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Abstract. We prove that solutions to linear wave equations in a subextremal Kerr–de Sitter space-
time have asymptotic expansions in quasinormal modes up to a decay order given by the normally
hyperbolic trapping, extending the result of the second named author (2013). The main novelties
are a different way of obtaining a Fredholm setup that defines the quasinormal modes and a new
analysis of the trapping of lightlike geodesics in the Kerr–de Sitter spacetime, both of which apply
in the full subextremal range. In particular, this reduces the question of decay for solutions to wave
equations to the question of mode stability.

Keywords: subextremal Kerr–de Sitter spacetime, resonances, quasinormal modes, radial points,
normally hyperbolic trapping.

1. Introduction

Kerr–de Sitter metrics are Lorentzian metrics (which we take of signature .�;C;C;C/)
on Rt� � .0;1/r �S

2 solving Einstein’s equation Ric.g/Dƒg with a cosmological con-
stant ƒ > 0. They depend on three parameters: apart from the cosmological constant ƒ,
these are the mass m > 0 and the angular momentum a 2 R of the black hole the metric
corresponds to. Here the ‘black hole’ nature corresponds to the presence of certain null-
hypersurfaces, called horizons, which for the Kerr–de Sitter metrics lie at certain values
of r . The metric is given in terms of a quartic polynomial �, and the three parameters
then have to satisfy an additional condition, namely that � has four distinct real roots; the
significance of this condition is due to the horizons lying at the roots of �. Kerr–de Sitter
metrics corresponding to these parameters are called subextremal.

In [21], the wave equation on Kerr–de Sitter spacetimes was analyzed for a large but
not complete range of the parameters by showing that it fits into the Fredholm framework
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based on microlocal analysis developed there; the result was an expansion of solutions
of the wave equation into a finite number of terms, corresponding to quasinormal modes
described below in Section 1.2, modulo an exponentially decaying tail. That paper then
formed the basis of the approach to non-linear wave equations by Hintz and Vasy [12,13]
which culminated in the proof of the stability of slowly rotating Kerr–de Sitter black holes
in [14]; the first black hole stability result without symmetry assumptions. The purpose
of this paper is to complete [21] by extending its results to the full subextremal range.
In particular, we show, in the full subextremal range, the expansion of solutions of the
wave equation into a finite number of terms, given by quasinormal modes, modulo an
exponentially decaying tail, see Theorem 1.6. While for linear equations the question
whether any of these quasinormal mode terms is non-decreasing is irrelevant, it becomes
highly relevant for non-linear wave equations, where the absence (perhaps apart from cer-
tain well-understood ones) of quasinormal modes corresponding to non-decaying terms
is called mode stability, see Section 1.2.

It turns out that the additional limitations of [21] had two separate origins. The basic
approach of [21] was to Fourier transform the wave operator along the Killing vector
field �@t� to obtain a family of operators, P� , depending on the Fourier dual variable � .
These operators are non-elliptic, hence their analysis involves the Hamilton flow in the
characteristic set of the principal symbol. One of the additional assumptions in [21],
denoted by (6.13) there, was to ensure that for each � 2 C, P� satisfies a non-trapping
condition; it was shown there that indeed in the limiting case of (6.13), trapping appears.
It was shown that under this classical non-trapping condition the family P� is Fredholm
for each � with the analytic Fredholm theorem applicable. The other additional assump-
tion of [21] concerned the behavior of the familyP� for � with large real part and bounded
imaginary part, namely in this large parameter (or as rescaled there, semiclassical) sense,
which is stronger than the fixed � consideration, the only trapping is normally hyperbolic
trapping; this corresponds to the photon sphere when a D 0. This semiclassical normally
hyperbolic trapping assumption was shown under the additional condition (6.27) in [21],
namely that jaj <

p
3
2
m. We recall that, with a basic microlocal analysis background, the

analysis of [21] was self-contained apart from using the normally hyperbolic trapping
analytic results (estimates for a microlocalized at the trapping version of P�1� ) of Wunsch
and Zworski [23]. Normally hyperbolic trapping has since been investigated in numerous
papers [6,7,11,18], giving a more precise version of [23], but for the present purposes [23]
still suffices.

In this paper, we remove these limitations in two steps. First, we change the Killing
vector field with respect to which we perform the Fourier transform. It turns out that for
an appropriate choice of the Killing vector field, the Fourier transformed operator P� is
classically non-trapping in the full subextremal range. Second, we show that in fact the
semiclassical normally hyperbolic trapping holds in the full subextremal range as well.
Since these were the only two additional limitations in [21] in the subextremal range,
this immediately implies that all of the results of [21] in fact hold in the full subextremal
range.
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While in this paper we focus on the scalar wave equation, the changes when turning
to tensorial wave equations in general are minor, as already shown earlier in [14], mainly
affecting certain threshold quantities. We will discuss this elsewhere.

As a comparison, we mention that it has been known for some time that the full subex-
tremal range for the vanishing cosmological constant (ƒ D 0) Kerr spacetime, jaj < m,
behaves in the same way as for small jaj, see [2, 3, 5, 8, 20] and references therein, and
even mode stability is known there, see [1, 20, 22] and references therein.

1.1. Kerr–de Sitter spacetimes

We now describe the subextremal condition in more detail. The polynomial � is given by

�.r/ WD .r2 C a2/
�
1 �

ƒr2

3

�
� 2mr;

and the subextremality condition is that it has four distinct real roots

r� < rC < re < rc ;

which is equivalent to the discriminant condition

�

�
1C

ƒa2

3

�4� a
m

�2
C 12

�
1 �

ƒa2

3

�
ƒa2 C

�
1 �

ƒa2

3

�3
� 9ƒm2 > 0: (1.1)

It follows that there is a unique r0 2 .re; rc/, such that

�0.r0/ D 0:

As we will see, r0 will play a crucial role in choosing the Killing vector field for the
Fourier transform. The domain of outer communication M in the subextremal Kerr–
de Sitter spacetime is given (in Boyer–Lindquist coordinates) by the real analytic space-
time

M WD Rt � .re; rc/r � S
2
�;�

with real analytic metric

g D .r2 C a2 cos2.�//
� dr2

�.r/
C

d�2

c.�/

�
C

c.�/ sin2.�/
b2.r2 C a2 cos2.�//

.adt � .r2 C a2/d�/2

�
�.r/

b2.r2 C a2 cos2.�//
.dt � a sin2.�/d�/2;

where

b WD 1C
ƒa2

3
; c.�/ WD 1C

ƒa2

3
cos2.�/:

One easily verifies that this metric extends real analytically to the north and south poles
� D 0; � .
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The Boyer–Lindquist coordinates are singular at the roots of �. We therefore extend
this metric real analytically over the future event horizon and the future cosmological
horizon, corresponding to the roots r D re and r D rc , respectively. One way to do this is
by the following coordinate change:

t� WD t �ˆ.r/; �� WD � �‰.r/;

where ˆ and ‰ satisfy

ˆ0.r/ D b
r2 C a2

�.r/
f .r/; ‰0.r/ D b

a

�.r/
f .r/;

where
f W .re � ı; rc C ı/! R

is a real analytic function such that

f .re/ D �1; f .rc/ D 1: (1.2)

The new form of the metric is

g� D .r
2
C a2 cos2.�//

1 � f .r/2

�.r/
dr2

�
2

b
f .r/.dt� � a sin2.�/d��/dr

�
�.r/

b2.r2 C a2 cos2.�//
.dt� � a sin2.�/d��/2

C
c.�/ sin2.�/

b2.r2 C a2 cos2.�//
.adt� � .r2 C a2/d��/2

C .r2 C a2 cos2.�//
d�2

c.�/
; (1.3)

which extends real analytically to

Rt� � .re � ı; rc C ı/r � S
2
��;�

:

The two real analytic lightlike hypersurfaces

HCe WD Rt� � ¹reº � S
2
��;�

; HCc WD Rt� � ¹rcº � S
2
��;�

are called the future event horizon and future cosmological horizon, respectively. Note that
the real analytic Killing vector fields @t and @� , in Boyer–Lindquist coordinates, extend
to real analytic Killing vector fields @t� and @��

over the horizons.

