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Purely magnetic tunneling between radial magnetic wells

Søren Fournais, Léo Morin and Nicolas Raymond

Abstract. This article is devoted to the semiclassical spectral analysis of the mag-
netic Laplacian in two dimensions. Assuming that the magnetic field is positive and
has two symmetric radial wells, we establish an accurate tunneling formula, that is a
one-term estimate of the spectral gap between the lowest two eigenvalues. This gap
is exponentially small when the semiclassical parameter goes to zero, but positive.

1. Introduction

1.1. Motivation

This article deals with the spectral analysis of the purely magnetic Laplacian in two
dimensions, especially with the effect of a symmetry of the magnetic field on the spec-
trum. More precisely, we are interested in this effect in the semiclassical limit, which is
equivalent to the large magnetic field limit. In such a regime, much has been done in
the last two decades to describe the bound states of the magnetic Schrödinger operators,
see the books [9] and [21] (for earlier references, see the classical texts [2, 7] and refer-
ences therein). In [21], it is underlined that a motivation is to understand tunneling effects
induced by magnetic fields and to extend the Helffer–Sjöstrand theory to magnetic fields.
This theory was originally developed in the context of purely electric Schrödinger operat-
ors, see [24] and [17,18]. Helffer and Sjöstrand also added a (rather small) magnetic field
in [19], and were able to establish a tunneling formula. This problem was reconsidered
recently in [8] (see also [23], that served as a motivation for [8]), where the authors were
able to go beyond the smallness assumptions on the magnetic field, but without establish-
ing an accurate expansion of the spectral gap. It is notable that [8] succeeds in proving
a lower bound on the gap – thereby establishing that it does not vanish. This motivated
another work [14], where the authors obtained a first order asymptotics on the spectral
gap. Finally, the full tunneling formula was proved in [20]. In fact, even though the con-
text of the present article is different, its analysis follows similar lines as [20], and provide
the reader with a very concise strategy close to the original spirit developed in [17, 18] by
establishing a tractable expression of the interaction term.
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It turns out that the adaptation of the Helffer–Sjöstrand theory to the purely magnetic
situation was more complex than expected. Even establishing the semiclassical expan-
sions of the eigenvalues in cases without symmetries was already a challenge (see, for
instance, [22] where Birkhoff normal forms are used). A key point in the study of the
tunneling effect is to have an accurate description of the eigenfunctions. Such a descrip-
tion was given rather recently in [3] (in a multiscale context) and in [6, 11] in the case
of a magnetic well1 in two dimensions. To prove that these WKB constructions are good
approximations in general is still a widely open problem (see [11], which gives a first
result in this direction). Concerning the tunneling estimates in the case of pure magnetic
fields in two dimensions, we have to mention [5], where the Neumann Laplacian with con-
stant magnetic field is considered in a symmetric domain and the spectral gap accurately
described by means of a microlocal dimensional reduction to the boundary. This work
inspired similar results such as [1] in the case of magnetic fields vanishing along curves,
and [10] in the case of discontinuous magnetic fields. The case of multiple wells in the
context of [8, 14] and [5, 10] is considered in [15].

The present article tackles a situation with symmetric magnetic wells. In this case, we
know that the eigenfunctions are localized near the bottoms of the wells (see [12]), and
not along curves as in [5] (what invites a priori to use another strategy). Until now, except
for the WKB constructions of [6, 11], nothing was known in the direction of tunneling
results for double-well magnetic fields.

1.2. The purely magnetic tunneling result

Let us now describe the framework of this article and our main result. Choose lengths
a;L > 0, with a < L=2, and magnetic field strengths 0 < b0 < b1. Define the two points
(with distance L)

x` D
�
�
L

2
; 0
�

and xr D
�L
2
; 0
�
:

Let the left magnetic field B` 2 C1.R2;R/, have minimal value b0 > 0 attained uniquely
and non-degenerately at x` and be constant equal to b1 > b0 on ¹jx � x`j > aº. Further-
more, we assume that B`.x/ 2 Œb0; b1� for all x. We will define the right magnetic field Br
by symmetry, and assume the wells to be radial, symmetric and disjoint. More precisely,

B` is a smooth function of jx � x`j2; and Br .x1; x2/ D B`.�x1; x2/:

See Assumption 1 onB` below. We consider a double well magnetic fieldB 2C1.R2;R/,
with minimal value b0 > 0 attained (non-degenerately) at exactly the two points x` and xr .
The magnetic field will be constant outside the disks of radius a, through the definition
(recall that a < L=2)

B.x/ D

8̂<̂
:
B`.x/; if jx � x`j � a;
Br .x/; if jx � xr j � a;
b1; otherwise.

1By this, we mean that the magnetic field has a unique minimum, which is non-degenerate.
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Two important quantities of the problem are the flux difference

(1.1) M WD
1

4�

Z
R2

.B.x/ � b1/ dx D
1

2�

Z
R2

.B`.x/ � b1/ dx � 0;

and the relative flux (through the disc of radius L=2)

(1.2) 0 < N WD
8 jM j

b1L2
<

a2

.L=2/2
< 1:

We consider a smooth vector potential A D .0; A2/ associated with B , and the mag-
netic Laplacian Lh D .�ihr �A/2. We denote by �1.h/� �2.h/ the two smallest eigen-
values of Lh. In this article, we prove the following estimate on the spectral gap.

Theorem 1.1. Assume that L > .2C
p
6/a. Then, there exists a positive constant c such

that the following holds. We have

�2.h/ � �1.h/ �
h!0

ce�S=h h1=2Cb0=.2b1/;

where

S D

Z L=2

0

1

�r2

� Z
D.x`;r/

B.y/ dy
�
r dr C I;

and

I D
b1L

2

4

�N � 1
2
C
p
1 �N �N ln

�
1C
p
1 �N

��
> 0:

As far as the authors know, Theorem 1.1 is the only known result of its kind in the
case of pure magnetic wells. Note that:
(1) The first integral term in S is an Agmon distance between the two wells, see Pro-

position 2.2 below. Contrary to the case of electric wells, we have here an additional
positive term I inside the exponential. This term is a purely magnetic effect, and
vanishes when N D 1.

(2) The variations of the field also appears in the power b0=b1 of h in the prefactor.
(3) The constant c can be computed explicitly in terms of B , however it has no simple

interpretation, see (5.1).
(4) It is crucial for our approach that the wells are disjoint. However, our result has

the stronger assumption that L > .2 C
p
6/a. This can be slightly lightened, see

inequality (5.15), but the assumption is here to ensure that the remainder term in
Proposition 4.1 is small enough.

