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Remarks on the one-point density
of Hele-Shaw ˇ-ensembles

Yacin Ameur and Erik Troedsson

Abstract. In this note, we prove equicontinuity for the family of one-point densities
with respect to a two-dimensional Coulomb gas at an inverse temperature ˇ � 1=2
confined by an external potential of Hele-Shaw (or quasi-harmonic) type. As a con-
sequence, subsequential limiting Lipschitz continuous densities are defined on the
microscopic scale. There are several additional results, for example comparing the
one-point density with the thermal equilibrium density.

1. Introduction and main results

The one-point function (or better: one-point measure) is a fundamental construct in Cou-
lomb gas theory. Indeed, it is commonly believed that this single object should in some
sense contain all essential information about the gas.

In this note, we consider a Coulomb gas ensemble ¹zj ºn1 in the complex plane C, at
an inverse temperature ˇ > 0, confined by an external potential of the form

Q.z/ D

´
� � jzj2 C h.z/; z 2†;

C1; otherwise;
(1.1)

where † is a closed subset of C (of positive capacity), h.z/ is some function harmonic in
a neighbourhood of †, and � > 0 is a constant.

It is convenient to take † to be compact, so that the normalized area j†j WD
R
†
dA

is finite, where we write dA.z/ D 1
�
dxdy .z D x C iy/ for the normalized Lebesgue

measure on C.
By Frostman’s theorem (see [28]), there is a unique equilibrium measure � D �ŒQ�,

which minimizes the weighted energy

(1.2) IQŒ�� D

Z
C2

log
1

jz � wj
d�.z/ d�.w/C �.Q/

over all compactly supported Borel probability measures �. (Here and throughout, we
write �.f / for

R
fd�.)
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Intuitively, the measure � represents the way a unit blob of charge will organize itself
if exposed to the external potential Q for a long time.

The support
S D SŒQ� WD supp �

is called the droplet in potentialQ. In what follows, we will assume that S is contained in
the interior of †.

As is well known [28], the equilibrium measure is then absolutely continuous and has
the structure

d�.z/ D � � 1S .z/ dA.z/:

Moreover, by virtue of Sakai’s theorem (cf. [25, 29] and the references therein), the
boundary @S consists of finitely many Jordan curves, which are analytic except possibly
for finitely many singular points which are either contact points or certain types of con-
formal cusps.

Potentials of the above type (1.1) are sometimes termed “Hele-shaw potentials” or
“quasi-harmonic potentials”, the model case being the quadratic (or “harmonic”) poten-
tialQD jzj2. The truncation thatQDC1 near infinity is convenient and fairly standard
since [19]; the precise details of the hard wall outside † is largely irrelevant for the stat-
istics as long as S is contained in the interior of †.

Now fix a large integer n and a parameter ˇ > 0, and consider the Boltzmann–Gibbs
measure on Cn:

(1.3) dPˇn .z1; : : : ; zn/ D
1

Z
ˇ
n

e�ˇHn.z1;:::;zn/ dAn.z1; : : : ; zn/;

where Zˇn is the normalizing constant and Hn is the Hamiltonian,

(1.4) Hn D
X
i¤j

log
1

jzi � zj j
C n

nX
iD1

Q.zi /:

Also we write dAn for the product measure .dA/˝n.
The Coulomb gas (or ˇ-ensemble) ¹zj ºn1 in external potential Q is a configuration

picked randomly with respect to (1.3).1

The 1-point function of (1.3) (in background measure dA), denoted Rˇn .p/, is

Rˇn .p/ D lim
"!0

1

"2
Eˇn ŒN.p; "/�;

where N.p; "/ denotes the number of particles in the configuration ¹zj ºn1 which fall in the
disc D.p; "/ with center p and radius ".

Let LQ.z/ (the obstacle function) be the pointwise supremum of s.z/ where s ranges
through the class of subharmonic functions on C such that s.w/ � Q.w/ for all w 2C
and s.w/ � 2 log jwj CO.1/ as w !1.

1Our normalization is chosen so that ˇ D 1 corresponds to the determinantal case. A more common con-
vention replaces our “ˇ” by “ˇ=2”, and then ˇ D 2 means the determinantal case.
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The coincidence set S� WD ¹Q D LQº is then a compact set containing S and pos-
sibly some “shallow points”, such that �.S� n S/ D 0. We shall here always assume
that S� D S .

We will write

(1.5) Qeff WD Q � LQ

for the “effective potential”.
It is convenient to fix two real parameters �0 > 0 and �0 > 0 (both “small”) and

assume that

(1.6) � � �0 and dist.S;C n†/ � 2�0:

We have the following theorem, which combines and improves on the bounds in The-
orem 2 of [31] and Theorem 1 in [4] for the given class of potentials.

Theorem 1.1 (Upper bound). There is a constant C D C.�0; �0/ such that for all z 2C,

(1.7) Rˇn .z/ � C
ˇ .1C ˇ�2/n�min¹1; ne�nˇQeff.z/º:

In case the boundary @S is everywhere regular (i.e., real-analytic), we can obtain a
more explicit estimate in (1.7). Indeed, a Taylor expansion as in the proof of Lemma 2.1
in [4] gives

Qeff.z/ D .2�/ıS .z/
2
CO.ıS .z/

3/ .ıS .z/ WD dist.z; S/! 0/:

The behaviour of Qeff close to a cusp is a bit more involved, see Section 2.2 of [11] for
relevant asymptotics.

Remark 1.2. (i) While (1.7) suffices for our present purposes, we believe that the follow-
ing, slightly better bound should be true:

(1.8) Rˇn .z/ � C
ˇ .1C ˇ�2/n�e�nˇQeff.z/:

The bound (1.8) is well known when ˇ D 1, as it follows from the identity

R.ˇD1/n .z/ D sup¹jf .z/j2 I f 2Wn; kf k � 1º;

where Wn is the space of weighted polynomials introduced in Section 4. An application
of Lemma 4.1 implies (1.8) for ˇ D 1 (with a much better constant).

(ii) To prove (1.7), we will first prove the uniform estimate Rˇn .z/ � C ˇ .1C ˇ�2/n�
for z in some neighbourhood of the droplet. In this case, our analysis is based on the
multiscale approach by E. Thoma in [31]. We remark that the obtained constant C D
C.�0;�0/ is very large. We shall then prove the global estimateRˇn .z/�eˇn2�e�nˇQeff.z/

by using ideas from [4]. In particular, the estimate (1.7) is improved outside of a vicinity
of the droplet.

