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Endpoint estimates
for higher order Marcinkiewicz multipliers

Odysseas Bakas, Valentina Ciccone, Ioannis Parissis and Marco Vitturi

Abstract. We consider Marcinkiewicz multipliers of any lacunary order defined by
means of uniformly bounded variation on each lacunary Littlewood–Paley interval of
some fixed order � � 1. We prove the optimal endpoint bounds for such multipliers as
a corollary of a more general endpoint estimate for a class of multipliers introduced
by Coifman, Rubio de Francia and Semmes, and further studied by Tao and Wright.
Our methods also yield the best possible endpoint mapping property for higher order
Hörmander–Mihlin multipliers, namely, multipliers which are singular on every point
of a lacunary set of order � . These results can be considered as endpoint versions of
corresponding results of Sjögren and Sjölin. Finally, our methods generalize a weak
square function characterization of the spaceL log1=2L in terms of a square function
introduced by Tao and Wright: we realize such a weak characterization as the dual of
the Chang–Wilson–Wolff inequality, thus giving corresponding weak square function
characterizations for the spaces L log�=2L for general integer orders � � 1.

1. Introduction

Our topic is endpoint estimates for Marcinkiewicz-type multipliers on the real line. We
recall that a Marcinkiewicz multiplier is a bounded functionmWR!C which has bounded
variation on each Littlewood–Paley interval

Lk WD .�2
kC1;�2k � [ Œ2k ; 2kC1/;

uniformly in k 2Z. It is well known that the operator Tmf WD .m yf /_ is bounded on
Lp.R/ for all p 2 .1;1/. Endpoint estimates for Marcinkiewicz multipliers were proved
by Tao and Wright in [17] where the authors prove that they locally map L log1=2 L into
weak L1.

A prototypical Marcinkiewicz multiplier is given by the signed sumX
k2Z

"k1Lk ; "k 2 ¹�1;C1º;
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while an orthogonality argument provides the link between Marcinkiewicz multipliers and
the classical Littlewood–Paley square function

LP1f .x/ WD
�X
k2Z

jPkf j2
�1=2
D

�
E
ˇ̌̌X
k2Z

"kPkf
ˇ̌̌2�1=2

; Pkf WD .1Lk yf /
_;

the expectation being over choices of independent random signs.
In the present paper, we are interested in higher order versions of Marcinkiewicz mul-

tipliers. In order to motivate such a study, it is very natural to consider square functions
that project to Littlewood–Paley intervals given by lacunary sets of order 2 or higher. For
example, letting

L.k;m/ WD ¹� 2 R W j�j 2 .2k C 2m�1; 2k C 2m�[ Œ2kC1 � 2m; 2kC1 � 2m�1/º; k > m;

denote the family of Littlewood–Paley intervals of second order, we naturally define

LP2f WD
� X
.k;m/2Z2

k>m

jP.k;m/f j2
�1=2

D

�
E
ˇ̌̌ X
.k;m/2Z2

k>m

"k;mP.k;m/f
ˇ̌̌2�1=2

; P.k;m/f WD .1L.k;m/ yf /
_;

initially for Schwartz functions with compactly supported Fourier transform. This is a
second order Littlewood–Paley square function, while the multiplierX

.k;m/2Z2

k>m

".k;m/1L.k;m/ ; ".k;m/ 2 ¹�1;C1º;

can be considered as a prototypical Marcinkiewicz multiplier of order 2. A Littlewood–
Paley partition ¹L W L 2ƒ�º of lacunary order � > 1 is naturally produced by iterating
Whitney decompositions inside each Littlewood–Paley interval of order � � 1. Accord-
ingly, a Marcinkiewicz multiplier of order � is a bounded function which has bounded
variation uniformly on all Littlewood–Paley intervals of order � . Likewise, we define the
Littlewood–Paley square function of order � as follows:

LP�f WD
� X
L2ƒ�

jPLf j2
�1=2
D

�
E
ˇ̌̌ X
L2ƒ�

"LPLf
ˇ̌̌2�1=2

; PLf WD .1L yf /_:

With precise definitions to follow, a punchline result of this paper is the following.

Theorem A. If m is a Marcinkiewicz multiplier of order � 2 N, then Tm satisfies the
estimate

j¹x 2 R W jTmf .x/j > ˛ºj .
Z

R

jf j

˛

�
log
�
e C
jf j

˛

���=2
; ˛ > 0:

The same is true for the Littlewood–Paley square function LP� of order � . In both cases,
the endpoint estimates are best possible in the sense that the exponent �=2 in the right-
hand side cannot be replaced by any smaller exponent.
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We will deduce Theorem A as a consequence of the more general Theorem B below
which applies to the wider class of R2;� multipliers.

1.1. Lacunary sets of higher order

In order to describe the classes of higher order multipliers we are interested in, it will
be necessary to introduce some notation for lacunary sets of general order. The standard
Littlewood–Paley partition of the real line is the collection of intervalsƒ1 WD¹˙Œ2k; 2kC1/ W
k 2Zº and it is a Whitney decomposition of R n ¹0º. For a finite dyadic interval I �R the
standard Whitney partition W.I / of I is the collection of the maximal dyadic subintervals
L � I such that dist.L;R n I / D jLj. Now, for any integer � > 1, we set

ƒ� WD
[

I2ƒ��1

W.I /

and call ƒ� the standard Littlewood–Paley collection of intervals of order � . We denote
by lac� the collection of all endpoints of intervals in ƒ� . Observe that, as in [3], the set
lac� has the explicit representation

lac� D ¹˙2n1 ˙ 2n2 C � � � ˙ 2n� W n1 > n2 > � � � > n� ; nj 2 Z for all j º:

For uniformity in the notation, we also setƒ0 D ¹.�1; 0/; .0;C1/º and lac0 WD ¹0º.
It will be useful throughout the paper to truncate the scales of lacunary intervals and
numbers by defining

ƒn� WD ¹L2ƒ� W jLj � nº; n 2 2Z:

Accordingly, lacn� denotes endpoints of intervals in ƒn� .
We need a smooth way to project to frequency intervals in ƒ� . For this, we consider a

smooth even function 0� �� 1 such that � is identically 1 on Œ�1=2;1=2� and vanishes off
Œ�5=8; 5=8�. For a positive integer � and L2ƒ� , we define the (rescaled) L-th frequency
component of some multiplier mWR! C as

mL.�/ WD �.�/m.cL C �jLj/; � 2 R;

with cL denoting the center of L.

1.2. Higher order multipliers and endpoint estimates

With this notation at hand we will say that mWR! C is a Hörmander–Mihlin multiplier
of order � if

kmkH� WD sup
j˛j�M

sup
L2ƒ�

k@˛mLkL1 < C1;

for some sufficiently large positive integer M which we will not keep track of. Note that
the higher order Hörmander–Mihlin condition is essentially the natural assertion

j@˛m.�/j . dist.�; lac��1/�˛; � 2 R n lac��1:
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Likewise, we will say that a bounded function mWR! C is a Marcinkiewicz multiplier
of order � 2 N if the components mL have bounded variation uniformly in L2ƒ� . Here
we use the standard variation norms defined for r 2 Œ1;1� as follows:

kF kVr WD sup
N

sup
x0<���<xN

� X
0�k�N

jF.xkC1/ � F.xk/j
r
�1=r

:

Note that usually Marcinkiewicz multipliers are defined by asking that the pieces m1L
have bounded 1-variation, uniformly in L. One can check that our definition, using the
smooth cutoff �, is equivalent to the classical one. For one inequality of this equivalence,
we just use that �� 1 on Œ�1=2;1=2�, while for the converse inequality it suffices to notice
that kFGkV1 . kF kV1kGkV1 together with the fact that the support of � is contained in
three adjacent intervals of length 1. We will actually consider the wider class of R2;� -
multipliers defined below.

Definition 1.1. Let R to be the space of all functions of the form

m D
X
I

cI1I

with I ranging over a family of disjoint arbitrary subintervals in Œ1; 2/ and the coefficients
¹cI ºI satisfying X

I

jcI j
2
� 1:

Then xR is the Banach space of functionsm WD
P
a �ama with

P
a j�aj <C1, we equip

xR with the norm

kmk xR WD inf
°X

a

j�aj W m D
X
a

�ama; ma 2 R
±
:

For � 2 N, we say that the bounded function mWR! C is an R2;� -multiplier if

kmkR2;� WD sup
L2ƒ�

kmLk xR < C1:

Note that the class R2;� contains all Marcinkiewicz multipliers of order � , as well as
the Hörmander–Mihlin multipliers of order � . This follows by the fact that Hörmander
multipliers of order � � 1 are Marcinkiewicz multipliers of the same order and the latter
belong to the class V1;� consisting of functions which have uniformly bounded 1-variation
on each lacunary interval of order � ; the inclusion relationship then follows, for example,
by the fact that V1;� � R2;� , proved in Lemma 2 of [6]. Our main result proves the sharp
endpoint bound for multipliers in the class R2;� .

Theorem B. Let � be a positive integer andm 2R2;� . Then the operator Tmf WD .m yf /_

satisfies

j¹x 2 R W jTmf .x/j > ˛ºj .
Z

R

jf j

˛

�
log
�
e C
jf j

˛

���=2
; ˛ > 0:

Furthermore, this estimate is best possible in the sense that the exponent �=2 in the
right-hand side of the estimate cannot be replaced by any smaller exponent. The implicit
constant depends only on � and the R2;� -norm of m.
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For � D 1, the local version of the theorem above is contained in [17]. We note that
Theorem B easily implies the following local estimate: For every interval I andm 2 R2;�
there holds

j¹x 2 I W jTmf .x/j > ˛ºj .
1

˛

Z
I

jf j
�

log
�
e C

jf j

hjf jiI

���=2
; ˛ > 0; suppf � I;

where hjf jiI WD jI j�1kf kL1.I /. The global estimate of Theorem B appears to be new
even in the first order case � D 1, although a proof of a global result can be deduced for
the first order case � D 1 from the methods in [17] without much additional work.

While Hörmander–Mihlin multipliers are R2;� multipliers, they are in general much
better-behaved as the case � D 1 suggests: indeed, for � D 1 Hörmander–Mihlin multi-
pliers map L1 to L1;1, in contrast to the sharpness of the L log1=2 L! L1;1 estimate
for general Marcinkiewicz or R2;1 multipliers. In analogy to the Littlewood–Paley square
function LP� of order � , it is natural to define a smooth version as follows. For C > 0

M 2 N and L 2 ƒ� , we consider the class of bump functions

ˆL;M WD
°
�L W supp.�L/ �

5

4
L; sup

˛�M

jLj˛k@˛�LkL1 � 10
10
±
:

Now for some fixed large positive integer M (whose precise value is inconsequential)
suppose that �L 2 ˆL;M for all L2ƒ� and define, initially for f in the Schwartz class,

S�f WD
� X
L2ƒ�

j�Lf j
2
�1=2

; �Lf .x/ WD

Z
R
�L.�/ yf .�/e

2�ix� d�; x 2 R:

The following theorem is the sharp endpoint estimate for higher order Hörmander–Mihlin
multipliers and corresponding square functions.

