/ D 0 on ¹Im.z/ D 0º;

so that the function S is in W 1;2.Br / and satisfies the Beltrami equation

@xzS D  .z/ @zS in BCr ;

where

 .z/ D  .x C iy/ WD

´
�.rU.x; y/;r2U.x; y// if Im.z/ � 0;
x .xz/ if Im.z/ � 0:

Thus, by [1, Theorem 5.5.2], we conclude that the zeros of the function S are isolated,
which is the claim.

2.3. Local behavior of the solutions at branch points

In this subsection, we prove Theorem 1.1 (b). Given a branch point z0 2 � , we construct
a quasi-regular mapping whose real part is precisely the solution U . Assume that z0 D 0.
We consider the case where there exists a radius r > 0 such that

¹U D 0º \ B 0r D ¹x � 0º \ B
0
r and ¹U > 0º \ B 0r D ¹x > 0º \ B

0
r ; (2.7)

which is the case of a branch point, the other two cases in Figure 1 being analogous.
We notice that the differential form

˛ D �F2.rU/ dx C F1.rU/ dy

is closed in BCr , and so the potential

V W BCr [ B
0
r ! R; V .x; y/ WD

Z 1

0

.�F2.rU.tx; ty//x C F1.rU.tx; ty//y/ dt
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is Lipschitz continuous in BCr [ B
0
r , C

2 in BCr and satisfies8̂<̂
:
@xV D �F2.rU/ in BCr ;

@yV D F1.rU/ in BCr ;

UV D 0 on B 0r ;

where the last equality follows from (2.7), (1.3) and the very definition of V . We next
define the complex function

P W BCr \ ¹y � 0º ! C; P.x C iy/ D U.x; y/C iV .x; y/: (2.8)

Remark 2.2. Notice that, by the definition of V , we have @xP D Q in BCr .

We now prove the following lemma.

Lemma 2.3. The function P defined in (2.8) satisfies the following properties:

(1) P 2 2 W 1;1
loc .BC1 [ B

0
1/;

(2) P is a solution of the Beltrami equation

@xzP D �.rU/ @zP in BCr ; (2.9)

where �.rU/ D o.jrU j/.

Proof. The first claim follows from the Lipschitz continuity of U and V . In order to prove
the second claim, we compute´

2@xzP D .@x C i@y/.U C iV / D .@xU � F1.rU//C i.@yU � F2.rU//;

2@zP D .@x � i@y/.U C iV / D .@xU C F1.rU// � i.@yU C F2.rU//:

Now, by the differentiability of F1 and F2 at zero and (1.5), we can write

F1.X/ �X1 D "1.X/jX j and F2.X/ �X2 D "2.X/jX j

for every
X D .X1; X2/ 2 R2;

where the functions "1 and "2 are such that

lim
jX j!0

"1.X/ D lim
jX j!0

"2.X/ D 0;

from which the first part of the claim follows.

Proof of Theorem 1.1 (b). Let P be the function defined in (2.8) and let

T .z/ WD

´
P.z/2 if Im.z/ � 0;
xT .xz/ if Im.z/ � 0:

Then
Im.P 2.z// D U.z/V .z/ D 0 on ¹Im.z/ D 0º;
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so T is Lipschitz continuous on Br and satisfies the Beltrami equation

@xzT D �.z/ @zT in Br ; (2.10)

where � is the extension over the whole Br of the Beltrami coefficient �.rU/ from (2.9),

�.z/ D �.x C iy/ WD

´
�.rU.x; y// if Im.z/ � 0;
x�.xz/ if Im.z/ � 0:

According to [1, Theorem 5.5.1 and Corollary 5.5.3], there exist a homeomorphism ‰ 2

W 1;2.Br IB1/, which is a solution of (2.10) and such that ‰.0/ D 0 and ‰.�/ D �, for
some � < r , and a holomorphic function ˆW�! C such that

T .z/ D ˆ.‰.z// 8z 2 Br : (2.11)

Next we prove (1.8). Observe that if ‰ is a solution to (2.10), then also x‰.xz/ is a solution
to (2.10), and moreover x‰.0/ D ‰.0/ D 0 and x‰.�/ D ‰.�/ D 1. It follows, by the
uniqueness of normalized solutions, that x‰.z/ D ‰.z/, which implies (1.8).

Finally, we come to equation (1.9). Suppose by contradiction that (1.9) is false. Then,
there is a sequence of radii �k ! 0 such that the sequence of homeomorphisms ‰k 2
W 1;2.Br ; B1/, solutions of

@xz‰k D �.z/ @z‰ in Br ; ‰k.0/ D 0; ‰k.�k/ D �k ;

does not converge uniformly to the function z. Now consider the sequence of functions
z‰k.z/ WD �

�1
k
‰k.�kz/, then they are solutions of

@xz z‰k D �.�kz/ @z z‰ in Br=�k ; z‰k.0/ D 0; z‰k.1/ D 1:

Reasoning as in the proof of Lemma 2.3 and using the fact that rU.�kz/! 0 as k!1,
since U 2 C 1 and rU.0/ D 0, we have

lim
k!0

�.�kz/ D 0 a.e. z 2 Br=�k :

Using [1, Lemma 5.3.5], we have that ẑ k converges locally uniformly to a homeomor-
phism z‰WC ! C, which is a solution of

@xz z‰ D 0 in C; z‰.0/ D 0; z‰.1/ D 1:

But this implies that z‰.z/ D z, which is a contradiction for k sufficiently large.
In particular, notice that ifˆ.z/D zk CO.zkC1/, then the C 1-regularity of solutions

to the nonlinear thin-obstacle problem (see, for instance, [11]) implies that k � 3.

3. Theorem 1.3: Proof via quasi-conformal maps

In this section, we will prove Theorem 1.3 as a consequence of Theorem 1.1 combined
with an application of the hodograph transform.
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3.1. The hodograph transform

In this section, we write the hodograph transformation of a solution u of (1.12)–(1.15).
We do this in every dimension d � 2.