Remark 1.1. We claim that there is a real analytic choice of f , such that the constant t�
hypersurfaces are everywhere spacelike. It is straightforward to check that this is equiva-
lent to

1 �
a2�.r/

.r2 C a2/2
> f .r/2: (1.4)
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The left-hand side in (1.4) is indeed positive, since �.r/ < r2 C a2 for r > 0. Let

f0W .re � ı; rc C ı/! R

be any real analytic function satisfying (1.2) and write

f .r/ D f0.r/C �.r/f1.r/:

The function f satisfies (1.2) for any choice of real analytic function

f1W .re � ı; rc C ı/! R:

Define

f˙.r/ WD �
f0.r/

�.r/
˙

1

�.r/

s
1 �

a2�.r/

.r2 C a2/2

for any r … ¹re; rcº. Note that f� has a continuous extension on .re � ı; rc/ and fC has
a continuous extension on .re; rc C ı/, and

lim
r#re

fC.r/ D1 D � lim
r"rc

f�.r/:

Condition (1.4) becomes

f1.r/ 2

8̂̂<̂
:̂
.f�.r/;1/; r 2 .re � ı; re�;

.f�.r/; fC.r//; r 2 .re; rc/;

.�1; fC.r//; r 2 Œrc ; rc C ı/:

There are many real analytic functions f1 satisfying this condition, making sure that the
constant t� hypersurfaces are everywhere spacelike.

1.2. Main result

Assumption 1.2.
� Let .M�; g�/ be a subextremal Kerr–de Sitter spacetime, extended over the future

event horizon and the future cosmological horizon, where

M� WD Rt� � .re � ı; rc C ı/r � S
2
��;�

;

with ı > 0 small enough so that the boundary hypersurfaces

Rt� � ¹re � ıº � S
2
��;�

; Rt� � ¹rc C ıº � S
2
��;�

are spacelike and with f chosen as in Remark 1.1 so that the hypersurfaces

¹t� D cº � .re � ı; rc C ı/r � S
2
��;�

are spacelike for all c 2 R.
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� Let A be a smooth complex valued function on M� such that

@t�A D @��
A D 0:

We let P be the linear wave operator given by

P D �C A:

For any subset U �M�, we use the notation C1.U/ and C!.U/ for the smooth and
real analytic complex functions on U, respectively.

1.2.1. Quasinormal modes. One of the main novelties in this paper is a new definition
of quasinormal modes. More precisely, we define the quasinormal modes with respect to
a different Killing vector field than in previous literature. As mentioned above, there is
a unique r0 2 .re; rc/ such that

�0.r0/ D 0:

Definition 1.3 (Quasinormal mode). A complex function

u 2 C1.M�/

is called a quasinormal mode, with quasinormal mode frequency � 2 C, if�
@t� C

a

r20 C a
2
@��

�
u D �i�u and Pu D 0:

Quasinormal modes and mode frequencies are also called resonant states and resonances.

This certain choice of r0 is important in order to get a Fredholm theory for the induced
mode equation, which applies in the full subextremal range.

Remark 1.4. We can write any quasinormal mode as

u D e�i�t�v� ;

where �
@t� C

a

r20 C a
2
@��

�
v� D 0:

Our first main result is the following.

Theorem 1.5 (Discrete set of quasinormal modes). Let .M�; g�/ and P be as in Assump-
tion 1.2. Then there is a discrete set of quasinormal mode frequencies. More precisely,
there is a discrete set A � C such that

� 2 A

if and only if there is a quasinormal mode

u 2 C1.M�/

with frequency � . Moreover, for each � 2 A, the space of quasinormal modes is finite-
dimensional. If the coefficients of P are real analytic, then the quasinormal modes are
real analytic.
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The discrete set of quasinormal modes on the Kerr–de Sitter spacetime is analogous
to eigenfunctions of an elliptic operator on, e.g., a compact manifold without boundary.
The quasinormal mode frequencies are analogous to the corresponding eigenvalues. Just
as eigenvalues and eigenfunctions depend on the operator, i.e., generally change when the
coefficients change, the quasinormal modes and frequencies of course also depend on the
operator.

This theorem is proved in Section 2 by showing that � 2 A is equivalent to the lack
of invertibility of a certain Fredholm operator P� . Since P� depends analytically on � in
the appropriate sense, the analytic Fredholm theorem guarantees the discreteness of A.

A difference between the eigenfunctions and eigenvalues of elliptic self-adjoint oper-
ators and the present case is that the meromorphic family P�1� can have higher-order
poles, though they are finite rank. These Laurent coefficients then give rise to generalized
quasinormal modes which play a role in the asymptotic expansion of solutions of wave
equations below.

While the Killing vector field in the definition of quasinormal modes may seem curi-
ous, and thus the condition on v� in Remark 1.4 odd, one way to think about this, and
indeed this is how the proof proceeds in Section 2, is to change coordinates, namely
replace �� by

 � D �� �
a

r20 C a
2
t�;

while keeping t� unchanged (but call it �� D t� for clarity). In the new coordinates, the
quasinormal modes are functions of the new ‘spatial’ variables, r , � ,  �, i.e., are annihi-
lated by @�� . One can think of this step as a refinement of the earlier coordinate changes
(namely, the introduction of t�, �� in place of t , �) that were necessitated by the hori-
zons. While the metric is already well behaved after those coordinate changes, thus the
wave operator has smooth coefficients and is non-degenerate, the solvability theory for
non-elliptic operators is much more intricate than for elliptic operators, and this further
refinement plays a key role in the analysis.

1.2.2. Asymptotic expansion. Our second main result concerns the behavior of solutions
to the wave equation. For the statement of this, we use the standard Sobolev spaces based
on the cylindrical geometry of M�, i.e., use the vector fields @t� , @r and vector fields on
the sphere. For instance, considering

.re � ı; rc C ı/r � S
2
�;��
� R3y

as spherical coordinates, for non-negative integers s, we simply have

kuk2xH s D
X

jCjˇ j�s

k@
j
t�
@ˇyuk

2
L2.M�;dg�/

:

Here the bar over H corresponds to Hörmander’s notation for extendible distributions,
see [15]. We remark that if one compactifies M� via replacing t� by T� D e�t� , adding
T� D 0 as an ideal boundary, then these spaces are Melrose’s b-Sobolev spaces, see [17],
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which is how the result was phrased in [21]. Changing to the variables .��; �/ leaves this
definition unchanged, up to equivalence of norms, i.e., we could equally well write, with
.re � ı; rc C ı/r � S

2
�; �
� R3z being spherical coordinates,

kuk2xH s D
X

jCjˇ j�s

k@j��@
ˇ
z uk

2
L2.M�;dg�/

:

We then have the following.

