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Profinite rigidity of fibring

Sam Hughes and Dawid Kielak

Abstract. We introduce the classes of TAP groups, in which various types of algeb-
raic fibring are detected by the non-vanishing of twisted Alexander polynomials. We
show that finite products of finitely presented LERF groups lie in the class TAP1.R/
for every integral domain R, and deduce that algebraic fibring is a profinite prop-
erty for such groups. We offer stronger results for algebraic fibring of products of
limit groups, as well as applications to profinite rigidity of Poincaré duality groups
in dimension 3 and RFRS groups.

1. Introduction

Let G be a finitely generated residually finite group. The profinite genus of G, denoted
by G .G/, is defined as the set of isomorphism classes of finitely generated residually
finite groups with the same finite quotients as G. A group G is called almost profinitely
rigid if G .G/ is finite and profinitely rigid if jG .G/j D 1.

The study of (almost) profinite rigidity has motivated and been the subject of a vast
amount of research. For example, finitely generated nilpotent groups are almost profinitely
rigid [70], and so are polycyclic groups [38].

Many groups are not profinitely rigid; for example, there are metabelian groups with
infinite genus [71], Platonov–Tavgen’ showed that F2 � F2 is not profinitely rigid [72],
Pyber [73] showed the genus could be uncountable, Bridson–Grunewald gave examples of
the failure of profinite rigidity amongst the class of finitely presented groups [11] answer-
ing several questions of Grothendieck, and Bridson [10] showed that the profinite genus
amongst finitely presented groups can be infinite.

In general, profinite rigidity remains a very mysterious subject. Somewhat surpris-
ingly, one family of groups for which we are developing a fair deal of understanding
of profinite phenomena is the family of fundamental groups of compact 3-manifolds.
One particularly noteworthy statement is the theorem of Bridson–McReynolds–Reid–
Spitler [13] saying that the fundamental groups of some hyperbolic 3-manifolds (including
the Weeks manifold) are profinitely rigid, that is, each is distinguished from every other
finitely generated residually finite group by the set of isomorphism classes of its finite
quotients. In loc. cit., the authors conjecture that every Kleinian group is profinitely rigid.
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Restricting attention solely to 3-manifold groups, we have two remarkable results:
first, Jaikin-Zapirain [49] showed that if the profinite completion of the fundamental group
of a compact orientable aspherical 3-manifold is isomorphic to that of �1.†/ ÌZ, with†
a compact orientable surface, then the manifold fibres over the circle. Second, Liu [63]
proved that there are at most finitely many diffeomorphism types of finite-volume hyper-
bolic 3-manifolds with isomorphic profinite completions of their fundamental groups. The
key point of Liu’s work involves aligning a fibred map to Z from each pair of profinitely
isomorphic fundamental groups and encoding the dynamics of them into the profinite
completion. Both Jaikin-Zapirain’s and Liu’s theorems rely in a crucial way on the fol-
lowing result of Friedl–Vidussi, proved in the sequence of papers [28, 31, 32].

Theorem 1.1 (cf. Theorems 1.1 and 1.2 in [31]). Let R be a Noetherian unique factorisa-
tion domain (UFD). LetM be a compact, orientable, connected 3-manifold with empty or
toroidal boundary. An epimorphism 'W�1.M/! Z is induced by a fibration M ! S1 if
and only if for every epimorphism ˛W�1.M/� Q with finite image, the associated first
twisted Alexander polynomial �';˛1;R over R is non-zero.

The result relies in a key way on a special case proved by Friedl–Vidussi in an earlier
work [28], where the group �1.M/ is additionally assumed to be locally extended resid-
ually finite (LERF, or subgroup separable). Once this is established, the above result fol-
lows by a series of arguments based on the work of Wilton–Zalesskii [83] and Wise [85].

The interest in fibring has surpassed its roots in manifold topology, finding numerous
applications within the realm of geometric group theory, for example in the construction
of subgroups of hyperbolic groups with exotic finiteness properties [3, 22, 46–48, 51, 64],
exotic higher rank phenomena [45, 59], the existence of uncountably many groups of
type FP [16, 60–62], a connection between fibring of RFRS groups and `2-Betti num-
bers [23, 24, 54], and the construction of analogues of the Thurston polytope for various
classes of groups [26, 27, 39, 53].

Because of the widespread applicability of fibring, and in particular in view of the
results of Friedl–Vidussi and Jaikin-Zapirain cited above, it is very desirable to be able
to show that a group fibres if some group in its genus does. Moreover, since 3-manifold
groups are not inherently more interesting from the profinite perspective than other groups,
it is entirely natural to try to find profinite properties of groups that ensure that fibring is
shared by all groups in a genus.

Hence, the version of Theorem 1.1 for LERF groups is the starting point for our invest-
igations. First, we introduce the notion of TAP groups (standing for twisted Alexander
polynomial), that is, groups in which the twisted Alexander polynomials control algebraic
fibring, see Definition 3.1. Roughly, the twisted Alexander polynomials are invariants that
describe the module structure of the homology of kernels of epimorphisms to groups that
are virtually Z.

We show that, in fact, all finitely presented LERF groups are TAP – see Theorem 3.8
for the precise (more general) statement. This amounts to showing the following.

Theorem A. Let G be a finitely presented LERF group and let R be an integral domain.
An epimorphism 'WG� Z is algebraically fibred if and only if for every epimorphism
˛WG� Q with finite image, the associated first twisted Alexander polynomial over R is
non-zero.
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Here, an epimorphism 'WG� Z is algebraically fibred if ker' is finitely generated.
The groupG is algebraically fibred if it admits such an epimorphism. Also, we are talking
about vanishing of Alexander polynomials over arbitrary integral domains, which might
seem worrying, as the definition of the polynomial requires R to be a Noetherian UFD. It
does however make sense to talk about vanishing even when the polynomial is itself not
well defined, see Definition 2.10.

We use the above to show that for finite products of finitely presented LERF groups,
algebraic fibring is a profinite property.

Theorem B. Let GA and GB be finite products of finitely presented LERF groups. Sup-
pose GA and GB have isomorphic profinite completions. Then, the group GA is algebra-
ically fibred if and only if GB is.

Again, this is really a corollary of the more general Corollary 4.14 combined with
Proposition 3.12 and Remark 3.9.

This result can be used to study profinite properties of those high-dimensional mani-
folds whose fundamental groups are products of LERF groups; examples include products
of surfaces, geometric 3-manifolds, higher dimensional nil and sol manifolds, and many
bundles where generic fibres have amenable fundamental groups. This is significant pro-
gress in the study of such manifolds, since the tools that work in 3-manifolds can be
adapted to higher dimensions only in exceptional circumstances.

Limit groups (and more generally residually free groups) are widely studied, see for
example [5,78,82] and the references therein. An even more general (and more technical)
result is given by Theorem 4.12, where we deal with algebraic semi-fibring of higher
degree (see Definition 2.4). Combining this with work of Bridson, Howie, Miller and
Short [12] on finiteness properties of residually free groups, we show the following.

Theorem C. Let F be a finite field. Let GA and GB be profinitely isomorphic finite
products of limit groups. The group GA is FPn.F/-semi-fibred if and only if GB is.

Theorem B finds another application in the study of profinite rigidity of Poincaré dual-
ity groups which should be viewed as a step towards the ‘profinite’ Cannon conjecture:
if G is a word hyperbolic group whose profinite completion is a profinite-Poincaré duality
group in dimension 3, then G is the fundamental group of a closed connected hyperbolic
3-manifold.

Theorem D. Let GA be a LERF PD3-group and let GB be the fundamental group of a
closed connected hyperbolic 3-manifold. If yGA Š yGB , then GA is the fundamental group
of a closed connected hyperbolic 3-manifold.

Finally, Theorem 5.11 implies that for a cohomologically good RFRS group G of
type F, the profinite completion of G detects the degree of acyclicity of G with coef-
ficients in the skew-field DFG introduced by Jaikin-Zapirain; here F is a finite field.
The skew-field DFG can be thought of as an analogue of the Linnell skew-field in pos-
itive characteristic, and hence can be used to define a positive-characteristic version of
`2-homology.
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2. Preliminaries

Throughout, all rings are associative and unital, and ring morphisms preserve units. All
modules are left-modules, unless stated otherwise. In particular, resolutions will be left-
resolutions (that is, consisting of left modules), and hence coefficients in homology will
be right-modules (and quite often bimodules).

Integral domains and fields are always commutative.

2.1. Bieri–Neumann–Strebel invariants

Let R be a ring, G a group, and 'WG ! R a non-trivial homomorphism. Observe that

G' D ¹g 2G j '.g/ > 0º

is a monoid.

Definition 2.1 (Homological finiteness properties). We say that a monoid M is of type
FPn.R/ if the trivial M -module R admits a resolution C� by projective RM -modules in
which Ci is finitely generated for all i 6 n.