3.1.1. Notation. We adopt the following notation. We write every point x 2 Rd in coor-
dinates as x D .x0; xd / 2 Rd�1 �R. For every � > 0, we denote by B� and B 0� the balls
centered in zero of radius � in Rd and Rd�1, respectively. We will identify Rd�1 with
the hyperplane Rd�1 � ¹0º � Rd , thus

B 0� D B� \ ¹xd D 0º and BC� D B� \ ¹xd > 0º:

We denote by rx0 the gradient with respect to x0 D .x1; : : : ; xd�1/, the first d � 1 coor-
dinates. Thus, for every function uWRd ! R, we can write the full gradient ru as

ru D .rx0u; @du/ and jruj2 D jrx0uj2 C j@duj
2:

Let us assume that 0 2 �1.u/, that is, 0 is a branch point, and let f 2 C 1;˛ be the function
that locally describes the free boundary @�u as in (1.16), so that

f .0/ D 0 and rx0f .0/ D 0:

Now since u.x0; f .x0// vanishes for every x0 2 B 0�, we have that rx0u.0/ D 0. Thus

ru.0/ D @du.0/ ed and @du.0/ � 1:

3.1.2. The hodograph transform. Let 0 2 @�u \ ¹xd D 0º and f WB 0� ! Œ0;C1/ be as
above. We consider the change of coordinates

y0 D x0; yd D u.x
0; xd /:

Since u 2 C 1;˛.x�u \ B1/ and since @du.0/ � 1 > 0, we have that the function

T W B� \ x�u ! Rd \ ¹yd � 0º; T .x0; xd / D .y
0; yd /;

is invertible for � small enough. In particular, the set T .B� \ x�u/ is an open neighborhood
of 0 in the upper half-space Rd \ ¹yd � 0º. Let

S W T .B� \ x�u/! B� \ x�u; S.y0; yd / D .x
0; xd /;

be the inverse of T . Since the map T does not change the first d � 1 coordinates, there is
a C 1;˛-regular function v, defined on the set T .B� \ x�u/, such that

S.y0; yd / D .y
0; v.y0; yd //:

We will write this in coordinates as

x0 D y0; xd D v.y
0; yd /:
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Remark 3.1. The function v contains all the information of the free boundary @�u. Pre-
cisely, for every x0 in a neighborhood of 0 2 Rd�1, we have

v.x0; 0/ D f .x0/: (3.1)

Indeed, it is immediate to check that for any point .x0; xd / in a neighborhood of zero,

xd D f .x
0/ , .x0; xd / 2 @�u , xd D v.x

0; u.x0; xd // D v.x
0; 0/:

As a consequence of (3.1), we get that

v.x0; 0/ � 0 for every x0 in a neighborhood of zero in Rd�1:

Lemma 3.2 (Hodograph transform). Let u, T , B� and v be as above. Then, there is r > 0
such that

Br \ ¹xd � 0º � T .B� \ x�u/

and such that the function
vW Br \ ¹xd � 0º ! R

exists, is C 1;˛ in Br \ ¹xd � 0º and C1 in Br \ ¹xd > 0º. Moreover, the function

wW Br \ ¹xd � 0º ! R; w.x0; xd / D v.x
0; xd / � xd ;

solves the nonlinear thin-obstacle problem

div.rF .rw// D 0 in BCr ; (3.2)

w � 0 on B 0r ; (3.3)

Fd .rw/ D 0 on ¹w > 0º \ B 0r ; (3.4)

Fd .rw/ � 0 on ¹w D 0º \ B 0r (3.5)

for the nonlinearity

F .x0; xd / WD
jx0j2 C x2

d

1C xd
:

Remark 3.3. We notice that (3.1) implies that the contact sets of the solution of the one-
phase problem u and the solution of the nonlinear thin-obstacle problem w are mapped
one into the other,

C1.u/ D @�u \ B
0
r D S.¹w D 0º \ B

0
r /

as well as the singular sets defined in (1.6) and (1.17)

�1.u/ D B
0
r \ ¹u D 0º \ ¹jruj D 1º D S.B

0
r \ ¹w D 0º \ ¹jrwj D 0º/:

Proof of Lemma 3.2. We first notice that

w.x0; 0/ D v.x0; 0/ D f .x0/ for every x0 2 B 0r :
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This proves (3.3) and the first part of (3.5). Next, we notice that since

v.x0; u.x0; xd // D xd for every .x0; xd / 2 B� \ x�u;

we have that

@ivC.x
0; uC.x

0; xd //C @dvC.x
0; u.x0; xd //@iuC.x

0; xd / D 0 (3.6)

for i D 1; : : : ; d � 1, and

@dv.x
0; u.x0; xd //@du.x

0; xd / � 1: (3.7)

Thus, we can compute

.1C @dw.x
0; 0//@du.x

0; f .x0// � 1; (3.8)

and since @du.x0; 0/ � 1, we also obtain the second part of (3.5).
Next, in order to prove that the boundary condition (3.4) holds, we notice that it is

equivalent to

.@dv.x
0; 0//2 D 1C jrx0f .x0/j2 for x0 2 B 0r \ ¹f > 0º;

and, in view of (3.8), it is also equivalent to

.@du.x
0; f .x0///2.1C jrx0f .x0/j2/ D 1 for x0 2 B 0r \ ¹f > 0º;

which is a consequence of the identity

@iu.x
0; f .x0//C @du.x

0; f .x0//@if .x
0/ � 0 for every i D 1; : : : ; d � 1;

and the boundary condition

.�rx0f .x0/; 1/ � ru.x0; f .x0// D �.jrx0f .x0/j2 C 1/1=2 on ¹f > 0º:

In order to prove (3.2), we notice that in�u, u is a local minimizer of the Dirichlet integral

J.u/ D

Z
jruj2 dx;

which can be expressed in terms of w by applying (3.6) and (3.7),

jruj2.x0; xd / D
jrx0vj2.x0; u.x0; xd //C 1

j@dvj2.x0; u.x0; xd //
and det.rT /.x0; xd / D @du.x0; xd /:

Now, by the change of coordinates y0 D x0, yd D u.x0; xd /, we getZ
B�\x�u

jruj2 dx D

Z
jry0vj2.y0; yd /C 1

j@dvj2.y0; yd /

1

j@du.x0; xd /j
dy

D

Z
jry0vj2.y0; yd /C 1

@dv.y0; yd /
dy;
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where all the integrals in dy are over T .B� \ x�u/. Now, by the definition of w, we getZ
B�\�u

jruj2 dx D

Z
T.B�\x�u/

�
jrwj2.y0; yd /

1C @dw.y0; yd /
C 2

�
dy:

Thus, w minimizes the functional

J.w/ D

Z
jrwj2.y0; yd /

1C @dw.y0; yd /
dy

in the open set T .B� \�u/ with respect to perturbations of the form w C "' for small "
and smooth '. This concludes the proof of Lemma 3.2.

Proof of Theorem 1.3. Now Theorem 1.3 follows by combining Lemma 3.2 with Theo-
rem 1.1.

4. Theorems 1.3 and 1.4: Proof via conformal hodograph transform

In this section, we prove Theorem 1.3 by introducing a new, conformal version, of the
hodograph transform, which not only provides another proof of the fact that the one-phase
branch points are isolated, but also provides the full expansion of the solution, and a way
to construct examples of solutions with prescribed vanishing order (see Theorem 1.4).

