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Abstract. We are concerned with the quantitative mathematical understanding of surface plasmon
resonance (SPR) when d > 3. SPR is the resonant oscillation of conducting electrons at the interface
between negative and positive permittivity materials and forms the basis of many cutting-edge appli-
cations of metamaterials. It has recently been found that the SPR concentrates due to a curvature
effect. In this paper, we derive sharper and more explicit characterizations of the SPR concentration
at high-curvature places in both static and quasi-static regimes. The study boils down to analyzing
the geometry of the so-called Neumann—Poincaré (NP) operators, which are certain pseudodifter-
ential operators acting on the interfacial boundary. We propose to study the joint Hamiltonian flow
of an integrable system given by the moment map defined by the NP operator. Via considering the
Heisenberg picture and lifting the joint flow to a joint wave propagator, we establish a more general
version of quantum ergodicity on each leaf of the foliation of this integrable system, which can then
be used to establish the desired SPR concentration results. The mathematical framework developed
in this paper leverages the Heisenberg picture of quantization and extends some results on quantum
integrable systems via generalizing the concept of quantum ergodicity, which can be of independent
interest in spectral theory and potential theory.
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1. Introduction

1.1. Physical background and motivation

In this paper, we are concerned with the quantitative mathematical understanding of sur-
face plasmon resonance (SPR) when d > 3. SPR is the resonant oscillation of conducting
electrons at the interface between negative and positive permittivity materials and forms
the basis of many cutting-edge applications of metamaterials. To motivate the study, we
briefly discuss the mathematical setup of SPR.

Let D be a bounded C* domain in R, d > 2, with connected complement R4 \ D.
Let y. and y,, be two real constants with y,, € R4 given and fixed. Let

¥p = Yex(D) + ymx (R4 \ D); (1.1)

here and in what follows, y stands for the characteristic function of a domain. Consider
the following homogeneous problem for a potential field u € H,éc (RY),

Lypu=0 inRY  ux)=0(x|""?) as|x| - oo, (1.2)

where &£, ,u := V(ypVu). It is clear that u = 0 is a trivial solution to (1.2). If there
exists a nontrivial solution u to (1.2), then y, is called a plasmonic eigenvalue and
u is the associated plasmonic eigenfunction. It is apparent that a plasmonic eigenvalue
must be negative, since otherwise by the ellipticity of the partial differential operator
(PDO) &£,,,, (1.2) admits only a trivial solution. That is, the negativity of y. may enable
that Ker(&£,,,,) # @ which consists of the nontrivial solutions to (1.2). In the physical sce-
nario, the nontrivial kernel can induce a resonant field in a standard way. In fact, let us
consider the following electrostatic problem for u € H,! (R%):

. =0 inR4
{V (ypVu) =0 inR%, (13)

( —uo)(x) = O(|x|'™?) as |x| > oo,

where 1 is a harmonic function in R4 that signifies an incident field, and u is the incurred
electric potential field. In the physical setting, y. and y,, respectively specify the dielectric
constants of the inclusion D and the matrix space R? \ D. If y, is a plasmonic eigen-
value and moreover if ug is properly chosen so that &£,,u¢ sits in the space spanned
by &£,, acting on the plasmonic eigenfunctions, it is clear that a resonant field can be
induced which is a linear superposition of the fields in Ker(£,,,). It is not surprising
that the resonant field exhibits a highly oscillatory pattern. However, it is highly intrigu-
ing that the high oscillation mainly propagates along the material interface, namely dD.
This phenomenon is referred to as the surface plasmon resonance (SPR). The SPR forms
the basis for an array of industrial and engineering applications including highly sen-
sitive biological detectors to invisibility cloaks [12,22,24,34,42,44,52,57,59,75]. Its
theoretical understanding also arouses growing interest in the mathematical literature
[3,6-8,15,18,26,33,40,41,43,45,46], especially its intriguing and delicate connection
to the spectral theory of the Neumann—Poincaré (NP) operator described in what follows.
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The NP operator is a classical weakly singular boundary integral operator in potential
theory [5,31] and is defined by

1 (x —y.,v(x))

Kipltlon = — [ EE gy doty). x o, (1.4
wq Jop  |x =yl

where @ is the surface area of the unit sphere in R¢ and v(x) is the unit outward normal

at x € dD. In studying the plasmonic eigenvalue problem (1.2), we shall also need the

following single-layer potential:

$ipl#ls) = [ T(x=1p()doty). xR, (1.5)
where T is the fundamental solution to —A in R¥:
—L1 — ifd =2,
F(x—y) ={ arloghe—yl (1.6)
mp( — y| lfd > 2.
The following jump relation holds across dD for ¢ € H~/2(3D):
d
5o San[#D* () = (F31d + K5y )[g](x),  x €D, (17)

where + signify the traces taken from the inside and outside of D respectively, and Id is
the identity operator. Using (1.4)—(1.7), it can be directly verified that the plasmonic eigen-
value problem (1.2) is equivalent to the spectral problem of determining A(yc, Ym) =
(Ye + ¥Ym)/[2(¥e — ¥m)] and a nontrivial surface density distribution ¢ € H~1/2(dD, do)
such that

u(x) = Saplgl(x), x e RY; Kipll(x) = A(Ye. ym)p(x), x €0D. (1.8)

That is, in order to determine the plasmonic eigenvalue y, of (1.2), it is sufficient to deter-
mine the eigenvalues of the NP operator K3,,. On the other hand, in order to understand
the peculiar behaviour of the plasmonic resonant field, one needs to study the quantita-
tive properties of the NP eigenfunctions in (1.8) as well as the associated single-layer
potentials in (1.5).

The NP operator JKj;, is compact and hence its eigenvalues are discrete, infinitely
many and accumulating at zero. A classical result is that A(Kj,) C (=1/2,1/2], which
ensures the negativity of a plasmonic eigenvalue in (1.8). Due to their connection to
the SPR discussed above, the quantitative properties of the NP eigenvalues have been
extensively studied in recent years; see e.g. [4, 14, 30, 37, 45, 46] and the references
cited therein. As mentioned earlier, the SPR mainly oscillates around the material inter-
face 0D, which is rigorously justified in [10]. It is found mainly through numerics in [14]
that the SPR tends to concentrate at high-curvature places on dD. In [2], this peculiar
curvature effect of the SPR is theoretically explained when D is convex. In [20,21], a
specific (possibly curved) nanorod geometry is considered, and it is shown that the SPR
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concentrates at the two ends of the nanorod, where both the mean and Gaussian curvatures
are high.

In this paper, by developing and exploring new technical tools, we shall derive sharper
and more explicit characterizations of the SPR concentration phenomenon driven by the
extrinsic curvature when d > 3. Note that according to the discussion in [2], in order
to study the SPR concentration, it is sufficient to consider the concentration of the NP
eigenfunctions in (1.8) driven by the extrinsic curvature. Moreover, in addition to the
static problem (1.2), we shall also study the quasi-static regime, which will be described
in Section 6. Finally, we mention related work on polariton resonance associated with
elastic metamaterials [9,17,19,38,39,47], and the mathematical framework developed in
this paper can be extended to study the geometric properties of polariton resonance.

1.2. Discussion of the technical novelty

In order to provide a global view of the technical contributions of this article, we briefly
discuss the mathematical strategies and the new technical tools that are proposed and
developed for tackling the concentration of the NP eigenfunctions and hence the SPR.

The layer-potential operators are pseudodifferential operators whose principal sym-
bols encode the geometric character of dD when d > 3. We point out that they are of
Cauchy type when d = 2. Our main idea in this work is to analyze the quantum ergodic-
ity properties of these operators when d > 3 and under an addtional assumption, which
we refer to as Assumption (A) in Section 4. To that end, we study the joint Hamiltonian
flow of commuting Hamiltonians, one of which is the principal symbol of the NP operator.
Using this, we derive a new version of the generalized Weyl law that the asymptotic aver-
age of the magnitude of the joint eigenfunctions of the joint spectrum sitting inside a given
polytope in a neighbourhood of each point is directly proportional to a weighted volume
of the pre-image of the polytope by the moment map at the respective point. In particular,
this generalizes the related results in [56, 67, 68] for quantum integrable systems, as well
as [60] where a pointwise generalized Weyl law of the Laplacian is proved.

Then, we lift the joint Hamiltonian flow to a joint wave propagator via the Heisenberg
picture. We obtain a quantum ergodicity result on each leaf of the foliation of the under-
lying integrable system. This extends the classical results [16, 27,36, 58, 65, 66, 71-74].
By using our quantum ergodicity result, we further obtain a subsequence (of density 1) of
eigenfunctions such that their pointwise absolute value weakly converges to a weighted
average of ergodic measures over each leaf, where this weighted average at different
points again relates to the volume of the pre-image of the polytope by the moment map at
the respective point. We provide explicit upper and lower bounds of the aforementioned
volume as functions only depending on the principal curvatures. When the joint flow is
ergodic with respect to the Liouville measures on each leaf, we obtain a more explicit
description of the weighted average. With that, we provide a more explicit and sharper
characterization of the localization of the plasmon resonance driven by the associated
extrinsic curvature at a specific boundary point when d > 3. In fact, we provide an explicit
and motivating example of a manifold with rotational symmetry, where the joint flow and
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the Lagrangian foliation can be explicitly worked out, and the bounds via the principal
curvatures can also be calculated explicitly. From our result, we get a quantitative under-
standing of the plasmon resonances from the dynamical properties of the Hamiltonian
flows. To the best of our knowledge, the first time when a quantum integrable system is
considered to show eigenfunction concentration on Lagrangian submanifolds is in [65],
where the Laplacian eigenfunctions are discussed.

Finally, we remark that at first glance, the use of the term “quantum ergodicity” is a bit
paradoxical when investigating a quantum integrable system, since as is conventionally
known the descriptions of a (complete) integrable system and that of ergodicity are almost
on the opposite sides of the spectrum of a dynamical system. However, our discussion
concerns the ergodicity on the leaves of the foliation given by the integrable system, say
e.g. the Lagrangian tori if we have a complete integrable system, and therefore no paradox
emerges.