Since every group is a monoid, the definition readily applies to groups as well.
The definition above is standard; we will sporadically mention also other standard

finiteness properties, like type FP.R/ and F. Note that G is of type FP1.R/ if and only if
it is finitely generated, and if it is finitely presentable then it is of type FP2.R/ for every
ring R.

Definition 2.2. We say that ' lies in the nth BNS invariant overR, and write '2†n.GIR/,
if G' is of type FPn.R/. We set

†1.GIR/ D
\
n

†n.GIR/:

Here we are considering †n.GIR/, for n 2 N [ ¹1º, as subsets of H 1.GIR/ n ¹0º.

The first BNS invariant†1.GIR/D†1.G/ is independent of R. It was introduced by
Bieri–Neumann–Strebel in [7]. The higher (homological) invariants defined above were
introduced by Bieri–Renz [8] forRDZ. The definition for generalR appears for example
in the work of Fisher [23]. Fisher’s paper also contains the following straight-forward
generalisation of the work of Bieri–Renz.

Theorem 2.3 (Theorem 6.5 in [23] and Theorem 5.1 in [8]). Let G be a group of type
FPn.R/. Suppose that 'WG ! Z is a non-trivial homomorphism. The kernel ker ' is of
type FPn.R/ if and only if ¹';�'º � †n.GIR/.

We will often refer to a homomorphism 'WG ! R as a character, and to a homo-
morphism 'WG ! Z as an integral character.

Definition 2.4. A non-trivial character 'WG ! Z is FPn.R/-fibred if ker ' is of type
FPn.R/. An FP1.R/-fibred character will be also called algebraically fibred; this last
notion is independent of R.
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Similarly, an integral character in †n.GIR/ [ �†n.GIR/ will be called FPn.R/-
semi-fibred, and a character in†1.G/[�†1.G/ will be called algebraically semi-fibred.

A group G will be called algebraically fibred if it admits an algebraically fibred char-
acter.

The terminology ‘semi-fibred’ is new. It is meant to capture the idea that a character
behaves like a fibred character, but its negative might not.

The invariant †1.G/ admits a number of alternative definitions. Let us now discuss
one of them.

Definition 2.5. LetB be a group, letA;C 6B , and suppose that there exists an isomorph-
ism �WA! C . The HNN extension B�� with base group B and associated subgroups A
and C is defined by

B�� D B � hti=hh¹t
�1at D �.a/ W a 2 Aºii:

The HNN extension is ascending if C D B and descending if A D B . If it is ascending
but not descending, it is properly ascending.

Proposition 2.6 ([14]). Let G be a finitely generated group. An epimorphism 'WG ! Z
lies in †1.G/ if and only if there exists an isomorphism �WG ! B��, where B is finitely
generated, the HNN extension B�� is descending, and ' is equal to the composition of �
with the quotient map B�� ! B �� =hhBii D hti D Z.

An observant reader will notice that Brown’s original statement uses ascending, rather
than descending HNN extensions. This has to do with left/right conventions for modules
used in the definition of †1.G/.

2.2. Twisted Alexander polynomials

The following definitions are taken from Friedl and Vidussi’s survey [30]. However, we
have taken liberty to phrase them in terms of group homology, as opposed to the homology
of a topological space with twisted coefficients.

Let R be an integral domain (we always assume these to be commutative) and let
RŒt˙1� be the ring of Laurent polynomials overR in an indeterminate t . Let ˛WG� Q be
a finite quotient of G. This induces an RG-bimodule structure on the free R-module RQ
induced by left and right multiplication precomposed with ˛; another way to say it is that
RQ is a quotient ring of RG, and this way becomes an RG-bimodule. Let ' 2H 1.GIZ/
be a cohomology class considered as a homomorphism 'WG ! Z. Consider RQŒt˙1�
equipped with the RG-bimodule structure given by

g:x D t'.g/ ˛.g/x; x:g D x t'.g/˛.g/

for g 2G, x 2RQŒt˙1�. Note that RQŒt˙1� D R.Z �Q/, and that the action is multi-
plication precomposed with ' � ˛, as above.

For n 2 Z, we define the nth twisted (homological ) Alexander module of ' and ˛
to be Hn.GIRQŒt˙1�/, where RQŒt˙1� has the non-trivial module structure described
above. Observe that Hn.GIRQŒt˙1�/ also has the structure of a left RŒt˙1�-module. We
will denote the module by H';˛

n;R . If G is of type FPn.R/, then the nth twisted Alexander
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module is a finitely generated RŒt˙1�-module. Moreover, it is zero whenever n < 0 or n
is greater than the cohomological dimension of G over R.

More generally, for two groupsZ andQ, given two group homomorphisms ˛WG!Q

and 'W G ! Z, we will sometimes use H';˛
n;R to denote Hn.GI R.Z � Q// with the

RG-bimodule structure on R.Z �Q/ being multiplication precomposed with ' � ˛.
For any integral domain S and any finitely generated S -module M , define the rank

of M to be rkSM D dimFrac.S/ Frac.S/˝S M , where Frac.S/ denotes the classical field
of fractions (that is, the Ore localisation) of S . When S is additionally a UFD, the order
ofM is the greatest common divisor of all maximal minors in a presentation matrix ofM
with finitely many columns. The order of M is well defined up to a unit of S and depends
only on the isomorphism type of M . We do not require there to be only finitely many
minors, nor S to be Noetherian. In UFDs, any number of elements has a greatest common
divisor.

Definition 2.7. Suppose that G is of type FPn.R/, with R being a UFD. Let 'WG ! Z
be a homomorphism and let ˛WG� Q be an epimorphism with Q finite. The nth twis-
ted Alexander polynomial �';˛n;R.t/ over R with respect to ' and ˛ is defined to be the
order of the nth twisted (homological) Alexander module of ' and ˛, treated as a left
RŒt˙1�-module. Note that RŒt˙1� is a UFD since R is.

Example 2.8. Let us compute two instances of the twisted Alexander module for the
Baumslag–Solitar group G D BS.1; 2/ D ha; t j tat�1 D a2i. We take R D Z, and let
'WG ! Z be the map killing a.

In the first instance, let Q be the trivial group, and so ˛ is the trivial map. In this case,
the first twisted homological Alexander module of ' and ˛ is simply H1.GIZŒ t˙1�/,
which is the homology of the chain complex

ZŒ t˙1�! ZŒ t˙1�˚ ZŒ t˙1�! ZŒ t˙1�;

where the first map is the matrix .1� 2t; 0/ and the second is the transpose of .0; 1� t /. It
is immediate that the homology is isomorphic as a ZŒ t˙1�-module to ZŒ t˙1�=.1� 2t/, and
hence the twisted Alexander polynomial is 1 � 2t , which is also the untwisted Alexander
polynomial, as ˛ is trivial.

Now let us consider a more interesting situation in which Q D S3 is the permutation
group of rank three, where ˛.a/D .123/ and ˛.t/D .12/. The twisted Alexander module
in this case is the homology of

ZQŒt˙1�! ZQŒt˙1�˚ ZQŒt˙1�! ZQŒt˙1�;

where the first map is the matrix .1 � .1C a/t; a � 1/ and the second is the transpose of
.1� a;1� t /. Since the first entry of the first matrix is of the form 1� xt , with x 2ZQ, it
is easy to see that every element of the middle module can be written as y C ztn, where y
lies in the image of the first map, z D .z1; z2/ has z1 2 ZQ, and n 2 Z. If we additionally
require y C ztn to lie in the kernel of the second map, then we immediately see that
z2 D 0, since otherwise z2tn.1 � t / would not lie in ZQtn, but z1tn.a � 1/ would, and
the two elements have to cancel. But then z1 2 ZQ must have equal coefficients on all
elements lying in the same hai-cosets in S3. This tells us that the kernel of the second map
is equal to the (non-direct) sum of the image of the first map, and a free ZŒ t˙1�-module of
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rank two spanned by .1C a C a2; 0/ and ..1C a C a2/t; 0/. Taking the quotient of this
latter module by its intersection with the image of the first map yields

ZŒ t˙1�=.1 � 2t/˚ ZŒ t˙1�=.1 � 2t/;

and this is precisely the twisted Alexander module. The twisted Alexander polynomial is
equal to .1 � 2t/2.

Since we will be concerned with the vanishing of �';˛n;R.t/, let us record a number of
equivalent statements. From now on we drop the requirement on R being a UFD.

Lemma 2.9. Let R be an integral domain, and let F D Frac.R/. Suppose that G is of
type FPn.R/. The following are equivalent:

(1) rkRŒ t˙1�H
';˛
n;R D 0.

(2) H';˛
n;R is a torsion RŒt˙1�-module.

(3) H';˛
n;F is a torsion F Œt˙1�-module.

(4) H';˛
n;F is a finitely generated F -module.