(5) An alternative way of writing S , which could also be of interest, is the following
formula:

S � I D
�1

�

Z
R2

B.x/1¹jx�x`j�L=2º ln
�2jx � x`j

L

�
dx:

1.3. Organization and strategy

The paper is organized as follows. In Section 2, we consider the one-well operator (on the
left) called Lh;`, and we recall the asymptotic expansions of its eigenvalues .�n.h//n�1
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obtained by Helffer and Kordyukov in [16] (or in [22] with a more geometric point of
view), see Proposition 2.1. Then, we describe the groundstate eigenfunction �` by recall-
ing the results of [11]. This eigenfunction is radial and can be approximated by a WKB
Ansatz, see Proposition 2.2. This accurate description of the groundstate of the one-well
operator is known to be a corner stone in the analysis of the tunneling effect.

In Section 3, we recall a standard (and rough) localization result: the eigenfunctions
of the double-well operator are exponentially localized near x` and xr . This allows to
decouple the wells and we get the first naive estimate �2.h/� �1.h/ D O.h1/. Then, we
use �` and �r (up to a change of gauge) as quasimodes for the double-well operator Lh.
This gives an upper bound, see Proposition 3.4.

Section 4 is devoted to the interaction term wh governing the behavior of the spectral
gap �2.h/� �1.h/, see Propositions 4.1 and 4.2. The integral formula (4.1) for wh is sim-
ilar to that obtained in the electric case in [17]. This formula was used in [20] to simplify
the analysis in the context of [8, 14]. Note that, contrary to the situation in [8, 14, 20], the
interaction phase �.0;x2/ is not linear, and the non-linear term is directly related to the fact
that the magnetic field is not constant. In Section 5, we establish the one-term asymptot-
ics of wh, see Proposition 5.1. To estimate the integral giving (4.1), we use the following
observation (done in [8] with a constant magnetic field): the eigenfunction �` has an expli-
cit expression in the interaction zone (this comes from the fact that the magnetic field is
radial and constant between the wells), see Lemma 5.2. Combining this with the WKB
approximation of Proposition 2.2, we get an explicit integral to estimate, see (5.6) and
Lemma 5.3. In this integral (with three variables s1, s2 and y), the phase is complex. That
is why we look for the complex critical points in the variable y (the vertical variable), see
Sections 5.2.2 and 5.2.3. Then, we can use a complex translation of the integral in y and
apply the Laplace method, see Section 5.2.5. This reduces the analysis to an integral in two
variables (5.12), which can be estimated by the usual Laplace method, see the description
of the real phase F.s/ in Section 5.2.4.

2. The one-well operator and its groundstate

For the one-well problem, we change gauge to profit from the radiality. Notice that since
a gauge change is just a multiplication by a complex phase, estimates on decay of eigen-
functions trivially translate from one gauge to another. However, our main result on the
tunneling is very strongly dependent on the complex phases appearing in integrals, so
when combing the two one-well problems it is crucial to keep track of the involved gauge
changes.

We consider the vector potential

(2.1) A`.x/ D
Z 1

0

B`.x` C t .x � x`// t.x � x`/
? dt;

with curl A` D B`; and we consider the corresponding magnetic Laplacian

Lh;` D .�ihr � A`/2:

We denote by .�n.h//n�1 the non-decreasing sequence of its eigenvalues. Note that the
assumptions on B` can be rewritten as follows.
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Assumption 1. The magnetic field B` has the form

B`.x/ D ˇ
�
jx � x`j

2

2

�
;

where ˇW Œ0;1/! Œb0; b1� is a smooth function such that

ˇ.u/ > ˇ.0/ D b0 for u > 0; and ˇ0.0/ > 0:

Moreover, ˇ.r2=2/ D b1 for r > a.

Under this assumption, the following proposition is well known (see Theorem 1.2
in [16], Corollary 1.7 in [22], and also Section 2.2 of [11], where the radial case is spe-
cifically considered).

Proposition 2.1. Let n � 1. For h small enough, �n.h/ belongs to the discrete spectrum
of Lh;` and

�n.h/ D b0hC ..2nd0 C d1/h
2
C o.h2/;

where

d0 D

p
detH
b0

, d1 D
.TrH 1=2/2

2b0
and H D

1

2
HessB`.x`/:

In the following, we will denote �h D �1.h/. Let us now describe the groundstate �`
of Lh;` and its WKB approximation. It is already known that �` is radial in the variable
r D jx � x`j and does not vanish if h is small enough, see Proposition 4.7 in [11]. In
particular, it solves the ODE (see Section 4 of [11])

(2.2)
�
� h2r�1 @rr@r C

�˛.r/
r

�2�
�` D �h�`; with ˛.r/ D

Z r2=2

0

ˇ.u/ du:

Equation (2.2) can be interpreted as the eigenvalue equation of a radial electric Schrö-
dinger operator. This observation, combined with the WKB construction in Theorem 2.5
of [11], implies that �` is approximated by a WKB Ansatz (see for instance [13,17,18], or
the pedagogical paper in one dimension [4], Lemma 2.1 and Proposition 2.7). The decay
of this Ansatz is given by the function

ˆ`.x/ D
1

2

Z jx�x`j2=2
0

1

v

� Z v

0

ˇ.u/ du
�

dv;

which is solution to the eikonal equation

jrˆ`j
2
D

�˛.r/
r

�2
; with r D jx � x`j:

Proposition 2.2. Under Assumption 1, there exists a sequence of smooth radial (with
center at x`/ functions .aj /j�0 on R2, with a0 > 0, such that the following holds. For any
given p 2 N, letting ah;`.x/ D

Pp
jD0 h

jaj .x/, and considering

�WKB
` .x/ D h�1=2ah;`.x/ e

�ˆ`.x/=h;
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we have
eˆ`.x/=h .Lh;` � �h/�

WKB
` D O.hpC1/:

Moreover, for all "2 .0; 1/, there exist C; h0 > 0 such that, for all h2 .0; h0/,

(2.3) k.�ihr � A`/.e.1�"/ˆ` �`=h/k � Chk�`k:

We also have the approximation

eˆ`.x/=h .�`.x/ � �
WKB
` .x// D O.hpC1/;

locally uniformly.

Remark 2.3. Let us make a couple of remarks about ˆ` and a0.
(1) We can rewrite ˆ` in terms of B`. In particular, we have

ˆ`.0/ D
1

2

Z L=2

0

1

�r2

� Z
D.x`;r/

B.y/ dy
�
r dr;

which is the quantity appearing in the coefficient S from Theorem 1.1. It is the flux of an
averaged version of B . Note also the approximation near x`:

ˆ`.x/ D
b0

4h
jx � x`j

2
C o.jx � x`j

2/:

(2) From Section 4.5.2 in [11], we have an explicit description of a0:

a0.x/ D A0 exp
� Z jx�x`j2=2

0

ˇ.0/ � ˇ.s/

2˛.s/
ds
�
;

where A0 > 0 is the unique positive number such that, for all R > 0,

lim
h!0



h�1=2a0.x/ e�ˆ`.x/=h

2L2.D.x`;R// D 1;
which follows from the Laplace method. Indeed, from the approximation of the phase ˆ`
and the L2-normalization, we get

1 D h�1
Z
D.x`;R/

ja0.x/j
2 exp

�
�
b0

2h
jxj2

�
dx C o.1/ D 2�ja0.x`/j2b�10 C o.1/;

so that A0 D
p
b0=.2�/.