The paper is organized as follows. Sections 2 and 3 are devoted to preliminaries,
included for the sake of completeness and self-containedness of the paper. In Section 2,
we briefly recall the principal symbols of the layer-potential operators following the dis-
cussions in [1,2] as well as [51,64]. In Section 3, we provide a general brief introduction
to quantum integrable systems. In Section 4, we establish a generalized Weyl law over
quantum integrable systems, and generalize the argument of quantum ergodicity over each
leaf of the foliation to obtain a variance-like estimate. Sections 5 and 6 are respectively
devoted to the quantitative results on concentration of plasmon resonances in the static
and quasi-static regimes when d > 3.

2. Potential operators as pseudodifferential operators

2.1. h-pseudodifferential operators

Let us consider the manifold M = R?>? or M = T*X, with the symplectic
form w = Z;jzl dx; ANd&;, where X is a d-dimensional closed manifold. The h-
pseudodifferential operators acting on the Hilbert space # = L2(R?) (or L?(X)) give
semiclassical operators. To start with, we let $”(R??) be the Hérmander class (symbol
class) of order m whose elements are functions f € C*(R??) such that, for m € R,

106 /1 < Cal(x, EN™, (x,8) e R, @1
for every @ € N24_ Here, (z) := (1 + |z|*)"/2.

Definition 2.1. Let f € S™(R24). The h-pseudodifferential operators of symbol f are
given on the Schwartz space § (R¢) by the following expressions:

1 |
ety Oy 000 1= G [ [ (=0 06 dy a;

1 i +
west) 0000 = [ [ exp(re) £ (S50 Judy as:
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1 i
Righo Opf @) = g [ [ exp( =) -€) fex o ay .

h-pseudodifferential operators also give rise to semiclassical operators on M = T*X
(X is a closed d-dimensional manifold). Let X be covered by a collection {Uy, ..., Uy}
of smooth charts such that each U;, 1 <i < £, is a convex bounded domain of R4 There
exists a partition of unity x3,..., )(% subordinate to the cover {Uy,...,Ug}. Let S™(T* X),
for m € R, be the space of functions f € C°°(T*X) such that

0292 £ (x.£)] < Cop(6)" ! 2.2)

for all «, B € N”. Define the operator on X to be

L/W/R
Opg; " * ) = Zx, Op™/ "Ry, (), u e CX(X), 2.3)
j=1
L/W/R\J . . o ..
where (Op )n,r are the pseudodifferential operators on U; with principal sym-

L/W/R

bol fy? - Following [54] the operators Oph are all pseudodifferential operators on X

with principal symbol f.

Proposition 2.2. Let S™(T* X) be a Hormander class, 1 = (0,1], h € I, and 3, = L*>(X)
(independent of h). Then all of the above quantizations OpiLL/;e and Op}f’/ s defined in (2.3)
for f € S™(T*X) form a space of semiclassical operators.

Proof. We refer the readers to [54] for a proof of this theorem for Op}Vh. Note that after
applying the operator exp(+i ga x0¢), the Weyl quantization Op}f/h and left/right quantiza-
tions OpJ]?ZR differ only in the higher-order term. Hence, Beals’ criterion applies to Op}f’h
if and only if it applies to OpﬁzR, which readily completes the proof. ]

From now on, whenever we do not specify whether it is left, right or Weyl, we presume
Opyy, 1= Op}fh is the right quantization. We notice that Weyl quanitization is symmetric
in the L2 metric by definition. In fact, if we do not specify the cover {U; };<;<;, an oper-
ator so defined (via any of the quantizations OpL/ wi R) is unique up to hd)SOZ_l if

f e S™(T*X).

2.2. Geometric description of 0D

For the subsequent need, we briefly introduce the geometric description of D C R?. Let
X:R¥!'>Usu=(uy,...,uq_1) — X(u) € 3D C R¥ be a regular parametriza-
tion of the surface dD and let X; := ;TX, j=1,...,d — 1. We denote xd_1 X; =
Xy x -+ x Xy_1. Since X is regular, we know xd 1X is nonzero, and the normal vector
vi= >< 11X/ | ~! Xj|is well-defined. Let V be the standard covariant derivative on

the amblent space ]Rd, and II be the second fundamental form given by

(v, w) = —(Vyu,w)v = (v, Vyw)v, (v.w) € T(D) x T(3D).
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Define
A(x) = (A (1) = (I (X1, X)), v5),  x € 3D,

Let g = (gi;) be the induced metric tensor on D and (g”/) = g~'. Finally, we write
H(x),x € dD, for the mean curvature satisfying

d—1
tre(n (A(X) := Y g7 (0) A (x) =: (d = DH(x).

ij=1

Throughout, we assume A(x) # 0 for all x € aD.

2.3. Principal symbols of layer potential operators

Throughout, with a slight abuse of notation, we shall also denote by S3p the single-layer
potential operator which is given in (1.5) but with x € dD. This should be clear from
the context. We let Kjp signify the L2(dD, do)-adjoint of the NP operator K 5p- Then
Kjp is symmetrizable on H ~1/2(3D, do) (see, e.g., [32]) due to the following Kelley
symmetrization identity:

SapKip = KapSop- (2.4)

In this section, we treat the layer potential operators as pseudodifferential operators
when d > 3 and derive several important properties, especially their principal symbols.
In fact, the special three-dimensional case was treated in [45, 46], whereas the general
case was considered in [1,2] as well as in [64, Chapter 12, Section C, Proposition C1] and
[51, Proposition 2.2]. Since this result forms the starting point for our subsequent analysis,
we discuss the main ingredients. First, we introduce a slightly more relaxed symbol class
S™(T*(dD)) (compared to S™(T*(3D))):

U=, F:n'(U)— U xR S g2 =1, supp(yi) C Us;
i i

i
5 x R (0 = fa U x R (o) > €

a € CoWU; x RITI\{0}), |9 9a(x.6)] < ca,ﬁ(lso'"-'“};
S™(T* (D)) := {a : T*(3D) \ dD x {0} — C;

a = S EF U Woa), a € (U x RATT {0})},

i

where 7w : T*(0D) - aD is the bundle projection. Similar to our discussion in Section 2.1,
for a symbol a € S™(T*(dD)), we can define the i-pseudodifferential operator Op,, j,.

In the sequel, we let CI;§/O;1” denote the class of pseudodifferential operators of order m
associated with §™ (T*(9D)). We also let dSO™ = CI’>§/O’1” forh = 1.
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Theorem 2.3. Assume that 0D € C*°. When d > 3, the operators K3, and Syp are pseu-
dodifferential operators of order —1 with symbols given in geodesic normal coordinates
around each point x by

Pz, (3. ) = pacs, —1(x. ) + O(E)

= (d = DH@)IEI™" — (AX)E E)IEI> + O8], (2.5)

and

PSop (X, 6) = Psyp.—1(x,6) + O(E50) = 5lElz0n + OUERL), (26

where the O-terms depend on ||X||e2. The result in (2.5) also holds for Kyp if only the
leading-order term is concerned.
Using the symmetrization identity (2.4) and the self-adjointness of Syp, we have

Ky = |:D|—‘{(d DI A

d—1
1 , B —
- LR (x)¢|g(x)|Ajk<x)g"’(x)az}|:o| 2 mod $502,
ikd=1 V18X
1 —_—
Sop = §|°‘D|‘1 mod ®SO™2, (2.7

where Ayp is the surface Laplacian of 0D, and |D|™' := Oplglf(l - Moreover, we have
g

K} op = #IDITV2K | DIV2, which is self-adjoint modulo hCI’>-§/O;2. s

Finally, we note that ((A7)2, ¢') is an eigenpair of Kjp if and only if
(X' /h,|D|"Y/2¢') is an eigenpair of K ap- Hencefore, we write

(2 (h), ¢' () := (A)?/ b, |D| /2. 238)

3. Classical and quantum integrable systems

In this section, we give a brief review of classical and quantum integrable systems, which
will be needed in our subsequent analysis.

3.1. Classical integrable systems
Let M be a 2d-dimensional symplectic manifold with a nondegenerate 2-form w.

Definition 3.1. A completely integrable Hamiltonian system (M, w, F) on a 2d-dimen-
sional symplectic manifold (M, w) is given by a set of d smooth functions Hy,..., Hy €
C°°(M) that are functionally independent and Poisson-commuting, i.e.,

{H,‘,Hj}lz —a)(XHi,XHj):O, i,jE{l,...,d},
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where we recall that Xg, is the symplectic gradient vector field given by
Xy, @ = dH;.
The map F = (Hy, ..., Hy) : M — R? is called the moment map.

The level sets of the moment map in a completely integrable system form a Lagrangian
foliation.

Definition 3.2. Let F = (Hy, ..., H;) be the moment map of a completely integrable
system on R24. A point m € R34 is said to be regular if

rank {Xg, (m),..., Xg,(m)} =d.

If
rank {Xg, (m),..., Xg,(m)} =r, 0=<r<d,

then m is said to be a singular point of rank r. The value F(m) € R¥ is called a regular
value if mw is a regular point, and a singular value if m is a singular point.

Suppose that m € R2 is a singular point of rank  for a completely integrable system
F=(Hy,...,H;)on R24 . After replacing the H;’s with invertible linear combinations
of H;’s if necessary, we may assume that

XHl(m) == XHd—r(m) =0,

and the Xg,’s are linearly independent for d —r < i < d. The quadratic parts of
Hy,..., H;_, form an abelian subalgebra sy, of the Lie algebra of quadratic forms,
with the Poisson bracket as the Lie bracket.

Definition 3.3. A singular point m or rank r is said to be nondegenerate if the subalgebra
Sy 1s a Cartan subalgebra of the Lie algebra sp(2d — 2r, R) of the symplectic group
Sp(2d —2r,R).

Remark 3.4. In an obvious way, Definitions 3.2 and 3.3 can be carried over to a com-
pletely integrable system (M, w, F') on a general 2d -dimensional symplectic manifold.

In 1936, Williamson [70] classified the Cartan subalgebras of the Lie algebra of the
symplectic group.