If additionally R is a UFD, then these are equivalent to

(5) �';˛n;R.t/ ¤ 0.

Sketch proof. We offer only a sketch, since these equivalences are standard.
Items (2) and (3) are equivalent since F is a flat R-module. Items (3), (4), and (1) are

equivalent thanks to the classification theorem for finitely generated modules over a PID,
since F Œt˙1� is a PID; one also needs to note that Frac.RŒt˙1�/ D Frac.F Œt˙1�/.

The equivalence of (5) with the other ones is explained in Clause 2 of Remark 4.5
in [80].

Definition 2.10. Let R be an integral domain, let 'WG ! Z be a homomorphism, and let
˛WG�Q be a finite quotient. We say that ' has non-vanishing nth Alexander polynomial
twisted by ˛ if rkRŒ t˙1�H

';˛
n;R D 0. If this holds for ˛ D trWG ! ¹1º, we say that the nth

Alexander polynomial does not vanish; if the statement holds for all choices of ˛, we say
that ' has non-vanishing nth twisted Alexander polynomials.

It may seem strange to define non-vanishing of an object in terms of vanishing of a
different object, but indeed, by Lemma 2.9, ifR is a UFD, then rkRŒ t˙1�H

';˛
n;R D 0 is equi-

valent to �';˛n;R.t/ ¤ 0. Lemma 2.9 also shows that in Definition 2.10 we may replace R
by Frac.R/.

Lemma 2.11. The nth Alexander polynomial of ' twisted by ˛ vanishes if and only if the
nth (untwisted ) Alexander polynomial of 'jker˛ vanishes. Moreover, if R is a UFD, then
the corresponding twisted Alexander polynomials are equal.

Proof. This was proved in Lemma 3.3 of [29]; we include a proof for completeness. We
need to compare the RŒt˙1�-modules

Hn.GIRQŒt
˙1�/ and Hn.ker˛IRŒt˙1�/:

Shapiro’s lemma shows that these modules are isomorphic, since RQŒt˙1� is isomorphic
to the induced right RG-module of the right R.ker˛/-module RŒt˙1�.
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The following result is well known for 3-manifolds, and has appeared in several places
[19, 25,36, 56]; in fact, it appears to date back to work of Milnor [67]. We include a proof
in the group theoretic setting for completeness.

Proposition 2.12. Let R be an integral domain. Let G be a group of type FPn.R/ and let
'WG! Z be a non-trivial character. If ' is FPn.R/-fibred, then its kth twisted Alexander
polynomials never vanish for k 6 n.

Proof. Since ' is FPn.R/-fibred, G splits as a semi-direct product A ÌZ with A D ker'
of type FPn.R/. Let m D jZ W Im 'j <1. Now, let ˛WG� Q be an epimorphism of G
onto a finite group and letRQŒt˙1� be the rightRG-module with action given by ' and ˛.
Applying III.6.2 and III.8.2 in [15] yields that

H�.GIRQŒt
˙1�/ D H�

�
GI
M
m

RQŒt˙m�
�
Š H�

�
AI
M
m

RQ
�

as R-modules. Now, since A is of type FPn.R/ and Q is finite it follows that for k 6 n
theR-moduleH�.AI

L
mRQ/ is finitely generated. Such a module cannot contain a copy

of RŒt˙1�, and therefore Hk.GIRQŒt˙1�/ is a torsion RŒt˙1�-module. We are done by
Lemma 2.9.

Proposition 2.13. LetR be an integral domain. LetG be a group of type FPn.R/, and let
'WG ! Z be an FPn.R/-semi-fibred character. The kth twisted Alexander polynomials
of ' are non-zero for all k 6 n.

Note that the case nD 1 is implied by Lemma 4.1 in [33]; our method of proof is quite
distinct.

Proof. Since G is of type FPn.R/, we find a projective resolution C� of the trivial G-
module R with Ck a finitely generated RG-module for every k 6 n. We replace ' by �'
if needed, and assume that ' 2†n.GIR/; note that this replacement does not affect the
vanishing of twisted Alexander polynomials.

The Novikov ring Nov.RG; '/ is the ring of twisted Laurent power series with coef-
ficients in R.ker '/ and with variable t 2 G with '.t/ D 1, where the twisting is given
by the conjugation action of t on ker '; multiplication in Nov.RG; '/ induces a right
RG-module structure on Nov.RG; '/.

Using Fisher’s version of Sikorav’s theorem (Theorem 5.3 in [23]), we find a partial
chain contraction for C� over the Novikov ring Nov.RG; '/ in the following sense: denote
the differentials of C� by @i WCi ! Ci�1. We find Nov.RG; '/-module morphisms

Ai W Nov.RG; '/˝RG Ci ! Nov.RG; '/˝RG CiC1

such that for every i 6 n, we have

Ai�1@
0
i C @

0
iC1Ai D id;

where
@0i D idNov.RG;'/˝RG@i and A�1 D 0; @

0
�1 D 0:
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Now, let ˛WG � Q be an epimorphism with Q finite. Dividing G by the normal
subgroup K D ker˛ \ ker' induces a ring morphism

ˇ W Nov.RG; '/! Nov.R.G=K/;  /;

where  WG=K ! Z is induced by '.
To compute the homology Hi .GI Nov.R.G=K/;  //, we need to tensor the chain

complex C� with Nov.R.G=K/;  /. This has the same effect as applying the homo-
morphism ˇ to the free Nov.RG; '/-modules and differentials constituting the complex
Nov.RG; '/˝RG C�. This implies that applying ˇ to the entries of the matrices Ai gives
us another set of chain contractions with the same properties as above, and hence

Hi .GINov.R.G=K/;  // D 0

for all i 6 n.
Observe that the ring Nov.R.G=K/;  / is isomorphic to

L
Q Nov.R.ker˛=K/;  /

as an R.ker˛=K/-module, and hence also as an R.ker˛/-module, and so

Hi
�

ker˛INov.R.ker˛=K/;  /
�
D 0

for all i 6 n. Arguing with chain contractions as before, we see that

Hi
�

ker˛INov.Frac.R/.ker˛=K/;  /
�
D 0

for all i 6 n.
Now, ker˛=K Š Z, and therefore Nov.Frac.R/.ker˛=K/;  // is the field of Laurent

power series in a single variable t and coefficients in Frac.R/, where t 2 ker˛ is mapped
by  to a generator of Z. This field contains the field R.t/ of rational functions in a
single variable and coefficients in R in the obvious way. Since R.t/ is a right R.ker ˛/-
submodule of Nov.Frac.R/.ker˛=K/;  //, and since Nov.Frac.R/.ker˛=K/;  // is a
flat R.t/-module as both are skew-fields, we conclude that

0 D Hi .ker˛IR.t//:

Now, using flatness of localisations, we obtain

Hi .ker˛IR.t// D Hi .ker˛IRŒt˙1�/˝RŒ t˙1� R.t/

and therefore Hi .ker ˛IRŒt˙1�/ is a torsion RŒt˙1�-module. We are now done thanks to
Lemmas 2.11 and 2.9.

Example 2.14. The Baumslag–Solitar group

BS.1; n/ D ha; t j tat�1 D ani

has H 1.BS.1; n/IR/ Š R, with basis given by the character

'WBS.1; n/� hti Š Z

killing a. The BNS invariant †1.BS.1; n// consists only of the ray ¹�' j � 2 .0;1/º. It
follows that for every integral domain R and every finite quotient ˛WBS.1; n/� Q, the
twisted Alexander polynomials never vanish. (In fact, the polynomials can be computed by
hand rather easily.) Note that BS.1;n/ splits as ZŒ1=n�ÌZ, where Z acts as multiplication
by n, so ker.'/ is not finitely generated.
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3. TAP groups

3.1. The definition

Definition 3.1. Let R be an integral domain. We say that a group G of type FPn.R/ is in
the class TAPn.R/ if for every non-trivial character ' 2H 1.GIZ/ the following property
holds:

' is FPn.R/-semi-fibred if and only if for each i 6 n its twisted i th Alexander
polynomials never vanish.

We allow n D1 in the above definition.
The definition is best motivated and explained by the following slogan: “A group is

in TAPn.R/ if and only if twisted Alexander polynomials detect algebraic semi-fibring
over R up to dimension n”.

Note that, in view of Example 2.14, it is more natural to use semi-fibring rather than
fibring in the definition above. Indeed, vanishing of twisted Alexander polynomials alone
cannot distinguish between fibring and semi-fibring.

Example 3.2. Theorem 1.1 by Friedl–Vidussi shows that fundamental groups of com-
pact, orientable, connected 3-manifolds with empty or toroidal boundary are in TAP1.R/.
In fact, they are in TAP1.R/: indeed, the first BNS invariant of a compact 3-manifold
group G is symmetric (Corollary F in [7]), that is, †1.G/ D �†1.G/, and a finitely gen-
erated subgroup of a 3-manifold group is of type F1 by Scott’s compact core theorem [77].
Hence, such a subgroup is type FP1.R/ over every R.