Remark 2.4. By symmetry, we have a similar WKB approximation in the right well.
Considering the vector potential

Ar .x/ D
Z 1

0

Br .xr C t .x � xr // t.x � xr /
? dt;

we denote by Lh;r the corresponding magnetic Laplacian. Its positive normalized ground-
state is denoted by �r .
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3. First estimates on the tunneling effect

3.1. A naive localization estimate

The following propositions are already known, see, for instance, the discussion in Sec-
tion 1.4 of [12].

Proposition 3.1. Let C0 > 0. There exist ˛;C; h0 > 0 such that for all h2 .0; h0/ and all
eigenpair .�;  / with � � b0hC C0h2, we haveZ

R2

e2˛min.jx�xr j;jx�x`j/=h1=4 j j2 dx � Ck k2:

This rather rough exponential decay of the eigenfunctions is enough to prove that the
spectrum of the double-well operator is the superposition of the spectra of the one-well
operators, modulo O.h1/.

Proposition 3.2. There exist c; h0 > 0 such that, for all h2 .0; h0/, we have

j�2.h/ � �1.h/j D O.h1/;

and �3.h/ � �1.h/ � ch2.

3.2. A better upper bound of the splitting

We now use the WKB approximation, Proposition 2.2, to prove a better upper bound on
the spectral gap. This bound is still not good enough to prove Theorem 1.1, but will be
used later in the proof of Proposition 4.1. Let

(3.1) S0 D ˆ`

�L
2
� a; 0

�
D
1

2

Z .L�a/2=2

0

1

v

� Z v

0

ˇ.u/ du
�

dv;

which can be interpreted as an Agmon distance from the left well to the border of the right
well.

Notation 3.3. In the following, we use the classical notation (from [17, 18]) that f .h/ D
QO.e�S0=h/ when, for all " > 0, we have f .h/ D O.e�.S0�"/=h/.

Proposition 3.4. We have

j�2.h/ � �1.h/j D QO.e
�S0=h/ and �1.h/ D �.h/C QO.e

�S0=h/:

Before giving a proof of Proposition 3.4, let us introduce a pair of quasimodes Q�`
and Q�r . Given any � 2 .0; L=2 � a/, let �` be a smooth cutoff function equal to 1 on
¹x1 < L=2 � a � �º and 0 on ¹x1 > L=2 � a � �=2º. In the end, we will choose � as
small as necessary. We let

(3.2) Q�`.x/ D �`.x/ O�`.x/ and O�`.x/ D e
i�`.x/=h�`.x/;

where
�`.x/ D

Z
Œ0;x�

.A � A`/ � ds

is a gauge change from A` to A.
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Proof of Proposition 3.4. Note that, on ¹x1 < L=2 � aº,

r�` D A � A`:

Therefore we have, on ¹x1 < L=2 � a � �º,

.Lh � �h/ Q�` D 0:

More precisely, we have

.Lh � �h/ Q�` D e
�i�`=h .Lh;` � �h/.�`�`/ D e

�i�`=h ŒLh;`; �`��`:

Thus, thanks to (2.3),
k.Lh � �h/ Q�`k D QO.e

�S�=h/;

where

(3.3) S� D ˆ`

�L
2
� a � �; 0

�
D ˆr

�
�
L

2
C aC �; 0

�
:

In the same way, and using a similar notation for the right well, we have

k.Lh � �h/ Q�rk D QO.e
�S�=h/:

Since Q�` and Q�r are linearly independent (for h small enough), the spectral theorem
implies that there are at least two eigenvalues of Lh close to �h modulo QO.e�S�=h/. These
are necessarily the first two eigenvalues since �h is the groundstate energy of the one-well
operator. We conclude by noting that S� ! S0 as �! 0.

4. The interaction term

The aim of this section is to prove the following propositions, which follow from the
celebrated strategy developed by Helffer and Sjöstrand in [17, 18] (see also [13]).

Proposition 4.1. Assume � > 0 is small enough. Then we have

�2.h/ � �1.h/ D 2jwhj C QO.e
�2S�=h/C O.jthj

2/;

where wh D h.Lh � �/ Q�`; Q�ri, th D h Q�`; Q�ri, S� is given in (3.3), and Q�`, Q�r in (3.2).

Hence, the splitting is given by the coefficient wh. Of course, we have to prove that
the remainders are smaller thanwh, i.e., 2S0 > S , which is done in Section 5, and requires
L > .2C

p
6/a. Similarly to the standard strategy, we can rewrite the coefficient wh as

an integral on the line x1 D 0 separating the two wells. The novelty lies in the emergence
of complex coefficients and phases.

Proposition 4.2. Letting

�?.x/ D

Z
Œ0;x�

.A � A?/ � ds and �.x/ D �r .x/ � �`.x/ D

Z
Œ0;x�

.A` � Ar / � ds;
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we have

(4.1) wh D h
2

Z
R

�
2@1�`.0; x2/ �`.0; x2/C i

k.0; x2/

h
�`.0; x2/

2
�
e�i�.0;x2/=h dx2;

with k.x/ D @1�`.x/C @1�r .x/: Moreover, we have the explicit formulas

�.0; x2/ D
b1Lx2

2
C 2M arctan.2x2=L/

and
k.0; x2/ D b1x2 C

2Mx2

L2=4C x22

,

where M is given in (1.1).

Note that the quantity M can be rewritten in terms of ˇ:

(4.2) M D

Z 1
0

.ˇ.u/ � b1/ du:

For the convenience of the reader, we will sum up the strategy in the following sections
and try to make it short and transparent.

4.1. Proof of Proposition 4.1

We let
F D ker.Lh � �1.h//˚ ker.Lh � �2.h//

and let…F be the associated orthogonal projection. Let us consider the projections of our
one-well quasimodes g? D …F

Q�?. We let

G D

�
hg`; g`i hg`; gri

hgr ; g`i hgr ; gri

�
D

�
g`
gr

�
�
�
g` gr

�
� 0:

We consider the matrix of the quadratic form associated with Lh in the basis .g`; gr /,

L D

�
hLhg`; g`i hLhg`; gri

hLhgr ; g`i hLhgr ; gri

�
:

The following lemma describes the asymptotic behavior of the matrixL, which essentially
follows from the classical estimates in [17] (see also [4]).