Theorem 3.5 (Williamson). Let s C sp(2l,R) be a Cartan subalgebra. Then there exist
canonical coordinates (q1, . ...q1. p1.. .., p1) for R¥, a triple (k, kny, ki) € 2320 sat-
isfying the condition k| + kyny + 2k = 1, and a basis f1, ..., f; of s such that

2 2
ﬁ=%, i=1,...,ka,
ﬁ:q]p]’ j:kel+ls"'skel+khyﬂ

P {Qkpk + Gk+1Pk+1, k =ka+kny + 1, ka +kny +3,...,01 -1,
k:
qk Pk+1 — Qk+1Pk>» Kk = ke +kny + 2, ke +kny +4,.... L
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Additionally, two Cartan subalgebras s,5" C sp(21, R) are conjugate if and only if their
corresponding triples are equal.
The elements of the basis of s are called elliptic blocks, hyperbolic blocks or focus-

2 2
focus blocks according to whether they are of the form 2 ;pi , qj pj Or a pair qi px +

Qk+1Pk+1: 9k Pk+1 — k+1 Pk, respectively.

Given a completely integrable system (M, w, F = (Hy,..., Hg)), suppose m € M is a
nondegenerate singularity of rank r. Then with the help of Williamson’s Theorem, locally
one can write the Hamiltonian H; as f; fori =1,..., ke + kny + 2k, and H; = p; for
i Zke]+khy+2kff+ 1,...,kel+khy+2kff+r =n.

3.2. Quantum integrable systems

Next, we provide a tool for the discussion of a lift of the classical Hamiltonian system to
its operator counterpart. For this purpose, we define quantum integrable systems.

Let M be a 2d -dimensional symplectic manifold with a nondegenerate 2-form w. Let
I C (0, 1] be any set that accumulates at 0. If J is a complex Hilbert space, we denote
by £(H) the set of linear (possibly unbounded) self-adjoint operators on J¢ with a dense
domain.

Definition 3.6. A space U of semiclassical operators is a subspace of | [;,c; £(H4), con-
taining the identity, and equipped with a weak principal symbol map, which is an R-linear
map

0:¥ - C®(M;R) (3.1)
with the following properties:
(1) o(Id) = 1 (normalization);

(2) if P, Q € Wand if P o Q is well-defined and is in ¥, then 6 (P o Q) = o(P)a(Q)
(product formula);

(3) if o(P) > 0, then there exists a function & — &(h), tending to zero as h — 0, such
that P > —e(h) for all & € I (wear positivity);

If P = (Py)per, then o (P) is called the principal symbol of P.

Such a family of Hilbert spaces can be obtained e.g. by Weyl quantization (which we
will specify later) or geometric quantization with complex polarizations.

Definition 3.7. A quantum integrable system on M consists of d semiclassical operators
Pr=(Prn)s--- Pa = (Pan)

acting on J{; which commute, i.e., [P; 5, Pjp] = Oforalli, j € {1,...,d} and all 47 and
whose principal symbols f; := o(P1), ..., fg := o(Py) form a completely integrable
system on M.
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Definition 3.8. Suppose P and Q are commuting semiclassical operators on J¢j,. Then
the joint spectrum of (Py, Qp), denoted as X ( Py, Qp), is the support of their joint spec-
tral measure. If J}, is finite-dimensional (or, more generally, when the joint spectrum is
discrete), then

S(Pp, On) = {(A1.A2) € R? :Jv # 0, Ppv = Av, Qv = Ayv). (3.2)

The joint spectrum of P, Q, denoted by X (P, Q), is the collection of all joint spectra of
(Pn.Qn), h el

Suppose that (P; 1), ..., (Pg,;) form a quantum integrable system on M. Then the
joint spectrum of ((P1,p), ..., (Pgp))is

d
S(Pu) o (Pap)) = {2 € RE: ket (P — A1) # (0. (33)
i=1
We remark that in case the operators P; j, are not bounded, their commuting is under-
stood in the strong sense: the spectral measures (obtained via the spectral theorem as
projector-valued measures) of P; , and P;;, commute.

4. Generalized Weyl law

In this section, we recall the concept of generalized Weyl law and quantum ergod-
icity from the pioneering works of Shnirelman [36, 58], Zelditch [71-74], Colin de
Verdiere [16] and Helffer—Martinez—Robert [27], as well as [60] where a pointwise gener-
alized Weyl law of the Laplacian is proved, and generalize them to the case of a quantum
integrable system [56,67,68].

4.1. Hamiltonian flows of principal symbols

Consider the Hamiltonian H : T*(dD) — R:

H(x,§) =[xz, 1 (0. OF 2 0. (4.1)
Throughout the rest of the paper, we impose the following assumption.

Assumption (A). We have (A(x)g™ ' (X)w, g7 (x)w) # (d — 1)H(x) for all x € 3D and
allw e (& : ¢, = 1} C T(0D).

Assumption (A) holds if and only if {H = 1} N (dD x {0}) = @, which is further
equivalent to the condition that H # 0 everywhere, and hence to the ellipticity of K;,.
As explored in [51, Corollary 2.3], it is clear that strict convexity of D implies Assump-
tion (A). Meanwhile, as discussed in [1], (at least) when d = 3, an application of the
Gauss—Bonnet theorem shows that Assumption (A) holds if and only if D is strictly con-
vex. With this, looking at (1.8), it can be directly inferred that ¢ € C °°(dD). In this article,
we always assume the validity of Assumption (A).
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Next, we set p(r) = 1 —exp(—r) : Ry — R. It follows that p(r) > 0 and p’(r) > 0
for all R . Moreover, p(1/r%) € C®(R), with 3%|,—¢[o(1/r2)] = 0 for all £ € N and

901/ r3)| < Ce(1 +|r ) 27972,

Define ﬁ(x, &) = p(H(x,§)) : T*(0D) — R. When d > 3, it can be directly verified
that under Assumption (A) and together with the fact that H € S=2(T*(dD)), one has
H € S72(T*(dD)).

Let us now consider k (< d) Poisson commuting and functionally independent Hamil-
tonians fy = H, fa,... fr € S™(T*(dD)) form > —2 (if k = d, then we will have a
completely integrable system on M). Let F = (f1,..., fix). We also consider the corre-
sponding /-pseudodifferential operators Opy, 4. ..., Opy, 5 acting on J#j = L%(3D).

Next we consider the following solution under the (joint) Hamiltonian flows:

%a(tl, oot = a0},
aop(x,£) € S™(T*X),

4.2)

which exists since { f;, fj} = 0, where we recall that {-, -} is the Poisson bracket given by

{f.g) = Xrg = —w(Xy, Xe).
‘With this notion in hand, we have %a =X 74, and it is clear that, writing t = (¢1,...,),

we have a(t) = ao(y(¢), p(t)) where

{ 3 (r(0). p(1) = X5, (y (0), p(0)), ws)

(y(0). p(0)) = (x,£) € M.

To emphasize the dependence of a on the initial value (x, £), we also sometimes write

a@p (1) = a) with  (y(0), p(0)) = (x.5).

Next we introduce Heisenberg’s picture and lift the above flow to the operator level
via Egorov’s well-known theorem together with the commutativity of Opy, ; and Op £
Since this is a handy extension of Egorov’s original theorem (see [1, 23, 28, 29]), we
provide a sketch of the proof.

Proposition 4.1. Under Assumption (A), when d > 3, consider the following operator
evolution equation for each j € {1,...,k}:

{%Ah(t) = 50pg; - AR O], 44

Ah(o) = Opao,h'

For |t| < C log(h), it defines a unique Fourier integral operator (up to h® ®SO;, )

it; it ;
¢~ EI=1 T 4, (0)eXI=1 O L @ (hdSOP)
= Op, ). + O(hPSOR ™).

Ah(l‘l,...,tk)
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Proof. First, by noting that [Op,,Op,] = Opy, 5y + O (h®SO} " 7?) ifa € S™(T*(3D))
and b € S"(T*(dD)) and using the given condition that [Opy, ;. Opfj,h] = 0 whenever
i # j, one can construct the symbol at the principal level. Then one can construct the
full symbol in an inductive manner, and bound the error operator via repeated use of
the Calderén—Vaillancourt theorem. By Beals’ theorem, the operator is guaranteed to be
a Fourier integral operator. The explicit expression of Ay (¢) comes from checking the
principal symbols, and bounding the error operator via the Zygmund trick. ]

When d > 3, we proceed to consider f;(x, &) = H(x,§) = PPz, (x, £)]?), and
we can immediately see that

Ops, 4 = Opg; = P([K} op)?) mod h®SO},>.
Let {L;p }5;2 be a family of pseudodifferential operators such that
Ops,n = Ljp(h®SO}), j=2,...,n.
Then we immediately obtain the following corollary.
Corollary 4.2. Under Assumption (A), when d > 3,
A(0) = e~ KPS 2 T Lin g, (0)e H KT ap =S 2 F L
+ O(h®Sop~)
= Op,(.u + OhDPSO; ).

4.2. Trace formula and generalized Weyl law
We first state the Schwartz functional calculus without proof.

Lemma 4.3 ([28,29]). Recall that §(R) is the space of Schwartz functions on R. Then
for f € S(R) and a € S™(T*(dD)), we have f(Op, ;) € SO, and
f(Opg,1) = Opsg) + O(hPSO,™). (4.5)
The above lemma leads us to the following trace theorem:

Proposition 4.4 ([16, 28,29, 58,62]). Given a € S™(T*(dD)), if Op,, is in the trace
class and f € §(R), then

e fOp) = [ fardo @ do™ +00,

where do @ do™ is the Liouville measure given by the top form w®~/(d — 1)!.

Let ()L"l(h), cee )L}'c(h)) be elements of the joint spectrum X(Opy, f1, ..., Opy fr)
(for simplicity of notation, let us call it X), with the joint eigenstates ¢'(k), that
is, Opy, fj¢' (h) = )L; (h)¢'(h), j €{1,...,k}. We remark that, with this notation,
(A (h), ¢ (h)) is an eigenpair of K, ap if and only if (AL (h) = p(A (h))2, ¢’ (h)) is an
eigenpair of p(K i ap)- Then we can prove the following result.
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Proposition 4.5. Under Assumption (A), when d > 3, let € C R¥ be a compact convex
polytope. Then for any aj € S™(T*(0D)), j € {1,...,ar}, we have, as h — +0,

@amy™* 3 e (Opasd (). () L2
AL (h),... AL (h))e€

= ado @ do ! +oe(l), (4.6
{F=(f1,.-,Jx)EC}

where ¢; = ||¢' || and the o-term depends on €.