Example 3.3. A non-example is given by G D S oZ, where S is an infinite simple group.
Note that such a group has an obvious map 'W G � Z, and this map is a basis for
H 1.GIR/ Š R. The group G admits an automorphism that acts on H 1.GIR/ as minus
the identity, and hence the BNS invariants ofG must be symmetric. Therefore†1.GIR/ is
empty since ker'D

L
ZS is not finitely generated. Now, every finite quotient ofG is cyc-

lic and the corresponding kernel is isomorphic to Sn o Z for some n; the Alexander poly-
nomial of such a group is equal to 1, since the relevant R-module is H1.Sn o ZIRŒt˙1�/
Š H1.

L
Z S

nIR/ D 0. This shows that G is not in TAP1.R/ for any R.

Example 3.4. Another non-example is provided by every group that admits a character
that is FP2.Q/-semi-fibred without being FP2.Z/-semi-fibred. Such a group cannot be in
TAP2.Z/, since if it were, then the character would have non-vanishing twisted second
Alexander polynomials over Q by Proposition 2.13, and hence over Z by Lemma 2.9, and
then TAP2.Z/ would show that the character is FP2.Z/-semi-fibred. An explicit example
of a group satisfying the requirement is every RAAG based on a triangulation of the real
projective plane; the character will then be the Bestvina–Brady character [4].

We will be primarily interested in profinite aspects of TAP groups, but the property
has also other uses.

Italiano–Martelli–Migliorini in [48] introduced a finite-volume hyperbolic 7-manifold
whose fundamental group maps onto Z with finitely presented kernel. Fisher [22] showed
that by passing to a suitable finite cover, one obtains a finite-volume hyperbolic 7-manifold
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M with G D �1.M/ and an epimorphism 'WG ! Z with kernel that is finitely presented
and of type FP.Q/.

Twisted Alexander polynomials could potentially be used to show that the 7-manifold
fibres over the circle: Suppose that G lies in TAP7.Z/ and that

†7.GIZ/ D �†7.GIZ/:

Since ' 2†7.�1.M/IQ/, we see that the twisted Alexander polynomials of M over Q
never vanish in dimensions 1 to 7. This means that the polynomials over Z never vanish
either, and since G is in TAP7.Z/, we conclude that ' 2†7.�1.M/IZ/. Since the BNS
invariant is also assumed to be symmetric, ker ' is finitely presented and of type FP7.Z/,
and hence is of type F. If one now had a version of Farrell’s theorem [21] for manifolds
with boundary, one could conclude that M fibres over the circle.

3.2. Almost finitely presented LERF groups are TAP1.R/

Now that we have defined TAP, let us introduce the class of groups whose TAPness we
want to establish.

Definition 3.5. Let G be a group. A subgroup A 6 G is separable if for every g 2G XA
there exists an epimorphism ˛WG� Q with Q finite such that

˛.g/ 62 ˛.A/:

A group G is LERF (or locally extended residually finite, or subgroup separable) if
every finitely generated subgroup is separable.

We will need some standard terminology related to graph-of-groups decompositions.

Definition 3.6. We say that a group G splits over a subgroup A if G decomposes as a
reduced graph of groups with a single edge and edge group A. Recall that a graph of
groups is reduced if every edge both of whose attaching maps are isomorphisms is a loop.

We are ready to state our main technical tool. The HHN extension case is a variation
on the proofs from [28].

Proposition 3.7. Let G be a finitely generated group that splits over a separable sub-
group. Let 'WG! Z be a non-zero character that vanishes on the edge group. If for some
integral domain R the first twisted Alexander polynomials never vanish, then the splitting
has only one vertex and ' is algebraically fibred with kernel equal to the edge group.

Proof. We need to consider two cases, depending on whether the splitting is an HNN
extension or an amalgamated free product.

Suppose first that G splits as an HNN extension (in fact, this is always the case; we
will prove this by contradiction later on). If both edge maps are isomorphisms, then the
edge group is a normal subgroup, and quotienting by it yields Z. Hence, ' is algebraically
fibred with kernel equal to the edge group, as claimed. Suppose now that at least one of the
attaching maps is not a surjection. Let A denote the image of this map, and let B denote
the vertex group.
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Let ˛WG� Q be an epimorphism with finite image. Consider the Mayer–Vietoris
sequence for an HNN-extension (see for instance Chapter VII.9 of [15]) with non-trivial
coefficients RQŒt˙1� as in Section 2.2, where the action of A and B on the module is
inherited from G. The sequence takes the following form:

� � � H1.GIRQŒt
˙1�/

H0.AIRQŒt
˙1�/ H0.BIRQŒt

˙1�/ H0.GIRQŒt
˙1�/

0

Since A 6 ker', we have a right A-module isomorphism

RQŒt˙1� D RŒt˙1�˝R RQ;

where the action of g 2 A on RŒt˙1� ˝R RQ is the diagonal action given by right-
multiplication by ˛.g/ onRQ and the trivial action ofRŒt˙1�. We also have anR-module
isomorphism

H0.AIRŒt
˙1�˝R RQ/ Š RŒt

˙1�˝R .RQ/A

by the definition of zeroth homology, where .�/A denotes A-coinvariants.
By assumption, we have that H1.GIRQŒt˙1�/ is RŒt˙1�-torsion, and it is clear that

H0.GIRQŒt
˙1�/ is RŒt˙1�-torsion (see for instance Lemma 4.4 in [28]). Applying these

observations in the trivial case ˛ D trWG ! ¹1º; Q D ¹1º, we see that H0.BIRŒt˙1�/
must contain a copy of RŒt˙1�˝R RA D RŒt˙1�. If 'jB ¤ 0, then it is immediate that
H0.BIRŒt

˙1�/ D .RŒt˙1�/B is a torsion RŒt˙1�-module, yielding a contradiction. We
conclude that 'jB D 0, and hence we have

H0.BIRQŒt
˙1�/ Š RŒt˙1�˝R .RQ/B for all ˛ and Q.

Using the fact that A is separable, we produce an epimorphism ˛WG� Q with finite
image such that ˛.A/ is a proper subgroup of ˛.B/. Let F D Frac.R/. Note that F.t/,
the field of rational functions, is a flat RŒt˙1�-module. Tensoring the Mayer–Vietoris
sequence above (with this choice of ˛) with F.t/ over RŒt˙1�, we see that

dimF.t/ F.t/˝R .RQ/A D dimF.t/ F.t/˝R .RQ/B :

Observe that .RQ/A is a free rightR-module of rank jQ W ˛.A/j, and similarly for .RQ/B .
The dimensions above pick up exactly the R-rank, and so we may conclude that

jQ W ˛.A/j D jQ W ˛.B/j;

contradicting j˛.A/j < j˛.B/j.
Suppose now G splits as an amalgamated free product, we will show now this is not

the case, again by contradiction. Now, the edge group A must be a proper subgroup of the
vertex groups B and B 0, since otherwise the graph of groups would not be reduced.
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We now consider the Mayer–Vietoris sequence for a free product with amalgamation:

� � � H1.GIRQŒt
˙1�/

H0.AIRQŒt
˙1�/ H0.BIRQŒt

˙1�/˚H0.B
0IRQŒt˙1�/ H0.GIRQŒt

˙1�/

0

Arguing as before with ˛ D tr, we first see that ' must vanish on precisely one of the
vertex groups, say B – it cannot vanish on both since ' ¤ 0. As before, we produce
˛WG� Q such that ˛.A/ < ˛.B/. After tensoring with F.t/ over RŒt˙1�, we obtain an
isomorphism between

F.t/˝RŒ t˙1� H0.AIRQŒt
˙1�/

and �
H0.BIRQŒt

˙1�/˝RŒ t˙1� F.t/
�
˚
�
H0.B

0
IRQŒt˙1�/˝RŒ t˙1� F.t/

�
:

Since 'jB 0 is non-trivial, the RŒt˙1�-module H0.B 0IRQŒt˙1�/ is torsion as before, and
hence

F.t/˝RŒ t˙1� H0.B
0
IRQŒt˙1�/ D 0:

Using dimensions over F.t/ we conclude that

j˛.A/j D j˛.B/j;

as before. This is a contradiction.

We are now ready for our first main theorem.

Theorem 3.8. If G is a LERF group of type FP2.S/ for some commutative ring S , thenG
is in TAP1.R/ for every integral domain R.

Proof. Fix an arbitrary integral domain R. Let 'WG ! Z be a non-trivial character. We
aim to show that ' is algebraically fibred if and only if for every epimorphism onto a finite
group ˛WG� Q, the corresponding twisted Alexander polynomial does not vanish. The
‘only if’ direction is given by Proposition 2.13. For the other direction, suppose that the
twisted Alexander polynomials of ' are non-zero.