Lemma 4.3. We have

(4.3) kg? � Q�?k D QO.e
�S�=h/ and Qh.g? � Q�?/ D QO.e

�2S�=h/;

where Qh denotes the quadratic form of Lh. Moreover, the family .gr ; g`/ is asymptotic-
ally an orthonormal basis of F . More precisely, we have

(4.4) G D IdC TC QO.e�2S�=h/; where T D
�

0 h Q�`; Q�ri

h Q�r ; Q�`i 0

�
:

In addition, we have

(4.5) L D

�
�h wh
wh �h

�
C �hTC QO.e�2S�=h/; where wh D h.Lh � �/ Q�`; Q�ri:
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Proof. We recall that
.Lh � �h/ Q�? D QO.e

�S�=h/;

and notice that, by definition of F and Proposition 3.4,

.Lh � �h/g? D QO.e
�S0=h/:

We infer that

(4.6) .Lh � �h/.g? � Q�?/ D QO.e
�S�=h/:

The first L2-estimate in (4.3) follows by using the spectral theorem and the spectral gap
given in Proposition 3.2. Then, we get the second estimate by using (4.6) and taking the
scalar product with g? � Q�?.

Let us now discuss the asymptotic behavior of G. By the Pythagorean theorem, we
have

h Q�?; Q�?i D hg?; g?i C h Q�? � g?; Q�? � g?i:

By using the support of �?, the definition of �? and its exponential decay, we have

(4.7) h Q�?; Q�?i D 1C QO.e
�2S�=h/:

With (4.3), we deduce that

hg?; g?i D 1C QO.e
�2S�=h/:

In the same way, we write

h Q�`; Q�ri D hg`; gri C h Q�` � g`; Q�r � gri:

We deduce (4.4).
Let us finally deal with L. The analysis is similar. First, we write

hLh Q�?; Q�?i D hLhg?; g?i C hLh. Q�? � g?/; Q�? � g?i:

With the localization formula (sometimes called the “IMS formula”, see Proposition 4.2
in [21]) and using again (4.7), we get

hLh Q�?; Q�?i D �h C QO.e
�2S�=h/;

so that, with (4.3),
hLhg?; g?i D �h C QO.e

�2S�=h/:

Then, we write

hLh Q�`; Q�ri D hLhg`; gri C hLh. Q�` � gr /; Q�` � gri;

and we get
hLhg`; gri D hLh Q�`; Q�ri C QO.e

�2S�=h/;

where we used (4.3) and the Cauchy–Schwarz inequality to control the remainder. We
deduce that

hLhg`; gri D �hh Q�`; Q�ri C h.Lh � �h/ Q�`; Q�ri C QO.e
�2S�=h/;

and (4.5) follows.
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We have all the elements at hand to prove Proposition 4.1. The matrix L is the matrix
of Lh in a non-orthonormal basis of F . That is why we consider the new family�

g`
gr

�
D G�1=2

�
g`
gr

�
;

which is orthonormal since�
g`
gr

�
�
�
g` gr

�
D G�1=2

�
g`
gr

�
�
�
g` gr

�
G�1=2 D Id:

Now, the matrix of Lh in the basis .g`;gr / is G�1=2LG�1=2, and we have

G�1=2LG�1=2 D
�
1 �

T
2

���
�h wh
wh �h

�
C �hT

��
1 �

T
2

�
C QO.e�2S�=h/

D

�
�h wh
wh �h

�
C QO.e�2S�=h/C O.jthj

2/:

The proposition follows, since the eigenvalues of this matrix are �h ˙ jwhj.

4.2. Proof of Proposition 4.2

Let us first establish the integral formula (4.1) for the interaction term wh. Recalling the
definition (3.2) of Q�` and Q�r , we have

wh D h.Lh � �h/�` O�`; �r O�ri D hŒLh; �`� O�`; �r O�ri:

Thus, by letting P D �ihr � A, we get

wh D h.P � ŒP; �`�C ŒP; �`�P / O�`; �r O�ri D h.P � ŒP; �`�C ŒP; �`�P / O�`; O�riL2.R2
C/
:

Integrating by parts, we deduce

wh D hŒP; �`� O�`; P O�riL2.R2
C/
C hŒP; �`�P O�`; O�riL2.R2

C/

D �ih

Z
x1>0

�0`.x1/
�
O�`.�ih@1 � A1/ O�r C .�ih@1 � A1/ O�` O�r

�
dx:

Our choice of gauge is such that A1 D 0, and therefore

wh D h
2

Z
x1>0

.@1�`/
�
O�` @1 O�r � @1 O�` O�r

�
dx:

Then, integrating by part with respect to x1,

wh D h
2

Z
R

�
@1 O�` O�r � O�` @1 O�r

�
.0; x2/ dx2(4.8)

C h2
Z
x1>0

�`
�
@1.@1 O�` O�r / � @1. O�` @1 O�r /

�
dx:
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We notice that

h2
Z
x1>0

�`
�
@1.@1 O�` O�r / � @1. O�` @1 O�r /

�
dx

D h2
Z
x1>0

�`
�
@21
O�` O�r � O�` @

2
1
O�r
�

dx;

D �

Z
x1>0

�`
�
Lh O�` O�r � .�ih@2 � A2/

2 O�` O�r

� O�`Lh O�r C O�`.�ih@2 � A2/2 O�r
�

dx;

D

Z
x1>0

�`
�
.�ih@2 � A2/

2 O�` O�r � O�`.�ih@2 � A2/2 O�r
�

dx D 0;

where we used that, on the support of �`, Lh O�r D �h O�r and Lh O�` D �h O�`; and in the
last equality we integrated by part with respect to x2. Thus, equation (4.8) reads

wh D h
2

Z
R

�
@1 O�` O�r � O�` @1 O�r

�
.0; x2/ dx2:

There remains to notice that O�? D ei�?=h�?, and therefore we get (4.1) due to the
symmetry �`.x1; x2/ D �r .�x1; x2/ around x1 D 0 .

We end this section by giving explicit formulas for � and k, which concludes the proof
of Proposition 4.2.

Lemma 4.4. We have

(4.9) �.x1; x2/ D
b1Lx2

2
CM

�
arctan

� x2

x1 C L=2

�
C arctan

� x2

�x1 C L=2

��
;

and

(4.10) k.0; x2/ D b1x2 C
2Mx2

L2=4C x22
�

Proof. For all x such that x1 2 .�L=2C a; L=2 � a/, we have r � .A � A?/ D 0, and
thus

�?.x/ D

Z
Œ0;x�

.A � A?/ � ds

D

Z x1

0

.A � A?/1.u; 0/ duC
Z x2

0

.A � A?/2.x1; v/ dv D
Z x2

0

.A � A?/2.x1; v/ dv;

where we used the explicit expression (2.1) of A? and the fact that A1 D 0. We have

A`.x1; x2/ D

Z 1

0

ˇ
� t2jx � x`j2

2

�
t dt

�
�x2

x1 C L=2

�
D

1

jx � x`j2

Z jx�x`j2=2
0

ˇ.u/ du
�
�x2

x1 C L=2

�
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and, similarly,

Ar .x1; x2/ D
1

jx � xr j2

Z jx�xr j2=2
0

ˇ.u/ du
�
�x2

x1 � L=2

�
:

This shows that

A`.x/D

�
M

jx � x`j2
C
b1

2

��
�x2

x1CL=2

�
; Ar .x/D

�
M

jx � xr j2
C
b1

2

��
�x2

x1�L=2

�
:

Then, � is given by

�.x1; x2/ D .�r � �`/.x1; x2/ D

Z x2

0

.A`;2.x1; v/ � Ar;2.x1; v// dv;

and we find (4.9). For k.0; x2/, we use

r.�` C �r / D 2A � .A` C Ar /;

to get

k.0; x2/ D @1.�` C �r /.0; x2/ D �.A` C Ar /1.0; x2/ D �2A`;1.0; x2/;

and (4.10) follows.