We also have the following main result.

Theorem 1.3 (Equicontinuity). Under the assumptions of Theorem 1.1, we have for all z
and w in the interior of † with distance to the boundary at least �0, and all ˇ � 1=2, that

jRˇn .z/ �R
ˇ
n .w/j � C

ˇn�
p
n� jz � wj:
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We turn to consequences of our above results.
Fix a point p in the interior of † and consider the rescaled process ¹wiºn1 , where

wi D
p
n� � .zi � p/;

and where ¹ziºn1 (as always) denotes a random sample from (1.3).
The one-point function of ¹wiºn1 is

(1.9) �ˇn .z/ D �
ˇ;p
n .z/ WD

1

n�
Rˇn

�
p C

z
p
n�

�
:

By Theorem 1.3, we have the uniform Lipschitz continuity

j�ˇn .z/ � �
ˇ
n .w/j � C

ˇ
jz � wj;

where z and w belongs to an arbitrary but fixed compact subset of C and n � n0.p/.
As a consequence, the family ¹�ˇn º is uniformly equicontinuous on compact subsets

of C. The family is also uniformly bounded by Theorem 1.1. In view of the Arzelà-Ascoli
theorem, we obtain the following corollary.

Corollary 1.4. If ˇ�1=2, then each subsequence of ¹�ˇn º contains a further subsequence
converging uniformly on compact sets to a Lipschitz continuous limiting one-point func-
tion �ˇ D �ˇ;p satisfying

j�ˇ .z/ � �ˇ .w/j � C ˇ jz � wj:

Note that it follows from Theorem 1.1 (or from Theorem 1 in [4]) that if we consider
a sequence pn of zooming points such that

p
n logn ıS .pn/!1 as n!1; then the

rescaled densities �ˇ;pnn converge to zero uniformly on compact subsets of C. In other
words, the rescaled processes ¹wj ºn1 converge on compact subsets, as n ! 1, to the
empty point-process.

Remark 1.5. The uniqueness of limit �ˇ remains an open question even in the bulk. See
Section 6 for a discussion.

Remark 1.6. Our choice of working with Hele-Shaw potentials is mainly for conveni-
ence, since it simplifies several arguments. However, with some extra effort, it is possible
to extend our results to situations where the Laplacian ofQ can vary, but is bounded above
and below by positive constants in a neighbourhood of the droplet.

Remark 1.7. We stress that the precise choice of cut-off set † in (1.1) is irrelevant as
long as it contains the droplet S in its interior; all the interesting statistics takes place
in the vicinity of the droplet, and a change in † will have a negligible effect for any
reasonable statistic associated with the Coulomb gas.2

In fact, our results remain valid (with minor modifications of the proofs) provided
that Q.z/ obeys the growth condition Q.z/ � 2 log jzj ! C1 as z ! 1, which is

2The case when @† intersects the droplet is known as “hard edge” and is not considered in the present work.
In this case, † may have a drastic effect for the Coulomb gas, see [8] and references therein.
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just strong enough to ensure that a version of Frostman’s theorem holds [28]. Unfortu-
nately, this growth condition is quite restrictive for potentials with constant Laplacian;
for example, it fails for the cubic potential Q D jzj2 C c Re.z3/. For such reasons, it
is convenient to impose the cut-off (1.1). However, when we speak, for example, of the
ˇ-Ginibre ensemble, there is no problem in pickingQ.z/D jzj2 globally. The same holds
for the almost circular ˇ-ensemble below.

1.1. The almost circular ˇ-ensemble

The one-dimensional circular ˇ-ensemble, CˇE, is associated with much work and very
precise results, depending among other things on the evaluation of Selberg integrals. (See,
e.g., [22] or [20] and the references therein, as well as the recent work [18]; see also [27]
with respect to CUE.)

A scale of two-dimensional ensembles where the droplet is an n-dependent thin annu-
lus which collapses to the unit circle at a suitable rate was introduced in the works [5,
15, 21]. We will now exploit the form of our above estimates, specifically their depend-
ence on n and �, to draw conclusions about such “almost circular” situations. We shall
obtain the existence of new types of subsequential scaling limits, which might be of some
intrinsic interest.

By definition (cf. Section 1.6 of [5]), the almost circular induced ˇ-Ginibre ensemble
corresponds to an n-dependent (Hele-Shaw) potential of the form

Q.z/ D �n � jzj
2
C bn log

1

jzj
,

where we fix a “non-circularity parameter” s > 0, define

�n D �n;s WD
n

s2
,

and choose bn so that the function gn.r/D�n � r2C bn log 1
r

satisfies g0n.1/D 2 (compare
with Section 1.6 in [5]).

The condition g0n.1/D 2 ensures that the outer boundary of the droplet coincides with
the unit circle, and a simple computation shows that the droplet Sn D SŒQn� is the thin
annulus

Sn D
°
z I

r
1 �

s2

n
� jzj � 1

±
:

A random sample ¹zj ºn1 from such an ensemble with ˇ D 1 is depicted in Figure 1.
It is natural to fix a point pn on the circle at the “middle” of the annulus:

pn D
1

2

�
1C

r
1 �

s2

n

�
ei˛;

where ˛ 2R is an arbitrary but fixed angle. We rescale about pn using the map

Tn.z/ WD �ie
i˛.n=s/.z � pn/:

We denote by ¹wj ºn1 the rescaled sample, i.e., we put wj D Tn.zj /. For large n, the
system ¹wj ºn1 tends to occupy a horizontal strip about the real axis, see Figure 1.
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Figure 1. A sample from an almost circular Ginibre ensemble at ˇ D 1.

By Corollary 1.4, the family of 1-point densities �ˇn D �
ˇ;pn
n of ¹wj ºn1 is precompact in

the appropriate sense, and we can extract Lipschitzian subsequential limits �ˇ D lim �ˇnk .
Moreover, taking in consideration the rotational symmetry of the original ensemble, it

is easy to see that each subsequential limit �ˇ is horizontal translation invariant, i.e.,

�ˇ .w C x/ D �ˇ .w/

for all w 2C and x 2R.
In Theorem 1.9 of [5], it is shown that �.ˇD1/.w/ D Fs.2 Imw/, where

Fs.z/ D
1
p
2�

Z s=2

�s=2

e�
1
2 .z�t/

2

dt:

As far as we are aware, this one-point function was discovered in the 1990s in connection
with almost-Hermitian random matrices from suitably scaled elliptic Ginibre ensembles,
see [22, 23], cf. [2, 5] and the reference therein for more on this development. We here
note that the short derivation of the one-point function in Theorem 1.9 of [5] uses Ward’s
equation (6.5) and some simple a priori properties of a subsequential limit �.ˇD1/.