-2
H=1/2(3D,do)
Proof. Let us first take € := ]_[j-c=1 [rj,s;], a k-dimensional rectangle. Take
Xl,é‘(p[xz;,aD]z)’ X2,8(L2,h)’ L] Xk,E(Lk,h)v

k .
where y.(x):= Hj:l Xie(Xj) € S (R¥) approximate Xyl s,1° Then Xl,s(p[JC;’aD]Z)
€ SO, and y;¢(Ljx) € SO, for each j € {2,...,k} by the functional calculus
with the trace formula
k

k
<2nh)d—"tr(xl,e(p[x;;,a,)]z) [ 176(Lim)Opapxreel X ap) [ | x,-,a(L,-,h))
J=2 j=2
k
[ ot ? [] el Pdo ®.do™ + Oca). @)
T*(3D) i

where @ depends on € and €. As ¢ — 0 in (4.7), x1.:(o[K} 5p]?) ]_[f:2 Xj,e(Lj ) con-
verges to the spectral projection operator when the joint spectrum (A’ (h), . . ., )L}'{ (h)) €
€= 1—[;;:1 [r;,s;], which readily gives (4.6) when € = ]_[f:1 [r;,s;]. Next we observe that
a general compact convex polytope € is rectifiable, and hence can be approximated by an
arbitrary refinement of a cover by a finite disjoint union of k-dimensional rectangles, and
a standard approximation argument leads to (4.6) for a general €. Finally, we notice that

9" M L20p.d0) = 19" | -1/20D,d0)-
The proof is complete. u

Taking a = 1 in (4.6), one readily has the classical Weyl law [2, 16,28,29,58,62]. An
algebraic proof of this result can also be found in [53,55].

Corollary 4.6. Let € C R¥ be a compact convex polytope. Then

> 1 = Quh)k4 / do @do~' +oe(h™). (4.8
(G0, (e (F=(f1... f)€E}

4.3. Ergodic decomposition theorem and quantum ergodicity on the leaves of the
foliation by the integrable system

From now on, denoting

T :T*@D) x [0,00)* - T*@D), T ((x.£).1) = (y(t), p(1)), (4.9)
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where (y(-), p(-)) is as in (4.3), we may adopt the notion in [61] in our case when [0, 00)¥
forms a semigroup (we may in fact extend it to R¥ by extending the Hamiltonian flow,
but it is not necessary) and recall the definition of ergodicity for our purpose.

Definition 4.7. Consider the family of maps {T;(-) := T (-, 1)},¢[0,00)x- Consider an
invariant subspace M C T*(dD), i.e. T;(M) = M for all t € [0, c0)k. We call a Radon
measure i over M C T*(dD) an invariant measure with respect to the joint Hamiltonian
flow of the vector fields ij,j e{l,....k},on M if

[T¢]spe = pn forallt e [0,oo)k,

i.e. the push-foward of the measure coincides with the measure itself. We denote the set
of such invariant measures by My . (M) (which is a convex set). An invariant measure is
ergodic with respect to the joint Hamiltonian flow of Xy, j € {1,...,k}, on M if for any
measurable set A C M,

w(A A T;(A)) = 0forall 7 € [0,00)% = u(A) =0orl.

We denote the set of such ergodic measures by My, r,(M) (which can be directly
checked to be the set of extremal points of My ,.(M).)

We remark that the standard notion of ergodicity, i.e., for any measurable set A C M,
7,71(A) C Aforallt € [0,00)% = u(4) =0orl,

can be readily shown via standard and elementary arguments. We also remark that this
definition of ergodicity is not that of the joint ergodicity of the family of commuting one-
parameter subgroups generated by each Xy, as introduced in e.g. [11,61] (which is instead
a generalization of the mixing properties).

Now, similar to our study in [2], let us consider the set

{F =0 fi)=(p(1).e2..... e},

denoted by F(i,,....e;), for the functions f; € S™(T*(dD)) defined as above, with
f1 = H. Let us denote by OF(en.cr) the Liouville measure on F(1¢,.. ) C T*(dD),

AAAAA ey thaton Fge, ey :={F = (f1..... fi) = (p(E). €2, ... ex)}
when E # 1. For notational sake, from now on, we write

and by OF(f e,

F={e:=(ez,....ex) ERFV I Fyp, o) # 0}
For all such e € ¥, since ijfl- =0and :Exfja)d_l =O0foralli,j €{l,...,k}, wesee
T —k -1
doF(l'e) T 612)12)(28) XUUG[—E.E]k Fa.o+v do ® do

is an invariant measure for the (joint) flow on Fj ).
With the previous notion of ergodicity in hand, we next consider Mx . (F{1,¢)), which
is the set of invariant measures on F(; ¢), and My - ors(F(1,¢)), the set of ergodic measures
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on F( ). Since F(j,) has a countable base, the weak-* topology of My, (F(1,)) is
metrizable, and hence Choquet’s theorem can be applied to obtain the following gen-
eralized version of the ergodic decomposition theorem of [69].

Lemma 4.8. Given a probability measure n € Mx . (M), there exists a probability mea-
sure ve € M(Mx - ers(F(1,¢))) such that

n= / He dve(fLe).
MXF.erg(F(I,e))

Applying Lemma 4.8 to oF, ,/0F, ,,(F(1,¢)), We have a probability measure v, €
M(MXF,erg(F(l,e))) such that

O—F(l.e) = O’F(l.e) (F(l,e)) He dl)(,bbe).
MXF ‘erg(F(l.e))
Note that by rescaling F(g ) = E~Y/2F(1 ), we have of,,, ,, = EAT*=/26p Then,
from the smoothness of F and the nondegeneracy of DF (up to a codimension 1 subset),
we can see that the decomposition

do @do™! = /?(E(“k_d)/sz ® dof,, ,,)¢(e) de

holds for some density ¢ € L' (¥, de) (with {¢p = 0} of measure 0 with respect to de)
via a change of variable formula.

For any pt, € My erg(F(1,e)), We let (g .e) := [mp—1/2]spte € Mx , erg(F(E e)) bE
the push-forward measure given by

mg—i/2 . T*(BD) — T*(aD), (x,8) — (x, E—1/2$).
Then

oo !

N / / H(ETFq o (F1,e)h(@END2(E @ dve)(E, pe) de.
F (09OO)XMXF.erg(F(l.8)

Next, we shall derive a general version of the quantum ergodicity on the leaves of
the foliation by a quantum integrable system. Since [0, o)X is a countable amenable
semigroup, ergodicity of a measure p on 7*(dD) is equivalent to the fact that for all

f € LX(T*(3D). dp) (see [61]), with [T := [T5_;[0, 7j] and | [T | := [T5; 1751,

1
lim—/ OTdt=/ d
7o |[]| Hf ' T*(BD)f a

in the L2(T*(dD), dj1) metric, which is in fact von Neumann’s ergodic theorem [50] in
this scenario. Following [1], we have the following application of Birkhoff’s [13] and
von Neumann’s [50] ergodic theorems.
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Lemma 4.9. Under Assumption (A), when d > 3, forany rj <s;, j € {1,...,k}, and
allag € S™(T*X), we have, as T — o0,

1 _
—/ ags)dt — a(x,§)
ITTIJ .
a.e-do ® do~ ! and in Lz(ﬂ{rj < fi <sj},do® dofl)
=1

for some a € Lz(ﬂle{rj < fj <sj},do ®do ") and a.e.-(dE ® dve)(E, j1c)de, with

d(x,é):/ aodi(Ee) a.e-diL(g.e).
(E.e)

Proof. By Birkhoff’s and von Neumann’s ergodic theorems [13,50] on X
=

ri<fi<s;}

x do ® do~ !, we have, as T — o0,

1 _
—[ as)dt — a(x,§)
ITTI .
ae.-do ® do~ ! and in Lz(ﬂ{rj < fi <sj},do® do_l)
=1

for some a € Lz(ﬂle{rj < f; <sj},do ® do') invariant under the joint Hamiltonian

flow. Set
> O}.

k
1
&= {(x,é) eJQ{rj < fi <si}: listup W/]‘[a(xg)(t) dt —a(x,§)

It is clearly seen that 0 ® 0~ !(&) = 0. Next, we can show by Lemma 4.8 that

/ & / I)L(E,e)(g)oF(l'e) (F(l,e))(P(e)
FOIj=2lrj.s;1Jr1:s11xXMx f erg (F(1.¢))

x EQT=DI2(JE @ dvo)(E, o) de = 0 @ 0~ (€) = 0.

Since {¢ = 0} is of measure zero with respect to de, for a.e.-(dE ® dv.)(E, pe)de
we have (4(g )(€) = 0. Meanwhile, by using the Birkhoff and von Neumann’s ergodic
theorems [13,50] again, on each leaf we have

1
—/ a(x,g)(l)dl —>/ aodpL(E,e)
|1_[| l_l F(E,e)

a.e.-[L(E ) and in LZ(F(E,e), dp(E.e)) as T — oo.

Finally, setting

k
€ip) = {(x,@ eiry < ;<5

j=1
1
—/ a(x,s)(f)dl—/ ao di(E e
|1_[| ]_[ F(E,e)

>0},

lim sup
T
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we can show that (t(g e) (6 ,) = 0. Therefore, a.e.-(dE ® dve)(E, je)de, ji(E,e)(E U

€ug..)) = 0. By the uniqueness of the limit, the proof can be readily concluded. ]

With the above preparations, we can establish the following theorem that will play an
important role in our subsequent analysis.

Theorem 4.10. Let € C R¥ be a compact convex polytope and c; = ||¢’ ”1_12—‘/2(8D do)’

Then under Assumption (A), when d > 3, the following (variance-like) estimate holds as
h — +0:

1 . .
> 2 |(Ang’ (h), &' (1)) L2(0p.ac)

i i 1
204 .3 () AL (),....2% (hy)ee

— (Opasd (1), ¢' (W) 120p.aey|” = 0. (4.10)

Proof. Via considering the Hamiltonian flow of the principal symbol, we can lift the
Birkhoff and von Neumann theorems to the operator level. Set A, (0) = Aj. From the
definition of ¢ (), we have, for each i,

(An()¢' (h), ¢" (M) 12(3D.do)

= (A (0)e PG oSS 2 T Lin g (), o B UK ap =S 2 T L g ()
+ O, (h)

= (Ap¢' (). ¢ () 12(x,40) + Ot (h). (4.11)

where we make use of Proposition 4.1 as well as the definition of the NP eigenfunctions
in (2.8). Averaging both sides of (4.11) with respect to T, we arrive at

(Ye'(h). ¢ (M) 123p.doy = (And' (). ' (W) 12(x.d0) + O (h).