Theorem 1.6 (The asymptotic expansion of waves). Let .M�; g�/ and P be as in As-
sumption 1.2 and let t0 2 R. There are C; ı > 0 such that for 0 < " < C and

s >
1

2
C ˇ";

where ˇ is defined in (2.3), any solution to

Pu D f

with f 2 e�"t� xH s�1Cı.M�/ and with supp.u/[ supp.f / � ¹t� > t0º has an asymptotic
expansion

u �

NX
jD1

kjX
kD0

tk� e
�i�j t�vjk 2 e

�"t� xH s.M�/;

where �1; : : : ; �N are the (finitely many) quasinormal mode frequencies with

Im �j > �"

and kj is their multiplicity, and where e�i�j t�vjk are the C1 (generalized) quasinormal
modes with frequency �j which are real analytic if the coefficients of P are such.

Theorem 1.6 implies that we always have decay apart from finitely many terms. More-
over, decay for all solutions u is equivalent to proving that

Im.�/ < 0

for all � 2 A. On the other hand, decay for all solutions to the zero resonance amounts
to proving that for all � 2 A n ¹0º, one has Im.�/ < 0, and in addition � D 0 is sim-
ple (with thus no generalized quasinormal modes). This is what is commonly known as
mode stability for the operator P , which in general will depend strongly on the lower-
order terms. For this, only the relatively simple case of small jaj is known, see Dyatlov’s
paper [4]: for the wave operator, if a D 0, this (in the second sense, corresponding to
decay to constants) can be shown explicitly, and if jaj is small, it follows by perturbation
stability of the Fredholm setup; for the Klein–Gordon operator of small positive mass
parameter the first (full decay) statement holds for small jaj. We remark that recently
mode stability was extended to a larger range of parameters by Casals and Texeira da
Costa [1].
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1.2.3. Quasilinear wave equations. In fact, our results immediately make the methods
of [13] on solving quasilinear equations applicable in the extended range of parameters.
That paper uses the compactification M� of M� by adding e�t� as a boundary-defining
function, mentioned above, to define the b-Sobolev spaces (which we here write as xH ,
following the discussion above), and b-differential operators Diffb; here we merely state
a simplified result as an illustration. Using .t�; y/ as above, du D .@t�u; dyu/, for each
p D .t�; y/ we have an inner product gp.u.p/;du.p// on TpM , where gpWR˚ T �pM !
S2T �pM depends smoothly, up to the boundaries r D re � ı, r D rc C ı, on p via y
(or indeed via .z; e���/), and we consider the quasilinear wave equation

�g.u;du/u D f C q.u; du/

for real-valued u, with q being a polynomial in u, @t�u, @yu with vanishing zeroth and
first-order terms, and with real coefficients that are smooth functions of y (or again
.z; e���/). The weighted version of the Sobolev spaces is simply xH s;˛ given by u 2 xH s;˛

if e˛t�u 2 xH s . For instance, Theorem 4 of [13], in a simplified form (corresponding
to Theorems 1 and 2 there) but with an extended range of parameters, becomes the fol-
lowing.

Theorem 1.7 (cf. [13, Theorems 1 and 4]). Let .M�; g�/ be a subextremal Kerr–de Sitter
spacetime, and consider Lg.u;du/ D �g.u;du/ with g.0; 0/ D g�. Suppose further that
L0 D Lg.0;0/ is such that L0 has a simple resonance at 0 (i.e., the associated Fredholm
operator’s inverse has a simple pole), with resonant states spanned by constants, and no
other resonances in Im � � 0, i.e., that mode stability in the second sense holds. Suppose
that q.u0; du0/ D 0 for a fixed constant u0. Let s 2 R.

Then, with d D 12, for ˛ > 0 sufficiently small: If f 2 xH1;˛ is real valued with
a sufficiently small xH 2d;˛-norm (depending on s), then the equation Lg.u;du/u D f C

q.u; du/ has a unique, smooth in M�, real valued, global forward solution of the form
uD u0 C zu, where zu 2 xH s;˛ , u0 D c�, c is a constant and � 2 C1.M�/ is identically 1
for large t�.

2. The Fredholm setup

The goal of this section is to prove Theorem 1.5. This generalizes [21] by removing the
assumption �

1 �
ƒa2

3

�3
> 9ƒm2; (2.1)

which was required in [21]. In fact, (2.1) was stated in [21, (6.13)] as the equivalent
condition

r0 2 .re; rc/; �0.r0/ D 0 ) a2 < �.r0/;

i.e., that the maximum point of � in the domain of outer communication is larger than a2.
This will not be necessary in the analysis we present below. Vasy considered in [21] the
operator

yP�u WD e
i�t�P.e�i�t�u/;
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for � 2 C, where t� is as above (or a slight modification with similar properties), and u
only depends on the remaining coordinates .��; r; �/. This corresponds to the condition

@t�u D 0:

One may therefore consider yP� as a linear second-order differential operator

yP� W C
1.L�/! C1.L�/;

where
L� WD ¹t� D 0º � .re � ı; rc C ı/r � S

2
 �;�
�M�:

In [21], it was shown that yP� is a Fredholm operator between appropriate Sobolev spaces,
assuming (2.1). If (2.1) is violated, the Fredholm theory of [21] does not apply to yP� .
The main reason for this is that there are trapped bicharacteristics of yP� in T �.L� \M/

if a is too large. This is closely related to the fact that the ergoregions of the event horizon
and cosmological horizon intersect for large a. In order to avoid this, we will construct
another operator P� , which has similar properties in the full subextremal range as yP� has
for a satisfying (2.1). For this, we first introduce a new coordinate system .��; r;  �; �/,
where �

��
 �

�
WD

 
t�

�� �
a

r2
0
Ca2

t�

!
(2.2)

with r0 2 .re; rc/ being uniquely defined by

�0.r0/ D 0:

Note that
@�� D @t� C

a

r20 C a
2
@��

; @ �
D @��

are both Killing vector fields since a and r0 are constant. A better choice than yP� is to
consider the operator

P�u WD e
i���P.e�i���u/ D ei�t�P.e�i�t�u/;

where u only depends on coordinates . �; r; �/, i.e.,

@��u D
�
@t� C

a

r20 C a
2
@��

�
u D 0:

Even though ��D t�, we get a quite different induced operatorP� on the modes, assuming
@��u D 0 instead of @t�u D 0. We conclude that

P� W C
1.L�/! C1.L�/

is a linear differential operator of second order, where we note that indeed

L� D ¹�� D 0º � .re � ı; rc C ı/r � S
2
 �;�

:
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The principal difference to yP� is that the there are no trapped bicharacteristics of P� in
T �.L� \M/ for any parameters in the subextremal range, see Lemma 2.4 below.

This will be used to prove that P� is a Fredholm operator between appropriate spaces,
which is the main step in proving Theorem 1.5. In order to formulate the Fredholm state-
ment, define ˇe; ˇc 2 R as

ˇe=c WD ˙2
�
1C

ƒa2

3

�r2 C a2
�0

ˇ̌̌
rDre=c

:

Since �0.re/ > 0 and �0.rc/ < 0, we note that ˇe=c > 0. For each s 2 R, we use the
notation

xH s
WD xH s.L�/

for the extendible Sobolev distributions on L�, in the sense of Hörmander [15]. We will
prove the following modification of [21, Theorem 1.1], which holds in the full subex-
tremal range.

Theorem 2.1. Define
ˇ WD max.ˇe; ˇc/ > 0 (2.3)

and let s � 1
2

. The family of operators

P� W ¹u 2 xH
s
j P�u 2 xH

s�1
º ! xH s�1

is an analytic family of Fredholm operators of index 0 for all � 2 C such that

Im � >
1 � 2s

2ˇ
:

Moreover, P� is invertible for Im � � 1.