Theorem C. Let � be a positive integer and let m 2 H� be a Hörmander–Mihlin multi-
plier of order � . Then

j¹x 2 R W jTmf .x/j > ˛ºj .
Z

R

jf j

˛

�
log
�
e C
jf j

˛

��.��1/=2
; ˛ > 0:

The same holds for the smooth Littlewood–Paley square function S� of order � , and these
results are best possible. The implicit constant depends only on � and the H� -norm of m,
and also on M in the case of square functions.

The case �D1 of this theorem is classical. The local version of the case of Hörmander–
Mihlin multipliers of order � D 2 is implicit in [17] as it can be proved by combining
Proposition 5.1 in [17] with Proposition 4.1 in [17]. All the higher order cases for the
multipliers of the class H� appear to be new.

1.3. The Chang–Wilson–Wolff inequality and a square function for L log�=2L

Throughout this section we work on the probability space .Œ0; 1�; dx/ unless otherwise
stated. A central result in the approach in [17] was a weak characterization of the space
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L log1=2L in terms of an integrable square function, inspired by the analogous and better-
known characterisation of the Hardy space H 1. More precisely, the authors in [17] prove
that if f 2 L log1=2 L and f has mean zero then for each L 2ƒ1 one can construct
nonnegative functions FL, such that

(1.1) j�Lf j . FL � 'jLj�1 for all L2ƒ1;
Z

R

� X
L2ƒ1

jFLj
2
�1=2

. kf kL log1=2L;

where �L is as in Section 1.2 and

'�.x/ WD �
�1'.x=�/ WD ��1.1C jx=�j2/�3=4; x 2 R:

Here and throughout the paper, we use local Orlicz norms and corresponding notation as
described in Section 2.1.

There is a dyadic version: denoting by Dk the dyadic subintervals of Œ0; 1� of length
2�k , k 2 N0 WD N [ ¹0º, we consider the conditional expectation and martingale differ-
ences

Ekf WD
X
I2Dk

hf iI1I ; Dkf WD Ekf � Ek�1f; k � 1; D0f WD E0f; f 2 L1:

For future reference, we record the definition of the dyadic martingale square function

SMf WD
�X
k�1

jDkf j2
�1=2

:

The dyadic analogue of (1.1) is that if f 2 L log1=2 L, then for each k 2 N0 there exist
functions fk , such that

(1.2) jDkf j � Ekjfkj for all k 2 N0;

Z
Œ0;1�

�X
k�0

jfkj
2
�1=2

. kf kL log1=2L:

In fact, the authors in [17] first prove (1.2) by constructing the functions fk through a
rather technical induction scheme, and then deduce (1.1) from (1.2) via a suitable averag-
ing argument.

Several remarks are in order. Firstly, one notices that (1.2) combined with a simple
duality argument based on the fact that exp.L2/ D .L log1=2 L/� implies the Chang–
Wilson–Wolff inequality

(1.3) kf � E0f kexp.L2/ . kSMf kL1 :

Estimate (1.3) was first proved in [5]; see also the monograph [20] for an in-depth dis-
cussion of exponential square integrability in relation to discrete and continuous square
functions in analysis. Thus, the proof of (1.2) in [17] is of necessity somewhat hard as it
reproves (1.3).

A second observation that goes back to [17], see also [14] for an analogous remark on
the dual side, is that (1.1) implies the weaker estimate

(1.4)
� X
L2ƒ11

k�Lf k
2
L1

�1=2
. kf kL log1=2L:
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Indeed, (1.4) follows by (1.1) and the Minkowski integral inequality. Alternatively, as
observed in [14], the dual of (1.4) is a – again weaker – consequence of the Chang–
Wilson–Wolff inequality (1.3).

Finally, a consequence of (1.4) is the Zygmund inequality� X
�2lac11

j yf .�/j2
�1=2

. kf kL log1=2L:

See, for example, Theorem 7.6 in Chapter XII of [22]. Indeed, if L� is an interval which
has � as an endpoint, we have j yf .�/j � k.�L�f /

^kL1 � k�L�f kL1 for a suitable choice
of symbol in the definition of the Littlewood–Paley projection and Zygmund’s inequality
follows by (1.4).

All the estimates above have a higher order counterpart which plays an important
role in our investigations in this paper. However, our point of view is somewhat different
than in [17]. Firstly, we want to emphasize that the proof of our main theorem, The-
orem B, hinges on a higher order version of the generalized Zygmund inequality (1.4)
which loosely has the form

(1.5)
� X
L2ƒ1�

k�Lf k
2
L1

�1=2
. kf kL log�=2L; � 2 N:

Estimates of the form (1.5) will be referred to as generalized Zygmund–Bonami inequali-
ties and will be stated precisely and proved in Section 4. The terminology comes from the
fact that they imply the higher order version of Zygmund’s inequality, due to Bonami [3],
and which can be stated as follows:

(1.6)
� X
�2lac1�

j yf .�/j2
�1=2

. kf kL log�=2L; � 2 N:

A novelty in our approach is the realization that the weak square function character-
ization (1.2) of the space L log1=2 L, in the dyadic case, is precisely the dual estimate
of the Chang–Wilson–Wolff inequality (1.3). This relies on a duality argument involv-
ing quotient spaces which is inspired by the work of Bourgain, [4]. We can then use the
Chang–Wilson–Wolff inequality for general order of integrability, see Section 3.1,

(1.7) kf � E0f kexp.L2=.�C1// . kSMf kexp.L2=� /; � � 0;

to conclude the weak square function characterization of the space L log.�C1/=2L given
in the following theorem.

Theorem D. If f 2 L log.�C1/=2L for some � � 0, then for each k 2 N0, there exist
functions fk such that

Dkf D Dkfk for all k 2 N0;
�X

k�0

jfkj
2
�1=2

L log�=2L
. kf kL log.�C1/=2L:

The implicit constant depends only on � .
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We will prove Theorem D in Section 3 as a consequence of (1.7). While this is a
rather deep implication, as in the case � D 0, it is not hard to see that the conclusion
of Theorem D combined with the fact exp.L2=� / D .L log�=2 L/� actually implies the
Chang–Wilson–Wolff inequality (1.7) for the same value of � . We note that while the
conclusion of Theorem D and of the subsequent corollary below are already in [17] for
the case � D 0; our approach provides an alternative proof even for L log1=2 L. This
approach has the advantage of being able to deal with all spaces L log.�C1/=2 L at once,
hence leading to the more general conclusion of Theorem D.

As in the case � D 0, Theorem D readily implies the continuous version below.

Corollary E. Let J � R be a finite interval, � � 0 and f 2 L log.�C1/=2L.J /. Then, for
each L 2 ƒ1 with jLj � jJ j�1, there exists a nonnegative function FL such that for every
 � 1,

j�Lf j . FL � '.jLjjJ j/�1 ;� X
L2ƒ

jJ j�1

1

jFLj
2
�1=2

L log�=2L.J;dx=jJ j/
. kf kL log.�C1/=2L.J;dx=jJ j/;

with implicit constant depending only on  and � . If, in addition,
R
J
f D 0, then the

conclusion holds for all L2ƒ1 with the summation extending over all L2ƒ1. With or
without this additional assumption, for jLj � jJ j�1, the functions FL are supported in 5J .
The implicit constant depends only on  and � , as indicated.

1.4. Background and history

The fact that Marcinkiewicz multipliers are Lp-bounded is classical; see, e.g., Theo-
rem 8.13 in [8].The first endpoint result concerning multiplier operators of Marcinkiewicz-
type is arguably a theorem due to Bourgain [4], which asserts that, in the periodic set-
ting, the classical Littlewood–Paley square function LP1 has operator norm kLP1kp!p '
.p � 1/�3=2 as p! 1C. Tao and Wright proved in [17] the optimal local endpoint estimate
L log1=2L!L1;1 for the class ofR2 DR2;1 multipliers, which contains Marcinkiewicz
multipliers. It was later observed in [1] that Bourgain’s estimate follows by the endpoint
bound of [17] combined with a randomization argument and Tao’s converse extrapola-
tion theorem from [16]. Recently, Lerner proved in [10] effective weighted bounds for the
classical Littlewood–Paley square function LP1; these weighted bounds imply the correct
p-growth for the Lp ! Lp norms of these operators as p! 1C. In addition, as observed
in [2], the arguments of [10] can be used to establish weighted A2 estimates for LP� that
imply sharp Lp ! Lp estimates for LP� as p ! 1C for any order � . The class R2 con-
tains all multipliers m whose pieces mL have bounded q-variation uniformly in L2ƒ1,
for all 1 � q < 2; see [6], where the authors showed that all R2 multipliers are bounded
on Lp for p 2 .1;1/.

As already discussed, the authors in [17] rely on the weak square function characteri-
zation of L log1=2L as in (1.1) for their proof. Our argument here is a bit different, relying
on the weaker generalized Zygmund–Bonami inequality instead; a hint of a different proof
already appears in p. 540 of [17]. The Zygmund inequality first appeared in [21] in its dual
form; see also Theorem 7.6 in Chapter XII of [22]. The higher lacunarity order (1.6) is
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due to Bonami and it is contained in [3]. We note that our results provide an alternative
proof for the case of finite order lacunary sets. On the other hand, a dual version of the
generalized Zygmund–Bonami inequality in the first order case (that is, inequality (1.4))
appears in [14].

The Lp-boundedness of Marcinkiewicz multipliers of order one and higher in the
periodic setting was established by Marcinkiewicz in [11]; see also Gaudry’s paper [9].
Generalized versions of Hörmander–Mihlin and Marcinkiewicz multipliers, together with
their square function counterparts of higher order, have been introduced in [15] in a very
broad context. There the authors proved the equivalence of Lp-boundedness between dif-
ferent classes of such multipliers. Our setup is focused on the finite order lacunary case
and provides the optimal endpoint bounds for such classes.