When ˇ D 1, the infinite point-process defined by the above 1-point function inter-
polates between the one-dimensional sine-process (as s ! 0) and the infinite Ginibre
ensemble (as s ! 1), see [2, 5]. In the case of a general ˇ, it seems natural to ask to
what extent a similar interpolation takes place. (This question is not as straightforward
as it might seem, since the uniqueness of an infinite ˇ-Ginibre process is not clear when
ˇ ¤ 1. See Section 6.)

Further results. In Section 6, we give further remarks concerning (subsequential) micro-
scopic densities and their properties. In particular, we recall the limit Ward equation
from [10] which is compared with the variational equation for the “thermal equilibrium
density”, which has been used recently, in some approaches to the Coulomb gas.

Notational remark. For zD xC iy, we write @D 1
2
.@x C

1
i
@y/ and N@D 1

2
.@x �

1
i
@y/ for

the usual complex derivatives with respect to z. Thus @N@D 1
4
.@xx C @yy/ is the normalized

Laplacian (often denoted by �Q); for the Hele-Shaw potential (1.1), we have � D @N@Q
in the interior of †.
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Plan of this paper. We begin in Section 2 and 3 by reinvestigating the techniques of
Thoma [31] transplanted to the present context. As we shall here be concerned with more
precise quantitative bounds (such as �-dependence of estimates), and since the notations
and normalizations are quite different, we shall require a new analysis.

In Section 4, we recall some notions pertaining to weighted polynomials [4] and prove
the upper bound in Theorem 1.1.

In Section 5, we prove the equicontinuity in Theorem 1.3.
Finally, in Section 6 we give some concluding remarks concerning Ward’s equation

and the relationship between the one-point function and the thermal equilibrium density.

2. Overcrowding estimates

The goal of this section is to formulate and prove a suitable variant of Thoma’s over-
crowding estimate in Theorem 1 of [31].

It is convenient to fix a small � > 0 and put

(2.1) †� D ¹z 2† I dist.z; @†/ > �º:

We assume that � is small enough that the droplet S is contained in †2� .
It is intuitively helpful to recall that, by Theorem 2 in [4], a random sample ¹zj ºn1

from (1.3) is contained in †� with overwhelming probability if n is large. (However, we
shall not need this observation in what follows.)

We shall initially consider the Coulomb gas as a random point .zj /n1 2Cn, picked with
respect to Pˇn . (The more common perspective of random configurations ¹zj ºn1 is obtained
by introducing suitable combinatorial factors, as we will do later on.)

2.1. Convolution operators

Let � a radially symmetric probability measure on C and I � ¹1; : : : ; nº a fixed index set.
Write CI for the set of points wI D .wj /j2I with wj 2C. We sometimes regard CI

as a subspace of Cn by the obvious embedding, i.e., we put wj D 0 for all j … I . We write
d�I .w

I / D
Q
j2I d�.wj / for the product measure on CI .

For suitable functions F.z1; : : : ; zn/, we form TI;�F by convolving with respect to �
in the variables zi with i 2 I , i.e.,

TI;�F.z1; : : : ; zn/ WD

Z
CI

F.z C wI / d�I .w
I /:

We extend TI;� to a bounded self-adjoint operator on L2.Cn/ WD L2.Cn; dAn/.
For z in a given subset D of Cn, we have the trivial bound

e�ˇHn.z/ � e�ˇC e�ˇTI;�Hn.z/;

where
C D inf¹Hn.z/ � TI;�Hn.z/ I z 2 Dº:

In the case when D D suppF , we write CI;�;F for the C above.
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Now, by Jensen’s inequality we have

e�ˇTI;�Hn.z/ � TI;�Œe
�ˇHn �.z/:

We deduce that if F � 0 is an element of L2.Cn/, then

Eˇn ŒF .z1; : : : ; zn/� D
1

Z
ˇ
n

Z
suppF

Fe�ˇHn dAn

� e�ˇCI;�;F
1

Z
ˇ
n

Z
suppF

F � TI;�Œe
�ˇHn � dAn

D e�ˇCI;�;F
1

Z
ˇ
n

Z
Cn

ŒTI;�F �e
�ˇHn dAn D e

�ˇCI;�;F Eˇn ŒTI;�F �:

We have proven the following.

Lemma 2.1. If F 2L2.Cn/, F � 0, and if ¹zj ºn1 is a random sample with respect to (1.3),
then

Eˇn ŒF .z1; : : : ; zn/� � e
�ˇCI;�;F Eˇn Œ.TI;�F /.z1; : : : ; zn/�:

2.2. Superharmonicity estimate

In the sequel, we will often use the following assumption for a given index set I �
¹1; : : : ; nº:

(2.2) zi 2†�=2 for all i 2 I:

Denote by #I the number of elements of I . Also suppose that the probability measure �
is supported in the small disc D�=2 D ¹z 2C I jzj < �=2º.

We shall use the superharmonicity of the kernel log.1=jzj/ to obtain bounds on the
Hamiltonian Hn defined in (1.4). For the potential (1.1) and z 2Cn satisfying (2.2), we
have

TI;�ŒHn�.z/ �
X
i¤j

log
1

jzi � zj j
C n

X
l…I

Q.zl /

C n
X
k2I

Z
C
.� � .jzkj

2
C 2Re.zkw/C jwj2/C h.zk C w// d�.w/:

Also by (2.2) and the fact that h is harmonic on †�=2 CD�=2, we have for all k 2 I ,

Q.zk/ D

Z
C
.� � .jzkj

2
C 2Re.zkw//C h.zk C w// d�.w/:

We obtain the following result.