The proof of this theorem follows from the Fredholm framework for non-elliptic
operators, developed in [21], once we have established the necessary results for the bichar-
acteristics, described above. We begin by studying the bicharacteristics in the domain of
outer communication M and it will be convenient to do the computations in a modifi-
cation of the Boyer–Lindquist coordinates .t; r; �; �/. We define these new coordinates
analogous to (2.2) as �

�

 

�
WD

 
t

� � a

r2
0
Ca2

t

!
:

Since
@� D @t C

a

r20 C a
2
@� D

�
@t� C

a

r20 C a
2
@��

�ˇ̌̌
M
D @�� jM ;

we may identify the restriction of P� to L� \M with the operator

e�i��P.ei��u/;

where u 2 C1.M/, such that
@�u D 0:
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We may therefore identify P� jL�\M with the linear second-order differential operator

P� W C
1.L/! C1.L/;

where
L WD ¹� D 0º � .re; rc/r � S

2
 ;� :

In the new coordinates, the dual metric G is given by

.r2 C a2 cos2.�//G D �.r/@2r C c.�/@
2
�

C
b2

c.�/ sin2.�/

�
a sin2.�/@� C

r20 C a
2 cos2.�/

r20 C a
2

@ 

�2
�

b2

�.r/

�
.r2 C a2/@� C a

r20 � r
2

r20 C a
2
@ 

�2
:

The principal symbol p� of P� is thus given by

.r2 C a2 cos2.�//p� .�/ D �.r/�2r C c.�/�
2
�

C
b2

.r20 C a
2/2

� .r20 C a2 cos2.�//2

c.�/ sin2.�/
� a2

.r20 � r
2/2

�.r/

�
�2 :

Since the bicharacteristic flow is invariant under conformal rescaling, it suffices to con-
sider

q� WD .r2 C a2 cos2.�//p� :

Lemma 2.2 (No characteristic set at r0). We have

Char.P� / � ¹r ¤ r0º:

Proof. Assume that there is a point in the characteristic set with r D r0. Then

0 D q� .�/jrDr0 D �.r0/�
2
r C c.�/�

2
� C

b2

.r20 C a
2/2

.r20 C a
2 cos2.�//2

c.�/ sin2.�/
�2 ;

and since �.r0/ > 0, this is a sum of positive terms and hence

�r D �� D � D 0:

This proves the lemma.

Remark 2.3 (Ergoregions). One way of interpreting the above lemma is that @� is timelike
at r0. Hence the ergoregions of the event horizon and cosmological horizon, with respect
to @� , are disjoint. It is easy to see that this is not the case for @t in general; the ergoregions
may well intersect in that case.

Lemma 2.4 (No trapping). For each " > 0, all bicharacteristics of P� in L leave the
region

.re C "; rc � "/r � S
2
 ;�

both to the future and the past.
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Proof. The Hamiltonian vector field is given by

Hq� D

3X
jD1

.@�j q� /@j � .@j q� /@�j :

We claim that

Hq� r D 0 ) H2q� r

´
< 0 if re < r < r0;

> 0 if r0 < r < rc
(2.4)

in the characteristic set. Assume therefore that

0 D Hq� r D @�rq� D 2�r�.r/:

Since �.r/ > 0 for all r 2 .re; rc/, we conclude that �r D 0. At such points, the second
derivative is given by

H2q� r j�rD0 D 2.Hq� �r j�rD0/�.r/ D �2.@rq� j�rD0/�.r/

D 2
b2

.r20 C a
2/2

a2@r
.r20 � r

2/2

�.r/
�2 

D 2
a2b2

.r20 C a
2/2

�.r/@r .r
2
0 � r

2/2 � �0.r/.r20 � r
2/2

�.r/2
�2 :

Now, with our choice of r0, we note that

�0.r/

´
> 0; re < r < r0;

< 0; r0 < r < rc
and @r .r

2
0 � r

2/2

´
< 0; re < r < r0;

> 0; r0 < r < rc :

Finally, .r20 � r
2/2 >0 for r 2 .re; rc/n¹r0º and�.r/ > 0 for all r 2 .re; rc/, proving (2.4).

We may use this to define an escape function

E WD eC.r�r0/
2

Hq� r

for any C > 0 and note that

Hq�E D eC.r�r0/
2

.2C.r � r0/.Hq� r/
2
C H2q� r/:

Since the characteristic set is disjoint from ¹r D r0º and by (2.4), we can choose C
large enough so that Hq�E is everywhere non-vanishing and has the same sign as r � r0.
Hence E gives an escape function for the bicharacteristics of q� in L, which finishes the
proof.

We now improve on Lemma 2.4 by including the precise behavior at and beyond the
horizons. By Assumption 1.2, the hypersurface L� is spacelike, which means that dt� is
a future pointing timelike one-form everywhere along L�. All elements of the character-
istic set of P are lightlike, so we can use this fact to divide the characteristic set of P into
two disjoint sets. Moreover, since there is a natural embedding

Char.P� / � Char.P /;



O. Petersen, A. Vasy 3510

we may divide the characteristic set of P� as

Char.P� / D †C [†�;

where
†˙ D ¹� 2 Char.P� / j ˙G�.dt�; �/ > 0º;

where G� is the dual metric induced by g�, defined in (1.3). Note that indeed

†C \†� D ;;

hence †C and †� are invariant under the bicharacteristic flow.

Lemma 2.5. The conormal bundles N �¹r D reº and N �¹r D rcº are contained in the
characteristic set of P� and the bicharacteristic flow at these is radial in the generalized
sense as in [21]. All other bicharacteristics of P� in †C either starts at fiber infinity of

N �¹r D reº \ ¹�r > 0º

and ends at r D re � ı or starts at the fiber infinity of

N �¹r D rcº \ ¹�r < 0º

and ends at r D rc C ı. The reverse behavior holds for†�. Moreover, the fiber infinity of

N �¹r D reº \ ¹˙�r > 0º and N �¹r D rcº \ ¹��r > 0º

are generalized normal source/sink manifolds of the bicharacteristic flow, respectively, in
the sense of [21].

Proof. This actually follows from the semiclassical considerations in [21]; here we con-
sider a large parameter framework; the relationship between these is discussed in Sec-
tion 2.1 therein. Indeed, in the large parameter sense, our new choice of  � amounts to
a new choice of the ‘classical hyperplane’ � D 0 relative to the choice in [21] (the classical
hyperplane in [21] corresponds to the choice � C a2

r2
0
Ca2

� �
D 0 in the notation of this

paper), but at the normal source/sink manifolds, � �
D 0, so these lie at the same location,

and the normal source/sink manifold being such even in the large parameter sense for the
old choice (which is equivalent to the semiclassical considerations there) implies the same
property for our new choice. However, for the convenience of the reader we give a direct
argument.