Since G is of type FP2.S/, by Theorem A in [9], there exist finitely generated sub-
groups A;B;C 6 G with A;C 6 B , and an isomorphism �WA! C , such that G splits as
an HNN-extension B��, and dividing by B , coincides with '.

Since A is finitely generated and G is LERF, we see that A is separable. The result
now follows from Proposition 3.7.

Remark 3.9. The proof of the above result, together with Proposition 2.13, show that
†1.G/ D �†1.G/. This is a well-known fact that can be proved directly using Proposi-
tion 2.6.

Proposition 3.7 can also be used in the setting of graphs of groups.
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Theorem 3.10. Let R be an integral domain. Let G be a finitely generated fundamental
group of a finite reduced graph of groups G . Let ' 2H 1.GIZ/ be a non-zero character
and suppose that G is LERF. If the first twisted Alexander polynomials of ' never vanish,
then for every finitely generated edge group A precisely one of the following holds:
(1) either G D A Ì Z with ' being the projection map,

(2) or 'jA ¤ 0.

Proof. Let A be an arbitrary finitely generated edge group in the graph of groups decom-
position and let e be any edge with edge group A. The proof splits into two cases.

If e is non-separating, then we may collapse all the other edges and obtain a splitting
ofG as an HNN extension with edge groupA. Now, Proposition 3.7 tells us that if 'jAD 0,
then ' is algebraically fibred with kernel A, that is, G D A Ì Z.

If e is a separating edge, then G splits as a free product amalgamated over A. Propos-
ition 3.7 tells us that 'jA ¤ 0.

3.3. Products of TAP1.R/ groups

We will now discuss the structure of the BNS invariants for products of groups. When
working over fields, this structure is completely understood in terms of BNS invariants
of factors; over general commutative rings all we have is an inequality. To understand
the inequality, recall that we have defined the BNS invariants †n.GIR/ as subsets of
H 1.GIR/ X ¹0º. For a subset U � H 1.GIR/, we denote the complement by U c D
H 1.GIR/ X U . In particular, we have †0.GIR/c D ¹0º.

When G D G1 �G2, we have

H 1.GIR/ D H 1.G1IR/˚H
1.G2IR/:

Given subsets Ui � H 1.Gi IR/, we define their join to be

U1 � U2 D ¹ tu1 C .1 � t /u2 j ui 2 Ui ; t 2 Œ0; 1�º:

The following inequality is due to Meinert; see [6] for the history of this and [35] for a
proof. The “moreover” is due to Bieri–Geoghegan [6], and for R D Z, the inequality can
be strict [76].

Theorem 3.11 (Meinert’s inequality). LetG1 andG2 be groups of type FPn.R/, whereR
is a commutative ring, and let G D G1 �G2. Then

†n.GIR/c �

n[
pD0

†p.G1IR/
c
�†n�p.G2IR/

c :

Moreover, equality holds if R is a field.

Proposition 3.12. Let R be an integral domain and let G1 and G2 be finitely generated
groups. If Gi is in TAP1.R/ for i D 1; 2, then G1 �G2 is in TAP1.R/.

Proof. Let G D G1 � G2. Suppose that there exists 'WG� Z that is not algebraically
semi-fibred and is non-zero. It suffices to show that there exists a finite quotient ˛WG�Q

such that the corresponding twisted Alexander polynomial vanishes.
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By Meinert’s inequality, we have

' 2 .†1.G1IR/
c
� ¹0º/ [ .¹0º �†1.G2IR/

c/:

In particular, for exactly one i 2 ¹1; 2º we have 'jGi D 0. Suppose without loss of gener-
ality that i D 2.

Now, we have a splitting ker.'/ D ker.'jG1/ � G2. Since G1 lies in TAP1.R/, there

exists a finite quotient ˛1WG1�Q such that the module H
'jG1 ;˛1

1;R is not RŒt˙1�-torsion,
and hence contains a free RŒt˙1�-module. Let F denote Frac.R/. Since F is a flat R-
module, and since dimF F ˝R RŒt

˙1� D1, we immediately see that

dimF F ˝R H
'jG1 ;˛1

1;R D1:

Define ˛WG�Q to be the compositeG�G1�Q. Applying Shapiro’s lemma (as
in the proof of Lemma 2.11), and then III.8.2 in [15], gives isomorphisms of R-modules

H
';˛
1;R Š H

'jker˛ ;tr
1;R Š H1.ker.'/ \ ker.˛/IR/;

but
ker.'/ \ ker.˛/ Š .ker.'jG1/ \ ker.˛1// �G2:

It follows that we can computeH';˛
1;R by the Künneth spectral sequence (note that R is not

necessarily a PID so we cannot use the Künneth formula, see Theorem 11.34 in [75]). We
have

H
'jG1 ;˛1

1;R ˝R R Š H
'jG1 ;˛1

1;R D TorR0 .H
'jG1 ;˛1

1;R ; R/ 6 H';˛
1;R

as R-modules. We conclude that

dimF F ˝R H
';˛
1;R D1:

Using flatness again, we get
dimF H

';˛
1;F D1;

and hence the first Alexander polynomials twisted by ˛ over F and over R vanish by
Lemma 2.9.

3.4. Products of limit groups are TAP1.F/

We say that G is a limit group precisely when it is a finitely generated fully residually free
group, that is, for any finite subset X of G, there is an epimorphism f WG ! F which is
injective on X and where F is a free group.

Theorem 3.13. Let F be a field and let G D
Qn
iD1Gi be a finite product of limit groups.

Then G is in TAP1.F/.

Proof. By [82], limit groups are LERF, and by [78], limit groups are finitely presented,
and hence FP2.Z/; in fact, by Exercise 13 in [5], limit groups are of type F. It follows that
products of limit groups are TAP1.F/ by Theorem 3.8 and Proposition 3.12.
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Let 'WG� Z be a character which is FPk�1.F/-semi-fibred but not FPk.F/-semi-
fibred for some 2 6 k 6 n. If no such k exists, then we are done by Proposition 2.13.
The same result tells us that the twisted Alexander polynomials of ' in dimension at most
k � 1 never vanish. We need to exhibit a vanishing one in dimension k. Lemma 2.11
tells us that it is enough to find such a vanishing twisted polynomial for some normal
finite-index subgroup of G.

We may assume that if some Gi is abelian then 'jGi D 0. Otherwise, ' would be
FP1.F/-semi-fibred by Meinert’s inequality. After passing to a finite index normal sub-
group H �K with

H D

pY
iD1

Hi ; K D

qY
jD1

Kj ; p C q D n; Hi P Gi ; and Kj D GqCj ;

we may assume that 'jHi is surjective and 'jKj D 0. Let  denote the restriction of '
toH . By Theorem 7.2 in [12] (note that the result is only stated for Q but by the paragraph
after Theorem C loc. cit., it holds for arbitrary fields), we have that Hp.ker I F/ has
infinite dimension over F (here we are using the fact that  vanishes on abelian factors).
It follows from Lemma 2.9 that the twisted Alexander polynomial of G in dimension p
associated to ˛WG� G=.H �K/ vanishes.

We have found a vanishing Alexander polynomial in dimension p. Note that p > k
since ' is FPk�1.F/-semi-fibred. Meinert’s inequality tells us that †p�1.GIR/c is the
union of joins of the form

†m1.G1IR/
c
� � � � �†mn.GnIR/

c

with
P
mi D p � 1. Each such join must therefore have at most p � 1 factors withmi > 0,

and hence characters lying in such a join must vanish on all but at most p � 1 factors Gi .
But ' does not vanish on p factors, and hence ' 2†p�1.GIR/. Hence p � 1 6 k � 1,
and therefore p D k. We have now shown that the first dimension in which a twisted
Alexander polynomial vanishes is equal to the first dimension in which ' is not semi-
fibred. This proves the claim.

Remark 3.14. It was pointed out by a referee that Theorem 3.13 might hold for the
more general class of (products of) limit groups over Droms RAAGs, studied in [17, 18,
34, 57, 65] (we refer the reader to the previous citations for the relevant definitions). The
authors are happy to report that it does.

Theorem 3.15. Let F be a field and let G D
Qn
iD1Gi be a product of limit groups over

centreless Droms RAAGs. Then G is in TAP1.F/.

Sketch proof. By Corollary 9.5 in [17], a limit group over a Droms RAAG is type F1.
Since finitely generated subgroups of a limit group are themselves limit gorups, it fol-
lows that such subgroups are finitely presented. Hence Theorem 10.8 in [65] implies that
a limit group over a Droms RAAG is LERF. The remainder of the argument follows The-
orem 3.13 verbatim, except we replace the use of Theorem 7.2 in [12] with Theorem 7.3
in [65], and note that the latter result holds for arbitrary fields (checking this is laborious,
but not hard).
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4. Profinite rigidity of fibring

4.1. Cohomological preliminaries

The goal of this subsection is to establish the relationship between the cohomology of a
group and of its profinite completion.