Lemma 2.2. With Q0.w/ WD � � jwj2, we have for all z 2Cn and I � ¹1; : : : ; nº satis-
fying (2.2), that if supp� � ¹jzj < �=2º, then

TI;�ŒHn�.z/ � Hn.z/C n�.Q0/ � #I:
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2.3. Improved bounds

In what follows, we fix an arbitrary point p 2†� .
We will use the following notation for closed discs centered at p and annuli centered

at the origin:

D.p; r/ WD ¹z I jz � pj � rº and A.a; b/ WD ¹z I a � jzj � bº:

For 0 < r < 1
10
R, we let �D �r;R be the uniform probability measure on the annulus

Ar;R WD A
�R
2
;R � 2r

�
:

We assume throughout that R is small: R < �=2.
Thus � has density 1

.R�2r/2�R2=4
1Ar;R with respect to dA, and so (withQ0 D �jwj2)

�.Q0/ D 2�

Z R�2r

R=2

s3

.R � 2r/2 �R2=4
ds D

�

2
..R � 2r/2 C .R=2/2/ < �R2:

We consider z D .zj /
n
1 as an ordered random sample from Pˇn , and we denote by

I.p; r; z/ the random set I of indices i such that zi falls in the disc D.p; r/.
Next define a random variable Xn;p by

Xn;p.z/ WD TI.p;r;z/;�r;R ŒHn�.z/:

Lemma 2.3. Fix p 2†� and denote by

N D Nn.p; r/ WD #I.p; r; z/

the number of indices i 2 ¹1; : : : ; nº such that zi 2D.p; r/. Then for all z 2Cn,

Xn;p.z/ � Hn.z/C n�R
2N �N.N � 1/ log

R

4r
�

Proof. We first note that with I D I.p; r; z/, the assumption (2.2) holds, since p2†� and
r < R < �=2.

The logarithmic potential

U�.�/ D

Z
log

1

j� � wj
d�.w/

is radially symmetric and non-increasing in the outwards radial direction, and moreover,
it is constant on the disc D.0;R=2/. It follows that

U�.�/ � U�.0/ � sup
w2Ar;R

log
1

w
D log

2

R
,

and hence
TI;�

h X
i;j2I; i¤j

log
1

jzi � zj j

i
� N.N � 1/ log

2

R
�
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Hence, since log 1
jzi�zj j

� log 1
2r

when both zi and zj are in D.p; r/,

TI;�

hX
i¤j

log
1

jzi � zj j

i
�

X
i¤j

log
1

jzi � zj j
�

X
i;j2I i¤j

log
1

jzi � zj j
CN.N � 1/ log

2

R

�

X
i¤j

log
1

jzi � zj j
�N.N � 1/ log

R

4r
�

The result follows by combining with Lemma 2.2 and using the bound �.Q0/��R2.

Fix p2†� and let I1 and I2 be two fixed index sets with I1 � I2. We define a random
variable FI1;I2 by

FI1;I2.z/ WD 1.¹I.p; r; z/ D I1º \ ¹I.p;R; z/ D I2º/:

Lemma 2.4. Let N1 D #I1 be the number of elements of I1. Then there exists a constant
C such that for all z 2Cn,

TI1;�r;R ŒFI1;I2 �.z/ � e
CN1

� r
R

�2N1
1.¹I.p;R; z/ D I2º/:

Proof. Let � be the density of �r;R with respect to dA, i.e., � D 1
.R�2r/2�R2=4

1Ar;R .
Clearly � satisfies a bound of the form k�k1 � eCR�2 with a suitable constant C . We
also have the L1-bound

kFI1;I2kL1.CI1 / �

Z
D.p;r/\CI1

dAI1 D r
2N1 :

Hence by Young’s inequality, we have the pointwise upper bound

TI1;�r;R ŒFI1;I2 � � k�k
N1
1 kFI1;I2kL1.CI1 / � e

CN1
� r
R

�2N1
:

Next note that if there is an index i 2 I2 n I.p; R; z/, then zi 62 D.p; R/. If i 62 I1,
then TI1;�r;R does not integrate in the i th coordinate, so TI1;�r;R ŒFI1;I2 �.z/ D FI1;I2.z/

D 0. If i 2 I1, then TI1;�r;R does integrate in the i th coordinate, but only over the disc
D.zi ; R � 2r/, which is disjoint from D.p; r/. Thus FI1;I2.z C w/ D 0 whenever wi 2
supp�r;R, and again TI1;�r;R ŒFI1;I2 �.z/ D 0.

Finally, if there is an index i 2 I.p; R; z/ n I2, then i 2 I.p; R; z/ n I1 and TI1;�r;R
does not integrate in the i th coordinate. Hence again TI1;�r;R ŒFI1;I2 �.z/ D 0.

2.4. Overcrowding

Continuing in the spirit of [31], we now prove the following lemma.

Lemma 2.5. Fix p 2†� and write � D R=r � 10 where 0 < r < 1
10
R and R < �=2.

There exists a constant C such that for each integer M satisfying

M � C
n��2r2 C 1=ˇ

log.�=4/
,
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we have that, with N.p; r/ D #I.p; r; z/,

(2.3)
Pˇn .¹N.p; r/ �M º/

� Pˇn .¹N.p;R/ � �
2M º/C eC

0.1Cˇn��2r2/M�ˇM.M�1/ log.�=4/;

where C 0; c > 0 are suitable real constants.

Proof. Let z D .zj /n1 denote an ordered random sample and note that the random index
set I D I.p;R; z/ satisfies the assumption (2.2).

Let I1 and I2 be index sets, with I1 � I2, of sizes k and l respectively.
Write I1;2 for the event

I1;2 WD ¹z I I.p; r; z/ D I1; I.p;R; z/ D I2º:

By Lemma 2.3, we have for all z 2 I1;2 that

Hn.z/ � TI.p;r;z/;�r;R ŒHn�.z/ � �n�R
2k C k.k � 1/ log

�

4
�

Hence by Lemma 2.1,

Eˇn .ŒFI1;I2 �/ � e
ˇ.n�R2k�k.k�1/ log �4 / Eˇn .TI1;�R;r ŒFI1;I2 �/:

In view of Lemma 2.4, the right-hand side is bounded by

eˇ.n�R
2k�k.k�1/ log �4 / eCk ��2k Pˇn .¹I.p;R; z/ D I2º/;

with C > 0 being the constant from Lemma 2.4. We have shown that

Pˇn .I1;2/ � e
C1.1Cn�ˇR

2/k�ˇk.k�1/ log �4 ��2k Pˇn .¹I.p;R; z/ D I2º/:

It follows that if Jk;l is the event ¹#I.p; r; z/ D kº \ ¹#I.p;R; z/ D lº, then

Pˇn .Jk;l / � e
C1.1CnKˇR

2/k�ˇk.k�1/ log �4 ��2k
�
l

k

�
Pˇn .¹N.p;R/ D lº/:

We next observe that if l � k C 1 then, by Stirling’s formula,

(2.4)
�
l

k

�
� 2

s
l

k.l � k/
ek log l

k
C.l�k/ log l

l�k � eCk
� l
k

�k
;

for a large enough constant C .
In the case when l � �2k, this gives, with a new constant C2,

Pˇn .Jk;l / � e
C2.1Cn�ˇR

2/k�ˇk.k�1/ log �4 Pˇn .¹#I.p;R; z/ D lº/:
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Hence

Pˇn .¹N.p; r/ �M º/ � Pˇn .¹N.p;R/ � �
2M º/

� Pˇn .¹M � N.p; r/º \ ¹N.p;R/ � �
2M º/ D

�2MX
kDM

�2MX
lDk

Pˇn .Jkl /

�

1X
kDM

eC2.1Cn�ˇR
2/k�ˇk.k�1/ log �4 :

We choose M large enough that for k � M , the ratio of consecutive terms in the last
sum is � 1=2, i.e.,

C2.1C n�ˇR
2/ � 2ˇk log

�

4
� log

1

2
.k �M/:

This is satisfied if

M �
C2.1C n�ˇR

2/C log 2

2ˇ log �
4

�

Under this condition, we obtain (2.3) with a suitable C 0 � C2.

We now come to the main overcrowding estimate of this section; it roughly corres-
ponds to Theorem 1 in [31].

Theorem 2.6. Suppose p 2 †2� , and that � � �0 > 0 and � � �0 > 0. There exists a
constant C D C.�0; �0/ independent of p such that for any �� 10, and anyM satisfying

(2.5) M � C
�2 C 1=ˇ

log �
4

we have
Pˇn .¹N.p; 1=

p
n�/ �M º/ � e�ˇ.log �4 /M

2CC.1Cˇ�2/M :

Proof. First, given a large enough n, we choose an index j0 such that �0=4� �2j0=.n�/<
�0=2. Choosing C > 1=.�0�0/ in (2.5), we then obtain �2k0M > n, and consequently

Pˇn .¹N.p; �=4/ > �
2j0M º/ D 0:

Set r0 D 1=
p
n� and consider the successively larger radii rj D �j r0.

A repeated application of Lemma 2.5 gives, with M as in (2.5),

Pˇn .¹N.p; 1=
p
n�/ �M º/

�

j0�1X
jD0

eC
0.1C�2.jC1/ˇ/�2.jC1/M�ˇ�2.jC1/M.�2.jC1/M�1/ log �4 :(2.6)

Bounding the sum in (2.6) by the first term and renaming constants, we finish the
proof.
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3. A preliminary upper bound on the one-point function

We shall now prove a uniform upper bound on the one-point function Rˇn .p/, by adapting
the strategy behind Theorem 2 in [31].

For this, we fix a point p 2†� (see (2.1)) and a number r with 0 < r < 1=.4
p
n�/.

Here we assume that n is large enough that 1=
p
n� < �=2.

We define a function F on Cn by (with z D .z1; : : : ; zn/)

F.z/ D 1D.p;r/.z1/:

We apply Lemma 2.1 with � D �n being the uniform probability measure on the
annulus

(3.1) An WD A
� 1

2
p
n�

, 1
p
n�
� r

�
and with the index set I D ¹1º (which satisfies (2.2)) to get

Pˇn .¹z1 2 D.p; r/º/ � e
�ˇCI;�;F Eˇn ŒTI;�F �:

Lemma 3.1. There is a constant C > 0 such that for all r � 1=.4
p
n�/,

TI;�F.z1/ � Cr
2n�1

D.p;1=
p
n�/
.z1/:

Proof. Since �n D �n dA and k�nk1 � Cn� for some constant C > 0 which is uniform
for all r � 1=.4

p
n�/, we have by Young’s inequality the bound

TI;�F.z1/ � k�nk1 kF kL1.C/ � Cr
2n�;

�
r �

1

4
p
n�

�
:

Moreover, the support of F is only enlarged by at most a distance 1=
p
n� � r after

convolution by �, so that supp.TI;�F / � ¹z I z1 2 D.p; 1=
p
n�/º:

Lemma 3.2. We have for 0 < r < 1=.4
p
n�/ that

CI;�;F � �1:

Proof. By Lemma 2.2, we have, for z 2Cn with z1 2 †�=2 (with I D ¹1º and Q0.w/ D
� � jwj2), that

TI;�ŒHn�.z/ � Hn.z/C n�.Q0/;

so
CI;�;F � �n�.Q0/:

On the other hand, using the notation (3.1), we deduce that the uniform probability
measure � on An satisfies

�.Q0/ D �

Z
An

jwj2
�� 1
p
n�
� r

�2
�

1

4n�

��1
dA.w/

� � sup
w2An

jwj2 D �
� 1
p
n�
� r

�2
�
1

n
�
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The preceding lemmas show that if 0 < r < 1=.4
p
n�/, then

(3.2) Pˇn .¹z1 2 D.p; r/º/ � Cr
2n�eˇ Pˇn .¹z1 2 D.p; 1=

p
n�/º/:

Replacing the index 1 by an arbitrary k 2 ¹1; : : : ; nº in (3.2), and using that the number
of particles among ¹zj ºn1 in a set D is

N.D/ D

nX
kD1

1¹zk 2Dº;

we obtain

nPˇn .¹z1 2 D.p; 1=
p
n�º/ D

nX
kD1

Pˇn .¹zk 2 D.p; 1=
p
n�/º/ D Eˇn

h
N
�
p;

1
p
n�

�i
D

nX
lD1

l Pˇn

�°
N
�
p;

1
p
n�

�
D l

±�
�

1X
lD1

l Pˇn

�°
N
�
p;

1
p
n�

�
� l

±�
:

Next, from Theorem 2.6 there is a constantC DC.�0;�0/ such that when l�C.1C1=ˇ/,

Pˇn

�°
N
�
p;

1
p
n�

�
� l

±�
� ec

0.1Cˇ/l�cˇl2 ;

where c and c0 are some positive constants.
This gives

1X
lD1

l Pˇn

�
N
�
p;

1
p
n�

�
� l

�
�

bC.1C1=ˇ/cX
lD1

l C
X

lDdC.1C1=ˇ/e

lec
0.1Cˇ/l�cˇl2

� C1

�
.1C 1=ˇ/2 C e

.c0/2.1Cˇ/2

4cˇ

X
lDdC.1C1=ˇ/e

le
�cˇ

�
`�

c0.1Cˇ/
2cˇ

�2�
;

with a new constant C1. Let us denote by B D B.C; ˇ; c; c0/ the sum in the right-hand
side. A simple integral estimate gives