In order to study the characteristic set of P� near the horizons, we need to work in the
coordinate system .��; r;  �; �/, defined in (2.2). The dual metric in these coordinates is
given by

.r2C a2 cos2.�//G� D �.r/@2r � 2bf .r/
�
.r2 C a2/@�� C a

r20 � r
2

r20 C a
2
@ �

�
@r

C c.�/@2�C
b2

c.�/ sin2.�/

�
a sin2.�/@��C

r20C a
2 cos2.�/

r20 C a
2

@ �

�2
� b2

1 � f .r/2

�.r/

�
.r2 C a2/@�� C a

r20 � r
2

r20 C a
2
@ �

�2
:
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The principal symbol p� of P� is thus given by

.r2 C a2 cos2.�//p� .�/

D �.r/�2r � 2abf .r/
r20 � r

2

r20 C a
2
� �

�r C c.�/�
2
�

C

� b2

c.�/ sin2.�/

�r20 C a2 cos2.�/
r20 C a

2

�2
� b2

1 � f .r/2

�.r/

�
a
r20 � r

2

r20 C a
2

�2�
�2 �

: (2.5)

As before, since the bicharacteristic flow is invariant under conformal rescaling, it suffices
to consider

q� WD .r2 C a2 cos2.�//p� :

By Lemma 2.2, there are no bicharacteristics crossing r D r0. In this proof, we therefore
only study the bicharacteristics where r < r0, as the case r > r0 is similar. Since

G�.dr; dr/jrDre D 0 and dt� D d��;

we have
G�.dt�; dr/jrDre D G�.d��; dr/jrDre D b.r

2
e C a

2/ > 0:

This means in particular that �dr jrDre is a future pointing lightlike one-form, so it can
be used to characterize †˙ \ ¹r D reº. For any � 2 Char.P� / \ ¹r D reº, it follows that
� 2 †˙ \ ¹r D reº if and only if

˙G�.dt�; �/jrDre > 0;

which is equivalent to
˙G�.�dr; �/jrDre > 0

or
�jrDre D �rdr jrDre ;

with ˙�r jrDre > 0. We now compute the Hamiltonian vector field applied to the func-
tion r at the event horizon

Hq� r jrDre D

3X
jD1

..@�j q� /@j � .@j q� /@�j /r
ˇ̌̌
rDre

D 2ab
r20 � r

2
e

r20 C a
2
� �

ˇ̌̌
rDre

D �G.�dr; �/jrDre : (2.6)

We conclude that all bicharacteristics in †C crossing the event horizon enter the black
hole region, where r < re , and all bicharacteristics in†� crossing the event horizon enter
the domain of outer communication, where r 2 .re; rc/. In particular, no bicharacteris-
tic can pass the event horizon twice. On the other hand, Lemma 2.4 implies that each
bicharacteristic in †˙ in the domain of outer communication turns in the past/future and
approaches the event horizon r D re .
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It remains to show that the fiber infinity of

N �¹r D reº \ ¹˙�r > 0º

is a generalized normal source/sink of the bicharacteristic flow, in the sense of [21]. Let
us first check that N �¹r D reº is the largest subset of

Char.P� / \ ¹r D reº;

which is invariant under the bicharacteristic flow. Indeed, equation (2.6) shows that the
Hamiltonian vector field is transversal unless � �

D 0. But if � �
D 0, then equation (2.5)

implies that �� D 0 and hence
� 2 N �¹r D reº:

Restricting the Hamiltonian vector field to the conormal bundle, we get

��1r Hq� jN�¹rDreº D 2ab
r20 � r

2
e

r20 C a
2
@ �
� �0.re/�r@�r :

Since �0.re/ > 0, this shows that the fiber infinity of

N �¹r D reº \ ¹˙�r > 0º

is a generalized source/sink of the bicharacteristic flow, in the sense of [21]. We finally
need to check that it indeed is a normal source/sink in the generalized sense of [21].
This is to say that for a suitable (local) quadratic defining function �0 for N �¹r D reº

in the characteristic set of P� , modulo cubically vanishing terms at N �¹r D reº, there is
a function ˇ1 > 0 such that

��1r Hq��0 � ˇ1�0 � 0

near N �¹r D reº. We can, for example, take �0 to be a multiple of the (modified) Carter
constant, i.e.,

�0 WD �
�2
r

�
c.�/�2� C

b2

c.�/ sin2.�/

�r20 C a2 cos2.�/
r20 C a

2

�2
�2 �

�
:

Note that

Hq� �
2
r �0 D ¹q� ; �

2
r �0º

D

°
�.r/�2r � 2abf .r/

r20 � r
2

r20 C a
2
� �

�r � b
2 1 � f .r/

2

�.r/

�
a
r20 � r

2

r20 C a
2

�2
�2 �

;

c.�/�2� C
b2

c.�/ sin2.�/

�r20 C a2 cos2.�/
r20 C a

2

�2
�2 �

±
C ¹�2r �0; �

2
r �0º D 0

since the second Poisson bracket vanishes trivially and the first Poisson bracket vanishes
because the first factor only depends on .r; �r ; � �

/ and the second factor only depends
on .�; �� ; � �/.
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We deduce that

��1r Hq��0 D �r�0Hq� �
�2
r D �2�

�2
r .Hq� �r /�0;

so ˇ1 D �2��2r .Hq� �r /. At N �¹r D reº, we have

ˇ1 D 2�
0.re/;

which is positive as desired. We have thus shown that the fiber infinity in

N �¹r D reº \ ¹˙�r > 0º

is a normal source/sink in the generalized sense of [21]. This concludes the proof, since
the behavior near r D rc is studied analogously.

Proof of Theorem 2.1. By Lemma 2.5, the dynamics of the bicharacteristics at and be-
yond the horizons HCe \L� and HCc \L� are precisely the same as in [21, Section 6.1],
i.e., the analysis for P� in our setup is similar to the analysis for yP� there. The proof of
Theorem 2.1 therefore follows the same lines as the proof of [21, Theorem 1.4].

Proof of Theorem 1.5. Since P� is invertible for Im � � 1, analytic Fredholm theory
implies that P� has a meromorphic extension to the open set

�s WD
°

Im � >
1 � 2s

2ˇ

±
:

In particular, P� is invertible everywhere in �s apart form a discrete set. Moreover,
since P� has index zero, P� is invertible if and only if the kernel of P� is trivial. Since

C D
[
s2R

�s;

we conclude that ker.P� / is non-trivial precisely on a discrete set A � C. Following the
arguments in the proof of [19, Theorem 1.2] line by line, using Theorem 2.1 in place
of [21, Theorem 1.1], it follows that smooth elements in ker.P� / are real analytic if the
coefficients of P are real analytic.

Remark 2.6. We recall that [19] proves the real analyticity of the quasinormal modes
by using yet another Killing vector field, or rather two, one each for the two horizons,
with respect to which the Fourier transformed wave operator is of Keldysh type, so has
a similar structure to that of the Schwarzschild–de Sitter spacetime relative to the stan-
dard @t� . (The Killing vector fields we use are lightlike at the horizon under study.) Hence,
after this reduction, the real analyticity result of Galkowski and Zworski [9] can be used
in a local manner at each horizon. Then the mode analyticity with respect to any other
Killing vector field which gives rise to a global Fredholm theory, such as ours presently,
is deduced by decomposing the quasinormal modes into eigenmodes relative to the vector
field @ �

, each of which is a quasinormal mode relative to the horizon Killing vector fields
as well.
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3. Normally hyperbolic trapping

The goal of this section is to prove Theorem 1.6. This generalizes [21] by removing the
assumption

jaj �

p
3

2
m; (3.1)

which was required in [21, (6.27)]. In the previous section, we studied the mode operator
and showed in particular that the bicharacteristics of that operator are non-trapped. As is
well known, there are trapped bicharacteristics for the full wave operator, i.e., trapped
lightlike geodesics.

In order to apply the semiclassical or high energy estimates from [21], we need to
prove certain properties of the trapping in the domain of outer communication. More pre-
cisely, we need to show that the trapping is normally hyperbolic. This was done in [21]
assuming (3.1). In this section, we prove that the analogous results hold for the full subex-
tremal range. Since we only work in the domain of outer communication, it is convenient
to work in Boyer–Lindquist coordinates .t; r; �; �/ with dual variables .�t ; �r ; �� ; �� /.
We let p denote the principal symbol of the wave operator P .