L2(3D,do)

where

1
T:= W/l_[Ah(t)dt.

By using Proposition 4.1 again, one can directly verify that

1
LI /n Ap(t)dt =0 = Op 1 0 wai-a + OT(h)-

Next by using the Cauchy—Schwarz inequality, we have

‘(Opé,hd’i(h)s¢i(h))L2(8D,da) 3 (Ang' (). ¢" (M) 120D .do) |
(91 (h), " (M) L2(oD.d0) (97 (h). ¢* (M) 12(8D.a0)
- (E*E¢' (h), ¢" (M) 123D do)

: : O (h? 4.12
= TR0 W) eapag T OTH) @12

with
=7 -— Opd,h'
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Therefore, summing over the joint spectrum of ¢’ of (4.12) and applying (4.6) and (4.8),
we have

1 . .
> 2 [(Ang’ (), &' (1)) 123D der)

1 .
AL (k). AL (h))e€ i i 5
— (Opz 4¢" (h), ' (M) 12(0D.d0) |

< +oer(l). (4.13)

Finally, by noting that the first term on the right-hand side of (4.13) goes to zero as T =
(Tq, ..., Ty) goes to infinity, one can readily have (4.10), which completes the proof. =

With Theorem 4.10, together with Chebyshev’s trick and a diagonal argument, we
obtain the following quantum ergodicity result, which generalizes the relevant results in
[16,25,36,58,62,63,65,66,71-74].

Corollary 4.11. Let € C R¥ be a compact convex polytope. Under Assumption (A), when
d > 3, there exists S(h) C J(h) :=={i e N : (/\"1 h,..., k;'c(h)) € €} such that for all
ag € S™(T*X) we have, as h — +0,

2iesm |

—_— =1 1).
diesm ! Foe

(4.14)

max cil{(Ah = Opz)¢' (h). ¢ () 12x,ae)| = 0 (1) and

Note that the choice of S(h) is independent of ay.

To our best knowledge, the first time when a quantum integrable system is considered
to show eigenfunction concentration on Lagrangian submanifolds is in [65], where the
Laplacian eigenfunctions are discussed instead.

Remark 4.12. It is indeed a bit paradoxical to refer to Theorem 4.10 as stating quantum
ergodicity when we now have a quantum integrable system: as is customarily under-
stood, (complete) integrable systems and ergodicity are almost on the opposite sides in
the description of a dynamical system. However, our discussion concerns ergodicity on
the leaves of the foliation given by the integrable system (e.g. the Lagrangian tori if we
have a complete integrable system), and therefore no paradox emerges.

5. Localization/concentration of plasmon resonances in electrostatics

We are now in a position to present one of our main results on the localization/concentra-
tion of plasmon resonances in electrostatics.

5.1. Consequences of the generalized Weyl law and quantum ergodicity

In the following, we let ox, F,, ,, signify the Liouville measure on F ¢)(x) := {F(x,:) =
(p(1),e)} C TF(0D). By the generalized Weyl law of Section 4, we can obtain the
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following result, which characterizes the local behaviour of the NP eigenfunctions and
their relative magnitude.

Theorem 5.1. Given any x € dD, let { xx s }5>0 be a family of smooth nonnegative bump
functions compactly supported in Bg(x) with faD Xp,s do = 1. Under Assumption (A),
when d > 3, fixing a compact convex polytope € C ¥ C RF™1 [r,s] C R, « € R and
P, q € 90D, there exists §(h) depending on €, p, q, r, s and o such that, as h — +0, we
have §(h) — 0 and

.....

.....

1+2
e Jruow EleGy d0p.Fa . he) de
- 142
fyz fF(l.e)(q) |§|g(y)a daq’F“vﬂ h(e)de

+ O‘C,r,s,p,q,a(1)7 5.1

where ¢; := ||¢} ”1_12—1/2(8D,da)' In particular, if @ = —1/2, the RHS term of (5.1) is the

ratio between the volumes of | J,c¢ F(1,¢)(-) at the respective points.

Proof. Taking p € 0D, we consider a(x,§) 1= xps (x)|€|;‘("x2)“ in (4.6). Since

Op, j, = h'*?*|D|"/>**0p, (4| DI"*** —hOpz
for some @, 5 € S?*(T*(dD)), after applying (4.6) once more upon &, s we have
PENT)
(2hyd+2 3 c,~ /3 @101 ) do )
AL (h),.... AL (h))elr.s]x€

Yps OELT2 do @ do™!

+ h/ Gpsdo®@do™" +oe,sa(l).  (52)
{(f1,n fOELrS]XE}

With (5.2), we find, after choosing another point ¢ € dD and taking a quotient between
the two, that

.....

.....

142 = ~ _
i soeinsixey X3 DEl (T do®AoT 4 [y iy sixey dps do®do

142 _
S toretrsicey Xas Dl Gy do®@do™"+h [y 4,

1

Sx)€Elr,s]x€} dg.s do®do™!
+ oersa(l).

.....
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Now, for any given &, we can choose §(/) depending on €, r, s, p, g, o such that as

h — 40, we have §(h) — 0 (much more slowly than /) and

51,,5(;,) do®do™ | + ‘h/ 5q,8(h) do @ do™!
{150, fiElrs1XE}

g/
' {(S10 Sr)€Elr.s]xEY

— 0.

We also find that as & — +0, with this choice of §(%) we have 6(h) — 0, and for y = p,q,

/ Xy,S(h)(x)|5|;—(:2)a do ®do™!
{(f15ees JR)E[r,S]IXE}

142w dU_l

- ]
f{(fl(y,v),...,fk(y,-))e[r,slxt’} £0)

Therefore,

.....

.....

1+2a dU_l

i tepnetrsiey Elg(n) o "
1+20 o1 €,rs,p.q.ell)

f{(fl(q,-) ,,,,, Ji(g,))€lr.s]x€} |E|g(q)

To conclude our proof, we observe that for all y = p, g,

|§|1+2a da*l
/{(ﬁ(y,~),...,fk(y,~))e[r,s]x€} £0)

s
— E—k/Z—Ot—d/ZdE) (/ f |§-|1+20{ doy F . h(e) de),
(/; F JF1.)(») £0) rre

where we recall h € L'(¥,de) and d — 1 — k is the generic dimension of F(1 ¢)()).
The proof is complete.

Theorem 5.1 states that, given p, g € dD, the relative magnitude of a c¢;-weighted
sum of a weighted average of ||D|"‘¢i |2 over a small neighbourhood of p compared
to that of g asymptotically depends on the ratio between the weighted volume of

{(f1(p. ), - fie(p. ) = (p(1), €) s e € €} and that of {(f1(q.)..... fk(q.")) =

(p(1),e) : e € €}. This is critical for our subsequent analysis since it reduces the study to

analyzing the aforementioned weighted volumes.

Theorem 5.2. Under Assumption (A), when d > 3, there is a family of distributions

{‘Du,e}ueMXFﬂg(F(l_e)),ee? C D'(0D x dD),

the Schwartz kernels of K, that form a partition of the identity operator Id:

Id = / / Ko dve(pie) de(e) (5.3)
F MXF,erg(F(l,(‘))
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in the weak operator topology, and for any given compact convex polytope € C (0, 00) X
F C RK, there exists S(h) € J(h) :={i e N : (/V1 (h),..., l;c(h)) € €} such that for all
¢ € C*®(dD), as h — +0,

/ go(x)(ci||D|—‘/2¢"(x)|2
oD

max
ieS(h)
_ / / (s )i (1) dve(ite) de(e)) do()| = oe(1). 54
F MXF,erg(F(l.e)
In (5.4),
gi(te) = ¢i (Ko IDI7V2¢" D720 120D do)

Y s | (5.5)
[ (k) dve(ue) dete) =1, SO — 14 oo,
F IMx p erg(F(1.e)) Zie](h)

and moreover

(p.e) = 0, /a n(p.eydo(p) = 1,

ot (Fer oy P(P-€) dVeie) _ Jruow 99Fae
fMXF.erg(F(IAe)) /’L(Q’ e) d])e (Me) '/'F(l,(l)(q) do—q’F(l'e)

(5.6)
a.e.-(do ® do)(p.q).

Proof. Let f,¢p € C*(3D) be given. Set a(x, £) := ¢(x). Then

/ §0dPLE,e :/ pdie.
FE.e Fi.e)

Take a partition of unity {y; } subordinate to {U; }. With an abuse of notation via identifi-
cation of points with the local trivialization { F; }, by Lemmas 4.8 and 4.9 we have

[Opg,n f1()

= X —y, h _ ’ d .
/;7/(O,oo)xMXF_crg(F(lﬂe));(/;:‘(Eve)e p((x—y.8)/ h)a(x. &) xi(x) f(x) dpe, )(x))
X 0Fy o (F1,e)h(@) ENTE D2 (dE @ dv)(E. i) de(e)

/r /(O,oo)xMX,,,grg(F(l,e))

— -1/2
x Xl:(/ﬂm wdue) (/F(Le) exp({(x —y, E 5)/h)x,(x)f(x)dﬂe(x))

X OF o (Fa.e)h(@EYTF D2 (AE @ dve)(E. j1p) de(e).  (5.7)
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On the other hand, considering Id = Op, , = Opg j (which is independent of /1), one can
show that

[Op1,, f1(»)

= X -y, h d e
A /(Om)xMXM(F“!e));( [ el /D) s ><x))

X 0F o (Fa,e)h(e) ENTF=DI2 (AE @ dve)(E. p.) de(e)

= —y, E-12gy /1 it )
/‘?7 /(.OaOO)XMXF&rg(F(l.e)) 2l:(/F(l.e) =p({x —y §)/ W31 (x).f (%) djre(x)
X 0F o) (F1,e)h(e) ENTF=DI2 (AE ® dve)(E. pe)de(e).  (5.8)

Defining X, (which is again independent of /) to be such that

e 100 = [T exptla =y B0 o £ ) diae )
(1,e)