Definition 4.1. LetG be a group, letR be a ring, and let C be a directed system of normal
finite-index subgroups of G. We set

yGC D lim
 �
U2C

G=U and RJGKC D lim
 �
U2C

R.G=U /:

When C consists of all normal subgroups of finite index, we write yG for yGC , andRJGK
for RJGKC , and call them respectively the profinite completion and the completed group
ring.

Note that yZ is a ring with the obvious multiplication.
The groups yG and more generally yGC carry a natural compact topology obtained as

the limit of the discrete topology on G=U . Whenever we will use this topology, we will
state it explicitly, as we do below.

Definition 4.2. Let G be a residually finite group. We say that G is n-good if for all
0 6 j 6 n and all ZG-modules M that are finite as sets, the map

Hn
cont.
yGIM/! Hn.GIM/;

induced by the inclusion G ! yG, is an isomorphism. Here, H�cont denotes continuous
group cohomology which is defined analogously to ordinary group cohomology except
for the following modifications: First, we require M to be a topological yG-module, that
is, M carries a (possibly discrete) topology and the yG-action on M is continuous, and
secondly, the cochain groups C �cont.

yGIM/ consist of continuous functions yGn !M .
A group that is n-good for all n is called cohomologically good, or good in the sense

of Serre.

Remark 4.3. It is very easy to see that every residually finite group is 1-good.

Proposition 4.4 (Lemma 3.2 in [37]). Finite-index subgroups of n-good groups are them-
selves n-good.

The above proposition is stated in a slightly less general way in the paper [37] of
Grunewald–Jaikin-Zapirain–Zalesskii, but the proof gives precisely what we claim above.

The following result is a slight variation on a theorem of Kochloukova and Zalesskii.
The only difference consists of replacing the assumption of G being type FP1 with the
assumption of G being type FPn. The proof is very similar, but we include it to highlight
the differences.

Proposition 4.5 (Theorem 2.5 in [58]). Let G be a group of type FPn.Z/ and let C be a
directed system of finite index normal subgroups. Suppose that for a fixed prime p and for
all 1 6 i 6 n, we have

lim
 �
U2C

Hi .U IZ=pZ/ D 0:
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Then, for all m > 1 and 1 6 i 6 n, we have

TorZG
i .Z; .Z=pmZ/JGKC / D 0 and TorZG

i .Z;ZpJGKC / D 0;

where Zp denotes the p-adic integers.

In both the statement above and the proof below, we stay in the abstract category, that
is, we do not require any continuity, and homology is taken without closing images.

Proof. Let P� be a projective resolution of Z over ZG such that Pi is finitely generated
for i 6 n. Let

P .m/� D .Z=pmZ/JGKC ˝ZG P�:

By Lemma 2.1 in [58], we have

Hi .P
.1/
� / Š TorZG

i .Z; .Z=pZ/JGKC / D 0 for 1 6 i 6 n.

The short exact sequence of right ZG-modules

0 .Z=pZ/JGKC .Z=pmZ/JGKC .Z=pm�1Z/JGKC 0

induces a long exact sequence in homology containing sequences

Hi .GI .Z=pZ/JGKC / Hi .GI .Z=pmZ/JGKC / Hi .GI .Z=pm�1Z/JGKC /

exact in the middle term. This latter sequence implies via an easy induction that

TorZG
i .Z; .Z=pmZ/JGKC / D 0 for 1 6 i 6 n;

and so P .m/� is exact up to dimension n. It also shows that

HnC1.GI .Z=p
mZ/JGKC /! HnC1.GI .Z=p

m�1Z/JGKC /

is a surjection.
For every m, we have an obvious chain map P .mC1/� ! P

.m/
� . Let

Q� D lim
 �
m

P .m/� ;

where the limit is taken along these maps. By Proposition 3.5.7 and Theorem 3.5.8 in [81],
the complex Q� is exact up to dimension n, and by construction,

Q� Š ZpJGKC ˝ZG P�:

Therefore,
Hi .Q�/ Š TorZG

i .ZIZpJGKC / D 0 for 1 6 i 6 n;

as required.

The next result is due to Jaikin-Zapirain; we have weakened the original assumption
of type FP1 to FPn. The proof goes through verbatim after substituting Proposition 4.5
for Jaikin-Zapirain’s use of Theorem 2.5 in [58].
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Proposition 4.6 (Proposition 3.1 in [49]). Let G be a group of type FPn.Z/ and let
.F�; @�/ be a free resolution of the trivial ZG-module Z, which is finitely generated up
to dimension n, and in which F0 D ZG. Then G is n-good if and only if the induced
sequence

� � � yFn � � � yF1 yF0 yZ
y@nC1 y@n y@2 y@1 y@0

is exact up to dimension n, where . yF�;y@�/ is obtained from .F�;@�/ by tensoring with yZJGK
over ZG.

4.2. Towards profinite fibring

In this section, our goal is to set up a correspondence between the characters of two profin-
itely isomorphic groups. The key tool will be the "-pullbacks defined below, which set up
this ‘correspondence’. We also recall a technical result of Liu which we will use later.

First we need to introduce some notation. Recall that

H
';˛
n;R D Hn.GIR.Q �Z//;

where ˛WG� Q and 'WG ! Z are homomorphisms, and R.Q � Z/ is a right RG-
module via

.q; z/:g D .q˛.g/; z'.g//; with .g; q; z/ 2 G �Q �Z.

We also treat R.Q �Z/ as an RZ module via the inclusion Z ! Q �Z.
Now suppose thatZ 2 ¹Z; yZº, so that yZ D yZ. Let yG be the profinite completion ofG,

and let y̨W yG !Q and y'W yG ! yZ be the completions of the morphisms from before. Note
that Q D yQ since Q is finite. Let R D F be a finite field. We let

yH
y';y̨
n;F D H

prof
n . yGIFJQ � yZK/;

where H prof
� denotes profinite homology, as defined in Section 6.3 of [74]. Observe that

FJQ � yZK D FQJyZK

has a structure of an FJyZK module, and hence so does yH y'; y̨n;F .
We now recall the technical result of Liu we need.

Proposition 4.7 (Proposition 4.6 in [63]). Let G be a group which is n-good and of
type FPn.Z/. Let F be a finite field. Let ˛WG � Q be a finite quotient of G. Denote
by y̨W yG� Q the completion of ˛.

(1) Let 'WG ! Z be a group homomorphism, and let y'W yG ! yZ denote its completion.
If the annihilator of H';˛

n;F in F yZ is non-zero, then the annihilator of yH y'; y̨n;F is non-

zero in FJyZK.

(2) Let '; WG! yZ be group homomorphisms and suppose that ker. / contains ker.'/.
If H ;˛

n;F has a non-zero annihilator in F yZ, then H';˛
n;F has a non-zero annihilator

in F yZ.
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(3) Let � be a profinite group, let ‰W � ! yG be a continuous epimorphism and let
 WG ! yZ be a group homomorphism. Let y̨0 and y 0 denote the pullbacks y̨ ı ‰
and y ı‰. If yH y'

0; y̨0

n;F has a non-zero annihilator in FJyZK, then yH y'; y̨n;F has a non-zero

annihilator in FJyZK.

(4) Let 'WG ! Z be a group homomorphism. The module yH y'; y̨n;F has a non-zero anni-

hilator in FJyZK if and only if H';˛
n;F has finite dimension over F .

Note that we have weakened the hypotheses ‘cohomologically good and type FP1’
in Proposition 4.6 of [63] to ‘n-good and type FPn’. To make the adjustment, we simply
substitute the use of Proposition 3.1 in [49] in the proof of Proposition 4.6 in [63] with
our Proposition 4.6.

Definition 4.8. Let HA and HB be a pair of finitely generated Z-modules. Let ˆW yHA !
yHB be a continuous homomorphism of the profinite completions. We define the matrix

coefficient module
MC.ˆIHA;HB/

(or simply MC.ˆ/ if there is no chance of confusion) for ˆ with respect to HA and HB
to be the smallest Z-submodule L of yZ such that ˆ.HA/ lies in the submodule HB ˝Z L

of yHB . We denote by
ˆMC

W HA ! HB ˝Z MC.ˆ/

the homomorphism uniquely determined by the restriction of ˆ to HA.

By Proposition 3.2(1) in [63], the Z-module MC.ˆIHA; HB/ is a non-zero finitely
generated free Z-module.

Given two profinitely isomorphic groups, the next definition will give us a way to
pullback homomorphisms to Z from one group to the other through their (shared) profin-
ite completion. When the TAPn.F/ property holds we will be able to verify whether the
characters are fibred. The purpose of the " we define is to construct this pullback.