4.1. The harmonic conjugate

Let u be a solution of the one-phase problem (1.12)–(1.15), let �1.u/ be the singular set
defined in (1.17) and let 0 2 �1.u/. Let I� D .��; �/ and let f W I� ! R be the C 1;˛

function from (1.16) that describes locally the free boundary @�u \ B�; we recall that f
is nonnegative and f .0/ D f 0.0/ D 0. Now, since the function

I� 3 x 7! u.x; f .x//

vanishes for every x 2 I�, we have that @xu.0; 0/ D 0. Thus

ru.0; 0/ D @yu.0; 0/ e2 and @yu.0; 0/ � 1;

where e2 D .0; 1/. We next define the open set

�� D ¹.x; y/ 2 I� � I� W f .x/ > yº;

and the boundary
�� WD ¹.x; y/ 2 I� � I� W f .x/ D yº:

Since �� is simply connected and u is harmonic in ��, there is a function

U W �� [ �� ! R
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which solves the problem

U.0; 0/ D 0; @xU D @yu and @yU D �@xu in ��:

We recall that for any .x; y/ 2 �� [ ��, U.x; y/ is the line integral
R
�
˛ of the 1-form

˛ WD @yu.x; y/ dx � @xu.x; y/ dy

over any curve
� W Œ0; 1�! �� [ ��

connecting the origin .0; 0/ to .x; y/. In particular, U is as regular as u,

U 2 C 1;˛.�� [ ��/:

If we choose � to be the curve parametrizing the free boundary ��,

� W Œ0; x�! R2; �.t/ D .t; f .t//;

then, by integrating ˛ over � and using that

@xu.t; f .t//C f
0.t/@yu.t; f .t// D 0 for every t 2 I�;

we obtain the formula

U.x; f .x// WD

Z x

0

.@yu.t; f .t// � @xu.t; f .t//f
0.t// dt

D

Z x

0

jruj.t; f .t//
p
1C f 0.t/2 dt D

Z
�

jruj:

In what follows, we will use the notation

�.x/ WD U.x; f .x// D

Z
�

jruj:

4.2. The conformal hodograph transform

With the notation from Section 4.1, we consider the change of coordinates

x0 D U.x; y/; y0 D u.x; y/;

given by the C 1;˛-regular map

T W �� [ �� ! R2 \ ¹y0 � 0º; T .x; y/ D .x0; y0/:

Now, by the definition of U and the fact that @yu.0; 0/ � 1, we have that the map T is
invertible for � small enough. In particular, the set T .�� [ ��/ is an open neighborhood
of .0; 0/ in the upper half-plane R2 \ ¹y0 � 0º. Let

S W T .�� [ ��/! �� [ ��; S.x0; y0/ D .x; y/;
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be the inverse of T . We can write S as

S.x0; y0/ D .V .x0; y0/; v.x0; y0//;

which in coordinates reads as

x D V.x0; y0/; y D v.x0; y0/:

As in the case of the classical hodograph transform, the function v contains all the infor-
mation of the free boundary ��. Precisely, for every x 2 I�, we have

y D f .x/ , .x; y/ 2 �� , y D v.U.x; y/; u.x; y// D v.x0; 0/:

As a consequence, we obtain the equation

f .x/ D v.�.x/; 0/ for every x 2 I�:

In particular, for x0 2 R in a neighborhood of zero, v.x0; 0/ � 0 and

v.x0; 0/ > 0 , f .��1.x0// > 0:

Remark 4.1. We notice that, in terms of the contact sets

C1.u/ D ¹y D 0º \ @�u and C.v/ D ¹y0 D 0º \ ¹v.x0; 0/ D 0º;

the map � is locally a C 1-diffeomorphism, which is sending C1.u/ into C.v/.

Lemma 4.2 (Equations for v). Let T D .U; u/ and S D .V; v/ be as above. Then, there
is r > 0 such that

Br \ ¹y
0
� 0º � T .�� [ ��/

and such that the function
vW Br \ ¹y

0
� 0º ! R

is C 1;˛-regular in Br \ ¹y0 � 0º and C1-regular in Br \ ¹y0 > 0º.
Moreover, if we denote by Cv the contact set

Cv WD ¹.x
0; 0/ W x0 D �.x/; x 2 I�; f .x/ D 0º; (4.1)

then v solves the problem

�v D 0 in Br \ ¹y0 > 0º; (4.2)

v � 0 on Br \ ¹y0 D 0º; (4.3)

jrvj D 1 on Br \ ¹y0 D 0º n Cv; (4.4)

v D 0; jrvj � 1 on Br \ ¹y0 D 0º \ Cv: (4.5)

Moreover, for every x 2 ��, we have the identities

f 0.x/ D
@x0v.�.x/; 0/

@y0v.�.x/; 0/
and �0.x/ D

1

@y0v.�.x/; 0/
: (4.6)
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Proof. We start by proving that v satisfies equations (4.2)–(4.5). First notice that v is
harmonic since it is the second component of a conformal map. Moreover, since

v.U.x; y/; u.x; y// D y for every .x; y/ 2 ��;

taking the derivatives with respect to x and y, we obtain that

@x0v.U.x; y/; u.x; y//@xU.x; y/C @y0v.U.x; y/; u.x; y//@xu.x; y/ D 0;

@x0v.U.x; y/; u.x; y//@yU.x; y/C @y0v.U.x; y/; u.x; y//@yu.x; y/ D 1:

By exploiting that @xU D @yu and @yU D �@xu, we get

@x0v.x0; y0/@yu.x; y/C @y0v.x0; y0/@xu.x; y/ D 0; (4.7)

�@x0v.x0; y0/@xu.x; y/C @y0v.x0; y0/@yu.x; y/ D 1: (4.8)

Solving the system (4.7)–(4.8) leads to

@y0v.x0; y0/ D
@yu.x; y/

jruj2.x; y/
and @x0v.x0; y0/ D �

@xu.x; y/

jruj2.x; y/
: (4.9)

Thus, we obtain
jruj.x; y/ jrvj.x0; y0/ D 1; (4.10)

which gives both (4.4) and (4.5). We next prove (4.6). Using that u.x; f .x// � 0, we get

f 0.x/ D �
@xu.x; f .x//

@yu.x; f .x//
;

which together with (4.9) gives the first part of (4.6). For the second part, we notice that
the identity v.�.x/; 0/ D f .x/ gives that

f 0.x/ D �0.x/@x0v.�.x/; 0/;

which, combined with the first identity in (4.6), concludes the proof.