(0,00) 1

X OF(.e) (Fa,e)h(e) EMTF=DI2 E(E),

by definition in the weak operator topology we have

Id = / / Ky, dve(pte) de(e).
F MXF.erg(F(l,e))

That is,
o F) 120y = / / (Koo S f 120000y dve (1) de (@),
F MXF‘erg(F(l,e))

whereas

(Opgnf. f)r2p,d0)

N / / (/ ¢ d”e) (Kue Jo FIL20D.do) dVe(ite) de.
7 MXF.erg(F(l,e)) F(l,e)

Recall that doF,, ,,(x,8)/0F (F(1,e)) = dite(x,§)dve(iee) is a probability measure. We
now apply the disintegration theorem to the measure dp(x, §)dve(iL.) and obtain a dis-
integration dtp ¢ (x,§)dve((e) ® do(p), where the measure-valued map (ite, p) = Up,e
is a dv, ® do-measurable function together with 1, o (F1,e) \ (F(1,¢)(p) N spt(e))) =0
a.e.-dv, ® do. Therefore,

(Opgnt f)r20p,d0)

- / [ / DKoo . 12Dy it e (dve ® d0)(jte. p) dee).
F MXF.erg(F(l,é’))XaD F(lve)
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Also observe that
/ Qdipe = / @dipe = 9(P)ipe(F1,e))-
F(]!e) F(l,lf)(p)

If we denote
u(p.e) = ppe(Fie) =0,

then a.e.-dve (jte), the function p(-, e) is in L1(3Q, do). As a result of disintegration we
have, a.e.-dve(ie),

. u(p,e)do(p) = pe(Fi,ey)) = 1.
Furthermore,

(Opg.nf. f)r200D.d0)
- / / P Ko f. ) 12(00.dy (Ve ® d0) (. x) dele).
F MXF.erg(F(l‘e))XaD

Finally, we choose f = ¢'(h) = |D|~1/2¢" and apply (4.14) to obtain the conclusion
of our theorem. Note that the choice of S(%) is independent of ¢ € C°°(dD). The ratio in
the last line of the theorem comes from the fact that a.e.-do (p) we have by definition

/ p(pe)dveue) = | e (Feto(p)) dve (1)
Mx  erg(F(1.0) X g ere(F(1.0)

B ./.F(lye)(p) dop,F .

‘/.F(l’e) dUF(],e)

(5.9)

The proof is complete. ]

Theorem 5.2 indicates that most of the function c; | |D|~12¢% (x) |2 weakly converges
to a g;(e)dve(pe)-weighted average of pi(x, e) on each leaf F(;.), where the ratio
between a dv, (uz)-weighted average of w(p, e) and that of (g, ¢) depends solely on
the ratio between the volume of F(; .)(p) and that of F(; ¢)(q).

For the sake of completeness, we also give the following corollary, which generalizes
a similar result in [2] and can be viewed as a generalization of quantum ergodicity over
the leaves of the foliation generated by the integrable system.

Corollary 5.3. Under Assumption (A), when d > 3, if the joint Hamiltonian flow given
by Xy, ’s is ergodic on F(1 ¢) with respect to the Liouville measure for each e € ¥, then
there is a family of distributions {®¢}ecy C D'(dD x ID), the Schwartz kernels of Ko,
that form a partition of the identity operator 1d:

Id:[ Kede(e) (5.10)
¥
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in the weak operator topology, and for any given compact convex polytope € C (0, 00)
C R, there exists S(h) C J(h) :={i € N : AL (h), ... ,)t;;(h)) € €} such that for all
¢ € C*®(AD), as h — +0,

/ ¢(X)(Ci\|D|_1/2¢i(x)|2 —/ GX’F(I"‘)(F(l’e)(x))gi(e) de(e)) do(x)
oD F

max
ieS(h) OF .o, (F1,e))
—oe(1). (.11
In (5.11), . .
gi(e) == ¢ (K| D729 D172 120D dor):
o (5.12)
/ g de@ =1, =0 _ oy,
¥ Yiesm !

Proof. The conclusion follows by noting that if the joint flow of Xy,’s is ergodic with
respect to of, ,, for each e € ¥, then 0F, ) € Mx erg(F(1,¢)) and we can take v =
80F(1,e) , the Dirac measure of 0F, ,) € Mx erg(F1,¢))- [ ]

By Corollary 5.3, we see that if the joint flow of Xy, is ergodic on F{; ) with respect to

the Liouville measure for all e € ¥, then most of the function c; } |D|~1/2¢% (x) }2 weakly
gi(e)

0F(1.¢e)(F1.e)

Therefore the value of the eigenfunction at x € dD goes high as the volume of F(; ¢)(x)

goes up for each leaf indexed by e € F.

converges to a -weighted average of the volumes of F(; .)(x) over e € F.

5.2. Localization/concentration of plasmon resonance at high-curvature points

From Theorems 5.1 and 5.2, it is clear that the relative magnitude of the NP eigenfunc-
tion ¢ at a point x depends on the (weighted) volume of each leaf F, (1,¢)(x). Therefore,
in order to understand the localization of plasmon resonance, it is essential to obtain a
better description of this volume. Again, similar to [2], this volume heavily depends on
the magnitude of the second fundamental form A(x) at the point x. As we will see in
this subsection, in general, the higher the magnitude of A(x), the larger the volume of
the characteristic variety. In particular, in a relatively simple case when the values of the
second fundamental form at two points are constant multiples of each other, we have the
following volume comparison.

Lemma 5.4. Let p,q € 0D be such that A(p) = BA(q) for some B > 0and g(p) = g(q).
Then | F1,¢)(p)| = BY72| F1.e)(q)|. Moreover,

1+2 _ pd—1+2 1+2
/ |é§-|g(p)a dop,Fi . =B * / |S|g(q)a dog,F e)-
F1.e)(p) F(1.¢)(q)

Proof. From the —2-homogeneity of H, we have H(p, §) = H(q, £/B), and therefore

{F(x,8) = (p(1),ea,...,ex)} = B{F(q,&) = (p(1),ea,...,ex)}, which readily yields
the conclusion of the theorem. ]
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Similar to [2], localization can be better understood via a more delicate volume com-
parison of the characteristic variety at different points with the help of Theorems 5.1
and 5.2 and Corollary 5.3. However, it is difficult to give a more explicit comparison of
the volumes of F(; ) (p) and F(; ¢)(q) depending on their respective second fundamen-
tal forms A(p) and A(g). The following lemma provides a detour to control how the
(weighted) volume of F(; ¢)(p) depends on the principal curvatures {«; p)}fz_ll.

Lemma 5.5. Ler G : 0D x R?™! — R be given as

GE(p. d—l) a1 ,|d-1+2a ‘§~2 2
D \Kisi=1 IZ/ KiQ:; Ko dwp.e,
* ' Mot fi (o X Bop=en 2y =
(5.13)
where
d—1
K=Y K —ki. (5.14)
Jj=1
Then
G (p. ki (P)}T) S/F ( )|§|§,§flf)“ dop F ., <2GE(p. ki (P)}Z]).  (5.19)
(1.e)\P

Proof. We first fix a point p and choose geodesic normal coordinates with the princi-
pal curvatures along the directions ;. In doing so, we can simplify the expression of
H(p, &) = 1. In fact, we then have

-1 5, d-l
H(p.§) = (ZKi(P)Siz) /(Z Slz) )
i=1 i=1

Due to the —2-homogeneity of H(p, §) with respect to &, we parametrize the surface
{H(p.£) = 1} by w € S¥72 with £(w) := r(w)w. Then we have

d—1
rw) =Y Kki(p)o?.

i=1

Now we substitute the above parametrization to obtain

k d—1
Fao) = {(.r@0w) 0 5972 fi(p.o Y w(po?) =al.
1=2 i=1

Writing the (d — 1 — k)-Hausdorff measure of the variety ﬂfzz{ fi(p,w 2,4:_11 KE)wf)
=¢yonS? 2 as

(dw)

dwp e = Snﬁ‘zz{weSd—%ﬁ(p,w Yo G (Ped)=er)
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and following a similar argument to that for [2, Lemma 4.5], we can show that

d—142a | 470 .
> ki(pPwldwp.

i=1

-1
‘Zlﬁ' (P)wiz‘

i=1

d—1

Y ki(p)widwp,.

i=1

d—1+2a

d—1
142 s
< [61%i3dop.r, . <2 Yk
i=1

The proof is complete. ]

By Lemma 5.5, we can readily see that in order to compare the ratios of the mag-
nitudes of the NP eigenfunctions, one can actually compare the ratios of the magni-
tudes of the principal curvatures at the respective point. For instance, if it happens that
min; |/<, (p)| > max; |/<, (¢)|, then it is clear that the weighted volume of F(; ¢)(p) is
much bigger than that at g.

In the next subsection, we discuss a motivating example which shows how the above
lemma can be simplified and provide a precise and concrete description.

5.3. A motivating example: Surface with rotational symmetry

In what follows, we discuss a motivating example, which illustrates how the knowledge
of another commuting Hamiltonian simplifies the understanding of the Hamiltonian flow
of our concern and provides an explicit description of eigenfunction concentration.

Example 5.6. Let D C R3 be convex and suppose G := {(§ 9) : U € SO(2)} C SO(3)
is such that G(D) = D, i.e. D (and hence dD) is invariant under the rotation group G.
Then, writing (x1, X2, X3, £1., £2, £3) for coordinates in 7*(IR3), we recall the Lie algebra
isomorphism

jisoB) ={AeR¥3: A4+ 47 =0} > R3,

0 —das an
as 0 —ay | = (a1, a2,as),
—dn aq 0

where j([A4, B]) = j(A) x j(B) is the three-dimensional cross product, and the moment
map
w:T*R?) — s0(3)*, u(x,£) =& xx.
Therefore the Hamiltonian that generates the one-parameter subgroup G C SO(3) is given
by
(n(x.§).€3) = (§ xx,(0,0,1)) = E1x2 — E2x1.