Definition 4.9. We define "2 HomZ.MC.ˆ/;Z/ by picking a free basis for MC.ˆ/ and
sending every generator to either 0 or 1 in such a way that following " with the natural
projection Z! Z=2Z coincides with the restriction of the natural projection yZ! Z=2Z
to MC.ˆ/. The definition of " depends on the choice of a basis for MC.ˆ/.

The "-specialisation of ˆ refers to the composite homomorphism

HA HB ˝Z MC.ˆ/ HB ˝Z Z D HB ;
ˆMC 1˝"

denoted by ˆ"WHA ! HB . The dual "-specialisation of ˆ refers to the homomorphism
ˆ"WHomZ.HB ;Z/! HomZ.HA;Z/ precomposing with ˆ".

Lemma 4.10. If ˆ is an isomorphism, then the images of ˆ" and ˆ" are of finite index
in their respective codomains.

Proof. Let b denote the rank of HB . We have a natural epimorphism �WHB ! .Z=2Z/b

that extends to y�WHB ˝Z yZ! .Z=2Z/b . By construction, � ıˆ" D y� ıˆ. Let us assume
that ˆ is an isomorphism. Since y� is clearly surjective, we conclude that � ıˆ" is surject-
ive. Pick a basis of .Z=2Z/b , and lift it via � to a set v1; : : : ; vb 2 Imˆ". Suppose that
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the elements v1; : : : ; vb are Z-linearly dependent. By removing the common factors of 2
from the coefficients, we may assume that we have

bX
iD1

�ivi D 0;

with �i 2Z and with at least one �i odd. Applying � to this formula contradicts the fact
that we started with a basis for .Z=2Z/b . Hence v1; : : : ; vb are Z-linearly independent,
and hence by tensoring with Q, we see that Imˆ" is of finite index in HB .

The result for ˆ" follows immediately, since we have just shown that ˆ" ˝Z idQ is
surjective, and hence an isomorphism, since HA and HB have the same rank.

Definition 4.11. Let GA and GB be finitely generated groups and let ‰W yGA ! yGB be
an isomorphism of profinite completions. Let HA and HB be the maximal torsion-free
quotients of the abelianisations of, respectively, GA and GB ; let ab denote both of the free
abelianisation maps. Note that‰ induces‰1W yHA! yHB . Pick "2 HomZ.MC.‰1/;Z/ as
in Definition 4.9. Given ' 2H 1.GB IZ/, we define

 D ‰"1.' ı ab�1/ ı ab 2 H 1.GAIZ/

to be the "-pullback of '.

4.3. The result

Theorem 4.12. Let n be a positive integer. Let GA and GB be n-good groups of type
FPn.Z/, and suppose that GB is in TAPn.F/, where F is a finite field. Let ‰W yGA ! yGB
be an isomorphism of profinite completions and let ' 2H 1.GB IZ/. If for every i 6 n,
an "-pullback  2H 1.GAIZ/ of ' has non-vanishing i th twisted Alexander polynomials
over F , then ' is FPn.F/-semi-fibred.

Proof. Note that ‰ is continuous by the work of Nikolov–Segal, see Theorem 1.1 in [68]
(see also [69] for the remainder of the proof). Let y� WGA ! yZ denote the composite

GA� yGA
‰
�! yGB

y'
�! yZ;

where y' is the completion of '. Observe that ker. / contains ker. O�/. Indeed, O� factorises
as the top composite and  as the bottom composite:

yZ

GA HA HB ˝Z MC.‰1/ Z˝Z MC.‰1/ MC.‰1/

Z;

‰1
MC '˝1 D

"

so clearly  vanishes on everything y� vanishes on.
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Let ˇWGB � Q be a finite quotient with completion y̌, and let ˛WGA� Q denote
the composite

GA� yGA
‰
�! yGB

y̌

�! Q:

Let i 6 n. By assumption, the homology group H ;˛
i;F is FZ-torsion, and hence

0 D Frac.FZ/˝FZ H
 ;˛
i;F D Hi .GAIFrac.FZ/Q/

for i 6 n, where the second equality comes from the fact that localisations are flat, and
that Frac.FZ/Q is the localisation of F.Z �Q/ at F.Z � ¹1º/ X ¹0º.

Since GA is of type FPn.Z/, we find a free resolution C� of Z with each Ci , for i 6 n,
a finitely generated ZGA-module; let @i WCi ! Ci�1 denote the differentials of C�. The
fact that Hi .GAIFrac.FZ/Q/ D 0 for all i 6 n allows us to construct chain contractions,
that is, Frac.FZ/Q-module maps

di W Frac.FZ/Q˝ZGA Ci ! Frac.FZ/Q˝ZGA CiC1

for i 6 n, with
di�1 ı @i C @iC1 ı di D id;

where we now view @i as idFrac.FZ/Q˝@i (for details on how to build the chain contrac-
tions, see Section I.7 of [15] or Section 2.2 of [80]). Since the modules

Frac.FZ/Q˝ZGA Ci

are finitely generated, by multiplying the maps di by the common denominator of all the
entries of the matrices representing the maps di , we arrive at the existence of F.Z �Q/-
module maps

d 0i W F.Z �Q/˝ZGA Ci ! F.Z �Q/˝ZGA CiC1;

with
d 0i�1 ı @i C @iC1 ı d

0
i

being equal to the right-multiplication by some

z 2 F.Z � ¹1º/ X ¹0º:

Again, we have to interpret the differentials @i in a suitable way. Crucially, since FZ is
central in F.Z �Q/, right-multiplication by z coincides with left-multiplication by z.

Let  0WGA ! yZ denote  followed by the natural embedding Z! yZ. The maps d 0i
can be easily extended to maps

F.yZ �Q/˝ZGA Ci ! F.yZ �Q/˝ZGA CiC1

immediately yielding that H 0;˛
i;F is FZ-torsion, and hence F yZ-torsion. Still, ker.y�/ 6

ker. 0/. Applying Proposition 4.7(2), (1), (3), and (4) in the given order, we see thatH';ˇ
i;F

is a finite dimensional F -module, and hence a torsion FZ-module. Since ˇ was arbitrary
and GB 2 TAPn.F/, it follows that ' is FPn.F/-semi-fibred.
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Corollary 4.13. Let n be a positive integer. Let GA and GB be n-good groups of type
FPn.Z/ with isomorphic profinite completions. Suppose thatGA lies in TAPn.F/, where F
is a finite field. The group GA is FPn.F/-semi-fibred if GB is.

Proof. Let  WGB ! Z be a non-trivial FPn.F/-semi-fibred character; observe that this
statement remains unchanged if we replace  by a positive scalar multiple. By Propos-
ition 2.13, the twisted Alexander polynomials of  over F never vanish. Lemma 4.10
gives us a bijection between positive scalar multiples of characters in H 1.GAIZ/ and
H 1.GB IZ/, and hence, in particular, we find a non-trivial character 'WGA ! Z such
that  is its "-pullback (up to multiplication by a positive scalar). Theorem 4.12 shows
that ' is FPn.F/-semi-fibred.

We may summarise the above by saying that being FPn.F/-semi-fibred is a profinite
property among n-good groups of type FPn.Z/ in TAPn.F/.

Using Remark 4.3, we obtain the following crisper formulation for n D 1.

Corollary 4.14. Let GA and GB be finitely generated groups with isomorphic profinite
completions. Suppose that GB lies in TAP1.F/, where F is a finite field. If GA is algebra-
ically semi-fibred, then so is GB .

5. Applications

5.1. Products of LERF groups

Theorem 5.1. Let GA and GB be groups such that all of the following hold:
• GA is finitely generated;
• GB is a product of LERF groups and is of type FP2.R/ for some commutative ring R;
• there is an isomorphism yGB ! yGA.

If GA is algebraically semi-fibred, then GB is algebraically fibred.

Proof. The group GB is in TAP1.F/ for every finite field F by Theorem 3.8 and Pro-
position 3.12 – we are also using the fact that each of the factors of GB is itself of type
FP2.R/, which is easy to see. Now we use Corollary 4.14 and see that GB is algebraically
semi-fibred. But the first BNS invariant of LERF groups is symmetric by Remark 3.9. It
follows from Meinert’s inequality that products of LERF groups also have symmetric first
BNS invariant, and hence that GB is algebraically fibred.

The following is restating Theorem C from the introduction.

Theorem 5.2. Let F be a finite field. Let GA and GB be profinitely isomorphic finite
products of limit groups. The group GA is FPn.F/-semi-fibred if and only if GB is.

Proof. By Theorem 3.13, finite products of limit groups are TAP1.F/; they are also of
type F, as mentioned before. The result now follows from Corollary 4.13. Indeed, limit
groups are cohomologically good by Theorem 1.3 in [37], and so products of them are
cohomologically good by Theorem 2.5 in [66].