1.5. Structure

The general structure of the rest of this paper is as follows. Section 2 contains some basic
facts and properties of Orlicz spaces, together with a small toolbox for dealing with lacu-
nary sets; the reader is encouraged to skip this section on a first reading and only consult
it when necessary. In Section 3 we will prove Theorem D and Corollary E. In Section 4
we will critically use Corollary E in order to conclude the generalized Zygmund–Bonami
inequality of arbitrary order alluded to above. This inequality will be stated and proved
in different versions which can be local or non-local, depending on the type of can-
cellation assumptions we impose. The reader can find the corresponding statements in
Propositions 4.1 and 4.4, see also Corollary 4.6. In Section 5 we present the details
of a Calderón–Zygmund decomposition for the Orlicz space L log�=2 L, adapted to the
needs of this paper. The proof of Theorem B takes up the best part of Section 6, where
the Calderón–Zygmund decomposition of Section 5 is combined with the generalized
Zygmund–Bonami inequality of Section 4. The proofs of Theorem A and Theorem C are
discussed in Section 6.2 as a variation of the proof of Theorem B.

2. Preliminaries and notation

In this section, we collect several background definitions and notations that will be used
throughout the paper.

2.1. Some basic facts for certain classes of Orlicz spaces

We adopt standard nomenclature for Young functions and Orlicz spaces as, for example, in
Chapter 10 of [20]. Given a Young functionˆW Œ0;1�! Œ0;1�, we will use the following
notation for local Lˆ averages: for a finite interval I � R,

hjf jiˆ;I WD inf
°
� > 0 W

1

jI j

Z
I

ˆ
�
jf .x/j

�

�
dx � 1

±
:

For the usual local Lp averages, we just set

hjf jip;I WD jI j
�1=p
kf kLp.I / for 1 � p <1.
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For � � 0, we use the Young function

B� .t/ WD t .log.e C t //�

to define local L log� L-spaces and we will also write,

kf kL log� L.I;dx=jI j/ WD hjf jiB� ;I '
1

jI j

Z
I

jf .x/j
�

log
�
e C

jf .x/j

hjf ji1;I

���
dx:

The last approximate equality can be found in Theorem 10.8 of [20]. For future reference
it is worth noting that the function B� is submultiplicative and thus doubling; see Sec-
tion 5.2 of [7]. We will write instead LB� .R/ to denote the (global) space of measurable
functions f such that

R
R B� .jf j/ < C1:

Note that the dual Young function of B� can be taken to coincide with E��1.t/ WD
exp.c� t1=� / � 1 for t & 1; here we insist on the equality only for sufficiently large values
of t . With this function, we define the local exp.L1=� / norms and the Hölder inequality
hjfgji1;I . hjf jiB� ;I hjf jiE��1;I holds. We reserve the notation L log� L and exp.L1=� /
for the case I D Œ0; 1� and the space of functions supported in Œ0; 1�, for which

kf kL log� L WD hjf jiB� ;Œ0;1� < C1;

kf kexp .L1=� / WD hjf jiE��1 ;Œ0;1� ' sup
p�2

p��kf kp < C1;

respectively (see Section 2.2.4 of [18] for the last approximate equality); there holds
exp.L1=� / Š .L log� L/�. For � D 0, we adopt the convention that L log� L D L1 and
exp.L1=� / D L1. The Minkowski-type integral inequality

k¹kfkkL log� Lºk`2
k

. kk¹fkºk`2
k
kL log� L

will be used with no particular mention. Its proof can be obtained by a simple duality
argument.

2.2. Some tools for handling lacunary sets

We introduce some useful notions concerning lacunary sets of arbitrary order. Let � � 1
and L 2 ƒ� . We will denote by yL the unique interval yL 2ƒ��1 such that L � yL and
call yL the (lacunary) parent of L. Furthermore, we will denote by �.L/ the unique ele-
ment � 2 lac��1 such that dist.L;R n yL/D dist.L; �/D jLj. We note that �.L/ is one of
the endpoints of yL. These definitions also make sense in the case � D 1, keeping in mind
the definitions of ƒ0 and lac0.

IfL 2ƒ� , thenL� WDL� �.L/ 2ƒ1; in fact,L� is one of the intervals .�2jLj;�jLj/
or .jLj; 2jLj/ depending on the original relative position of L with respect to �.L/. The
point of the definitions above is that if L2ƒ� , then upon fixing a suitable choice of bump
functions �L 2 ˆL;M , we can write the identity

�Lf D e
2�i�.L/ ��L�.e

�2�i�.L/ ��yLf / D e
2�i�.L/ ��L�.e

�2�i�.L/ �f /:

This will be crucially used in several parts of the recursive arguments in the paper. We
will also use the intuitive notation �jLj WD �L�[.�L�/ for the smooth Littlewood–Paley
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projection of first order at frequencies j�j ' jLj, which takes advantage of the fact that L�

essentially only depends on the length of L. The following notation will be useful to
localize in a certain lacunary parent:

ƒn� .L
0/ WD ¹L2ƒn� W L � L

0
º; L0 � R;

similarly we define ƒ� .L0/. Note that if L0 2 ƒ��1 and L 2ƒ� .L0/, then necessarily
yL D L0.

The following simple lemma relies on the fact that lacunary sets are invariant under
dyadic dilations with respect to the origin and will be used to allow rescaling of intervals
of dyadic length to Œ0; 1�.

Lemma 2.1. Let � 2 N and a 2 2Z. Then a�1laca� WD ¹�=a W � 2 laca� º D lac1� :

To showcase the typical application of this lemma, let J � R be an interval of dyadic
length and aD ¹a�º�2lac� a finite collection of complex coefficients. By a standard change
of variables,

(2.1) pa.y/ WD
X

�2lacjJ j
�1

�

a�e
i�y ; hjpaji

p
p;J D

Z
Œ0;1�

ˇ̌̌ X
�2jJ jlacjJ j

�1

�

a�jJ j�1e
i�y
ˇ̌̌p

dy;

and we crucially note that the sum on the right-hand side is for � 2 jJ jlacjJ j
�1

� D lac1�
because of the lemma. Of course, the same change of variables will be valid for hjpajiˆ;J
for any Young function ˆ. We will use this rescaling argument in several places in the
paper.

2.3. Other notation

For any function g and � > 0, we write g�.x/ WD ��1g.x=�/ for the L1-rescaling. Two
special kinds of bump functions will appear. Firstly, !.x/ WD .1C jxj2/�N=2 is the smooth
tailed indicator of Œ�1=2; 1=2� with N any large positive integer. It will be enough to take
N D 10 for the arguments in this paper, but more decay is available if needed. We will
also write '.x/ WD .1C jxj2/�3=4, which is still anL1-bump but has only moderate decay.
In some cases we are restricted to using ', most notably in the statement and proof of
Corollary E.

3. A weak square function characterization of L log�=2L

In this section, we provide the proof of Theorem D as a consequence of the Chang–
Wilson–Wolff inequality of general order (1.7). The conclusion of Corollary E will then
follow by a standard averaging argument using almost orthogonality between the contin-
uous Littlewood–Paley projections and martingale differences.

3.1. Proof of Theorem D

We recall that we work on the probability space .Œ0; 1�; dx/. It clearly suffices to prove
the theorem for k � 1, as for k D 0, we can set f0 WD E0f D D0f . Our starting point is
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the Chang–Wilson–Wolff inequality of general order of integrability, (1.7). This is pretty
standard, but a quick proof can be produced by using the usual Chang–Wilson–Wolff
inequality (1.3) in the form

p��=2 kf � E0f kp . p��=2p1=2 kSMf kp; p � 2; � � 0;

which readily implies

kf � E0f kexp.L2=.�C1// ' sup
p�2

kf � E0f kp
p.�C1/=2

. sup
p�2

kSMf kp

p�=2
' kSMf kexp.L2=� /;

which is (1.7). Observe that (1.7) has the form

(3.1)
X
k�1

gk


exp.L2=.�C1//

.
�X

k�1

jgkj
2
�1=2

exp.L2=� /
; gk D Dkf:

We will write (3.1) as a continuity property for the operator T.¹gkºk/ WD
P
k gk between

suitable Banach spaces. To that end, let us consider the subspace of L log�=2 L.Œ0; 1�I `2/
given by

Y WD ¹¹ kºk 2 L log�=2L.Œ0; 1�I `2/ W Dk k D 0 for all k 2 Nº:

We observe that Y is closed. To see this consider a sequence . n/n � Y with nD ¹ n
k
ºk

converging to some  D ¹ kºk in L logL�=2L.Œ0; 1�I `2/. Clearly the limit  belongs to
the space L logL�=2L.Œ0; 1�I `2/, the latter being a Banach space and, additionally,  n

k

converges to  k in L log�=2 L.Œ0; 1�/, and so also in L1.Œ0; 1�/, uniformly in k. Now it
follows by Fatou’s lemma that for each k 2 N, there holds

k lim inf
n!1

jDk. nk �  k/jkL1.Œ0;1�/ � lim inf
n!1

k k �  
n
k kL1.Œ0;1�/ D 0;

yielding Dk nk D Dk k D 0 a.e., where we also used the uniform boundedness of Dk on
L1.Œ0; 1�/.

Since .L log�=2 L.Œ0; 1�I `2//� Š exp.L2=� /.Œ0; 1�I `2/, the annihilator of Y is given
equivalently by

Y ? D
°
¹gkºk 2 exp.L2=� /.Œ0; 1�I `2/ W

Z �X
k

gk k

�
D 0 for all ¹ kºk 2 Y

±
:

Since Y is a closed subspace of L log�=2 L.Œ0; 1�I `2/ we have (see Theorem 4.9 in [13])
that .L log�=2L.Œ0; 1�I `2/=Y /� is isometrically isomorphic to Y ?. We equip Y ? with the
norm appearing on the right-hand side of (3.1). We will use the following fact.

Lemma 3.1. If ¹gkºk 2 Y ?, then Dkgk D gk for every k 2 N.

Proof. Fix an index k0 2 N, let  2 L log�=2L be arbitrary and let ¹ kºk be defined by

 k WD

´
0 if k ¤ k0;
 � Dk0 otherwise:
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Clearly, ¹ kºk2L log�=2L.Œ0; 1�I `2/; moreover, Dk0. �Dk0 /D0, so that ¹ kºk 2 Y .
By the definition of Y ?, we have

0 D

Z X
k

gk k D

Z
gk0. � Dk0 / D

Z
.gk0 �Dk0gk0/ ;

where we have used the fact that Dk is self-adjoint; but this is only possible for arbitrary  
if Dk0gk0 D gk0 , as claimed.