Remark 3.1. Since @t and @� are Killing vector fields, it follows that �t and �� are con-
stant along the Hamiltonian flow with respect to p.

Theorem 3.2 (Trapping in the subextremal Kerr–de Sitter spacetimes). For any .�t ; ��/ 2
R2n¹.0; 0/º, define the function

F.r/ WD
1

�
..r2 C a2/�t C a��/

2:

(a) Either

� F vanishes at r D re or rc and F and has no critical point in .re; rc/, or

� F has precisely one critical point r�t ;�� 2 .re; rc/ and F 00.r�t ;�� / > 0.

(b) F is positive on the characteristic set in M .

(c) The trapped set in M is

� D
[

.�t ;��/2R2n¹.0;0/º

��t ;�� ;

where
��t ;�� WD ¹�r D 0; r D r�t ;�� º \ Char.P /:

(d) � is a smooth connected 5-dimensional submanifold of T �M , with defining func-
tions �r , r � r�t ;�� and p.

(e) The linearization of the bicharacteristic flow at � is given by

Hp

�
r � r�t ;��

�r

�
D

1

r2
�t ;��
C a2 cos2.�/

�
0 2�.r�t ;�� /

b2F 00.r�t ;�� / 0

��
r � r�t ;��

�r

�
CO..r � r�t ;�� /

2
C �2r /:
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In particular, the trapping in the domain of outer communication in any subextremal
Kerr–de Sitter spacetime is normally hyperbolic trapping in the sense of [23]. The stable
.s;�/ and unstable .u;C/ manifolds are the smooth manifolds given by

�u=s D

²
�r D ˙ sgn.r � r�t ;�� /b

s
F.r/ � F.r�t ;�� /

�

³
\ Char.P /:

The main computation in the proof is the following.

Proposition 3.3. We have

h.r/ WD 2�@r .r�
0
� 4�/ � �0.r�0 � 4�/ < 0

for all r 2 .re; rc/.

We postpone the proof of Proposition 3.3 as it will take up a significant amount of this
section.

Proof of Theorem 3.2, assuming Proposition 3.3. First we prove claim (a). If �t D 0, then
the claim is clearly true with r�t ;�� D r0, we may therefore assume that �t ¤ 0. We now
consider critical points of F in .re; rc/. Defining

f .r/ WD ..r2 C a2/�t C a��/�
0
� 4r�t�;

we note that

F 0.r/ D �
.r2 C a2/�t C a��

�2
f .r/;

which vanishes if either
.r2 C a2/�t C a�� D 0 (3.2)

or
f .r/ D 0 (3.3)

for some r 2 .re; rc/. We claim that all critical points of F in .re; rc/ are local strict
minima. Note first that since

�4r�t�.r/ ¤ 0

for all r 2 .re; rc/, there is no critical point of F satisfying both (3.2) and (3.3) simulta-
neously. Any critical point r 2 .re; rc/ of F , satisfying (3.2), satisfies

F 00.r/ D �
2r�t

�2
.�4r�t�/ D 8

r2�2t
�

> 0;

and is therefore a local strict minima. It thus remains to study case (3.3), which is equiv-
alent to

.r2 C a2/�t C a�� D
4r��t

�0
;
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since �0 ¤ 0 at the roots of f as �4�t� ¤ 0. At such points, we compute that

f 0.r/ D �00.r/..r2 C a2/�t C a��/C 2r�
0.r/�t � 4�.r/�t � 4r�

0.r/�t

D �t

�
�00.r/

4r�.r/

�0.r/
� 4�.r/ � 2r�0.r/

�
D

2�t

�0.r/
.2r�.r/�00.r/ � 2�.r/�0.r/ � r�0.r/2/

D
2�t

�0.r/
.2�.r/@r .r�

0.r/ � 4�.r// � �0.r/.r�0.r/ � 4�.r///

D
2�t

�0.r/
h.r/;

where h was defined in Proposition 3.3. It follows that all critical points of F , satisfy-
ing (3.3), satisfy

F 00.r/ D �
.r2 C a2/�t C a��

�2
f 0.r/ D �8r

�2t
��02

h.r/ > 0

by Proposition 3.3. We conclude that all critical points r 2 .re; rc/ of F are local strict
minima. Now, if .r2 C a2/�t C a�� vanishes precisely at r D re or rc , then F !1 at
the other end point of Œre; rc � and it follows that F cannot have critical points for they
would all be local strict minima. In the remaining case, F !1 as r ! re and rc , and
we conclude that there is a unique strict minimum r�t ;�� 2 .re; rc/. This proves claim (a).

We continue by proving claim (b), i.e., that

.r2 C a2/�t C a�� ¤ 0

in the characteristic set. The principal symbol p of P is given by

.r2 C a2 cos2.�//p.�/ D �.r/�2r C c.�/�
2
� C

b2

c.�/ sin2.�/
.a sin2.�/�t C ��/2

�
b2

�.r/
..r2 C a2/�t C a��/

2:

Assume there is a point in the characteristic set satisfying .r2 C a2/�t C a�� D 0, then

a sin2.�/�t C �� D 0

and we get a solution to the linear equation�
r2 C a2 a

a sin2.�/ 1

��
�t
��

�
D 0;

and the determinant of the matrix is

r2 C a2 cos2.�/ > 0:

This implies that �t D �� D 0, which in turn implies that �r D �� D 0.
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Let us now prove claim (c). For this, recall first that Char.P / is invariant under Hp.
Since the bicharacteristic flow is invariant under conformal changes, let us for simplicity
study

q.�/ D .r2 C a2 cos2.�//p.�/

D �.r/�2r C c.�/�
2
� C

b2

c.�/ sin2.�/
.a sin2.�/�t C ��/2

�
b2

�.r/
..r2 C a2/�t C a��/

2:

Since Hq�t D Hq�� D 0, it follows that Hqr�t ;�� D 0, and we use this to compute

Hq.r � r�t ;�� / D 2�.r/�r ; (3.4)

Hq�r D �@r

�
��2r �

b2

�.r/
..r2C a2/�tC a��/

2
�
D ��0�2r C b

2F 0.r/: (3.5)

Evaluating these at � , both expressions vanish and it follows that � is invariant under Hq.
We claim that

x … �; Hq.r � r�t ;�� /
2
jx D 0 ) .Hq/

2.r � r�t ;�� /
2
jx > 0: (3.6)

To prove this, assume that

0 D Hq.r � r�t ;�� /
2
jx D 2.r � r�t ;�� /Hqr jx ;

which implies that either r D r�t ;�� or Hqr D 0 at x. We compute

.Hq/
2.r � r�t ;�� /

2
jx D 2.Hqr/

2
jx C 2.r � r�t ;�� /.Hq/

2r jx :

Now, if r jx D r�t ;�� , we see that

.Hq/
2.r � r�t ;�� /

2
jx D 2.Hqr/

2
jx � 0

and it vanishes if and only if Hqr jx D 0, in which case �r jx D 0 and hence x 2� . Similarly,
if instead Hqr jx D 0, then �r jx D 0 and we conclude that

.Hq/
2.r � r�t ;�� /

2
jx D 2.r � r�t ;�� /.Hq/

2r jx D 4.r � r�t ;�� /�.r/b
2F 0.r/jx :

Recalling that r � r�t ;�� and F 0.r/ have the same sign, we conclude that this is positive
unless r D r�t ;�� , in which case x 2 � . This proves claim (3.6). For any C > 0, we define
the function

E WD e
C.r�r�t ;�� /

2

Hq.r � r�t ;�� /
2:

We get

HqE D e
C.r�r�t ;�� /

2

.C.Hq.r � r�t ;�� /
2/2 C .Hq/

2.r � r�t ;�� /
2/;

which by (3.6) is positive precisely away from � if C is large enough. Thus E pro-
vides a globally defined escape function which grows along each bicharacteristic not in �
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and vanishes identically at � . Note that E is also an escape function in the case when
.r2 C a2/�t C a�� vanishes at re or rc , by substituting r�t ;�� in the expression for E with
that point. This proves in particular that � is precisely the trapped set in M , which is
claim (c).