Now we define F = (f1, f2), where f1(x,§) = ﬁ(x, £) defined as above and

f2:T*@D) > R, fo(x.§) = (n(u(x.§)). €3).
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where ¢ : T*(dD) — T*(R3) is the canonical embedding. Notice that { f;, f;} = &;; for
i =1,2since G(3D) = dD and for all g € G, rotational symmetry gives g* H = H, and
hence { 1>, f1} = Xy, (H) = 0. Hence (f1, f») forms a completely integrable system.
Next we look at G¢, where e = e; € ¥ C R. Let us first consider the case when
e # 0. With this system, we find that the two principal curvatures satisfy, fori = 1,2,

ki(p) = ki(pz),
where D 3 p > (px, py, pz) € R? is the canonical embedding (which can be represented
via the parametrization X), and hence in (5.14),
K1(p) = k2(pz),  Ka(p) := Kk1(pz).

Moreover, for @ = (cos(8), sin(6)) € S!, let {v; (p)}i=1,2 € T,(0D) = T;(dD) be the
principal directions. Then A(p)v;(p) = ki (p)v;(p) in geodesic normal coordinates and
denoting (., £) = (px, Py, Pz, (Ep)x. (§p)y. (§p)2) € R with (v1(p)); = O (Which makes

the choice unique), we have f>(p, w 21-2:1 K;(p)w?) = ey if and only if
ez = (k2(pz)* cos*(0) + k1(pz)* sin®(6))
x (cos(0)((v1(p))x Py — (W1(P))y px) + sin(0) ((v2(P))x Py — (V2(P))y Px))
= (k2(pz)* cos*(9) + k1(pz)* sin®(0))

x sin(0 + 0(p))x \/ (W1(P)x Py — W2(P)y x)* + ((©2(P))x Py — W1 (P))y Px)
(5.16)

where

~ _1f Wi(P)xpy — (W1 (p)) px)
9 — 1 y y )
(p) = tan ((v2<p))xpy (D) s

The RHS term in (5.16) is invariant by the rotational action (recall g* f, = f, for all
g € G), and therefore is a function of (z,, ) only. 6 can now be found via the tangent-
half-angle formula and a solution to a sixth order polynomial. In any case, the solution set
is either an empty set if e, is large, or a set of a finite number of points. Let us also denote
by |e2|max the extremal value of |e;| such that the solution set of (5.16) is non-empty, i.e.

F = [_|92|max» |32|max]~

For a given (p;, e2), we denote by N(p;, e2) the number of solutions to (5.16). If 0 <
lez] < |e2|max> We can see that 1 < N(p;, e2) < 2 and the solutions have the same value
of cos(8). Denoting them as 0;(pz,e2),l = 1,..., N(p;, e2), we have, in (5.13),

Go(p. ik (P)Y22)) = 2(k2(p2) c0s? (01 (pz, €2)) + K1 (p2) sin® (61 (pz, 2))) >

x \Jia(2p)? O (61 (pz. €2) + k1 (2p)? sin? (01 (p. €2).

It is now clear that G2 (p, {k;( p)}izzl) increases separately when either of k1 (p), k2(p)

increases. We remark that when |e; | = |€2|max» the only solution to (5.16)is 8 =0ife; >0
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and § = wife, <0,i.e. N(p;,e2) = 1. We next check when e, = 0. If (py, py) # (0,0),
taking (v{(p)),; = 0, we only have # = —tan™! (;’—i), T — tan_l(%) that satisfies (5.16),
and hence

G (pAki(p)Yizy) = 261 (p2)> 2.

If px = py =0, we have k1(p) = K2(p) = k(p;), and however we choose the direc-
tions v; (p), (5.16) is satisfied for all 6 € [0, 27), and in that case

2
G (p. i (P)V2ey) = [O (p2)*+2% dB = 2mic(ps)* .

Again, we can see that in either situation G (p, {x;( p)}iz=1) increases separately when
either of k1 (p), k2(p) increases.

Next, we look more closely at the flow induced by X = on F(1¢,). We first focus on
the case 0 < |e2| < |e2|max- We denote by pz max,e, and pz min,e, respectively the largest
and smallest values of p, for (p,§) € F(j ¢,). Then we find that

Fl1,e5)
= U {(rr e cos@p: e)vi(p) + sin@(p:. e)va(p)) -

Pz e[Pz,min,ez yPZ,maxJ:z]

| = 1,...,N(pz,€2)}7

where r(pz, €2) 1= k2(zp)? cos?(01(pz. €2)) + k1(2p)? sin?(A (pz, e2)). Note that if p =
Dz,min,e; OF P = Dz max,e,» then 8 = 0 or 7 and p satisfies

lea| = ka2(pz)* /P2 + P2

where the RHS is again a function of p; only. One can show that on F(j ,,), we have
X5 = 0if and only if £ = 0. Assume that we start with (x,§) € F(; .,) and flow accord-
ingly with a; = (p(¢), £(t)). Then there exists an interval [s;, s»] containing 0 with
smallest length such that p,(s;) = p.(s2) = 0 (which coincides with that when p, =
Dz,max,e; OF Pz = Pz mine, )- Via reflection symmetry, forall 7 € R and n € Z we have

At—si+2n(sp—s1) = A—@—s1)+n(s2—s1) = dt—s;-

That is, a, is 2(s, — s1)-periodic and symmetric about s,. Hence the orbit of the flow
generated by X7 = 0 on F(,) can be either periodic or quasi-periodic. Note that if
Dzmine, < Pz < Dzmaxers then N(pz, ez) = 2; whereas, at p; = Pz max,e, OF Pz =
Dz,min,e,» We have 0;(p;, e2) = 0 or &, and hence N(p;, ez) = 1. Therefore, tracing
the points, we have

Fi,e,) = T2,

which is a smooth 2-dimensional surface. Moreover, only two cases are possible if 0 <
|82| < |e2|max:
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(1) When a Hamiltonian curve is periodic on T 2, a shift of the curve gives all the periodic
orbits of the Hamiltonian flow. Hence all the ergodic measures of X z on F(j ¢,) can
be indexed as {{i(1,e,).a}aef0,1) Where supp fi(1,e,),s contains the point (p, £) such
that

(px, Py, pz) = (V pyzc + p_)% COS(Zaeper), P)Zc + p)z; Sin(zaeper)v pz,max,ez)

with

0 — cos—l( Px(82) px(51) + Py (52) py(s1) )
b VPx(2)% + Py (522 px(51)% + Py (51)2

(2) When a curve is quasi-periodic on T2, the flow of X 7 1s ergodic on the torus T2 with
respect to the Liouville measure restricted to T 2.

If |ez| = |e2|max, we find that N(pz, e;) = 1, and
F(l,ez) = Sl.

If e, = 0, we can verify that N(p;, e2) = 2, and the solutions to (5.16) are 0 = /2, 7w/3.
The flow is periodic with 8yer = 7. We have

F(l,ez) = TZ»

and all the ergodic measures of X 7 on F(; .,) can be indexed as {j4(1,¢,),a }ael0,1) Where
SUPP [A(1,e,),a CONtains the point (p, £) such that

(Px»> Py, pz) = (,/p)% + p3cos(2ma), \/ p3 + pj sin(2wa), pz,max,62>~

Finally, we notice that in all the cases, the joint flow given by X ¢ is ergodic on F{y ¢,)
with respect to the Liouville measure for all possible values of (1, e») such that F; ) is
nonempty: this holds trivially when Fq ,) = S and if the flow of X 7 18 quasi-periodic
on F(je,) = T?2; and it holds when the flow of X is periodic on F(y ¢,) = T? since
G induces a transitive action on the index set {{t(1,¢,),a }ae[o,1)- Therefore Corollary 5.3
applies to obtain a density-one subsequence i € S(h) C J(h) of ci}|D|_1/2¢i(x)}2

. e2lmax Ox.F(1 o) (F1,e5)(%))
weakly converging to e s
y g g f7|e2|max GF(I,ez)(F(LEZ))

Gil/z(P, {Ki ([7)}1'2=1) =< Ox,F(1 ¢ (F(l,ez)(x)) = 2Gil/2(ps {Ki (p)}iz=1)’

gi(ez) de(ey) where

with Gfl/z(p, {ki ()}¢=}) in Lemma 5.5 given by

i=

G, (pAKki(P)Y=)

_ 2\//(2(21,)2 cos?(01(pz,e2)) + k1(zp)? sin?(01(pz,e2)) when e, # 0,
2k (pz) when e; = 0.

It is now clear that the absolute value of this function is separately increasing when each
of the «; is increasing.
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A direct check of the (singular) fibration 7 : {ﬁ =1} > F = [—|e2|max> |€2]|max]
with
T2 when |€2| < |€2,max|a

7 (e = {

S!  when |ez| = |€2.max|,

shows that
{H =1} = §(S?) = SO(3) =~ RP3

via diffeomorphism where S(S?) is the sphere bundle of S2. Via the well known Gysin
sequence, we obtain

H({H =1:7) =Z, H'({H =1}:2) =0,
H?({H =1::2)=2/2Z, H*{H =1}:2) =Z.

Now, one can verify that

| #7'(e2) = S" U(T? x (—lezmax: le2lmax)) US" = S(S?).

ere¥F

Remark 5.7. Our previous description and analysis may extend to systems that are nearly
integrable via a perturbation analysis. Here, the system is given as a Kolmogorov non-
degenerate perturbation of a (completely) integrable system (of class at least C2(d—1D-)
via a classical KAM theory [35,48,49]. In such a case, if k = n = d — 1, it is known
that for an e-perturbation of the system, the flow will stay quasi-periodic on the surviv-
ing invariant Lagrangian tori which foliate/occupy 1 — O(4/¢) of the space. The invariant
measures will then be localized on the surviving invariant Lagrangian tori. The dynamics
in the remaining O(/€)-space may on the other hand be complicated, e.g. Arnold diffu-
sion may occur. However, when d — 1 = 2, i.e. d = 3, a topological obstruction prevents
the Arnold diffusion from happening.

In the previous example with rotational symmetry with d = 3, we may perturb a
rotational symmetric shape to a shape of a thin rod, and our result echoes that in [20].

6. Localization/concentration of plasmon resonances for quasi-static wave
scattering

In this section, we extend all of the electrostatic results to the quasi-static case governed
by the Helmholtz system. We refer to [2] for the discussion of the physical background;
moreover, by following the treatment therein, the concentration result in the quasi-static
regime can be obtained by directly modifying the relevant results in the previous section.
Hence, in what follows, we shall be brief in our discussion.