Now (3.1) can be written in the form

(3.2) kT.¹gkºk/kexp.L2=.�C1// . k¹gkºkkY? ; T.¹gkºk/ WD
X
k

gk :

Let X WD L log�=2 L.Œ0; 1�I `2/ and denote by XN and YN the functions in X and Y ,
respectively, which are constant on dyadic intervals of length smaller than 2�N . In partic-
ular, such functions f have finite Haar expansion, which implies the a priori qualitative
property that the spaces XN and YN are finite dimensional. We note that .XN =YN /� is
isometrically isomorphic to Y ?N . By the Riesz representation theorem, we then get that

k¹Dkf ºkkXN =YN � sup
¹gkºk2Y

?
N W

k¹gkºkkY?
N
�1

ˇ̌̌ Z X
k

gkDkf
ˇ̌̌
D sup
¹gkºk2Y

?
N W

k¹gkºkkY?
N
�1

ˇ̌̌ Z
T.¹gkºk/f

ˇ̌̌
;

where we also used Lemma 3.1 in passing to the equality in the right-hand side above.
Using (3.2) together with Hölder’s inequality in Orlicz spaces, it follows that

k¹DkfN ºkkX=Y D inf
¹ kºk2Y

�X
k

jDkfN C  kj2
�1=2

L log�=2L
. kfN kL log.�C1/=2L;

where fN is the truncation of the Haar series of f 2 X at scale 2�N . We stress that the
approximate inequality above holds uniformly for all N 2 N. This inequality extends
to all f 2 L log.�C1/=2 L by a standard approximation argument, using the fact that the
truncated Haar series of functions f 2 L log.�C1/=2 L converge to f in L log.�C1/=2L,
see [12]. The extension of the operator f 7! ¹Dkf ºk is the obvious one given by the same
expression.

In order to conclude the proof of the theorem, we notice that for every ¹ kºk 2 Y ,
there holds Dkf D Dk.Dkf C  k/, and the last inequality guarantees the existence of a
vector ¹ kºk 2 Y such that the functions fk WD Dkf C  k satisfy the conclusion of the
theorem.

3.2. Proof of Corollary E

The corollary follows from the dyadic case of Theorem D via an averaging argument
which is essentially identical to the one in Section 9 of [17]; see also [19], where the
argument of Section 9 in [17] is explained in detail. We can clearly assume that  � 3 and,
by affine invariance, we can take J D Œ0; 1�, so that jJ j D �1, and suppf � Œ1=3; 2=3�.
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For all � 2 Œ�1=3; 1=3�, we define f� .x/ WD f .x � �/. By Theorem D, for each � 2
Œ�1=3; 1=3� and k � 0, there exists a function f�;k such that Dkf� D Dkf�;k and�X

k�0

jf�;kj
2
�1=2

L log�=2L
. kf�kL log.�C1/=2L D kf kL log.�C1/=2L:

Setting, for L2ƒ1 ,

FL.x/ WD
X
k2N0

2�j log2 jLj�kj=2
Z
Œ�1=3;1=3�

jf�;k.x C �/j d�

and arguing as in [17], we see that j�Lf .x/j . FL � 'jLj�1 and� X
L2ƒ


1

jFL.x/j
2
�1=2

.
Z
Œ�1=3;1=3�

�X
k�0

jf�;k.x C �/j
2
�1=2

d�:

By the Minkowski integral inequality for the space L log�=2L, we have� X
L2ƒ


1

jFLj
2
�1=2

L log�=2L
.
Z
Œ�1=3;1=3�

�X
k�0

jf�;k.� C �/j
2
�1=2

L log�=2L
d�;

and the proof follows forL2ƒ1 . Under the additional cancellation assumption
R
Œ0;1�

fD0,
we consider also L 2ƒ1 with jLj <  , and for these we define FL WD j�Lf j and note
that j�Lf j . 'jLj�1 � FL. Using the cancellation condition, we have also

j�Lf j . 'jLj�1 � .jLjkf kL11Œ0;1�/;

which readily yields the estimate kk¹FLºjLj<k`2kL1 . kf kL1 and the proof is complete.
Note that we used that since � D 1, there are at most two intervals L2ƒ1 of any given
length.

4. Generalized Zygmund–Bonami inequalities

In this section, we prove the versions of the generalized Zygmund–Bonami inequality
presented in the introduction, where the Littlewood–Paley projections �L for L2ƒ1 are
replaced by their � -order counterparts �L for L 2 ƒ� , where � is an arbitrary positive
integer. As already discussed, the estimate corresponding to order � D 1 is (1.4) and it
follows rather easily from the case � D 0 of Corollary E. For � > 1, we first state the gen-
eralized Zygmund–Bonami inequalities in the case of L 2 ƒ� with jLj � jJ j�1, where J
is an interval in which f is supported; this is the harder and deeper case. In the rest of
the section we will also provide the statements and proofs for the easier case jLj < jJ j�1;
the latter will rely on pointwise estimates for �Lf and recursive arguments, assuming
suitable cancellation conditions for f in the same spirit as Corollary E.
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4.1. The main term in the generalized Zygmund–Bonami inequalities

We encourage the reader to keep in mind the notation of Section 2 for the local Orlicz
norms and the definitions concerning lacunary sets from Section 2.2 for the rest of this sec-
tion. Our first result below gives a version of the generalized Zygmund–Bonami inequality,
in which the intervalsL are restricted to those for which jLj � jJ j�1, as anticipated above.

Proposition 4.1. Let J � R be a finite interval and let f be a compactly supported
function with supp.f / � J . Let � be a positive integer, � � 0 and  > 1. There holds� X

L2ƒ
jJ j�1

�

hj�Lf ji
2
B�=2;J

�1=2
.�;�; hjf jiB.�C�/=2;J

and X
L2ƒ

jJ j�1

�

k�Lf k
2
L2.RnJ / .�; jJ j hjf ji2B.��1/=2;J :

Proof. The proof is by way of induction on � , with the base case � D 1 being an easy con-
sequence of Corollary E, as we shall now illustrate. Indeed, let C1.�; �; / and C2.�; /
denote the best constants in the first and in the second estimates in the statement, respec-
tively. Corollary E implies that for L2ƒjJ j

�1

1 , we have

hj�Lf jiB�=2;J . hj'.jLjjJ j/�1 � FLjiB�=2;J . hjFLjiB�=2;J ;

using Young’s convolution inequality and the L1-normalization of each '.jLjjJ j/�1 . Now
the proof of the first estimate in the conclusion for � D 1 can be concluded by yet another
application of Minkowski’s inequality, this time to yield that the left-hand side of the first
estimate in the conclusion is bounded by a constant multiple of� X

jLj�jJ j�1

hjFLji
2
B�=2;J

�1=2
.
D� X
jLj�jJ j�1

jFLj
2
�1=2E

B�=2;J
. hjf jiB.�C1/=2;J ;

by the estimate for the square function of the ¹FLºL in Corollary E. It follows that
C1.�; 1; / < C1 for all nonnegative integers � and  > 1.

For the second estimate, we have, for jLj � jJ j�1 and x 2 R n J ,

(4.1) j�Lf .x/j . jLjjJ j.1C jLjjx � cJ j/�10hjf ji1;J . !jLj�1 � .hjf ji1;J 1J /.x/;

with !jLj�1 as given in Section 2. Using the first approximate inequality above, the square
of the left-hand side of the second estimate in the conclusion of the proposition can be
estimated by a constant multiple ofX

L2ƒ
jJ j�1

1

hjf ji21;J .jLjjJ j/
2
jLj�20

Z
RnJ

jx � cJ j
�20 dx

. hjf ji21;J
X

L2ƒ1WjLjjJ j�1

.jLjjJ j/�18jJ j;

which sums to the desired quantity since, for � D 1, there is exactly one interval L2ƒ1
per dyadic scale. This shows that C2.1; / < C1 for all  > 1.
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Consider now the case � > 1 and let a>1 be such that  D a� . Recalling the discussion
in Section 2.2, we write

j�Lf j � j�L�.1a��1J e�2�i�.L/
�

�yLf /j C j�L�.1Rna��1J e
�2�i�.L/ ��yLf /j(4.2)

DW j�L�f1;Lj C j�L�f2;Lj:

For clarity, we remind the reader that �.L/ is either of the endpoints of yL (depending on
the position of L), and therefore we can partition the intervals L into two families such
that f1;L; f2;L actually depend only on yL, this will be relevant below. Fixing for a moment
L0 2 ƒjJ j

�1

��1 , we note that for any L 2 ƒjJ j
�1

� .L0/, there holds yL D L0, and so

jf1;Lj D j�yLf j1a��1J D j.�L0f /1a��1J j:

As the collection
¹L� W L 2 ƒjJ j

�1

��1 .L
0/º � ƒjJ j

�1

1 ;

we can use the conclusion of proposition for � D 1 to estimate, for fixed L0 2ƒjJ j
�1

��1 ,� X
L2ƒ

jJ j�1

� .L0/

hj�L�f1;Lji
2
B�=2;a

�J

�1=2
� C1.�; 1; a/ hj�L0f jiB.�C1/=2;a��1J :

Thus, we can recursively estimate� X
L02ƒ

jJ j�1

��1

X
L2ƒ

jJ j�1

� .L0/

hj�L�f1;Lji
2
B�=2;a

�J

�1=2
� C1.�; 1; a/

� X
L02ƒ

jJ j�1

��1

hj�L0f ji
2
B.�C1/=2;a

��1J

�1=2
� C1.�; 1; a/ C1.� C 1; � � 1; a

��1/hjf jiB.�C�/=2;J ;

which takes care of the contribution of the f1;L’s. Considering now the f2;L’s, by Hölder’s
inequality for Orlicz spaces, we have that hj�L�f2;LjiB�=2;a�J � hj�L�f2;Lji2;a�J and
therefore, for any fixed L0 2 ƒjJ j�1��1 ,X

L2ƒ
jJ j�1

� .L0/

hj�L�f2;Lji
2
B�=2;a

�J .
1

a� jJ j

Z
R
jf2;Lj

2
D

1

a� jJ j

Z
Rna��1J

j�L0f j
2;

where we have used the L2 ! L2 boundedness of the smooth Littlewood–Paley square
function together with the fact remarked above that f2;L depends essentially only on
yL D L0. It follows that we can bound recursively:� X
L02ƒ

jJ j�1

��1

X
L2ƒ� .L

0/

jLj�jJ j�1

hj�L�f2;Lji
2
B�=2;a

�J

�1=2
.�

� 1

a� jJ j

X
L02ƒ

jJ j�1

��1

Z
Rna��1J

j�L0f j
2
�1=2

�

�C2.� � 1; a��1/
a� jJ j

jJ jhjf ji2B.��2/=2;J

�1=2
.�;� .C2.� � 1; a��1/=a� /1=2hjf jiB.�C�/=2;J :
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This proves that

C1.�; �; a
� / � C1.�; 1; a/ C1.� C 1; � � 1; a

��1/C c�;� C2.� � 1; a
��1/1=2a��=2

for some numerical constant c�;� depending only on �; � .
We move to the proof of the inductive step for the L2-estimate and we use again

the splitting of (4.2). For the term corresponding to the f1;L’s, we can estimate again
recursively:X
L02ƒ

jJ j�1

��1

X
L2ƒ

jJ j�1

� .L0/

k�L�f1;Lk
2
L2.Rna�J/ � C2.1; a/ ja

��1J j
X

L02ƒ
jJ j�1

��1

hj�L0f ji
2
1;a��1J

� C2.1; a/C1.0; � � 1; a
��1/a��1 jJ j hjf ji2B.��1/=2;J :

Finally, for the contribution of the f2;L’s, we use again the L2 ! L2 boundedness of the
smooth Littlewood–Paley square function and the inductive hypothesis to estimateX

L02ƒ
jJ j�1

��1

X
L2ƒ

jJ j�1

� .L0/

k�L�f2;Lk
2
L2.Rna�J/ .