For claim (d), we need to prove that

d.r � r�t ;�� /; d�r and dp

are linearly independent at � . This follows by noting that

dp
� @
@r

�ˇ̌̌
�
D
@p
@r

ˇ̌̌
�
D

1

r2 C a2 cos2.�/
.�0�2r � b

2F 0/
ˇ̌̌
�
D 0:

Finally, the linearization claim in (e) follows immediately from (3.4) and (3.5) by
Taylor expanding F 0 around r D r�t ;�� .

The full stable and unstable submanifolds then are given as in Dyatlov’s paper [5,
Proposition 3.5]. By equation (3.5), we note that

Hq.��
2
r � b

2.F � F.r�t ;�� /// D 0;

which shows that the flow of Hq leaves �u=s invariant. Moreover, note that

� D �u \ �s :

The defining functions for �u=s are

�r � sgn.r � r�t ;�� /b

s
F.r/ � F.r�t ;�� /

�
and p;

and since dp.@�r /j� D 0, it follows that �u=s are smooth submanifolds of Char.P / near � .
A simple rewriting taking into account the eigenvectors of the linearization, or indeed the
sign of the escape function E , namely negative on the stable (so sgn�r D� sgn.r � r�t ;�� /
there), positive on the unstable manifold (so sgn �r D sgn.r � r�t ;�� / there), gives the
conclusion.

In order to prove Proposition 3.3, we need the following two lemmas. The first one
gives three useful ways of rewriting h.

Lemma 3.4. We have

h.r/ D �
1

r
.r�0 � 4�/2 � 4�

�
3m �

4a2

r

�
(3.7)

D 4ƒmr4 � 4b2r3 C 12m
�
1 �

ƒa2

3

�
r2 � 12m2r C 4ma2 (3.8)

D
4ƒr4

3

�
3m �

4a2

r

�
� 4

�
1 �

ƒa2

3

�2�
r �

m

1 � ƒa2

3

�3
C 4m3

� a2
m2
�

1

1 � ƒa2

3

�
(3.9)

for all r 2 R.
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Remark 3.5. Note that the discriminant condition (1.1) ensures that

1 �
ƒa2

3
> 0;

hence the expressions in the lemma make sense.

Proof. Note that

r�0 � 4� D �2
�
1 �

ƒa2

3

�
r2 C 6mr � 4a2;

@r .r�
0
� 4�/ D �4

�
1 �

ƒa2

3

�
r C 6m D

2

r
.r�0 � 4�/ � 6mC

8a2

r
:

Inserting this gives

2�@r .r�
0
� 4�/ � �0.r�0 � 4�/ D 2�

�2
r
.r�0 � 4�/ � 6mC

8a2

r

�
� �0.r�0 � 4�/

D .r�0 � 4�/
�4�
r
� �0

�
� 4�

�
3m �

4a2

r

�
D �

1

r
.r�0 � 4�/2 � 4�

�
3m �

4a2

r

�
;

proving identity (3.7). Identity (3.8) now follows by

�
1

r
.r�0 � 4�/2 � 4�

�
3m �

4a2

r

�
D �

1

r

�
� 2

�
1 �

ƒa2

3

�
r2 C 6mr � 4a2

�2
� 4

�
�
ƒr4

3
C

�
1 �

ƒa2

3

�
r2 � 2mr C a2

��
3m �

4a2

r

�
D �4

�
1 �

ƒa2

3

�2
r3 � 36m2r �

16a4

r
C 24m

�
1 �

ƒa2

3

�
r2

� 16
�
1 �

ƒa2

3

�
a2r C 48ma2 C 4ƒmr4 � 12m

�
1 �

ƒa2

3

�
r2

C 24m2r � 12ma2 �
16ƒa2

3
r3 C 16

�
1 �

ƒa2

3

�
a2r � 32ma2 C

16a4

r

D 4ƒmr4 � 4
�
1C

ƒa2

3

�2
r3 C 12m

�
1 �

ƒa2

3

�
r2 � 12m2r C 4ma2;

as claimed. Finally, identity (3.9) follows by

4ƒmr4 � 4
�
1C

ƒa2

3

�2
r3 C 12m

�
1 �

ƒa2

3

�
r2 � 12m2r C 4ma2

D 4ƒmr4 � 4
�
1C

ƒa2

3

�2
r3 C 4

�
1 �

ƒa2

3

�2
r3 � 4

�
1 �

ƒa2

3

�2
r3

C 12m
�
1 �

ƒa2

3

�
r2 � 12m2r C

4m3

1 � ƒa2

3

C 4m3
� a2
m2
�

1

1 � ƒa2

3

�
D
4ƒr4

3

�
3m�

4

r
a2
�
� 4

�
1�

ƒa2

3

�2�
r�

m

1 � ƒa2

3

�3
C 4m3

� a2
m2
�

1

1 � ƒa2

3

�
:
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Lemma 3.6. Given a 2 R and m > 0, there is a (potentially empty) interval .ƒ0; ƒ1/
such that a, m and ƒ � 0 satisfy the discriminant condition (1.1) if and only if

ƒ 2 .ƒ0; ƒ1/;

in which case we have
a2

m2
<
9

8

1

1 � ƒa2

3

: (3.10)

If jaj > m, then ƒ0 > 0.

Proof. Writing  WD ƒa2

3
, the discriminant condition (1.1) becomes

�.1C /4
a2

m2
C 36.1 � / C .1 � /3 � 27

m2

a2
> 0:

We introduce

� WD


.1 � /2
; ˛ WD

m2

a2.1 � /
:

Multiplying with m2

a2
and using that

.1C /4 D ..1 � /2 C 4/2 D
2

�2
C 8

2

�
C 162;

we note that (1.1) is equivalent to

2

�2
.�1 � 8� � 16�2 C 36�˛ C ˛ � 27�˛2/ > 0;

which in turn is equivalent to

�16�2 C .�27˛2 C 36˛ � 8/� � 1C ˛ > 0:

Since this is a quadratic expression in � and since .0; 1/ 3  7! � is injective, this proves
the first assertion by Remark 3.5. The discriminant of the quadratic expression in � is
˛.9˛ � 8/3, which is positive if and only if (3.10) is satisfied. Finally, in case jaj > m,
equation (1.1) implies that ƒ D 0 is not allowed, proving the last assertion.

Remark 3.7. The case of Reissner–Nordström–de Sitter spacetimes gives rise to a very
similar subextremality condition, which was explicitly analyzed in [10, Proposition 3.2],
following [16].

Proof of Proposition 3.3.

Step 1: The case when r 2 .4a
2

3m
; rc/ \ .re; rc/. This is immediate from (3.7), by noting

that

3m �
4a2

r
> 0; �.r/ > 0;

in the interval.
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Step 2: The case when 1

1�ƒa
2

3

�
a2

m2
. Since

�0.r/ D �
4ƒr3

3
C 2

�
1 �

ƒa2

3

�
r � 2m;

we know that
�0.r/ < 0 for all r 2

h
0;

m

1 � ƒa2

3

i
:

Since we know that

r� < 0 < rC < re < rc and �.0/ D a2 > 0;

it follows that
re >

m

1 � ƒa2

3

:

The proof in this case is completed by combining this with (3.9) and step 1.