Let g9, (Lo, €1, 41 be real constants and assume that g and (¢ are positive. Let D be
as in Section 1, and set

1o = w1 x(D) + pox(R?\ D), ep = e1x(D) + eox(RY \ D).
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Let w € R4 denote the angular frequency of the operating wave. Set ko := w /g Lo and
ki := o /e1py with Jk; > 0, j =0, 1. Let uo be an entire solution to (A + k%)uo =0

in R?. Consider the Helmholtz scattering problem for u € H, loc 1 (R9):
V. ( 1 V”)+Q)28DM=O ian, o
(8|x| 1ko)(u ug) = o(|x|~@=D/2)  as|x| - co. :

Henceforth, we assume that w < 1, or equivalently k¢ < 1, which is known as the quasi-
static regime.
Let

Ti(x = y) i= Cqlklx = y)"“22H o (klx = y)) (6.2)

be the outgoing fundamental solution to —(A + k2), where C, is some dimensional con-
stant and H( d—2)/2 is the Hankel function of the first kind and order (d — 2)/2. We
introduce the following single-layer and NP operators associated with a given wavenum-
berk € Ry:

Siplp)(x) := /313 Tre(x = y)¢(y)do(y), xeaD, (6.3)

(K [g](x) = /a 0T =)0 do(y). ¥ € 0D, (6.4)

Following the discussion in [2], in the spirit of (1.8), we consider the following gener-
alized plasmon resonance problem when w € R : find a nontrivial ¢ € H~'/2(3D, do)
such that for some m € N,

Mo (6.5)

Here, (g1, ;t1) is said to be a (pair) generalized plasmonic eigenvalue. We emphasize that

m must be finite in the equation. When m = 1, we refer to this problem as the plasmon

resonance problem for v € R4, and (g1, j41) as a (pair) generalized plasmonic eigenvalue.
The following two lemmas in [2] characterize the plasmon resonance when v < 1.

Lemma 6.1. Under Assumption (A) and supposing o < 1, a solution

((MO» M1, €0, 81,(1)), m, ¢M0,,&L1,€o,€1,a),m)

to (6.5) with unit L?-norm has the following property for all s € R:
“|D|S¢Mo,m,80,81,w,m - |D|s¢i ”CO(BD) = Oi,S(G)2),
A’(/1/() sM] ) Oi(wz)s

or some eigenpair (A}, ¢') of the Neumann—Poincaré operator ,and m < m;, where
genpair (A', ¢") of the N P perator K3, and m < h
m and m; signify the algebraic multiplicities of A and A;, respectively.
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Lemma 6.2. Given any nonzero A; € o(Kj,) and for any ([io, fi1) € D; := {(to, jt1) €
C2\{(0,0)} : MEgt, a7h = A o — i1 # 0} (Which is nonempty), there exists 0 <
w; K 1 such that for all v < w;, the set

{(o. f1.60.€1) € C*\ {io — 1 = 0} x (C \ R : there are m € N, ¢ € H~V/?(dD, o)
such that ((Lo, L1, €0, €1, W), ¢, m) satisfies (6.5)}

forms a complex codimension 1 surface in a neighbourhood of (fig, [1).

By Lemma 6.2, we easily see that there are infinitely many choices of (e1, t1) such
that the (genearalized) plasmon resonance occurs around Al Combining this with a sim-
ilar perturbation argument as in the proof of Lemma 6.2, our conclusion on the plasmon
resonance in the electrostatic case transfers to the Helmholtz transmission problem to
show concentration of plasmon resonances at high-curvature points.

Theorem 6.3. Given any x € 0D, let { ) 5}s>0 be a family of smooth nonnegative bump
Sfunctions compactly supported in Bg(x) with faD Xp,s do = 1. Under Assumption (A),
when d > 3, fixing a compact convex polytope € C ¥ C R [r,s] C R, « € R and
p,q € 0D, we have a choice of §(h) and w(h), both depending on €, p, q and «, such
that for any w < w(h), there exists

((I’LOJ M1, €0,k E1,i, @), My, ¢uo,isul.i,eo.i,SL.i,w,Mi)

solving (6.5), and as h — +0, we have §(h) — 0, w(h) — 0 and

2
Z(A’i(h),...,xi;(h))e[r,s]xtf ¢ Jop Xp,S(h)(x)| DI o ipr.ieoser.iwm; (x)| do(x)

2
2 0 ()b, iy elrsie Ci Jop Xa.8@ DI bug s1a1 5,601,610 1.0m; (¥)] O (X)
142
_ s fF(l_e)(p) |5|g(y)a dop,F ., h(e)de
= 12
7 fF(],e)(q) Ele(y) d9a.Fa e hie) de

+ 0€,r,s,p,q.a (1 ) )

where ¢; := |¢*| Here, the o-term depends on €, r, s, p, q and a.

-2
H-1/2(3D,do)’

Proof. From Theorem 5.1, we have a choice of §(/) depending on €, p, ¢ and « such
that, for any given & > 0, there exists s depending on €, p, ¢, @ such that for all i < hy,

.....

2R (B k. (RY)elrs]E Ci Jop Xq.8a (I D]* ¢! (x)|? do
142
[z fF(l.e)(p) |§|g(y)a dop,F ., h(e)de . iy
o f f |£_-|1+20td h( )d =& ( . )
7 JFq.0(@ 151g(y) 494.Fa.e 1) G€

Now for each i < hg, from Lemma 6.2, there exists

a(h) = - min w;
{ieN: (A (h),....A} (h)€C}
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such that for all w < w(h), there exists

((Mo,i yM1,is€0,i5E1,is (,0), mi, ¢;,L0!i,ul,i,sosj,slsi,w,m,‘)

solving (6.5). By Lemma 6.1, upon rescaling ¢y, ; ., ;.e0..61..0.m; (Without relabelling
it), we have

H |D|a¢l/«0‘i,//«1v,’,80vi,81'i,w,m,’ - |D|a¢l “CoG)D) E Ci,awzc

In particular, we can choose a smaller w(h) < @(h) depending on €, r, s, p, ¢, @ such
that for all w < w(h), we have

2 P12 _
1DV Bra ssan 200100 |- = [IDI%0" [ coapy = 10776/ 0,
where
-2
0:= ¢i /min {1. min {( %) )
B i/min (L ominy ()2 :
()V](h) ..... )\}C(h))e[r,s]x‘e ()L’l(h) ..... )L}\,(h))e[r,s]x‘(f

and
B = /a 11D ) do.

Therefore, with this choice of w(h) we have, for all w < w(h),

2
X0 .t petrsixe i Jap Xp s D1 Puo s i.20..61.1.0.m; (¥)]” do(x)

2
220 (.o, (wyelrsixe € Jap Xa 5 CO|ID1%Bpug iy i 00,001 40m; (X)|” dor (x)
1+2
J5 Ira.0 Elt) 49p.Fa.e h(e) de

_ <e.  (6.7)
1+2 =
qu fF(l,e)(q) |§|g(+y)a dog,F ., h(e)de
Combining (6.7) with (6.6) readily yields our conclusion.
The proof is complete. u

In a similar manner, we obtain the following result.

Theorem 6.4. Under Assumption (A), when d > 3, given a compact convex polytope
€ CRxF CRK, there exists S(hy C J(h) :={i e N : ()L"l(h),...,kj;(h)) € €} and
w(h) such that, for all ¢ € C*°(dD) and any @ < w(h), there exists

((Hois 115 80,5 1,05 @) Mis pug sy 1,601,610 m; )

solving (6.5) such that as h — +0, we have w(h) — 0 and

max
ieS(h)

_ 2
/Z;D (P(x) (Ci“D| 1/2¢Mo,i,ul,i,Eo,i,El,i,w,mi (x)i

- u(x,e)g,-(wdve(mde(e))do(x) — o). (68)
F IMx e (F(1.e)
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Here, S(h), {gi : Upes Mxpere(F1,e)) = Clien and u(p, e) are as in Theorem 5.2. In
particular,

‘fMXF,erg(F(l.e)) :u(p’E)dUe(Me) . fF(l.e)(P) dUP’F(l,e)
fMXF,erg(F(l,e)) 11(g; €) dve(fte) fF(l,e)(q) qu,F(]!e)

If the joint Hamiltonian flow given by Xy, ’s is ergodic on F(y ) with respect to the Liou-
ville measure for each e € ¥, then

a.e-(do ®@do)(p,q).

max
ieS(h)

_ 2
/BD @(x) (Ci||D| 1/2¢P«0,i,Ml,i;€0,5a51,5>w>mi (x)|

_ f O-X,F(Lg) (F(l,e)(x))
F o-F(]Vg)(F(l,e))
where {g; : ¥ — C}ieN is now defined as in Corollary 5.3.

gi(e) de(E)) do(x)| = oe(),

Proof. Let € be a compact convex polytope and ¢ € C*°(dD). Given ¢ > 0, by Theo-
rem 5.2, considering A small enough such that for all 1 < kg, we have

/ ¢<x>(c,-||D|—“2¢f<x>|2
oD

max
ieS(h)

<e.

- / / 1, )i (1e) dve(ite) de(e)) do(x)
F MXF,erg(F(l,e))

Now, for each & < hg, from Lemma 6.2, there exists @ (h) = min {min;egs() w;, 1} such
that for all @ < @(h), there exists

((Mo,i M1, €0,k €1, @), My, ¢M0,i>ﬂ«l,i’e(),i’al,iawami)

solving (6.5). By Lemma 6.1, again upon rescaling ¢ ;,u, ;80,1 ,¢1.i,0,m; (Without rela-
belling it), we have

max c¢;
ieS(h)

/3 ] so(x)(uDr%"(x)}z DI s 011 o <x>|2) do(x)

< Cswllellcoppy@®.  (6.9)

We may now choose
a)(h) < min {8, 65(}1), CB(h)/Cs(h)}.
Then for all w < w(h), we finally infer from (6.9) and Corollary 5.3 that

_ 2
max / (p(x)(c,-||D| 1/2¢M0,i’ﬂl,i,EO‘inI.iywsmi(x)’
ieS(h) |JoD
- €18 ) dveae) @) ) do ) < (1 + o)
F IMx p erg(F(1.e))
The proof is complete. u

We remark that a similar conclusion holds for the explicit motivating example dis-
cussed in Section 5.3 in the quasi-static case when w < 1, which we choose not to repeat.
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