Remark 4.5. Note that the term involvingM is here due to the variations of the magnetic
field. This term is absent in [8, 14].

5. Estimate of the interaction integral

This section is mainly devoted to the proof of the following proposition, which implies
Theorem 1.1 (by combining Proposition 4.1 and Lemmas 5.9 and 5.10), with the con-
stant c given by

(5.1) c D
4�a20.0/

�.ı0/

�b1L2
8

�ı0� 1 �N

1C
p
1 �N

�2ı0
.1 �N/�1=4;

where a0 is the function given in Remark 2.3.

Proposition 5.1. The following estimate holds:

wh �
h!0
�
2�a20.0/

�.ı0/

�b1L2
8

�ı0� 1 �N

1C
p
1 �N

�2ı0
.1 �N/�1=4h1�ı0 e�S=h;

where

S D 2ˆ`.0/C I D

Z L2=8

0

1

v

� Z v

0

ˇ.u/ du
�

dv C I;

with

I D
b1L

2

4

�N � 1
2
C
p
1 �N �N ln.1C

p
1 �N/

�
> 0;

where M and N are given in (4.2) and (1.2) respectively, and

(5.2) ı0 D
b1 � b0

2b1
�
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5.1. Description of �`

The aim of this section is to give the explicit expression of �` in the interaction zone. This
can be done by integrating a classical differential equation known as the Kummer differ-
ential equation, which appeared in [8] and [14] but with different parameters. Here, �h is
of order h, and the parameter M is not zero since the magnetic field is not constant.

Lemma 5.2. For jx � x`j � a,

�`.x/ D C.h/ jx � x`j



Z C1
0

e�
b1
4h
.1C2t/jx�x`j

2

mh.t/ dt;

where

(5.3) 
 D
jM j

h
, ı D

b1h � �h

2hb1
, mh.t/ D t

ı�1.1C t /
�ı ;

and

(5.4) C.h/ D
�`.0/

jx`j


� Z C1
0

e�
b1
4h
.1C2t/jx`j

2

mh.t/ dt
��1

:

Note that ı � ı0 (with ı0 as defined in (5.2)) as h! 0.

Proof. Since the function �` is radial (with center at the point x`), we can write �`.x/ D
�.jx � x`j/. Then, � solves the radial equation

�h2r�1@rr @r� C
˛.r/2

r2
� D �h�; with ˛.r/ D

Z r2=2

0

ˇ.u/ du:

We are interested in the region r � a, where ˇ D b1. There, we have

˛.r/ DM C
b1r

2

2
,

where we recall that M D
R a2=2
0

.ˇ � b1/ du. The equation reads

�h2r�1@rr @r� C
�M
r
C
b1r

2

�2
� D �h�;

so that

�h2r�1@rr @r� C
�M 2

r2
C
b21r

2

4

�
� D .�h � b1M/�:

Then, we let � D r
 and we have

�h2r�1.r�
@rr

 /r .r�
@rr


 / C
�M 2

r2
C
b21r

2

4

�
 D .�h � b1M/ ;

so that

�h2r�1.@r C 
r
�1/r .@r C 
r

�1/ C
�M 2

r2
C
b21 r

2

4

�
 D .�h � b1M/ :
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We deduce that

�h2r�1.@r C 
r
�1/ � h2.@r C 
r

�1/2 C
�M 2

r2
C
b21 r

2

4

�
 D .�h � b1M/ :

Then,

�h2 @2r � h
2.1C 2
/r�1 @r C

�M 2 � h2
2

r2
C
b21 r

2

4

�
 D .�h � b1M/ :

We choose 
 so that 
2 DM 2h�2. Thus,

�h2 @2r � h
2.1C 2
/r�1 @r C

b21 r
2

4
 D .�h � b1M/ :

We let � D cr2=2 and we have c@� D r�1@r . Note that

@2r D @rrr
�1@r D r

�1@r C r
2.r�1@r /

2
D c@� C 2c�@

2
�:

We let  .r/ D ‰.cr2=2/ and we find that

�@2�‰ C .1C 
/@�‰ �
b21�

4h2c2
‰ D

b1M � �h

2h2c
‰;

and then we let
‰.�/ D F.�/ e�

b1
2hc

�:

We get

�@2�F C
�
1C 
 � �

b1

hc

�
@�F D

�b1M � �h
2h2c

C
b1h.1C 
/

2h2c

�
F:

This leads to choose 
 D jM jh�1 and c D b1h�1 to get

�@2�F C .1C 
 � �/@�F D
b1h � �h

2hb1
F;

which is the well-known Kummer equation (and solvable by means of the Fourier or
Laplace transform). Therefore, since we are looking for a decaying solution, we have, for
some normalizing constant C.h/,

F.�/ D C.h/

Z C1
0

e�t� tı�1.1C t /
�ı dt; with ı D
b1h � �h

2hb1
�

Therefore,

�.r/ D r
 e�b1r
2=.4h/F.b1r

2=.2h//

D C.h/r
 e�b1r
2=.4h/

Z C1
0

e�b1r
2t=.2h/ tı�1 .1C t /
�ı dt:
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It is possible to estimate the normalization constant C.h/ by means of the WKB-
approximation of Proposition 2.2 and a direct estimate of the integral. This idea was used
in Lemma 3.6 of [14]. However note that, contrary to [14], Lemma 5.3 is the only instance
where we use WKB approximations.

Lemma 5.3. The normalization constant satisfies

C.h/ D h�1=2a0.0/ e
�ˆ`.0/=h eb1L

2=16h �.ı0/
�1h�ı0

jx`jjM j=h

�b1L2
8
� jM j

�ı0
.1C o.1//:

where a0 and ˆ` were defined in Proposition 2.2.

Proof. Letting '.t/ D b1L
2

8
t � jM j ln.1C t /, we haveZ C1

0

e�
b1
4h
.1C2t/jx`j

2

mh.t/ dt D e�
b1L

2

16h

Z C1
0

e�'.t/=h tı�1.1C t /�ı dt:

Since b1L2=8 � jM j > 0 (by (1.2)), we have '0 > 0. Note also that ' is strictly convex.
By means of the change of variable u D '.t/, we getZ C1

0

e�'.t/=h tı�1.1C t /�ı dt D .1C o.1//
�.ı0/h

ı0

.b1L2=8 � jM j/ı0
�

By inserting in (5.4), we get

C.h/ D .1C o.1// h�ı0 �.ı0/
�1 eb1L

2=16h �`.0/

jx`jjM j=h

�b1L2
8
� jM j

�ı0
:

The result now follows by inserting the approximation �`.0/ � �WKB
`

.0/, i.e., the WKB-
approximation from Proposition 2.2.