X
L02ƒ

jJ j�1

��1

k�L0f k
2
L2.Rna��1J/

� C2.� � 1; a
��1/ jJ j hjf ji2B.��1/=2;J :

We have thus shown that for some numerical constant c0�;� ,

C2.�; a
� / � C2.1; a/C1.0; � � 1; a

��1/a��1 C c0�;� C2.� � 1; a
��1/:

This completes the proof of the inductive step and hence the proof of the proposition.

Remark 4.2. The first estimate in Proposition 4.1 implies the Zygmund–Bonami inequal-
ity of general order. Indeed, assume for a moment that J D Œ0; 1�, and for � 2 lac1� , let
L� 2 ƒ� be an interval that has � as an endpoint. We have

j yf .�/j D j��L�.f /.�/j � k�L�.f /kL1
for a suitable choice of symbol in the definition of �L, and so the first estimate of the
proposition for � D 0 implies� X

�2lac1�

j yf .�/j2
�1=2

. kf kL log�=2L;

which is the Zygmund–Bonami inequality of lacunary order � . Dualizing and rescaling as
in (2.1) tells us that for any finite interval J � R with jJ j 2 2Z, we have

p.y/ WD
X

�2lacjJ j
�1

�

a� e
�2�i�y ; k¹a�º�k`2 D 1 H) hjpjiE2=� ;J . 1:

This formulation of the higher order Zygmund–Bonami inequality will be used in several
points in the rest of the paper. As it follows from Proposition 4.1 above, this makes the
proofs in the paper somewhat self contained.
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Remark 4.3. One can easily verify that the L2-estimate of Proposition 4.1 can be up-
graded to the following form for “molecules”. Let J be a family of pairwise disjoint
intervals and f D

P
J2JbJ , where supp.bJ / � J for each J 2 J. For every positive

integer � and  � 2, there holdsX
L2ƒ�

 X
J WjJ j�jLj�1

�L.bJ /1RnJ

2
L2.R/

.
X
J2J

jJ j hjbJ ji
2
B.��1/=2;J

:

Indeed, an inductive proof is again available. The case � D 1 follows by the same pointwise
estimate (4.1), which implies thatX

J W jJ j�jLj�1

j�L.bJ /j1RnJ . !jLj�1 �
� X
jJ j�jLj�1

hjbJ ji1;J
1J

.jLjjJ j/5

�
;

which sums using that there are at most two intervals L 2ƒ1 of any given length. The
inductive step relies again on the identity (4.2), applied to each bJ in place of f . Then
the contribution of the first term is estimated by an appeal to the case � D 1 followed by
an application of the first estimate in Proposition 4.1. The contribution of the second term
in (4.2) is estimated by the Littlewood–Paley inequalities and the inductive hypothesis.
We omit the details.

We proceed to prove the easier range, corresponding to jLj< jJ j�1. As in Corollary E,
we require cancellation conditions, which in the case at hand amount to vanishing Fourier
coefficients of the function at lacunary frequencies corresponding to order � � 1. In this
range, we can prove the stronger L2 inequality that follows. For simplicity, we state the
result below for f with support of dyadic length, but it is obvious that this is no real
restriction.

Proposition 4.4. Let J � R be a finite interval of dyadic length and f be a compactly
supported function with supp.f /� J . Let � be a positive integer. We assume that yf .�/D0
for all � 2 lacjJ j

�1

0 [ � � � [ lacjJ j
�1

��1 . ThenX
L2ƒ� W
jLj<jJ j�1

k�Lf k
2
L2.R/ . jJ j hjf ji2B.��1/=2;J :

Proof. We argue by induction as in the proof of Proposition 4.1. Let us denote by C.�/
the best constant in the inequality we intend to prove. Note that, for � D 1, the assumption
reads

R
J
f D 0 and the conclusion C.1/ < C1 follows immediately by the pointwise

estimate

j�L.f /.x/j .M jLj2 jJ j2 .1C jLj jx � cJ j/�M hjf ji1;J(4.3)
. !jLj�1 � .jLj jJ j hjf ji1;J 1J /

for any large positive integer M , where cJ is the center of J and jLj jJ j < 1. In order to
see the first estimate above, let us take �L 2 ˆL;M to be the symbol of �L which can be
written in the form �L.x/ D e

i2�icLxjLj�.jLjx/, with cL denoting the center of L2ƒ1.
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We compute, using the cancellation of f and the mean value theorem,

j�L.f /.x/j �

Z
J

j�L.x � y/� �L.x � cJ /j jf .y/jdy .
Z
J

jJ jsup
z2J

j�0L.x � z/j jf .y/jdy:

Using that jcLj ' dist.L; 0/ ' jLj, we have, for z 2 J ,

j�0L.x � z/j . cL jLj�.jLj.x � z//C jLj
2�.jLj.x � z//

. jLj2 .1C jLj jx � zj/�M ' jLj2 .1C jLj jx � cJ j/�M :

The last approximate equality can be checked by considering the cases x 2 3J and x … 3J
separately, remembering that jLj jJ j < 1. The combination of the last two displays yields
the first estimate in (4.3). The second estimate in (4.3) follows by the first since

.1C jLj jx � cJ j/
�M
' .1C jLj jx � zj/�M

for z 2 J � supp.f /.
For � > 1, we first do the same reduction as in the proof of Proposition 4.1. For � > 1,

we can estimateX
L2ƒ�
jLj<jJ j�1

k�Lf k
2
L2.R/ �

X
L02ƒ��1
jL0j<jJ j�1

X
L2ƒ� .L0/

k�L�.e
�2�i�.L/ ��L0f /k

2
L2.R/(4.4)

C

X
L02ƒ

jJ j�1

��1

X
L2ƒ� .L

0/

jLj<jJ j�1

k�L�.e
�2�i�.L/ �f /k2

L2.R/:

The first summand above is estimated by . C.� � 1/jJ jhjf ji2B.��2/=2;J by using the
L2-bound for the smooth Littlewood–Paley square function and the inductive hypothesis.

The second summand above can be estimated byX
`W2`<jJ j�1

X
L02ƒ

jJ j�1

��1

X
L2ƒ� .L

0/

jLjD2`

k�2`.e
�2�i�.L/ �f /k2

L2.R/

D

X
`W2`<jJ j�1

X
�2lacjJ j

�1

��1

X
L2ƒ�
�.L/D�

jLjD2`

k�2`.e
�2�i� �f /k2

L2.R/

.
X

`W2`<jJ j�1

X
�2lacjJ j

�1

��1

k�2`.e
�2�i� �f /k2

L2.R/;

where, in passing to the last line, we used that for each � 2 lac��1 there are at mostO� .1/
intervals L 2ƒ� of fixed length with �.L/ D �. Fixing for a moment 2` < jJ j�1 and
x 2 R, we writeX
�2lacjJ j

�1

��1

j�2`.e
�2�i� �f /.x/j2D

ˇ̌̌
�2`

� X
�2lacjJ j

�1

��1

a� e
�2�i� �f

�
.x/
ˇ̌̌2
DW j�2`.px;`f /.x/j

2;
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where ¹a�º� D ¹a�.x; `/º� is in the unit ball of `2
�

, and px;`, implicitly defined above,
is as in (2.1). Using the cancellation assumptions on f , we see that

R
J
px;`f D 0, so by

appealing to (4.3), we get

j�2`.fpx;k� /j . !2�` � .2
`
jJ jhjfpx;`ji1;J 1J / . !2�` � .2

`
jJ jhjf jiB.��1/=2;J 1J /;

where we used the Hölder inequality in Orlicz spaces together with the Zygmund–Bonami
inequality of order � � 1 from Remark 4.2 to control hjpx;`jiE2=.��1/ . 1. Squaring the
estimate in the last display, integrating, and then summing for 2` < jJ j�1 yields that the
second summand in (4.4) is controlled by a constant multiple of jJ jhjf ji2B.��1/=2;J . We
have proved that C.�/ . .1 C C.� � 1// and this concludes the proof of the inductive
step and of the proposition.

Remark 4.5. As in Remark 4.3 there is an upgrade of the L2-estimate of Proposition 4.4
from “atoms” to “molecules” f D

P
J2J bJ , where J is a family of pairwise disjoint

dyadic intervals and each bJ satisfies the cancellation assumptions of Proposition 4.4,
namely, X

L2ƒ�

 X
J W jJ j<jLj�1

�L.bJ /
2
L2.R/

.
X
J2J

jJ j hbJ i
2
B.��1/=2;J

:

The base case � D 1 is essentially identical to the corresponding step in the proof of
Proposition 4.4, relying on the pointwise estimateˇ̌̌

�L

� X
J W jLj<jJ j�1

bJ

�ˇ̌̌
. !jLj�1 �

�
jLj

X
J W jLj<jJ j�1

jJ jhjbJ ji1;J 1J
�
:

This is a consequence of (4.3) using the cancellation assumption
R
bJ D 0 for each J 2 J.