(3.3) B � C2

�
.1C 1=ˇ/2 C e

.c0/2.1Cˇ/2

4cˇ

� 1
cˇ
C
c0.1C ˇ/

2cˇ

1p
cˇ

��
:

An examination of the constants c and c0 in Theorem 2.6 shows that we can take
c0 D 100C and c D log.5=2/, so that the above implies

B � C3 .ˇ
�2
C eC

0ˇ /

with some large constants C 0 and C3.
We finally have, for r > 0 small enough,

(3.4)
Eˇn ŒN.p; r/� D nPˇn .¹z1 2 D.p; r/º/ � Cn

2�r2eˇ Pˇn .¹z1 2 D.p; 1=
p
n�/º/

� CB�nr2eˇ :
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We have proven the following result, which corresponds to Theorem 2 in [31], but
gives additional quantitative information (for the given class of potentials) that we will
exploit below.

Theorem 3.3. There is a constant C (depending on�0 and �0/ such that, for all p in the
neighbourhood †� of the droplet,

Rˇn .p/ � C
ˇ .1C 1=ˇ2/n�:

4. Upper bound

We now prove Theorem 1.1. Our proof combines the upper bound in Theorem 3.3 with an
idea from Section 3 of [4].

We start with two basic lemmas, which are adapted from Section 2 of [4].
We use the symbol Wn to denote the linear space of weighted polynomials of the form

f D q � e�nQ=2, where q.z/ is a holomorphic polynomial of degree at most n � 1.

Lemma 4.1. If f 2Wn and D.z; 1=
p
n�/ � †, then

jf .z/j2ˇ � n�eˇ
Z
D.z;1=

p
n�/

jf j2ˇ dA:

Proof. Fix z as above and consider the function

F.w/ D jf .w/j2ˇ e�nˇ jz�wj
2

;

which has, for w 2 D.z; 1=
p
n�/,

@N@ logF.w/ � 0C�nˇ > 0:

Thus F is (logarithmically) subharmonic, and the mean-value inequality at w D z gives

jf .z/j2ˇ D F.z/ � n�

Z
D.z;1=

p
n�/

F dA � n�eˇ
Z
D.z;1=

p
n�/

jf j2ˇ dA:

We also recall the following well-known “maximum principle” (for a proof, see [28]
or Lemma 2.3 in [4]).

Lemma 4.2. If f 2Wn then (with S the droplet)

jf .z/j � .sup¹jf .w/j I w 2 Sº/ � e�nQeff.z/=2;

with Qeff being the effective potential (1.5).

With these preparations out of the way, we fix a point z in the interior of † and pick
" > 0 small enough that the discW DD.z; "/ is contained in the interior of †. We define
ı D dist.S;W /.

Let ¹zj ºn1 be a random sample with respect to (1.3) and fix an index j , 1 � j � n.
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We write

(4.1) j̀ .w/ D
Y
i¤j

..w � zi / e
�n.Q.w/�Q.zi //=2/

ıY
i¤j

..zj � zi / e
�n.Q.zj /�Q.zi //=2/

for the random weighted Lagrange polynomial satisfying j̀ .zk/D ıjk . (The j̀ ’s are well-
defined elements of Wn with probability one).

Consider the random variables

Y D

Z
W

j`1j
2ˇ dA and Z D

Z
C
j`1j

2ˇ dA:

By Lemma 4.1, we have for all w 2C such that D.w; 1=
p
n�/ � † that

(4.2) j`1.w/j
2ˇ
� eˇ .n�/Z:

In particular, (4.2) holds for all w 2S , so by Lemma 4.2, we have

j`1.w/j
2ˇ
� eˇ .n�/Ze�nˇQeff.w/ .w 2C/:

Integrating the last inequality over the disc W using that jW j D "2, we find

(4.3) Y � eˇ .n�/"2Z max
w2W
¹e�nˇQeff.w/º:

We now recall the following result, proven in Lemma 2.5 of [4].

Lemma 4.3. Let W be measurable subsets of C. Then

(4.4) Eˇn

h Z
W

j j̀ .z/j
2ˇ dA.z/

i
D j†j � pˇn .W /;

where j†j is the normalized area of †D¹Q<C1º and where pˇn is the 1-point measure,

pˇn .W / WD Pˇn .¹z1 2 W º/:

The infinitesimal form of (4.4) is

(4.5) Eˇn Œj j̀ .z/j
2ˇ � D j†j

1

n
Rˇn .z/:

Taking expectations in (4.3), dividing through by "2 and sending "! 0, we have

Eˇn Œj j̀ .z/j
2ˇ � � eˇ .n�/e�nˇQeff.z/

Z
C

Eˇn Œj j̀ .w/j
2ˇ � dA.w/:

Using (4.5) and that
R

C R
ˇ
n dA D n, we find that, for all z 2C,

j†j

n
Rˇn .z/ � j†je

ˇ .n�/e�nQeff.z/:

Combining this with the bound for z 2 S found in Theorem 3.3, we finish the proof of
Theorem 1.1.
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Remark 4.4. While the pointwise expectation of j j̀ .z/j2ˇ is bounded as n!1 (by (4.5)
and Theorem 1.1), we anticipate that the maximum max1�j�nk j̀ k1 is almost-surely
bounded as n!1 if and only if we are in the perfect freezing regime

lim inf
n!1

ˇn

logn
> 0:

See [12, 13, 26] for several results in this direction.

5. Equicontinuity of the 1-point functions

We shall now prove Theorem 1.3.
Suppose that z and w are two points in the interior of †. We assume that the points

are close enough to each other, in the sense that the line-segment Œz; w� from z to w lies
wholly in the interior of †, at a positive distance of at least � > 0 from the boundary @†.

Let ¹zj ºn1 be a random sample from (1.3) and let j̀ .z/ be the random Lagrange func-
tion in (4.1).

By the fundamental theorem of calculus,

(5.1) j j̀ .w/j
2ˇ
� j j̀ .z/j

2ˇ
D

Z
Œz;w�

2ˇ j j̀ .�/j
2ˇ�1
r.j j̀ j/.�/j � .d�/;

where the integration is over the straight line-segment, possibly making infinitesimal
detours around zeros of j̀ on that line-segment, to ensure that j j̀ j is differentiable on
the interior of the line-segment.