4.3. Proof of Theorem 1.3

Let v be as in the previous section and let

Q WD @z0v D @x0v � i@y0v;

where z0 D x0 C iy0. Since v satisfies (4.2)–(4.5), we get that8̂<̂
:
@xz0Q D 0 in Br \ ¹y0 > 0º;

jQj D 1 on Br \ ¹y0 D 0º n Cv;

ReQ D 0 on Br \ ¹y0 D 0º \ Cv;

where the set Cv was defined in (4.1).
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Consider now the function

P D �i
QC i

Q � i
D �i

.QC i/. xQC i/

jQ � i j2
D

2 ReQ
jQ � i j2

� i
jQj2 � 1

jQ � i j2
:

Then, we have that P.0/ D 0 and8̂<̂
:
@xz0P D 0 in Br \ ¹y0 > 0º;

ReP D 0 on Br \ ¹y0 D 0º \ Cv;

ImP D 0 on Br \ ¹y0 D 0º n Cv;

which implies that P 2.0/ D 0 and´
@xz0.P 2/ D 0 in Br \ ¹y0 > 0º;

Im.P 2/ D 0 on Br \ ¹y0 D 0º:

As a consequence, the zero set

Z.P / D ¹z0 2 Br W P.z
0/ D 0; Im z0 D 0º

is discrete or coincides with Br \ ¹y0 D 0º. Now, Theorem 1.3 (a) follows since

P.z0/ D 0 ,

´
@xu.x; y/ D 0;

@yu.x; y/ D 1;

that is, every branch point .x; y/ 2 �1.u/ corresponds to a zero z0 of P .
We next prove Theorem 1.3 (b). Let z0 D 0 be an isolated point of �1.u/ and z00 D 0

be the corresponding point in Z.P /. Since zero is an isolated point of Z.P / and since

ReP.z0/ � ImP.z0/ D 0 on ¹Im z0 D 0º;

we have the following three possibilities in a neighborhood of zero:

(1) ReP.z0/ � 0 on ¹y0 D 0º, and ImP.z0/ ¤ 0 on ¹y0 D 0º n ¹x0 D 0º;

(2) ImP.z0/ � 0 on ¹y0 D 0º, and ReP.z0/ ¤ 0 on ¹y0 D 0º n ¹x0 D 0º;

(3) up to changing the direction of the real axis ¹y0 D 0º, we have´
ReP.z0/ � 0 and ImP.z0/ ¤ 0 on ¹y0 D 0º \ ¹x0 > 0º;

ReP.z0/ ¤ 0 and ImP.z0/ � 0 on ¹y0 D 0º \ ¹x0 < 0º:

We will show that each of these cases corresponds to one of the points (b.1), (b.2) and (b.3)
of Theorem 1.3. We first suppose that (3) holds. Then P solves the problem8̂<̂

:
@xz0P D 0 in Br \ ¹y0 > 0º;

ReP D 0 on B 0r \ ¹x
0
� 0º;

ImP D 0 on B 0r \ ¹x
0 < 0º:
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We next notice that

@x0v � i@y0v D Q D
1C iP

P C i
D

2Re.P /
jP C i j2

� i
1 � jP j2

jP C i j2
;

so that

@x0v D
2Re.P /
jP C i j2

and @y0v D
1 � jP j2

jP C i j2
:

In particular, since the function � is increasing and �.0/ D 0, we get

@x0v.�.x/; 0/ � 0 for x � 0:

Integrating this identity and taking into account that v.�.0/; 0/ D v.0; 0/ D 0, we obtain

f .x/ D v.�.x/; 0/ D

Z x

0

@x0v.�.t/; 0/�0.t/ dt D 0 for x � 0:

Conversely, assume that x < 0 and let x0 D �.x/ < 0. Then, Im.P.x0// D 0 and

@x0v.x0; 0/ D
2P.x0/

1C P 2.x0/
and @y0v.x0; 0/ D

1 � P 2.x0/

1C P 2.x0/
for z0 D x0 < 0:

In particular, from (4.6) it follows that8̂<̂
:�
0.x/ D

1C P 2.�.x//

1 � P 2.�.x//
if x < 0;

�.0/ D 0;

which implies, by Cauchy–Kovalevskaya theorem, that �W .��; 0� ! R is an analytic
function with �0.0/ D 1 since P.0/ D 0. Since for x < 0, we have

�0.x/ D
p
1C f 0.x/2 ) f 0.x/ D

p
�0.x/2 � 1; (4.11)

we get that f 0W .��; 0�! R is of the form

f 0.x/ D xk=2 .x/

for some k � 1 and some analytic function  W .��; 0�! R with  .0/ > 0. It follows that
there is an analytic function � such that �.0/ > 0 and

f .x/ D 0 if x � 0 and f .x/ D x.kC2/=2�.x/ if x < 0:

Suppose now that (2) holds. Then ImP � 0 on the real axis ¹y0 D 0º, and so P (not
only P 2) is a holomorphic function. As a consequence, Q is also holomorphic. Thus,
@y0v.x0; 0/ is analytic. Since �W .��; �/! R solves the equation

�0.x/ D
1

@y0v.�.x/; 0/
; �.0/ D 0;

we get that � is analytic and, by (4.11), so is f . This gives (b.2).
Finally, we suppose that (1) holds. Since ImP ¤ 0 on ¹y0 D 0º n ¹0º, we get that

the contact set Cv contains a neighborhood of zero. As a consequence, also the contact
set C1.u/ contains a neighborhood of zero (see Remark 4.1), from which we obtain (b.1).
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4.4. Proof of Theorem 1.4

Finally, we come to the proof of Theorem 1.4, which is obtained by reversing the con-
struction from the previous subsection.

Proof of Theorem 1.4. For any k of the form k D 2n � 3=2 with n 2 N�1, we define

P.z/ D .iz/k D �k.� sin.k�/C i cos.k�//:

In particular, setting CP WD ¹.x; 0/ 2 R2 W x � 0º, we have8̂<̂
:
@xzP D 0 in ¹y > 0º;

ReP D 0; ImP > 0 on ¹x > 0º;

ReP < 0; ImP D 0 on ¹x < 0º:

Then we consider a radius r 2 .0; 1/ and the function QWBr \ ¹y � 0º ! C,

Q D
1C iP

P C i
D
2Re.P /
jP C i j2

� i
1 � jP j2

jP C i j2
:

Notice that Q is still conformal in Br \ ¹y > 0º and that we have8̂<̂
:
@xzQ D 0 in ¹y > 0º;

ReQ D 0; ImQ 2 .�1; 0/; jQj < 1 on ¹x > 0º;

ReQ < 0; ImQ 2 .�1; 0/; jQj D 1 on ¹x < 0º:

Since Br \ ¹y > 0º is simply connected, there is a function vWBr \ ¹y � 0º ! R such
that

@zv D @xv � i@yv D Q in Br \ ¹y > 0º:

Precisely, for every z D x C iy in Br \ ¹y � 0º, v is given by the formula

v.z/ D v.x; y/ D

Z 1

0

.x ReQ.tz/ � y ImQ.tz// dt:

Thus, v is a solution to the problem8̂<̂
:
�v D 0 in Br \ ¹y > 0º;

v D 0; jrvj < 1 on Br \ ¹x > 0º;

v > 0; jrvj D 1 on Br \ ¹x < 0º:

Moreover, we notice that

v.0; 0/ D 0 and @yv.0; 0/ D 1:

Thus, by choosing r > 0 small enough, we may suppose that v > 0 in Br \ ¹y > 0º.
We next consider the harmonic conjugate V WBr \ ¹y > 0º ! R of v and the inverse
hodograph transform

S W Br \ ¹y � 0º ! R2; S.x; y/ WD .V .x; y/; v.x; y//:
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Tracing backwards the argument from Section 4.2, we have that when r is small enough,
S is a diffeomorphism; we can then consider its inverse

T W S.Br \ ¹y � 0º/! Br \ ¹y � 0º; T .x0; y0/ D .U.x0; y0/; u.x0; y0//;

where we notice that the positivity set �u D ¹u > 0º of the second component u of T is
precisely S.Br \ ¹y > 0º/ and that, since v � 0, �u D S.Br \ ¹y > 0º/ is contained in
the upper half-plane ¹y0 > 0º. Now, reasoning as in Lemma 4.2 (see (4.10)), we get that

jru.x0; y0/j jrv.x; y/j D 1;

and that, in a small ball B�, u is a solution to the problem

�u D 0 in �u \ B�;

u D 0 on B� \ ¹y0 D 0º;

jruj D 1 on @�u \ ¹y0 > 0º;

jruj � 1 on @�u \ ¹y0 D 0º;

where @�u \ ¹y0 D 0º D ¹x0 � 0º \ ¹y0 D 0º and jruj � 1 on ¹x0 � 0º \ ¹y0 D 0º.
We now define the function f describing the boundary @�u (see (1.16)) and the function
�.x/ D U.x; f .x// to be as in the proof of Theorem 1.3. Then, � is a solution to8̂<̂

:�
0.x/ D

1C P 2.�.x//

1 � P 2.�.x//
if x < 0;

�.0/ D 0

and so, it is analytic since P 2.z/ D iz4n�3 with n 2 N. Finally, since �.x/ D x C o.x/,
we can write the function � as

j�.x/j1=2 D jxj1=2 .x/ for x � 0;

where  is analytic and  .0/ D 1. Thus, we get the precise form of f by the formula

f .x/ D v.�.x/; 0/ D

8̂<̂
:
Z x

0

�j�.t/j2n�1=2

j�.t/j4n�3 C 1
dt if x < 0;

0 if x � 0;

and we notice that f .x/ D jxj2n�1=2.1C o.1// for x < 0. This concludes the proof.

5. The symmetric two-phase problem and some remarks

Let 0 D z0 2 � and let f˙ be as in (1.25). We define

�˙� D ¹.x; y/ 2 I� � I� W f˙.x/ > yº;

�˙� WD ¹.x; y/ 2 I� � I� W f˙.x/ D yº:
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In what follows, we perform the hodograph transform of uC in �C� and of u� in ��� .
In order to simplify the notation, we set

i WD C or � :

Let �˙, T˙ D .U˙; u˙/, S˙ D .V˙; v˙/ be the functions constructed in Sections 4.1
and 4.2 separately for uC and u�. Recall that the functions vi , i D ˙, contain all the
information of the free boundaries � i�. Precisely, for every x 2 I�, we have

y D fi .x/ , .x; y/ 2 � i� , y D vi .Ui .x; y/; ui .x; y// D vi .x
0; 0/:

As a consequence, we get the equation

fi .x/ D vi .�i .x/; 0/ for every x 2 I�:

In particular, we have

vC.�C.x/; 0/ � v�.��.x/; 0/ for every x 2 I�: (5.1)

Lemma 5.1. There is r > 0 such that

Br \ ¹y
0
� 0º � TC.�

C
� [ �

C
� / and Br \ ¹y

0
� 0º � T�.�

�
� [ �

�
� /:

The functions
v˙W Br \ ¹˙y

0
� 0º ! R

are both C 1;˛-regular respectively in the half-disks Br \ ¹˙y0 � 0º up to the hyperplane
¹y0 D 0º, and are C1-regular respectively in Br \ ¹˙y0 > 0º. Furthermore, they solve
the following thin two-membrane problem:

�vC D 0 in Br \ ¹y0 > 0º;

�v� D 0 in Br \ ¹y0 < 0º;

vC.�C.x/; 0/ � v�.��.x/; 0/ for x 2 I�;

jrv˙j.�˙.x/; 0/ D 1 if vC.�C.x/; 0/ > v�.��.x/; 0/;

�0C.x/@y0vC.�C.x/; 0/ D �
0
�.x/@y0v�.��.x/; 0/ � 1 if vC.�C.x/; 0/ Dv�.��.x/; 0/:

Moreover, for every x 2 �� we have the identities

f 0˙.x/ D ˙
@x0v˙.�˙.x/; 0/

@y0v˙.�˙.x/; 0/
and �0˙.x/ D

1

@y0v˙.�˙.x/; 0/
: (5.2)

Proof. We reason precisely as in Lemma 4.2. Since

vi .Ui .x; y/; ui .x; y// D y for every .x; y/ 2 �i�;

taking the derivatives with respect to x and y, we obtain that´
@x0vi .Ui .x; y/; ui .x; y//@xUi .x; y/C @y0vi .Ui .x; y/; ui .x; y//@xui .x; y/ D 0;

@x0vi .Ui .x; y/; ui .x; y//@yUi .x; y/C @y0vi .Ui .x; y/; ui .x; y//@yui .x; y/ D 1:
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Since @xUi D @yui and @yUi D �@xui , we get´
�@x0vi .x

0; y0/@yui .x; y/C @y0vi .x
0; y0/@xui .x; y/ D 0;

@x0vi .x
0; y0/@xui .x; y/C @y0vi .x

0; y0/@yui .x; y/ D 1:

When y0 D 0, we can write

x0 D �i .x/ and y D fi .x/:

Thus, we have´
�@x0vi .�i .x/; 0/@yui .x; fi .x//C @y0vi .�i .x/; 0/@xui .x; fi .x// D 0;

@x0vi .�i .x/; 0/@xui .x; fi .x//C @y0vi .�i .x/; 0/@yui .x; fi .x// D 1;

which we will simply write as´
�@x0vi@yui C @y0vi@xui D 0;

@x0vi@xui C @y0vi@yui D 1;
(5.3)

and we remember that all the derivatives of v are computed at .�i .x/; 0/, while all the
derivatives of u are calculated at .x; fi .x//. We next consider two cases.