For the inductive step with � > 1, denoting again by C.�/ the best constant in the desired
L2-estimate, we clearly have thatX
L2ƒ�

 X
J W jJ j<jLj�1

�L.bJ /
2
L2.R/

.
X
L2ƒ�

 X
J W j yLj�1�jJ j<jLj�1

�jLj.e
�2�i�.L/ �bJ /

2
L2.R/

C C.� � 1/
X
J2J

jJ jhbJ i
2
B.��2/=2;J

:

Using a linearization trick as in the proof of Proposition 4.4, we haveX
L2ƒ�

ˇ̌̌ X
J W j yLj�1�jJ j<jLj�1

�jLj.e
�2�i�.L/ �bJ /.x/

ˇ̌̌2
D

X
`2Z

ˇ̌̌ X
J W jJ j<2�`

�2`
� X

L2ƒ�
jLjD2`; j yLj�1�jJ j

aL e
�2�i�.L/ �bJ

�
.x/
ˇ̌̌2
:

for some collection ¹aLºL2ƒ� D ¹aL.x; `/ºL2ƒ� in the unit ball of `2L.
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Fixing for the moment ` 2 Z and x 2 R, we have

px;` WD
X
L2ƒ�

jLjD2`; j yLj�jJ j�1

aL e
�2�i�.L/ �

D

X
L02ƒ

jJ j�1

��1

� X
L2ƒ� .L

0/

jLj2`

aL

�
e�2�i�.L/

�

DW

X
�2lacjJ j

�1

��1

ˇ� e
�2�i� � ;

with k¹ˇ�ºk`2� D O.1/. Here we used that there at most O.1/ intervals L2ƒ� with fixed
length jLj D 2` inside yL. Using the cancellation of px;`bJ , we can estimate pointwise

j�2`.px;`bJ /j . 2`jJ j hjpx;J bJ ji1;J!2` � 1J ;

and by Remark 4.2 and Hölder’s inequality for Orlicz spaces, we have that

hjpx;`bJ ji1;J . hjbJ jiB.��1/=2;J :

With this information the proof of the estimate can now be completed summing over
jJ j2` < 1 as in the proof of Proposition 4.4.

We conclude this section by recording the generalized Zygmund–Bonami inequality
under cancellation conditions. This is just a combination of Propositions 4.1 and 4.4.

Corollary 4.6. Let � be a nonnegative real number and � a positive integer. Assume that
supp.f /�J for some finite interval J and that yf .�/D0 for all �2 lacjJ j

�1

0 [ � � � [ lacjJ j
�1

��1 .
Then � X

L2ƒ�

hj�L.f /ji
2
B�=2;J

�1=2
. hjf jiB.�C�/=2;J :

5. An LB�=2.R/ Calderón–Zygmund decomposition

We describe in this section a Calderón–Zygmund decomposition adapted to the (global)
Orlicz space LB�=2.R/ for � � 0. Such a Calderón–Zygmund decomposition, which is
influenced by the one appearing in Appendix A of [7], is available to us because of the
specific choice of the Young function B�=2 and it is adapted to the finite order lacunary
setup.

Recall that for � � 0, we write f 2 LB�=2.R/ if for some (or equivalently all) � > 0,
there holds Z

R
B�=2

�
jf .x/j

�

�
dx < C1:

There is an Orlicz maximal operator associated with B� ,

MB�=2f .x/ WD sup
Q3x

hjf jiB�=2;Q; x 2 R;

with the supremum being over all intervals Q of R containing x. The dyadic version
of MB�=2 is defined similarly, with the supremum over all dyadic intervalsQ2D , where D

is some dyadic grid. We will write MB�=2;D for the dyadic version. Below we denote by
Q 2D a dyadic interval, Q.1/ its dyadic parent and set Q.kC1/ to be the dyadic parent
of Q.k/.
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Remark 5.1 (Existence of stopping intervals). For the Calderón–Zygmund decomposi-
tion, we choose stopping intervals that are maximal under the condition hjf jiB�=2;I > �.
The existence of these stopping intervals relies on the following fact: if f 2 LB�=2.R/ for
some � � 0 and I is a dyadic interval in some grid D , then hjf jiB�=2;I .k/! 0 as k!C1.
This can be easily proved using, for example, the fact that the Young function B�=2 is sub-
multiplicative.

Proposition 5.2. Let � be a fixed nonnegative integer, f 2 LB�=2.R/, and ˛ > 0. There
exist a collection J of pairwise disjoint dyadic intervals J and a decomposition of f ,

f D g C bcanc;� C blac;� ;

such that the following hold:
(i) The function g satisfies kgkL1.R/ . ˛ and kgkL1.R/ . kf kL1.R/.
(ii) The function bcanc;� is supported in

S
J2J J and, in particular,

bcanc;� D
X
J2J

bJ ; supp.bJ / � J; ybJ .�/ D 0 for all � 2 lac0 [ � � � [ lac� :

Furthermore, we have that hjbJ jiB�=2;J . ˛ for all J 2 J andX
J2J

jJ j �

Z
R
B�=2

�
jf j

˛

�
:

(iii) The function blac;� is also supported on
S
J2J J and satisfies

kblac;�k
2
L2.R/ .

X
J2J

jJ j hjbJ ji
2
B�=2;J

. ˛2
Z

R
B�=2

�
jf j

˛

�
:

Proof. We begin by recalling that f 2 LB�=2.R/ implies that
R

R B�=2.jf j=˛/ < C1 for
all ˛ > 0. By Remark 5.1 and Theorem 5.5 in [7], we have that the dyadic Orlicz maximal
operator MB�=2;D satisfies

jE˛j WD j¹x 2 R W MB�=2;Df .x/ > ˛ºj �

Z
R
B�=2

�
jf j

˛

�
; ˛ > 0:

Letting J denote the collection of maximal dyadic intervals contained in E˛ , we have that
for every J 2 J,

˛ < hjf jiB�=2;J � 2˛;
X
J2J

jJ j �

Z
R
B�=2

�
jf j

˛

�
:

The upper bound in the approximate inequality of the leftmost estimate above follows by
the maximality of J and the convexity of the Young function of B�=2, which implies that

hjf jiB�=2;J � �hjf jiB�=2;�J ; � > 1;

see Proposition A.1 in [7] and equation (5.2) in [7]. One routinely checks that the function
g WD f 1Rn

S
J2J J

satisfies (i).



Endpoint estimates for higher order Marcinkiewicz multipliers 1293

For the “atoms”, we set fJ WD f 1J and define

bJ;lac;� .y/ WD

�X
�D0

� X
�2lacjJ j

�1

�

yfJ .�/e
2�i�y

�1J .y/
jJ j

; bJ WD fJ � bJ;lac;� ;

and
blac;� WD

X
J2J

bJ;lac;� and bcanc;� WD
X
J2J

bJ :

The cancellation conditions of (ii) for bcanc;� follow immediately by the definition above.
Furthermore, by the Hölder inequality for Orlicz spaces and the Zygmund–Bonami in-
equality of order � 2 ¹1; : : : ; �º as in Remark 4.2, one sees that

hjbJ;lac;� jiB�=2;J . hjbJ;lac;� ji2;J . hjfJ jiB�=2;J . ˛:

This and the triangle inequality also yield hjbJ jiB�=2;J . hjfJ jiB�=2;J .˛, thus completing
the proof of the desired conclusions in (ii). Finally, for (iii) we estimate as above:

kblac;�k
2
L2.R/ .

X
J2J

jJ jhjfJ ji
2
B�=2;J

. ˛2
Z

R
B�=2

�
jf j

˛

�
;

and the proof is complete.

6. Proof of Theorem B and corollaries

In the first part of this section, we compile together the results of the previous sections
to conclude the proof of Theorem B. In the second part, we show how to conclude our
corollaries, namely, Theorems A and C.

6.1. Proof of Theorem B

Let us fix a positive integer � and m 2 R2;� . Before entering the heart of the proof, we
note that it suffices to prove the theorem for multipliers m having the form

m D
X
I2I

cI1I ;

where the family of intervals I has overlap at mostN , for each I 2 I, there exists a unique
L D LI 2 ƒ� such that I � LI and for each fixed L2ƒ� , there holdsX

I WLIDL

jcI j
2
� N�1:

See the analysis on p. 533 of [17] for the details of this approximation argument. Form of
this form, we now can write

Tm.f / D
X
I2I

cIPIf D
X
L2ƒ�

X
I WLIDL

cIPI .�Lf /; PIf WD .1I yf /_;

a fact that we will use repeatedly in what follows.
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6.1.1. The upper bound in Theorem B. Let f be a function in LB� .R/ and let ˛ > 0
be fixed. We decompose f according to the Calderón–Zygmund decomposition in Propo-
sition 5.2 with � D � , yielding

f D g C bcanc;� C blac;� :

We directly estimate g C blac;� in L2 using (i) and (iii) of Proposition 5.2:

j¹x 2 R W jTm.g C blac;� /.x/j > ˛ºj .
1

˛2
kg C blac;�k

2
L2.R/ .

Z
R
B�=2

�
jf j

˛

�
:

The main part of the proof deals with the bad part bcanc;� D
P
J2J bJ , and it suffices to

estimate ˇ̌®
x 2 R n

[
J2J

6J W jTm.bcanc;� /j > ˛
¯ˇ̌

as the measure j
S
J2J 6J j satisfies the desired estimate by (ii) of Proposition 5.2. We will

adopt the splitting

Tm
�X

J

bJ

�
D

X
I

cIPI
� X
J W jJ j�jLI j�1

�LI .bJ /1Rn3J

�
C

X
I

cIPI
� X
J W jJ j<jLI j�1

�LI .bJ /
�

C

X
I

cIPI
� X
J W jJ j�jLI j�1

�LI .bJ /13J
�
DW IC IIC III:

The main term is III. Indeed, we can estimate the term I in L2.R/ using Remark 4.3,
while II is also estimated in L2.R/ using Remark 4.5 this time. Note that each bJ has
the required cancellation by (ii) of Proposition 5.2. Using also (ii) of Proposition 5.2 to
control the averages hjbJ jiB.��1/=2;J . hjbJ jiB�=2;J . ˛, we have

j¹jIC IIj > ˛ºj .
1

˛2

X
J2J

jJ jhjbJ ji
2
B.��1/=2;J

.
X
J2J

jJ j .
Z

R
B� .jf j=˛/

as desired.
It remains to deal with III, and we make a further splitting. Let kI 2 Z be such that

2kI < jI j � 2kIC1. Of course, we will always have that jLI j � 2kI , since I � LI . We
write

III D
X
I

cIPI
� X
J W2�kI >jJ j�jLI j�1

�LI .bJ /13J
�
C

X
I

cIPI
� X
J W jJ j�2�kI

�LI .bJ /13J
�

DW III1 C III2:

We first handle the term III1. Let�I be the smooth frequency projections on the interval I
as fixed in Section 2.2. Then, in particular, we can write PI�I D PI , and we have the
familiar pointwise estimate

j�I .�LI .bJ /13J /j . !jI j�1 � .hj�LI .bJ /ji1;3J 1J /;
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as jI j�1 ' 2�kI > jJ j. We thus get

j¹jIII1j > ˛ºj .
1

˛2

X
L2ƒ�

N
X

I WLIDL

jcI j
2

Z
R

ˇ̌̌
!jI j�1 �

� X
J W jJ j�2�kI

hj�L.bJ /ji1;3J 1J
�ˇ̌̌2

.
1

˛2

X
J2J

X
L2ƒ

jJ j�1

�

jJ jhj�L.bJ /ji
2
1;3J .