Step 3: The remaining case. We are left with proving the statement when

1

1 � ƒa2

3

<
a2

m2
; r 2

�
re;

4a2

3m

i
:

The assertion in Proposition 3.3 is the negativity of

h.r/ WD 2�f 0 � �0f;

where

f .r/ WD r�0 � 4� D �2
��
1 �

ƒa2

3

�
r2 � 3mr C 2a2

�
:

By Lemma 3.6, we need to check the condition in an intervalƒ2 .ƒ0;ƒ1/, whereƒ0>0.
We first claim that h.r/ decreases with increasingƒ for all r 2 .re; 4a

2

3m
/. Differentiating h

with respect to ƒ, using equation (3.8), gives

@

@ƒ
h.r/ D 4mr4 �

8

3
a2br3 � 4ma2r2 D 4m3r2

�� r
m

�2
�
2

3

a2

m2
b
r

m
�
a2

m2

�
;

which is negative for all r 2 .r1; r2/, where

r1=2

m
D
a2b

3m2
�

r
a4b2

9m4
C
a2

m2
:

The claim is proven if we can show that .r1; r2/ � .re; rc/. Since

r1 < 0 < re;

it remains to show that

r2 �
4a2

3m
;
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which is equivalent tor
a4

9m4

�
1C

ƒa2

3

�2
C
a2

m2
�
4a2 � a2b

3m2
D
3 � ƒa2

3

3m2
a2;

which in turn is equivalent to

a2

m2
�

��
3 �

ƒa2

3

�2
�

�
1C

ƒa2

3

�2� a4
9m4

D 8
�
1 �

ƒa2

3

� a4
9m4

:

This inequality is equivalent to (3.10), so the proof of the claim is complete.
It therefore suffices to prove the negativity of h.r/ for all r 2 .re; 4a

2

3m
�, in the limit

when ƒ D ƒ0. By definition of ƒ0, � has at least a double root when ƒ D ƒ0. Since
�.0/ D a2 > 0, independent of ƒ, there is still a simple negative root r� < 0. Since �
decreases with ƒ, the case rC < re D rc is excluded for ƒ D ƒ0, for it would contradict
that � has four distinct real roots for any ƒ > ƒ0. Similarly, the case rC D re D rc can
be excluded, since also �0 decreases withƒ and would in that case not have three distinct
real roots for any ƒ > ƒ0. We conclude that r� < rC D re < rc when ƒ D ƒ0. In this
case, �.re/ D �0.re/ D 0 and we note that re satisfies the equation

0 D re�
0.re/ � 4�.re/ D �2

��
1 �

ƒ0a
2

3

�
r2e � 3mre C 2a

2
�
: (3.11)

Since
r�0 � 4� D r5@r .r

�4�/

and since r�4� has two positive zeros rC D re and rc , we conclude that re coincides with
the smaller root of (3.11):

re D
3m

2.1 � ƒ0a2

3
/
�

m

2.1 � ƒ0a2

3
/

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
:

The idea is now to estimate the Taylor expansion at re for r � re . We write

h.r/ D

4X
kD0

h.k/.re/
.r � re/

k

kŠ
:

It is immediate from (3.8) that

h.4/.re/

4Š
D 4ƒ0m:

Using that
�.re/ D �

0.re/ D f .re/ D 0;

one computes that

h.re/ D h
0.re/ D h

00.re/ D 0;

h000.re/ D 3�
00.re/f

00.re/ � �
000.re/f

0.re/:
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We note that

f 0.r/ D �4
�
1 �

ƒ0a
2

3

�
r C 6m D r�00.r/ � 3�0.r/

and hence

f 0.re/ D 2m

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
D re�

00.re/:

Moreover,
f 00.re/ D re�

000.re/ � 2�
00.re/:

Inserting this, we get

h000.re/ D �6�
00.re/

2
C 2re�

00.re/�
000.re/ � 2f

0.re/�
000.re/

D �32ƒ0mre

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
: (3.12)

Using that
re �

m

1 � ƒ0a2

3

;

the Taylor expansion at r D re can be estimated as

h.r/

.r � re/3
� �

16

3

ƒ0m
2

1 � ƒa2

3

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
C 4ƒ0m.r � re/

for r � re . Now, the above bound is increasing with r , it therefore suffices to check the
negativity at

yr WD
3m

2.1 � ƒ0a2

3
/
�
3

2

8

9

a2

m
D
4a2

3m
:

We get

h.yr/

.yr � re/3
� �

16

3

ƒ0m
2

1 � ƒa2

3

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
C 2

ƒ0m
2

1 � ƒ0a2

3

r
9 � 8

a2

m2

�
1 �

ƒ0a2

3

�
< 0:

We have in particular shown that h.r/ < 0 when r 2 .re; 4a
2

3m
�, ƒ D ƒ0. It follows that

h < 0 on this interval for allƒ 2 .ƒ0;ƒ1/. The proof is completed by applying step 1.

Remark 3.8. We also present a somewhat different approach to proving (3.12), which
was the key computation above. By (3.8), we have, with ƒ D ƒ0, r D re ,

h000.r/ D 24.4ƒmr � .1C /2/;

and want to prove that

h000.re/ � �96ƒre

r
1 �

8

9˛
; (3.13)
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where, as in Lemma 3.6, ˛ D m2

a2.1�/
,  D ƒa2

3
, and ˛ 2 Œ8

9
; 1�. Also,

re D
3m

2.1 � /

�
1 �

r
1 �

8

9˛

�
:

Thus,

h000.re/ D 24
�6ƒm2
1 � 

�
1 �

r
1 �

8

9˛

�
� .1C /2

�
;

and

ƒm2 D 3
ƒa2

3

m2

a2.1 � /
.1 � / D 3˛.1 � /; (3.14)

so
h000.re/

24
D 18˛

�
1 �

r
1 �

8

9˛

�
� .1C /2:

On the other hand, the right-hand side of (3.13) divided by 24 is

�4
3ƒm2

2.1 � /

�
1 �

r
1 �

8

9˛

�r
1 �

8

9˛
;

which is, using expression (3.14) for ƒm2,

�18˛
�
1 �

r
1 �

8

9˛

�r
1 �

8

9˛
:

Subtracting this from h000.re/=24, one wants to show that it � 0. But this is

18˛
�
1 �

r
1 �

8

9˛

��
1C

r
1 �

8

9˛

�
� .1C /2;

which simplifies to

18˛
�
1 � 1C

8

9˛

�
� .1C /2 D 16 � .1C /2;

which is exactly the negative of the quadratic polynomial one gets in the discriminant
when one wants to assure that r�0 � � D r2.r�1�/0 has distinct real roots, as is the case
in the subextremal range, namely one each in .rC ; re/ and in .re; rc/ corresponding to the
critical points of r�1� there, i.e.,  has to be such that the negative of this is � 0, so it is
indeed � 0.

Finally, we combine Theorem 3.2 with the results of [21] in the proof of Theorem 1.6.

Proof of Theorem 1.6. We again consider the operator

P� W ¹u 2 xH
s
j P�u 2 xH

s�1
º ! xH s�1

from Theorem 2.1. The semiclassical trapping is corresponding to the trapping of bichar-
acteristics of the full wave operator P . Given that Theorem 3.2 implies that the trapping is
normally hyperbolic, the proof of the semiclassical estimates and consequently the proof
of Theorem 1.6 proceeds completely analogous to the proof of [21, Theorem 1.4].
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