Case 1: vC.�C.x/; 0/ D v�.��.x/; 0/. We set

f .x/ WD fC.x/ D f�.x/ and f 0.x/ WD f 0C.x/ D f
0
�.x/;

and we notice that we have the system

@xuC C f
0.x/@yuC D 0 D @xu� C f

0.x/@yu�; (5.4)

�f 0.x/@xuC C @yuC D �f
0.x/@xu� C @yu�; (5.5)

�f 0.x/@xu˙ C @yu˙ � .1C .f
0.x//2/1=2; (5.6)

where again all the partial derivatives of uC and u� are computed at .x; f .x//.
Now, using (5.4) in (5.5) and (5.6), we get

@yuC D @yu�; (5.7)p
1C .f 0.x//2@yu˙ � 1: (5.8)

On the other hand, using (5.4) in the system (5.3), we obtain´
.@x0vi C @y0vi f

0.x//@yui D 0;

.�f 0.x/@x0vi C @y0vi /@yui D 1;
(5.9)

so we get
.1C f 0.x/2/@y0v˙@yu˙ D 1;

which gives that

@y0vC D @y0v�; @x0vC D @x0v� and
p
1C .f 0.x//2@y0v˙ � 1;

all the derivatives of v˙ being calculated in .�˙.x/; 0/.
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Case 2: vC.�C.x/; 0/ > v�.��.x/; 0/. In this case, the two free boundaries are separated,
that is, fC > f� in a neighborhood of x. Then, for each i D ˙, we can proceed as in the
proof of (4.4) in Lemma 4.2.

Finally, we notice that (5.2) follows by taking the reflection

xu.x; y/ WD �u�.x;�y/

and applying the identities from (4.6) to uC and xu.

When u is a symmetric solution to the two-phase problem, we have the following
assertion.

Corollary 5.2. Let u be a symmetric solution to the two-phase problem, then, up to taking
a smaller radius r > 0, the functions v˙ constructed in Lemma 5.1 satisfy

�vC D 0 in Br \ ¹y0 > 0º;

�v� D 0 in Br \ ¹y0 < 0º;

jrv˙j.x
0; 0/ D 1 when x0 2 B 0r n Cv;

jrvCj.x
0; 0/ D jrv�j.x

0; 0/ � 1 when B 0r \ Cv;

where we denote by Cv the contact set

Cv WD ¹.x
0; 0/ W x0 D �.x/; x 2 I�; fC.x/ D f�.x/º: (5.10)

Proof. By definition,

�˙.x/ D

Z x

0

jru˙j.t; f˙.t//

q
1C jf 0

˙
.t/j2 dt:

Let Ii be the intervals defined in (1.26), then notice that

� if t 2 Ii , then jru˙j.t; f˙.t// D 1;

� if t 2 .��; �/ n .
S
i Ii /, then

fC.t/ D f�.t/ and jruCj.t; f .t// D jru�j.t; f .t//:

In particular, the first item implies that

�C.Ii / D ��.Ii / 8i;

which combined with the second item implies that

�C.¹x 2 .��; �/ W fC.x/ > f�.x/º/ D ��.¹x 2 .��; �/ W fC.x/ > f�.x/º/:

Then the conclusion follows from the previous lemma.

Remark 5.3. Notice that, in the above proof, we are not claiming that �C � ��, but only
that branch points are sent in branch points.



G. De Philippis, L. Spolaor, B. Velichkov 3398

5.1. Proof of Theorem 1.6 (a)

Let v˙ be the functions from Corollary 5.2 and let

Q˙ WD @x0v˙ � i@y0v˙: (5.11)

As in the proof of Theorem 1.3, we have that Q is a solution to8̂<̂
:
@xzQ˙ D 0 in Br \ ¹˙y0 > 0º;

jQ˙j D 1 on Br \ ¹y0 D 0º n Cv;

QC D Q� on Br \ ¹y0 D 0º \ Cv:

(5.12)

We then define

P˙ D �i
Q˙ C i

Q˙ � i
D �i

.Q˙ C i/. xQ˙ C i/

jQ˙ � i j2
D

2 ReQ˙
jQ˙ � i j2

� i
jQ˙j

2 � 1

jQ˙ C i j2
; (5.13)

and we notice that 8̂<̂
:
@xzP˙ D 0 in Br \ ¹˙y0 > 0º;

PC D P� on Br \ ¹y0 D 0º \ Cv;

ImP˙ D 0 on Br \ ¹y0 D 0º n Cv:

We now consider the reflection

P 0W Br \ ¹y
0
� 0º ! C; P 0.z/ WD xP�.xz/;

so that the functions PC and P 0 are both defined on the same domain, and we can take

M.z/ WD
PC.z/C P

0.z/

2
and D.z/ WD

PC.z/ � P
0.z/

2
; (5.14)

which satisfy the equations ´
@xzM D 0 in Br \ ¹y0 > 0º;

ImM D 0 on Br \ ¹y0 D 0º
(5.15)

and 8̂<̂
:
@xzD D 0 in Br \ ¹y0 > 0º;

ReD D 0 on Br \ ¹y0 D 0º \ Cv;

ImD D 0 on Br \ ¹y0 D 0º n Cv:

Reasoning as in the proof of Theorem 1.3, we get that Im.D2/ D 2ReD ImD D 0 on
¹y0 D 0º so that D2 can be extended to a conformal map on the whole of Br , so the set

¹D D 0º \ Br \ ¹y
0
D 0º

is either discrete or coincides with Br \ ¹y0 D 0º. This proves Theorem 1.6 (a) since at
every z0 on the real line ¹y0 D 0º we have

D.z0/ D 0 ,

´
PC D P�;

ImP˙ D 0
,

´
QC D Q�;

jQ˙j D 1
,

´
ruC D ru�;

jru˙j D 1;

that is, every branch point of u corresponds to a zero of D.
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5.2. Proof of Theorem 1.6 (b) and Corollary 5.2

Remark 5.4. We notice that in this part of Theorem 1.6, we do not assume any symmetry
of the solutions, but only that the branch points are isolated.

Let z0 2 �2.uC; u�/ be an isolated point of �2.uC; u�/. If z0 is in the interior of the
contact set C2.uC; u�/, then (b.2) is immediate as the function uD uC � u� is harmonic
in a neighborhood of z0. Suppose then that z0 is a branch point: z0 2 B2.uC; u�/; more-
over, since B2 � �2, we have that z0 is isolated in the set of branch points B2.uC; u�/.
This means that in order to complete the proof of Theorem 1.6 (b) we only need to prove
Corollary 5.2. We set z0 D 0 and consider the following two cases.