S. Hughes and D. Kielak 1328

5.2. Poincaré duality groups

We now turn our attention to PD3-groups, that is, Poincaré duality groups in dimension 3.
For an introduction to this topic, see [42].

Theorem 5.3. Let GA be a PD3-group in TAP1.F/ for some finite field F . Let GB be
a finitely generated algebraically fibred group. If yGA Š yGB , then GA is the fundamental
group of a closed connected 3-manifoldM . Moreover,M is a mapping torus of a compact
surface.

Proof. By Theorem 5 in [41] and Proposition 2.6, we have that

†1.GA/ D �†
1.GA/:

Indeed, Hillman’s result tells us that any ascending HNN extension splitting of G with
finitely generated base group N must be a semi-direct product G Š N Ì Z. By Corol-
lary 4.14, GA is algebraically fibred. Hence,

GA D K Ì Z

for some finitely generated subgroup K. It follows from a result of Strebel [79] (see The-
orem 1.19 in [40] for an explanation), that K has cohomological dimension at most 2 and
hence is a PD2-group. In particular, by [20] (see also [55]), the group K is isomorphic to
the fundamental group of a closed surface. Since every outer automorphism of K is real-
ised by a mapping class of the underlying surface by the Dehn–Nielsen–Baer theorem, we
conclude that GA is the fundamental group of a closed connected 3-manifold M , namely
the mapping torus of a compact surface with fundamental group K.

The following is restating Theorem D from the introduction.

Corollary 5.4. Let GA be a LERF PD3-group. Let GB be the fundamental group of a
closed connected hyperbolic 3-manifold. If yGA Š yGB , then GA is the fundamental group
of a closed connected hyperbolic 3-manifold.

Proof. As in the proof of the previous theorem, by Theorem 5 in [41] and Proposition 2.6,
for every finite index subgroupG0A 6 GA we have that†1.G0A/D �†

1.G0A/. LetHB be a
finite index subgroup of GB that is algebraically fibred – the existence of such a subgroup
is guaranteed by Agol’s theorem [2]. Let HA be the corresponding finite index subgroup
of GA; we still have yHA Š yHB . The group HA is still a PD3-group by Theorem 2 in [52].
It is immediate that HA is LERF. Since all PD3-groups are of type FP.Z/, we conclude,
using Theorem 3.8, that HA is TAP1.F/ for every finite field. Theorem 5.3 now shows
that HA is the fundamental group of a connected compact 3-manifold. By Lemma 8.2
in [42], the group GA is also a fundamental group of a connected compact 3-manifold M .
The manifold M is hyperbolic by [84].

5.3. RFRS groups and agrarian Betti numbers

The following definition is due to Agol [1], and played a crucial role in solving the virtual
fibring conjecture for hyperbolic 3-manifolds.
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Definition 5.5. Let G be a group. We say that G is residually finite rationally solvable
(RFRS) if there is a chain of finite index normal subgroups

G D G0 > G1 > G2 > � � �

of G such that
(1)

T
N Gi D ¹1º;

(2) ker
�
Gi ! H1.Gi IQ/

�
6 GiC1 for i > 0.

Definition 5.6. A group G is indicable if G is trivial or admits an epimorphism to Z. We
say that G is locally indicable if every finitely generated subgroup of G is indicable.

Note that a subgroup of a RFRS group is RFRS and that RFRS groups are indicable.
Hence, RFRS groups are locally indicable.

Definition 5.7. Let R and D be skew-fields, let G be a locally indicable group, and let
 WRG ! D be a ring homomorphism. The pair .D ;  / is Hughes-free if
(1) D is generated by  .RG/ as a skew-field, that is,

h .RG/i D D I

(2) for every finitely generated subgroup H 6 G, every normal subgroup N GH with
H=N Š Z, and every set of elements h1; : : : ; hn 2H lying in distinct cosets of N ,
the sum

h .RN/i �  .h1/C � � � C h .RN/i �  .hn/

is direct.
By Ian Hughes [44], for fixed R and G, if such a pair .D ;  / exists, then D is unique

up to RG-algebra isomorphism. In this case, we denote D by DRG .

(Like the property, the Hughes mentioned here and the first author are free of any of
relation.)

The following result is due to Jaikin-Zapirain.

Proposition 5.8 (Corollary 1.3 in [50]). If G is a RFRS group and R is a skew-field,
then DRG exists and it is the universal division ring of fractions of RG.

Definition 5.9. A group G is agrarian over a ring R if there exists a skew-field D and
a monomorphism  WRG � D of rings. If G is agrarian over R, then we define the
agrarian D-homology to be

HD
j .G/ D TorRGj .R;D/;

whereR is the trivialRG-module and D is viewed as an D-RG-bimodule via the embed-
ding RG� D . Since modules over a skew-field have a canonical dimension function
taking values in N [ ¹1º, we may define the agrarian D-Betti number by

bD
j .G/ D dimD HD

j .G/:

WhenG is RFRS, by the previous proposition, we have (up toRG-isomorphism) a canon-
ical choice DRG of D for each skew-field R.



S. Hughes and D. Kielak 1330

Theorem 5.10. Let R be a skew-field and let n 2 N. Let G be a virtually RFRS group of
type FPn.R/. The following are equivalent:

(1) bDRG

j .G/ D 0 for all j 6 n;
(2) G is virtually FPn.R/-fibred;
(3) G is virtually FPn.R/-semi-fibred.

Proof. The equivalence of the first two items is Theorem 6.6 in [23]. The implication (2)
) (3) is clear, so let us prove (3)) (1).

By Lemma 6.3 in [23], the numbers bDRG

j .G/ scale with the index when passing
to finite-index subgroups. Thus, we may assume without loss of generality that G itself
is FPn.R/-semi-fibred. In particular, let ' 2†n.GIR/ witness this semi-fibration. By
Lemma 5.3 in [23], we have

TorRGj .R;Nov.RG; '// D 0

for all 0 6 j 6 n.
Let K be the skew-field of twisted Laurent series with variable t and coefficients in the

skew-field DR.ker'/; the variable t is an element ofG with '.t/D 1, a generator of Z, and
the twisting extends the conjugation action of t on ker ' to DR.ker'/ – such an extension
is possible since DR.ker'/ is Hughes free, see [50], p. 8, for an explanation of this fact. The
skew-field K contains Nov.RG; '/, since the latter can also be viewed as a ring of twisted
Laurent series in t with coefficients inR.ker'/, with the twisting described above. Hence,
using chain contractions, we see that

TorRGj .R;K/ D 0

for all 0 6 j 6 n.
Now, Hughes-freeness of DRG tells us that DRG is isomorphic as an RG-module to

the division closure in K of the twisted Laurent polynomial ring R.ker'/Œ t˙1�, where we
identify the rings R.ker'/Œ t˙1� and RG using the group isomorphism .ker'/ Ì Z D G.
This endows R.ker '/Œ t˙1� with an RG-bimodule structure. Hence, we may view DRG

as a subring of K, and view K as a DRG-module. Since both DRG and K are skew-fields,
K is a flat as a DRG-module. We conclude that

TorRGj .R;DRG/ D 0

for all 0 6 j 6 n, as claimed.

Theorem 5.11. Let n 2 N [ ¹1º, and let F be a finite field. Let GA and GB be n-good
virtually RFRS groups of type FPn.F/ and suppose that yGA Š yGB . Suppose that every
finite-index subgroup of GA and GB is in TAPn.F/. We have

min
®
j 6 n j b

DFGA
j .GA/ ¤ 0

¯
D min

®
j 6 n j b

DFGB
j .GB/ ¤ 0

¯
;

where we take the minimum of the empty set to be1.



Profinite rigidity of fibring 1331

Proof. We first assume that n2N. Since we are concerned with virtual properties, we may
assume without loss of generality thatGA andGB are RFRS, n-good, of type FPn.Z/, and
that all finite-index subgroups ofGA andGB are in TAPn.F/; we have used Proposition 4.4
here.

Suppose that b
DFGA
j .GA/ D 0 for j 6 m, for some m 6 n. The group GA is vir-

tually FPm.F/-fibred by Theorem 5.10. We may pass to further finite index subgroups
of GA and GB and assume that GA is FPm.F/-fibred. By Corollary 4.13, the group GB is
FPm.F/-semi-fibred, and hence

b
DFGB
j .GB/ D 0

for j 6 m by Theorem 5.10. This shows an inequality between the minima in the state-
ment. The argument is symmetric in GA and GB , and hence we also obtain the converse
inequality.

Now suppose that n D 1. If both of the minima in the statement are 1, then we
are done. Without loss of generality, let us suppose that the left-hand side one is equal to
m<1. We observe thatGA andGB satisfy the hypothesis of our theorem for nDm, and
hence the right-hand side minimum is also equal to m.

Observe that the above result applies in particular to finite products of limit groups.
Indeed, these are virtually RFRS because they are virtually special [43].
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