5.2. Consequence of the explicit expression

Given Lemma 5.2, the function wh is an explicit integral. Let us analyze its asymptotic
behavior and establish Proposition 5.1. First note, with Lemma 5.2, that

�`.0; x2/ D C.h/

Z 1
0

�L2
4
C x22

�
=2
e�

b1
4h
.1C2t/.L2=4Cx22/mh.t/ dt;

and

@1�`.0; x2/ D C.h/

Z 1
0

� 
 L=2

L2=4C x22
�
b1L

4h
.1C 2t/

��L2
4
C x22

�
=2
� e�

b1
4h
.1C2t/.L2=4Cx22/mh.t/ dt:

5.2.1. Rescaling of the interaction integral. In (4.1), we let x2 D Ly=2 and we have

whD
L

2
h2
Z

R

�
2@1�`

�
0;
Ly

2

�
�`

�
0;
Ly

2

�
C i

k.0; Ly=2/

h
�`

�
0;
Ly

2

�2�
e�i�.0;

Ly
2 /=h dy:
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Note that Lemma 4.4 gives

�
�
0;
Ly

2

�
D
b1L

2

4
y C 2M arctany and k.0; Ly=2/ D

b1L

2

�
y �

Ny

1C y2

�
;

with N from (1.2). Moreover, with hyi2 D 1C y2,

�`.0; Ly=2/ D C.h/
�L
2

�

hyi


Z C1
0

e�
b1L

2

16h
.1C2t/hyi2mh.t/ dt;

and

@1�`

�
0;
Ly

2

�
DC.h/

�L
2

�
Z C1
0

� 2
=L
1Cy2

�
b1L

4h
.1C2t/

�
hyi
e�

b1L
2

16h
.1C2t/hyi2mh.t/dt:

Therefore, recalling the definitions of M;N from (1.1) and (1.2), we can write

(5.5) wh D hC.h/
2
�L
2

�2
 b1L2
4

Wh;

where (with s D .s1; s2/2R2)

(5.6) Wh D
Z

R

Z
RC�RC

!.s; y/hyi2
mh.s1/mh.s2/ e
�
b1L

2

8h
.1Cs1Cs2/hyi

2� i
h
�.0;Ly=2/ dsdy

and

(5.7) !.s; y/ D
� N

1C y2
� 1

�
.1 � iy/ � 2s1:

Now we need to estimate Wh, which is simpler than wh since written in the rescaled
unitless variable y.

5.2.2. The phase. In view of (5.6), it is natural to introduce the following complex phase:

 .s; y/ D
b1L

2

8
.1C s1 C s2/hyi

2
C i

b1L
2

4
y � 2i jM j arctany � jM j ln.1C y2/;

where the logarithmic term is extracted from hyi
 . This may also be written as

(5.8)  .s; y/ D
b1L

2

8
c.s/hyi2 C i

b1L
2

4
y � 2jM j ln.1C iy/;

with
c.s/ WD 1C s1 C s2;

and where we use the standard complex logarithm, analytic on C n R�. Therefore, (5.6)
becomes

(5.9) Wh D

Z
R

Z
RC�RC

!.s; y/mh.s1/mh.s2/ e
� .s;y/=h dsdy;

where ! is given in (5.7) andmh in (5.3). In the remainder of this section, we will calculate
the leading term in Wh as h! 0. To do so, we study the critical points of the phase in
Lemmas 5.4, 5.5, and 5.6 (successively in the s and y variables). Once this is done, a
complex deformation of the contour of integration of the y-integral (Lemma 5.7) allows
to extract the desired result in Lemma 5.8.
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5.2.3. Critical points in y . Let us consider the complex critical points of  and focus
on the one with negative imaginary part.

Lemma 5.4. Letting

z� D z�.s/ D
c.s/ � 1

2c.s/
�
1

2

s�c.s/ � 1
c.s/

�2
C

4

c.s/
.1 �N/ < 0;

we have, for all y 2R, and all s 2RC �RC,

@y .s; iz�.s// D 0; <@
2
y .s; y C iz�/ �

b1L
2

4
.1 �N/ and =@2y .s; iz�/ D 0:

In particular, < .s; � C iz�/ is strongly convex uniformly in s. We also have jz�.s/j �
1=c.s/ � 1 and z�.0/ D �

p
1 �N .

Proof. The complex critical points of y 7!  .s; y/ solve the equation

c.s/y C i �
iN

1C iy
D 0:

With y D iz, we get

z2 �
c � 1

c
z C

N � 1

c
D 0:

We recall that N 2 .0; 1/. The discriminant is equal to

� D
�c � 1

c

�2
C
4

c
.1 �N/;

and it is positive. In this case, there are two real roots:

z˙ D
c � 1

2c
˙
1

2

r�c � 1
c

�2
C
4

c
.1 �N/:

We let y˙ D iz˙. Since N 2 .0; 1/, we have z� 2 .�c�1; 0/. It is interesting to notice that

@2y .s; y/ D
b1L

2

4

�
c �

N

.1C iy/2

�
;

so that, for all y 2R,

@2y .s; y C iz�/ D
b1L

2

4

�
c.s/ �N

.1 � z� � iy/
2

..1 � z�/2 C y2/2

�
;

and thus

@2y .s; y C iz�/ D
b1L

2

4

�
c.s/ �N

.1 � z�/
2 � y2

..1 � z�/2 C y2/2
C 2iN

.1 � z�/y

..1 � z�/2 C y2/2

�
:

The imaginary part vanishes at y D 0, and the real part is bounded from below, which
concludes the proof.
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We also have the following useful property of the critical point iz�.s/.

Lemma 5.5. For all s 2RC �RC, we have @sj z�.s/ > 0 and

@sj z�.0/ D
z�.0/CN � 1

2z�.0/
D
1

2
.1C

p
1 �N /:

Proof. We let

P.c; z/ D z2 �
c � 1

c
z C

N � 1

c
,

and we notice that P.c.s/; z�.s// D 0: In particular, we have

@cP C .@sj z�/@zP D 0:

The result follows, since we have @cP.c.s/; z�.s// D �.z�.s/CN � 1/c.s/�2 > 0, and
@zP.c.s/; z�.s// D 2z�.s/ � .c.s/ � 1/=c.s/ < 0.

5.2.4. Critical points in s. Let us look at (5.9) and underline that mh depends on h
(see (5.3)). This suggests to consider the function

(5.10) F.s/ D  .s; iz�.s// � jM j lnŒ.1C s1/.1C s2/�;

which is well defined and smooth in a neighborhood of RC �RC.