X
J2J

jJ j .
Z

R
B�=2

�
jf j

˛

�
;

where we used the `2-control on the coefficients ¹cI ºLIDL in passing to the second
line and the generalized Zygmund–Bonami inequality of Proposition 4.1 together with
the properties of the Calderón–Zygmund decomposition in the penultimate approximate
inequality.

The steps required for dealing with the term III2 are essentially the same as those
in [17]; however, as here we are dealing with a higher order setup, we include them for
the sake of completeness. We will split the estimate for III2 into two parts. In the first,
we keep the part of the multiplier 1I D 1Œ`I ;rI � at scale O.jJ j�1/ around its singularities
which are at the endpoints. We make this precise now.

Let 0 �  I;J � 1 be a smooth bump which is 1 on the .10jJ j/�1-neighborhood of
the endpoints ¹`I ; rI º of I and vanishes off the .5jJ j/�1-neighborhood of the endpoints,
and satisfies k@˛ I;J kL1 . jJ j˛ for all ˛ up to some sufficiently large integer M . Let-
ting ‰I;J denote the operator with symbol  I;J , we define

E.¹bJ ºJ2J/ WD
X
I

cIPI
� X
J W jJ j�2�kI

‰I;J .�LI .bJ /13J /
�

The following lemma shows that the operator E.¹bJ ºJ2J/ can be dealt with, again, by
L2-estimates.

Lemma 6.1. We have the estimate

kE.¹bJ ºJ2J/k
2
L2.R/ .

X
J2J

jJ jhjbJ ji
2
B�=2;J

. ˛2
Z

R
B�=2

�
jf j

˛

�
:

Proof. First note that by the overlap assumption on the intervals I , we have

kE.¹bJ ºJ2J/k
2
L2.R/ . N

X
L2ƒ�

X
I WLIDL

jcI j
2

Z
R

� X
J W jJ j�2�kI

j‰I;J .�L.bJ /13J /j
�2
:

The following pointwise estimate can be routinely verified:

j‰I;J .�L.bJ /13J /.x/j . M.1J /.x/10hj�L.bJ /ji1;3J :

Using the Fefferman–Stein inequality and rearranging the sums, we can conclude that

kE.¹bJ ºJ2J/k
2
L2.R/ . N

X
k

X
L2ƒ2

k
�

X
I WLIDL
`ID`

jcI j
2
X
jJ j�2�k

hj�L.bJ /ji
2
1;3J jJ j

�

X
J2J

jJ j
X

L2ƒ
jJ j�1

�

hj�L.bJ /ji
2
1;3J ;
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where we used the `2-control on the coefficients ¹cI ºLIDL in passing to the second line.
An appeal to the generalized Zygmund–Bonami inequality of order � in Proposition 4.1
concludes the proof of the lemma.

We are left with studying the contribution of the operator

L.¹bJ ºJ2J/ WD
X
I

cIPI
X

jJ j�2�kI

.Id �‰I;J /.�LI .bJ /13J /:

For this, we consider the multiplier �I;J WD 1I .1� I;J / which is a smooth function with
values in Œ0; 1�, supported in I , is identically 1 on jx � cI j . jI j and drops to 0 with
derivative O.jJ j/ close to the endpoints of I . More generally, one easily checks that �I;J
satisfies

j@˛�I;J j . jJ j˛1Ileft.J /[Iright.J / for all ˛ � 1;

where
Ileft.J / WD Œ`I C 10

�1
jJ j�1; `I C 5

�1
jJ j�1� � I

and
Iright.J / WD ŒrI � 5

�1
jJ j�1; rI � 10

�1
jJ j�1� � I:

Remembering that we are dealing with the case jI jjJ j & 1, we see that the function �I;J
has support of size O.jI j/ and ˛-derivatives of size O.jJ j˛/; thus the function �I;J is not
a good kernel. The important observation is however that the derivatives of {�I;J of order
˛ � 1 have support of size jIleft.J / [ Iright.J /j ' jJ j

�1.
Given an interval J � R, we will also use an auxiliary function �J defined as follows.

We choose 0 � � � 1 to be a smooth bump function which is identically 1 on Œ�1; 1� and
vanishes off Œ�3=2; 3=2�, and define

�J .x/ WD �.x=jJ j/ for x 2 R.

Lemma 6.2. Let I and J be intervals and let �I;J and �J be defined as above. If

{�I;J WD .1 � �J / {�I;J ;

then for any nonnegative integers  and ˇ, there holds

j@
ˇ

�
�I;J .�/j . jJ jˇ .1C jJ j dist.�;R n I //� ; � 2 R:

Proof. We begin by noting that since �I;J is a Schwartz function and .1� �J / is a smooth
bounded function, we have we have that .1� �J /{�I;J is a Schwartz function. Furthermore,
by the comments preceding the statement of the lemma, we have that �I;J satisfies

j@˛� �I;J j . jJ j
˛ 1Ileft.J /[Iright.J / for all ˛ � 1:

Note that, by symmetry, it suffices to prove the estimate for � 2R such that dist.�;R n I /D
j� � `I j, where we remember that I D Œ`I ; rI �. For simplicity, we will write I.J / for
Ileft.J /. Thus, the conclusion of the lemma reduces to showing

j@
ˇ

�
�I;J .�/j .ˇ jJ jˇ .1C jJ j j� � `I j/� :



Endpoint estimates for higher order Marcinkiewicz multipliers 1297

We will henceforth drop the subindices I; J in order to simplify the notation. We record
the following standard integration by parts identity: for nonnegative integers ; �, we have

.@x � 2�i`I /
 Œ{�.x/� D .�1/�

.2�i/��

x�

Z
R
@�� Œ.� � `I /

�.�/� e2�ix� d�:

In order to make sure that all terms in @�
�
Œ.� � `I /

�.�/� contain at least one derivative,
we take � >  . Then we have

j@�� Œ.� � `I /
 �.�/�j .

X
kD0

j@k� .� � `I /
 @��k� Œ�.�/�j

.
X
kD0

j� � `I j
�k
jJ j��k 1I.J /.�/ . jJ j�� 1I.J /.�/;

provided that � >  . Plugging this estimate into our integration by parts identity, we get

(6.1) j.@x � 2�i`I /
 Œ{�.x/�j .

jJ j���1

jxj�
; � > :

Using this estimate, for nonnegative integers ˇ;  , we have

@
ˇ

�
Œ�.�/� D

.�2�i/ˇ

.2�i.� � `I //

Z
R
.@x � 2�i`I /

 Œxˇ .1 � �.x=jJ j// {�.x/� e�2�ix� dx:

Using (6.1) with � large, together with the fact that supp.1 � �J / � ¹jxj & jJ jº and that
supp.@x Œ�J �/ � ¹jxj ' jJ jº, and combining with the previous identity yields

j@
ˇ

�
Œ�.�/�j .

1

j��`I j

Z
R

X
k1Ck2Ck3D

k1�ˇ

jxjˇ�k1 j@k2x .1��.x=jJ j//.@x�2�i`I /
k3 Œ{�.x/�j dx

�

X
k1Ck3D
k1�ˇ

jJ j��k3�1

j� � `I j

Z
jxj&jJ j

jxjˇ�k1�� dx

C

X
k1Ck2Ck3D
k1�ˇ; k2�1

jJ j��k3�1

j� � `I j

Z
jxj'jJ j

jxjˇ�k1�� jJ j�k2 dx .
jJ jˇ�

j� � �J j
�

Combining this estimate for general  with the special case  D 0 yields the conclusion
of the lemma.

We can now prove the desired estimate for the remaining term.

Lemma 6.3. There holdsZ
Rn

S
J2J 6J

jL.¹bJ ºJ2J/j .
X
J2J

jJ j hjbJ jiB�=2;J :



O. Bakas, V. Ciccone, I. Parissis and M. Vitturi 1298

Proof. For convenience, we set

LI;J WD PI .Id �‰I;J /; FI;J WD �LI .bJ /13J ;

L.¹bJ ºJ2J/ D
X
I

X
J W jJ j�2�kI

cILI;J .FI;J /:

We immediately note that it will be enough to prove the desired estimate for a single bJ ,
and then sum the estimates. Furthermore, by translation and scale invariance, it will be
enough to assume that J D Œ�jJ j=2; jJ j=2�; here we critically use that the operator LI;J
depends only on the length and not on the position of J . The left-hand side in the conclu-
sion of the lemma for a single such bJ can be estimated by

AJ WD

Z
jxj�3jJ j

ˇ̌̌ X
I W2kI �jJ j�1

cILI;JFI;J
ˇ̌̌
D

Z
jxj�3jJ j

ˇ̌̌ X
I W2kI �jJ j�1

cI .{�I;J � FI;J /.x/
ˇ̌̌
dx

. jJ j�1=2
� Z
jxj>3jJ j

jxj2
ˇ̌̌ X
I W2kI �1

cI .{�I;J � FI;J /.x/
ˇ̌̌2

dx
�1=2

:

Now let � be as before. It is then the case that for jxj � 3 and jyj � 3=2, we have

jx � yj �
1

2
jxj �

3

2
, 1 � �

�x � y
jJ j

�
D 1 � �J .x � y/ D 1

for such pairs .x; y/. As FI;J is supported in Œ�3jJ j=2; 3jJ j=2�, for all jxj � 3jJ j, we
have that

.{�I;J � FI;J /.x/ D

Z
Œ�3jJ j=2; 3jJ j=2�

FI;J .y/{�I;J .x � y/.1 � �J .x � y/// dy:

Using this identity and setting {�I;J WD .1 � �J /{�I;J , we get

AJ .
� Z

R

ˇ̌̌ X
I W2kI �jJ j�1

cI@� Œ yFI;J .�/�I;J .�/�
ˇ̌̌2

d�
�1=2

:

Using the elementary estimates

k yFI;J kL1.R/ � kFI;J kL1.R/ and k@� yFI;J kL1.R/ � jJ jkFI;J kL1.R/;

together with the estimate of Lemma 6.2, for ˇ 2 ¹0; 1º, we get, for  a large positive
integer of our choice,

@
ˇ

�
Œ�I;J .�/� .

jJ jˇ

.1C jJ jdist.�;R n I //
. jJ jˇ M.1Ileft.J /[Iright.J //

 :

Hence, by using the Fefferman–Stein inequality, the Cauchy–Schwarz inequality, and the
N -overlap assumption on the intervals I , we get

AJ . jJ j�1=2
� X
2kI �jJ j�1

jcI j
2
jJ j4hj�LI .bJ /ji

2
1;3JN jIleft.J / [ Iright.J /j

�1=2
:
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Here note that we use that Ileft.J / [ Iright.J / ¨ I , by construction, and henceX
2kI�jJ j

�1

1Ileft.J /[Iright.J / �

X
I

1I � N:

Further, using also the control on the `2-norm of the sequence ¹cI ºI yields

AJ . jJ j�1=2
� X
L2ƒ

jJ j�1

�

jJ j3hj�L.bJ /ji
2
1;3J

�1=2
D jJ j

� X
L2ƒ

jJ j�1

�

hj�L.bJ /ji
2
1;3J

�1=2
. jJ jhjbJ jiB�=2;J

by the generalized Zygmund–Bonami inequality of Proposition 4.1. This concludes the
proof of the lemma.