Case 1: 0 is isolated also as point of the contact set C2.uC; u�/, that is,

Br \ C2.uC; u�/ D ¹0º

for some radius r > 0. In this case, on the free boundaries @�˙u we have that jru˙j D 1
and so, Corollary 5.2 (b.1) follows as in the proof of Theorem 1.3 (b.1).

Case 2: 0 is not isolated in the set C2.uC; u�/. Then, since there are no other branch
points in a neighborhood of 0, we can assume that:

fC.x/ D f�.x/ when x � 0 and fC.x/ > f�.x/ when x < 0:

As above, we define �˙ as

�˙.x/ D

Z x

0

jru˙j.t; f˙.t//j

q
1C .f 0

˙
.t//2 dt; (5.16)

while v˙ are the hodograph transforms of u˙, for which we recall the identities

f˙.x/ D v˙.�˙.x/; 0/ and jrv˙j.�˙.x/; 0/ D
1

jruj.x; f˙.x//

for every x in a neighborhood of zero. Then, since �C.x/D ��.x/ for x � 0, we get that:´
vC.x

0; 0/ D v�.x
0; 0/; rvC.x

0; 0/ D rv�.x
0; 0/ when x0 � 0;

jrvCj.x
0; 0/ D jrv�j.x

0; 0/ when x0 < 0:

Remark 5.5. Notice that when x < 0, we cannot say if �C.x/ D ��.x/. In particular,
we cannot say if vC.x0; 0/ � v�.x0; 0/ when x0 < 0 and so, we do not know if ¹x0 � 0º
is the contact set ¹x0 W vC.x0; 0/ D v�.x0; 0/º.

We next consider the functions Q˙ and P˙ given by (5.11) and (5.13), and the func-
tions D and M defined in (5.14). Then, in a neighborhood .�r; r/ � Œ0; r/ of zero, the
difference D satisfies 8̂<̂

:
@xzD D 0 in .�r; r/ � .0; r/;

ReD D 0 on .0; r/ � ¹0º;

ImD D 0 on .�r; 0/ � ¹0º:

(5.17)
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Recall that by the definitions of M , D and P 0, we have

PC.z/ DM.z/CD.z/ and P�.z/ DM.xz/ � D.xz/;

and moreover

@x0v˙ D Re.Q˙/ D
2 Re.P˙/
jP˙ C i j2

and @y0v˙ D � Im.Q˙/ D
1 � jP˙j

2

jP˙ C i j2
:

We set g˙.x0/ WD ��1˙ .x
0/ and zf˙.x0/ WD f˙.g˙.x0//. Since

f˙.x/ D v˙.�˙.x/; 0/ and �0˙.x/ D
1

@y0v˙.�˙.x/; 0/
;

we get that
zf˙.x

0/ D v˙.x
0; 0/ and g0˙.x

0/ D @y0v˙.x
0; 0/:

In particular,

zf˙.x
0/ D

Z x0

0

@x0v˙.t; 0/ dt D

Z x0

0

2Re.P˙.t//
jP˙.t/C i j2

dt

and

g˙.x
0/ D

Z x0

0

@y0v˙.t; 0/ dt D

Z x0

0

1 � jP˙.t/j
2

jP˙.t/C i j2
dt:

Now, by (5.17) and (5.15), we have that

M D ReM and D D i ImD on Œ0; r/ � ¹0º;

which gives that on Œ0; r/ � ¹0º, PC D P�, precisely,

Re.PC/ D Re.P�/ DM and Im.PC/ D Im.P�/ D ImD D �iD:

This implies that

zf˙.x
0/ D

Z x0

0

2M.t/

M 2.t/C .1C ImD.t//2
dt;

so that zfC � zf� on ¹x0 � 0º. Similarly,

g˙.x
0/ D

Z x0

0

1 �M 2.t/ � .ImD.t//2

M 2.t/C .1C ImD.t//2
dt;

which again implies that gC � g�. Combining these two identities, we get that

fC � f� on ¹x0 � 0º:

Using again (5.17) and (5.15), this time for x0 � 0, we get that

M D ReM and D D ReD on .�r; 0/ � ¹0º;
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which implies that P˙ are both real and

PC DM CD and P� DM �D on .�r; 0/ � ¹0º:

As above, we compute

zf˙.x
0/ D 2

Z x0

0

M.t/˙D.t/

1C .M.t/˙D.t//2
dt

and

g˙.x
0/ D

Z x0

0

1 � .M.t/˙D.t//2

1C .M.t/˙D.t//2
dt:

We now define

‰.x0/ WD
zfC.x

0/ � zf�.x
0/

2
D 2

Z x0

0

D.t/
1CD2 �M 2

.1CM 2 CD2/2 � 4D2M 2
dt

and

ˆ.x0/ WD
zfC.x

0/C zf�.x
0/

2
D 2

Z x0

0

M.t/
1CM 2 �D2

.1CM 2 CD2/2 � 4D2M 2
dt;

and we notice that

� ˆ is an analytic function of the form ˆ.x0/ D O.x02/;

� ‰ is of the form ‰.x0/ D .x0/3=2‚.x0/, where ‚ is an analytic function.

Also, let

 WD
gC.x

0/ � g�.x
0/

2
D

Z x0

0

�4D.t/M.t/

.M 2 CD2 C 1/2 � 4M 2D2
dt

and

� WD
gC.x

0/C g�.x
0/

2
D

Z x0

0

1 � .M 2 �D2/2

.M 2 CD2 C 1/2 � 4M 2D2
dt;

where, as above,

� � is an analytic function of the form �.x0/ D x0 C o.x0/;

�  is of the form  .x0/ D .x0/5=2�.x0/, where � is an analytic function.

Therefore, we have´
fC.�.x

0/C  .x0// � f�.�.x
0/ �  .x0// D 2‰.x0/;

fC.�.x
0/C  .x0//C f�.�.x

0/ �  .x0// D 2ˆ.x0/

and

fC.�.x
0/C  .x0// D ˆ.x0/C‰.x0/;

f�.�.x
0/ �  .x0// D ˆ.x0/ �‰.x0/:
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Since �˙ is the inverse of � ˙  , we get that �˙ are of the form

�˙.x/ D x C x
5=2ˇ˙.x

1=2/;

where ˇ˙ are analytic functions. Thus,

f˙.x/ D ˆ.x C x
5=2ˇ˙.x

1=2//˙‰.x C x5=2ˇ˙.x
1=2//;

which concludes the proof of Corollary 5.2 and Theorem 1.6 (b.3).