Lemma 5.6. The function Œ0;C1/2 3 s 7! F.s/ is real-valued, it tends toC1 at infinity,
and it is strictly convex. It has a unique minimum at .0; 0/, whose value is

F.0/ D
b1L

2

4

�N
2
C
p
1 �N �N ln.1C

p
1 �N/

�
�
b1L

2

8
> 0:

Moreover, rF.0/ D 0 and r2F.0/ > 0.

Proof. By (5.8) we have

F.s/D
b1L

2

4

�c.s/
2
.1� z2�.s//� z�.s/�N ln.1� z�.s//

�
� jM j lnŒ.1C s1/.1C s2/�;

which is real for all s 2 RC �RC. Then, since iz� is a critical point in y, we have

@s . .s; iz�.s/// D @s .s; iz�.s//C i@y .s; iz�.s//@sz� D .@s /.s; iz�.s//:

Moreover, we have

@s .s; y/ D
b1L

2

8
hyi2

�
1

1

�
:

Hence,

rsF.s/ D
b1L

2

8
.1 � z2�.s//

�
1

1

�
� jM j

 
1

1Cs1
1

1Cs2

!
:

Note that z�.0/ D �
p
1 �N and thus rsF.0/ D 0. Computing the second derivatives

and using that @s1z� D @s2z� > 0, we see that, for all s,

@s1@s2F D @
2
sj
F �

jM j

.1C sj /2
> 0:

Thus, r2F > 0. This implies that the derivative along any line starting from the origin is
increasing, and the result follows.
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5.2.5. Estimate ofWh. We recall (5.9) and we write

Wh D

Z
RC�RC

P.s/ e�F.s/=h
Z

R
e�. .s;y/� .s;iz�.s///=h!.s; y/ dyds;

with P.s/ D .s1s2/ı�1Œ.1C s1/.1C s2/��ı and F defined in (5.10).

Lemma 5.7. For all s 2RC �RC, we have

(5.11)
Z

R
e� .s;y/=h!.s; y/ dy D

Z
R
e� .s;yCiz�.s//=h!.s; y C iz�.s// dy:

Proof. For R > 0 very large, we define �R, the positively oriented rectangle in the com-
plex plane,

�R D Œ�R;R� [ Œ�RC iz�; RC iz�� [ Œ�RC iz�;�R� [ ŒR;RC iz��:

Since jz�.s/j < 1, the function ! is holomorphic inside �R, and by the Cauchy formula,Z
�R

e� .s;y/=h !.s; y/ dy D 0:

The integral on Œ�R;R� (respectively, on Œ�RC iz�;RC iz��) converges to the left-hand
side (respectively, the right-hand side) of (5.11) asR!1. Hence, we only have to bound
the integral on the two remaining parts, namely �˙R D Œ˙RC iz�;˙R�. For instance,

ICR D

Z
�CR

e� .s;y/=h !.s; y/ dy D
Z z�.s/

0

e� .s;RCit/=h !.s;RC i t/ i dt:

For all t 2 Œ�1; 1�, we can bound

Re .s;RC i t/ �
b1L

2

4

�R2
2
� 1 �N ln

p
4CR2

�
;

and we deduce that ICR ! 0 as R!1. We proceed similarly for ��R .

Considering Lemma 5.7, we rewrite

Wh D

Z
RC�RC

P.s/ e�F.s/=h
Z

R
e�. .s;yCiz�.s//� .s;iz�.s///=h !.s; y C iz�.s// dy ds;

and we use the following adaptation of the Laplace method for the y-integral.

Lemma 5.8. For all s 2RC �RC, we haveZ
R
e�. .s;yCiz�.s//� .s;iz�.s///=h !.s; y C iz�.s// dy

D

s
2�h

Re @2y .s; iz�.s//
!.s; iz�.s//C O.h3=2/;

and the remainder is uniform with respect to s 2RC �RC.
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Proof. Let us decompose the phase with its real and imaginary parts:

 .s; y C iz�/ �  .s; iz�/ D <. .s; y C iz�/ �  .s; iz�//C i‚.s; y/;

where‚.s; 0/D @y‚.s; 0/D @2y‚.s; 0/D 0 (see Lemma 5.4). By the Taylor formula, we
have

<. .s; y C iz�/ �  .s; iz�// D y
2

Z 1

0

.1 � u/<@2y .s; iz� C uy/ du D �s.y/2;

with

�s.y/ D y
� Z 1

0

.1 � u/<@2y .s; iz� C uy/ du
�1=2

;

where we used the positivity of <@2y .s; iz� C uy/ ensured by Lemma 5.4. Note that

.��1s /
0.0/ D

� 2

<@2y .s; iz�.s//

�1=2
:

Thanks to the change of variable Qy D �s.y/=
p
h, we findZ

R
e�. .s;yCiz�.s//� .s;iz�.s///=h !.s; y C iz�.s// dy

D
p
h

Z
R
e� Qy

2

!.s; iz�.s//.�
�1
s /
0.0/ d Qy

C
p
h

Z
R
e� Qy

2

.1 � e�
i
h
‚.s;��1.

p
h Qy/// !.s; iz�.s//.�

�1
s /
0.0/ d Qy

C h3=2
Z

R
e� Qy

2

e�
i
h
‚.s;��1.

p
h Qy//
Qy2f1. Qy/ d Qy;

for some function f1 which is bounded, uniformly with respect to s. Here we used that
the linear terms in Qy give 0 when integrated against the Gaussian. The first integral gives
the main contribution. The third integral is of order h3=2. Finally, since ‚ vanishes at the
order 3, we can write 1 � e�i‚=h as a linear term in Qy plus a term of order h. The linear
term vanishes when integrated against the Gaussian, and the second integral is thus of
order h3=2.

From Lemma 5.8 we see thatˇ̌̌
Wh �

Z
R2
C

s
2�h

Re @2y .s; iz�.s//
P.s/ e�F.s/=h !.s; iz�.s// ds

ˇ̌̌
� Ch3=2

Z
P.s/ e�F.s/=h ds(5.12)

We can use the Laplace method to estimate these integrals. We recall from Lemma 5.6
that F has a unique critical point and global minimum at s D 0. With (5.7), we have

!.s; iz�.s// D
� N

1 � z�.s/2
� 1

�
.1C z�.s// � 2s1:



S. Fournais, L. Morin and N. Raymond 1388

In particular, since z�.0/ D �
p
1 �N ,

!.0; iz�.0// D 0:

Thus, we need to consider the linear approximation of !.s; iz�.s// near s D 0. We have

!.s; iz�.s// D
� N

.1 � z�.0//2
� 1

�
rz�.0/ � s � 2s1 C O.jsj2/

D

� N

.1C
p
1 �N/2

� 1
� 1
2
.1C

p
1 �N/ .s1 C s2/ � 2s1 C O.jsj2/

D �
p
1 �N .s1 C s2/ � 2s1 C O.jsj2/;

where we used Lemma 5.5. With the Laplace method, we deduce thatZ
R2
C

s
2�h

Re @2y .s; iz�.s//
P.s/e�F.s/=h!.s; iz�.s//dsD c0h1Cı0 e�F.0/=h.1CO.