Using Lemmas 6.1 and 6.3, we complete the estimate for the term III and with that
the proof of the endpoint bound of the theorem.

6.1.2. Optimality in Theorem B. We briefly comment on the optimality of the Young
function t 7! t .log.e C t //�=2 in the upper bound of the theorem. Suppose that r > 0

is such that whenever Tm is an R2;� multiplier operator, then the bound of Theorem B
holds with r in the place of � . Since Tm is L2-bounded, it follows by a Marcinkiewicz
interpolation type of argument that the Lp.R/-bounds for the Littlewood–Paley square
function LP� of order � can be estimated by

kLP�kp!p .
�

E
 X
L2ƒ�

"LPL
p
p!p

�1=p
� sup
kmkR2;�D1

kTmkLp!Lp . .p � 1/�.rC1/

as p! 1C, where the expectation in the display above is over independent choices of ran-
dom signs ¹"LºL. However, a modification of an example in [4], see Section 3 of [2], shows
that the estimate in the display above does not hold for r < �=2. This argument also shows
that our theorem implies that theLp bounds forR2;� multipliers areO.max.p;p0/1C�=2/.

Alternatively, sharpness can also be obtained by adapting the corresponding argument
in Section 3.2 of [17] to the higher order case. Let us briefly outline the second order case.
For a smooth function  supported in Œ�1=2; 1=2�, with  .0/ D 1, and .k; l/ 2 Z2, with
k > l , we consider the multiplier m.k;l/ given by

m.k;l/.�/´ m0

�� � 2k
2l�1

�
; where m0.�/ WD  .� � 1/1Œ1;1/.�/; � 2 R:

One then has

{m.k;l/.x/ D
ei2�2

kx

i2�x
CO

� 1

2l jxj

�
; jxj & 2�l :

ForN 2N, that will be eventually sent to infinity, we consider the second order `2-valued
multiplier operator

TN .g/´ ¹Tm.k;l/.g/º1�l<k�N :
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Consider a smooth function f such that yf is supported in Œ�4; 4� and yf .�/ D 1 for all
� 2 Œ�2; 2�. We then set

fN .x/´ 2Nf .2Nx/; x 2 R:

For r > 0, we have

kTN .fN /.x/k`2 &
N

jxj
if jxj � 2�5N=8

and Z
R

jfN .x/j

˛

�
log
�
e C
jfN .x/j

˛

��r
dx .

1

˛

�
log
�
e C

2N

˛

��r
for ˛ > 0:

Hence, if we choose ˛ D 25N=8, then

˛�1.log.e C ˛�12N //r ' 2�5N=8N r

and

j¹x 2 Œ�1=2; 1=2� W kTN .fN /.x/k`2 > ˛ºj � j¹2
�5N=8

� x � 1=4 W N=jxj & 25N=8ºj

' N˛�1:

To complete the proof, define gN WD fN�Œ1=2;1=2� so that gN is supported in Œ�1=2; 1=2�
and kgN kL logr L.Œ�1=2;1=2�/ . N r . Moreover, for all 1 � l < k � N , one has

jTmk;l .fN � gN /.x/j . 2�2N for all x 2 Œ2�5N=8; 1=4�;

and hence
kkTN .gN /k`2kL1;1.Œ�1=2;1=2�/ & N:

It follows from Khintchine’s inequality that there exists a choice of signs "k;`, depending
on gN , such that  X

1�l<k�N

"k;`Tmk;l .gN /

L1;1.Œ�1=2;1=2�/

& N;

from which it follows that r � 1 D �=2.

6.2. Proof of Theorems A and C

We begin by explaining the modifications needed in order to obtain a proof of the endpoint
bounds in Theorems A and C.

6.2.1. Proof of Theorem A. Since Marcinkiewicz multipliers of order � are contained
in the class R2;� , we only need to briefly discuss the conclusion of Theorem A for the
Littlewood–Paley square function. Note that the proof of Theorem B relies on L2.R/
estimates and L1-type estimates. Then we can repeat the proof for the operator

jLP�f j ' E
ˇ̌̌ X
L2ƒ�

"LPLf
ˇ̌̌
'

�
E
ˇ̌̌ X
L2ƒ�

"LPLf
ˇ̌̌2�1=2

using the first approximate equality whenever L1-estimates are needed, and the second
one for the L2-estimates. We omit the details. The optimality follows by the discussion in
Section 6.1.2.
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6.2.2. Proof of Theorem C. We proceed now to prove Theorem C concerning endpoint
bounds for higher order Hörmander–Mihlin multipliers and smooth Littlewood–Paley
square functions, which requires just small modifications compared to the proof of Theo-
rem B. Consider a positive integer � and f 2 LB��1 ; we apply the Calderón–Zygmund
decomposition of Proposition 5.2 with � D � � 1 at some fixed level ˛ > 0 to write
f D g C bcanc;��1 C blac;��1, and let J be the collection of stopping intervals. The good
part g C blac;��1 is estimated in L2 by the L2-bounds of the operator Tm, using that

kg C blac;��1k
2
L2.R/ . ˛2

Z
R
B.��1/=2

�
jf j

˛

�
;

by the Calderón–Zygmund decomposition. As before, it remains to estimate the part of the
operator acting on the cancellative atoms. We consider a partition of unity ¹z�LºL2ƒ��1
subordinated to the collection of Littlewood–Paley intervals ƒ��1, with z�L 2 ˆL;M for
each L. We set

z�L.g/ WD .z�Lyg/
_; Id D

X
L2ƒ�

z�L:

With �L the smooth Littlewood–Paley projections as fixed in Section 2.2, we have that
�L z�L D z�L. We have thus the decomposition

Tm D
X

L2ƒ��1

Tm z�L DW
X

L2ƒ��1

TL D
X

L2ƒ��1

TL�L;

and let �L denote the Fourier multiplier of the operator TL. We then estimate

Tm
�X

J

bJ

�
D

X
L2ƒ��1

TL
� X
J W jJ j�jLj�1

�L.bJ /1Rn3J

�
C

X
L2ƒ��1

TL
� X
J W jJ j<jLj�1

�L.bJ /
�

C

X
L2ƒ��1

TL
� X
J W jJ j�jLj�1

�L.bJ /13J
�
DW IC IIC III:

As in the proof of Theorem B, Remarks 4.3 and 4.5 take care of the terms I and II, respec-
tively, by using L2-bounds for each TL and L2-orthogonality for smooth Littlewood–
Paley projections of order � . Once again the main term is III.

We will split III into two parts, which are defined in the same way as the operators
E and L from the proof of Theorem B, with the role of the interval I being replaced by
an interval L2ƒ��1. For the first part, consider for each L nand J the function  L;J as
defined before the proof of Lemma 6.1. Defining

E.¹bJ ºJ2J/ WD
X

L2ƒ��1

TL
� X
J W jJ j�jLj�1

‰L;J .�L.bJ /13J /
�
;

and following the same steps as in the proof of Lemma 6.1, we get

j¹jE.¹bJ ºJ2J/j > ˛ºj .
1

˛2

X
J2J

jJ j
X

L2ƒ
jJ j�1

��1

hj�L.bJ /ji
2
1;3J .

Z
R
B.��1/=2

�
jf j

�

�
;
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by the generalized Zygmund–Bonami inequality of Proposition 4.1 and the properties of
the Calderón–Zygmund decomposition. It remains to deal with the operator

L.¹bJ ºJ2J/ WD
X

L2ƒ��1

X
jJ j�jLj�1

TL.Id �‰L;J /.�L.bJ /13J /:

Letting �L;J be the Fourier multiplier of the operator TL.Id � ‰L;J / and �J as in the
statement of Lemma 6.2, we set {�L;J WD .1 � �J /{�L;J . Lemma 6.2 for I D L 2ƒ��1
yields the estimate

(6.2) j@
ˇ

�
�L;J .�/j . jJ jˇ .1C jJ jdist.�;R n L//� ; � 2 R:

The proof for the operator L is then completed in the by now usual way. First, we have

j¹jL.¹bJ ºJ2J/j > ˛ºj �
1

˛

X
J2J

jJ j�1=2
@�� X

L2ƒ
jJ j�1

��1

�L;J yFL;J

�
L2.R/

;

with FL;J WD z�L.bJ /13J . Now (6.2) implies thatˇ̌̌
@�

� X
L2ƒ

jJ j�1

�

�L;J yFL;J

�ˇ̌̌
. jJ j2 M.1LJ /


hj z�L.bJ /ji1;3J ;

where
LJ WD Œ�L C .10jJ j/

�1; �L C .5jJ j/
�1� � L:

Thus, the estimates above together with the Fefferman–Stein inequality, the Cauchy-
Schwarz inequality and the generalized Zygmund–Bonami inequality complete the esti-
mate for the operator L and with that the upper bound of Theorem C for Hörmander–
Mihlin multipliers of order � . The proof for the smooth Littlewood–Paley square function
of order � follows the same randomization argument as the one used in the proof of The-
orem A.

Finally, the optimality of the power .� � 1/=2 on the endpoint inequality can be
checked by testing a local endpointL logrL!L1;1 inequality for the smooth Littlewood–
Paley square function of order � on a smooth bump function supported in a small neigh-
borhood of the origin. A routine calculation shows that necessarily r � .� � 1/=2. Note
also that a local L logr L! L1;1 bound for Hörmander–Mihlin multipliers implies the
corresponding endpoint square function estimate by a randomization argument as in [1].
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