5.3. Remarks on the non-symmetric case

For non-symmetric solutions, or more generally when different weights are put on the
gradients of u˙ (as in the more general Alt–Caffarelli–Friedman energy, see, for in-
stance, [9]), we cannot guarantee the validity of Corollary 5.2, and so branch points of
the original problem might not be sent into branch points of the thin two-membrane prob-
lem. In fact, suppose that .x0; f˙.x0// and .x1; f˙.x1// are two consecutive points in
B2.uC; u�/ such that x0 < x1 and8̂<̂

:
fC.x/ D f�.x/ when x � x0;

fC.x/ > f�.x/ when x0 < x < x1;

fC.x/ D f�.x/ when x � x1:

Suppose that x0 D 0 and define �˙ as in (5.16). Now, we might have that

�C.x1/ D

Z x1

0

q
1C .f 0C.t//

2 dt >

Z x1

0

q
1C .f 0�.t//

2 dt D ��.x1/: (5.18)

But then, for a generic point x0 between ��.x1/ and �C.x1/, we get that

jrvCj.x
0; 0/ D 1;

while jrv�j.x0; 0/ < 1, so that equations (5.12) for Q˙ are not satisfied.
We notice that the symmetry assumption in point (a) of Theorem 1.6 is precisely what

prevents (5.18) from happening. In particular, this assumption is fulfilled when

fC.x/C f�.x/ � 0 on B 01: (5.19)

We also notice that (5.19) is equivalent to assuming that �C � ��.

Lemma 5.6. Suppose that �C � �� on .�1; 1/, then u˙WB˙1 [ B
0
1 ! R and moreover

u�.x; y/ D �uC.x;�y/ and fC.x/C f�.x/ D 0 for every x 2 .�1; 1/:

Proof. Since �0C � �0�, (5.2) implies that @y0vC.�C.x/; 0/ D @y0v�.��.x/; 0/. In par-
ticular,

� if fC.x/>f�.x/, then jrv˙.�.x/;0/j D 1 and so @xvC.�C.x/;0/D @xv�.��.x/;0/;

� if fC.x/ D f�.x/, then @xvC.�C.x/; 0/ D @xv�.��.x/; 0/.
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In conclusion, we have that

rvC.�C.x/; 0/ D rv�.��.x/; 0/;

which, using again (5.2), implies that f 0C.x/ � �f
0
�.x/. Since f˙.0/ D 0, integrating

we get

fC.x/C f�.x/ D

Z x

0

.f 0C.t/C f
0
�.t// dt D 0:

Finally, u�.x; y/ C uC.x;�y/ is a harmonic function in ��u which vanishes together
with its gradient on @��u . This implies that

u�.x; y/C uC.x;�y/ D 0

for every .x; y/ 2 ��u .

Appendix A. The flat monotone solutions are minimizers

In this section, we show that the solutions constructed in Theorems 1.4 and 1.8 are
minimizers. We prove this fact for monotone solutions to the two-phase problem, the
one-phase case being analogous.

Theorem A.1. There is a constant " > 0 depending only on the dimension d such that
the following holds. Let B 0r be the ball of radius r in Rd�1; let �˙WB 02 ! R be two
C 1-regular functions with �˙.0/ D jrx0�˙.0/j D 0 and

j�˙j C jr�˙j � " on B 02:

Let
�˙ WD ¹.x

0; �˙.x
0// W x0 2 B 02º

and
�˙ WD ¹.x

0; xd / 2 B
0
2 � .�2; 2/ W ˙xd > �˙.x

0/º:

Let u˙W�˙ [ �˙ ! R be two C 1-regular functions on �˙ [ �˙ that solve

�u˙ D 0 in �C [��; (A.1)

uC D 0; jruCj D 1 on �C n ��; (A.2)

u� D 0; jru�j D 1 on �� n �C; (A.3)

jruCj D jru�j � 1 on �C \ �� (A.4)

and are such that
1 � " � @xdu˙ � 1C " on �˙:

Then, the function u D uC � u� is the unique minimizer of the two-phase functional in
� WD B 01 � .�1; 1/, with u D uC � u� as boundary datum on @�.
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Proof. We first notice that

xd � 2" � u.x
0; xd / � xd C 2" for .x0; xd / 2 B 01 � .�2; 2/:

Let v D vC � v� be a minimum of the two-phase functional in � D B 01 � .�1; 1/, with
boundary datum u on @�. Then,

xd � 2" � v.x
0; xd / � xd C 2" for .x0; xd / 2 �:

Now, consider the family of functions (which are all defined on � when jt j < 1)

ut .x
0; xd / WD u.x

0; xd � t /:

Then ut are solutions to (A.1)–(A.4) in B 01 � .�1; 1/ and are monotone, that is,

ut � us whenever t � s:

Now, for t small enough, we have that ut � xd � 2" � v.x/. Let t � 0 be the largest
parameter for which ut � v. In particular,

¹ut > 0º � ¹v > 0º and ¹ut < 0º � ¹v < 0º:

Suppose that t < 0. By the monotonicity of u˙, we have that ut < u D v on @�. Thus,
ut touches v from below at a point .x0; xd / 2 � and we have the following three possi-
bilities:

(1) ut .x0; xd / D v.x0; xd / > 0;

(2) ut .x0; xd / D v.x0; xd / D 0 and .x0; xd / 2 @¹ut > 0º \ @¹v > 0º;

(3) ut .x0; xd / D v.x0; xd / D 0 and .x0; xd / 2 @¹ut < 0º \ @¹v < 0º.

Now, (1) cannot happen by the strict maximum principle. Suppose that (2) holds. Then,
both @¹v > 0º and vC are C 1-regular in a neighborhood of .x0; xd /. Since ut touches v
from below, we have that

jruCt j.x
0; xd / � jrvCj.x

0; xd /:

Now, if both gradients are strictly greater than one, then both ut and v are harmonic in
a neighborhood of .x0; xd /, so by the strong maximum principle and the unique contin-
uation property they should coincide. Then, since at least one of the gradients should be
smaller than 1, so necessarily jruCt j.x

0; xd / D 1. In order to rule out this possibility, we
consider two further cases. Suppose first that jrvCj.x0; xd / > 1. Then,

.x0; xd / 2 @¹v > 0º \ @¹v < 0º:

This means that .x0; xd / 2 @¹ut > 0º \ @¹ut < 0º and jru�t j.x
0; xd / D 1. But this is

impossible since �u�t should remain smaller than �v�. Finally, the last possibility is that
jrvCj.x

0; xd / D jru
C
t j.x

0; xd / D 1. But this is impossible since it violates the Hopf
maximum principle. Thus, we have shown that (2) cannot happen. By the same argu-
ment, (3) cannot happen either. Then, the only possibility is that t D 0, so v � u in �.
Analogously, v � u in �, so we have that u D v in �.
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