p
h//;

with

c0 D �

s
2�

<@2y .0; iz�.0//

Z
R2
C

.s1s2/
ı0�1

�p
1 �N.s1 C s2/C 2s1

�
e�

1
2Hess0F.s;s/ ds:

Note that this integral can be computed explicitly (first replace 2s1 by s1 C s2 by sym-
metry, then on the set ¹s2 > s1º use the variables v D s2 � s1 and u D s1s2). We find

(5.13) c0 D �
8��.ı0/

b1L2
.1 �N/�1=4

�b1L2
8

��ı0
.1C

p
1 �N /�2ı0 :

The second integral in (5.12) can also be calculated using the Laplace method. However,
it is easier since the factor !.s; iz�.s// is not present. Since !.s; iz�.s// vanishes linearly
at s D 0 this means that this second integral becomes a 1=

p
h bigger compared to the first,

but since it had an extra factor h, we get the final result

Wh D c0h
1Cı0 e�F.0/=h .1C O.

p
h//;

with c0 given by (5.13).

5.2.6. Estimate of wh: End of the proof of Proposition 4.2. Recalling (5.5), we get

wh D C.h/
2
�L
2

�2
 b1L2
4

c0h
2Cı0 e�F.0/=h .1C O.h1=2//;

where c0 was defined in (5.13). Therefore, with Lemma 5.3,

wh �
h!0

b1L
2

4
a0.0/

2 e�2ˆ`.0/=hh1�ı0 �.ı0/
�2
�b1L2

8
� jM j

�2ı0
c0 e
�I=h;

where I D F.0/ � b1L2=8. With the explicit value of F.0/ in Lemma 5.6, we see that
I > 0. This finishes the proof of Proposition 5.1.
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5.2.7. Comparison with the remainders . In view of Proposition 4.1, one needs to check
that 2S0 > S . We recall that S0 is given in (3.1).

Lemma 5.9. The quantity I can be rewritten as

I D

Z L2

8 .1C
p
1�N/2

L2=8

1

v

� Z v

0

ˇ.u/ du
�

dv � 2
Z L2=8

0

ˇ.u/ du:

Moreover, if L > .2C
p
6/a, then 2S0 > S .

Proof. We have now to ensure that S < 2S0, i.e.,

(5.14)
Z L2=8

0

1

v

� Z v

0

ˇ.u/ du
�

dv C I <
Z .L�a/2=2

0

1

v

� Z v

0

ˇ.u/ du
�

dv:

We can rewrite I using the Agmon distance,

I D

Z L2

8 .1C
p
1�N/2

L2=8

1

v

� Z v

0

ˇ.u/ du
�

dv � 2
Z L2=8

0

ˇ.u/ du:

Therefore, (5.14) becomes

(5.15)
Z L2

8 .1C
p
1�N/2

.L�a/2=2

1

v

� Z v

0

ˇ.u/ du
�

dv < 2
Z L2=8

0

ˇ.u/ du:

Note that the left-hand side is positive because

L

2
.1C

p
1 �N/ �

L

2
.2 �
p
N/ � L � a;

where we used (1.2).
Let us assume L > .2C

p
6/a, and prove (5.15) in this case. We bound the left-hand

side as follows:Z L2

8 .1C
p
1�N/2

.L�a/2=2

1

v

� Z v

0

ˇ.u/ du
�

dv �
Z L2=2

.L�a/2=2

1

v

� Z v

0

ˇ.u/ du
�

dv;

and using ˇ � b1, we deduceZ L2

8 .1C
p
1�N/2

.L�a/2=2

1

v

� Z v

0

ˇ.u/ du
�

dv �
b1

2
.L2 � .L � a/2/ D

b1

2
.2La � a2/:

Moreover, the right-hand side of (5.15) is bounded from below by

2

Z L2=8

0

ˇ.u/ du D
b1L

2

4
� 2jM j �

b1

2

�L2
2
� 2a2

�
:

Thus, the inequality (5.15) is true as soon asL2=2� 2a2 > 2La� a2, which is equivalent
to L > .2C

p
6/a.
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Let us now deal with the remainder involving th defined in Proposition 4.1. It can be
analyzed similarly to wh.

Lemma 5.10. We have
th D QO.e

�S=h/:

Proof. We can write, for some cutoff function � supported in .�L=2;L=2/,

th D C.h/
2

Z
R2

dx �.x1/ jx � x`j
 jx � xr j
 e�i�.x/=h

�

Z
R2
C

e�
b1
4h
Œ.1C2s1/jx�x`j

2C.1C2s2/jx�xr j
2�mh.s1/mh.s2/ ds:

We use the rescaling s D hu and get

th D h
2C.h/2

Z
R2

dx �.x1/ jx � x`j
 jx � xr j
 e�i�.x/=h

�

Z
R2
C

e�
b1
4h
Œ.1C2hu1/jx�x`j

2C.1C2hu2/jx�xr j
2�mh.hu1/mh.hu2/ du:

This allows to rewrite th as

th D h
2ı�2h2C.h/2

Z
R

dx2

Z
R

dx1�.x1/ e�
‰.x/Ci�.x/

h D`.xI h/Dr .xI h/„ ƒ‚ …
DD.xIh/

;

with

‰.x/ D
b1

4
.jx � x`j

2
C jx � xr j

2/ �
jM j

2
ln.jx � x`j2jx � xr j2/

and
D?.xI h/ D

Z
RC

vı�1.1C hv/�ı e�
b1v
2 jx�x?j

2

e
jM j ln.1Chv/

h dv:

Note that

v
b1jx � x?j

2

2
� jM jh�1 ln.1C vh/ � v

�b1a2
2
� jM j

�
> 0I

thus,D? defines a function belonging to the Schwartz class S.Œ�L=2C a;L=2 � a� �R/,
uniformly in h.

Then, we observe that x1 D 0 is the unique critical point of the (even) function

Œ�L=2C a;L=2 � a� 3 x1 7! ‰.x1; x2/

and that @x1�.0; x2/D 0. Moreover, @2x1‰.0; x2/ � b1.1�N/ > 0. This allows to use the
Laplace strategy as we did in the proof of Lemma 5.8. This shows that, for some d > 0
and some bounded .�.h//h>0,

th D C.h/
2dh�.h/

Z
R
.@2x1‰.0; x2//

�1=2 e�
‰.0;x2/Ci�.0;x2/

h .D.0; x2I h/C hR.x2I h// dx2;
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with R. � I h/ a function in the Schwartz class that is analytic. The phase of the latter
integral is the one appearing in wh (see (5.5) and (5.6), with s D 0). Therefore, similar
considerations as in the proof of Proposition 5.1 give the rough estimate

th D QO.e
�S=h/:
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