Write An�.f; �/ for the average value of a function f over the disc D.�; 1=
p
n�/,

An�.f; �/ D

−
D.�;1=

p
n�/

f dA WD n�

Z
D.�;1=

p
n�/

f dA:

The following lemma gives a Bernstein estimate, of a similar type as in Lemma 2.3
of [13], but with a more precise �-dependence of the implied constant.

Lemma 5.1. If f 2Wn and f .p/ ¤ 0, where p has distance at least 1=
p
n� to C n†,

then
jrjf j.p/j � C

p
n�An�.jf j; p/;

where C is an absolute constant.

Proof. Set f D q � e�nQ=2. For p as above and jz � pj < 1=
p
n�, we write Hp.z/ for

the holomorphic function

Hp.z/ D Q.p/C 2

1X
kD1

Œ@kQ�.p/

kŠ
.z � p/k :

By Taylor’s formula,

(5.2) njQ.z/ � ReHp.z/j � n�jz � pj2 � 1;

when jz � pj � 1=
p
n�.
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By well-known computations, which can be found in the proof of Lemma 2.3 in [13],
we have

jrjf j.p/j D
ˇ̌̌ d
dz
.q.z/e�nHp.z/=2/

ˇ̌
zDp

ˇ̌̌
:

Using a Cauchy estimate, we deduce that if 1=.2
p
n�/ � r � 1=

p
n� thenˇ̌̌ d

dz
.q.z/e�nHp.z/=2/

ˇ̌
zDp

ˇ̌̌
D

1

2�

ˇ̌̌ Z
jz�pjDr

q.z/e�nHp.z/=2

.z � p/2
dz
ˇ̌̌

�
2n�

�

Z
jz�pjDr

jqje�nReHp=2 jdzj:

By (5.2), the last expression is dominated by

2n�

�
e1=2

Z
jz�pjDr

jf .z/j jdzj:

Integrating the last inequality in r over 1=.2
p
n�/ � r � 1=

p
n�, we obtain

jrjf j.p/j �
4.n�/3=2

�
e1=2

Z 1=
p
n�

1=.2
p
n�/

dr

Z
jz�pjDr

jf .z/j jdzj

� 4
p
en�An�.jf j; p/;

proving the lemma with C D 4
p
e.

Armed with the lemma, we now turn to our proof of equicontinuity of the one-point
functions. (We remark that the condition ˇ � 1=2 has not been used above; it only enters
in the following, concluding steps.)

By Hölder’s inequality, we have for all � 2 C, provided that 2ˇ � 1,

Eˇn
�
j j̀ .�/j

2ˇ�1An�.j j̀ j; �/
�
� .Eˇn .j j̀ .�/j

2ˇ //.1�1=2ˇ/ .Eˇn .An�.j j̀ j; �/
2ˇ //1=2ˇ :

Now suppose �2†� , where � > 0 is given. Take n large enough that 1=
p
n� < �=2.

If 2ˇ� 1, then by Jensen’s inequality, (4.5) and Theorem 1.1 (with a slightly largerC ),

(5.3) Eˇn

h� −
D.�;1=

p
n�/

j j̀ j dA
�2ˇi

� Eˇn

h −
D.�;1=

p
n�/

j j̀ j
2ˇ dA

i
� C ˇ�j†j:

We conclude that

.Eˇn .j j̀ .z/j
2ˇ //.1�1=2ˇ/ .Eˇn .An�.j j̀ j; �/

2ˇ //1=2ˇ � C ˇ�j†j:

Using (4.5), (5.1) and Lemma 5.1, we now estimate as follows:

j†j

n
jRˇn .z/ �R

ˇ
n .w/j D

ˇ̌
Eˇn Œj j̀ .z/j

2ˇ
� j j̀ .w/j

2ˇ �
ˇ̌

� Cˇ
p
n�

Z
Œz;w�

ˇ̌
Eˇn Œj j̀ .�/j

2ˇ�1An�.j j̀ j; �/�
ˇ̌
jd�j � C ˇ�j†j

p
n� jz � wj;

where we used (5.3) (and changed meaning of the constant C ) to get the last inequality.
Our proof of Theorem 1.3 is complete.
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6. Concluding remarks

In this section, we recall the rescaled Ward equation from [10] and the related question of
finding exact subsequential scaling limits �ˇ D lim�ˇnk . We also compare with the approx-
imation by the thermal equilibrium measure, which is used in, e.g., [30] and references.

6.1. Rescaling in Ward’s identity and crystallization

In this section, we do not assume that Q is a Hele-Shaw potential, but merely that Q is
lower semicontinuous and obeys the growthQ.z/� 2 log jzj !1 as z!1 (and thatQ
is finite on some set of positive capacity). In short,Q=2 is an “admissible potential” in the
sense of [28].

The Coulomb gas in external potential Q (at inverse temperature ˇ) is a configura-
tion ¹zj ºn1 picked randomly with respect to the corresponding Gibbs distribution (see (1.3)
and (1.4)).

To a first approximation, the Coulomb gas follows the Frostman equilibrium measure
� D �ŒQ� in potential Q, which (as before) is the unique compactly supported Borel
probability measure minimizing the energy integral (1.2).

More precisely, if we assume that Q is C 2-smooth in some neighbourhood of the
droplet S D supp � , we have that d� D @N@Q � 1S dA by Frostman’s theorem [28], and a
standard result implies the weak convergence

lim
n!1

1

n
Eˇn

nX
jD1

f .zj / D �.f /

for all continuous and bounded functions on C, see, e.g., Appendix A of [4].
Moreover, a well-known Ward identity (see, e.g., [32] and [9, 10]) asserts that for any

suitable (e.g., smooth and bounded) test-function f , the random variable

W Cn Œf � D
1

ˇ

nX
1

@f .zj / � n

nX
1

Œf @Q�.zj /C
1

2

X
j¤k

f .zj / � f .zk/

zj � zk

has expectation zero:

(6.1) Eˇn ŒW
C
n Œf �� D 0:

When written in terms of the 1-point function Rˇn .z/ and the 2-point function Rˇn;2.z;w/,
the identity (6.1) becomes

(6.2)

1

ˇ

Z
C
@f �Rˇn dA � n

Z
C
f � @Q �Rˇn dA

C
1

2

“
C2

f .z/ � f .w/

z � w
R
ˇ
n;2.z; w/ dA2.z; w/ D 0:

It is advantageous to interpret (6.2) as a distributional integro-differential equation for
the (macroscopic) Berezin kernel

(6.3) Bˇn .z; w/ D
R
ˇ
n .z/R

ˇ
n .w/ �R

ˇ
n;2.z; w/

R
ˇ
n .z/

,
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which satisfies

Bˇn .z; z/ D R
ˇ
n .z/ and

Z
C

Bˇn .z; w/ dA.w/ D 1:

This is done in sources such as [9, 10].
Now fix any point p 2C such that Q is smooth and strictly subharmonic at p, i.e.,

@N@Q.p/ > 0:

We rescale as in [10], i.e., we introduce a new “microscopic” variables u and v by

z D p C
uq

n@N@Q.p/

and w D p C
vq

n@N@Q.p/

�

In order to rescale in (6.2), it is convenient to introduce the rescaled one-point density
and the rescaled Berezin kernel via

(6.4) �ˇn .u/ D
R
ˇ
n .z/

n@N@Q.p/
and Bˇn .u; v/ D

1

n@N@Q.p/

R
ˇ
n .z/R

ˇ
n .w/ �R

ˇ
n;2.z; w/

R
ˇ
n .z/

�

Note that
Bˇn .u; u/ D �

ˇ
n .u/:

In Theorem 7.5 of [10], it is noted that (6.2) gives rise to the following asymptotic
relation for Bˇn .u; v/:

(6.5) N@u

Z
B
ˇ
n .u; v/

u � v
dA.v/ D Bˇn .u; u/ � 1 �

1

ˇ
@u N@u logBˇn .u; u/C o.1/;

where o.1/! 0 uniformly on compact subsets of C as n!1.
Assuming thatBˇn .u;v/ converges in an appropriate sense along some subsequence nk

to an appropriate limit Bˇ .u; v/ (with �ˇ .u/ WD Bˇ .u; u/ > 0), we obtain the formal
limiting Ward equation for Bˇ .u; v/:

(6.6) N@u

Z
Bˇ .u; v/

u � v
dA.v/ D Bˇ .u; u/ � 1 �

1

ˇ
@u N@u logBˇ .u; u/:

While a true limiting Berezin kernel must satisfy (6.6), there is also another natural
condition, the “integral-1 condition”

(6.7)
Z

C
Bˇ .u; v/ dA.v/ � 1;

which is motivated by the fact that
R

C B
ˇ
n .u; v/ dA.v/ D 1 for all n.

When ˇD 1, the derivations of (6.6) and (6.7) are rigorous: normal families arguments
and the zero-one law in [10] ensure existence of appropriate (locally uniform) subsequen-
tial limits satisfying (6.13) provided that the limit �ˇ does not vanish identically.
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When ˇ ¤ 1, it is an open question whether it is possible to pass to a subsequential
limit satisfying (6.6) and (6.7), even when rescaling at about point in the bulk.

In what follows, we will simply assume that a nontrivial (i.e., �ˇ > 0 everywhere)
microscopic Berezin kernel Bˇ exists along some subsequence, for a fixed ˇ, and that Bˇ

satisfies (6.6) and (6.7).
We shall now recall, from Section 7.3 of [10], two exact solutions to (6.6) which

we term “reference solutions”, and which are relevant for p a bulk point and a regular
boundary point, respectively.

Reference solution for the bulk. From equation (6.6), we see that any function of the
form Bˇ .u; v/ D Fˇ .ju � vj/ is an exact solution, provided that Fˇ .r/ is sufficiently
regular and small as r !1. It is also natural to require that Fˇ .0/ D 1.

Among these solutions, a natural candidate is the Gaussian

(6.8) B
ˇ
ref;bulk.u; v/ WD e

�ˇ ju�vj2 :

This solution is indeed the correct limiting Berezin kernel when ˇ D 1, but not for ˇ ¤ 1,
since

R
C B

ˇ
ref;bulk.u; v/ dA.v/ D 1=ˇ, in contradiction with the integral-1 equation.

Now suppose that pn is a sequence of zooming-points converging as n ! 1 to
a limit p in the bulk Int S , and that Bˇ D limk!1 B

ˇnk ;pnk is an exact scaling limit.
If ˇ ¤ 1 it is not known, as far as we know, whether Bˇ depends on the subsequence.

To put it more concretely, when ˇ > 1, the density profile near the boundary is expec-
ted to display a certain oscillatory behaviour as one moves inwards from the boundary
(“crystallization”). The oscillations appear to be on the scale of the interparticle distance
and decrease quickly in magnitude as one moves inwards, towards the bulk, see [16, 17].
It is currently an open question whether or not these oscillations persist, to some extent,
also in the bulk. If they do persist, then a bulk scaling limit should depend on whether we
the zooming points pn trace a local “peak” or “trough” of the density. In other words, the
question of uniqueness of a bulk scaling limit ¹zj º11 (or “infinite ˇ-Ginibre ensemble”)
is, to the best of our knowledge, an open matter, except when ˇ D 1.

Reference solution for the boundary. Another exact solution to (6.6), found in [10],
relevant at a regular boundary point p has the appearance

(6.9) B
ˇ
ref;boundary.u; v/ WD e

�ˇ ju�vj2 1

2
erfc

�rˇ

2
Re.uC v/

�
;

which has “nearly” the behaviour one would expect at the edge, and which is in fact
exactly right when ˇ D 1. However, in Section 7.3 of [10] it is observed thatZ

B
ˇ
ref;boundary.u; v/ dA.v/ D

1

ˇ
,

so this solution can again not be a true subsequential limit when ˇ ¤ 1.
In addition, it is not hard to see that (6.9) is consistent with the sum rule in equa-

tion (4.14) in [14] if and only if ˇ D 1, proving in another way that (6.9) is not a feasible
scaling limit when ˇ ¤ 1. Incidentally, for ˇ D 1, the sum rule reduces to the “1=8-
formula” in the parlance of [10]. We thank S.-S. Byun for this observation.
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However, by comparing with numerical results for a true limiting 1-point function
�ˇ .u/ D Bˇ .u; u/, it can be surmised that �ˇ .u/ seems to “oscillate” about

�
ˇ
ref;boundary.u/ WD

1

2
erfc.

p
2ˇ Reu/;

and the asymptotic values as Reu! ˙1 match (see [16, 17]). In this way, it seems that
the reference solution (6.9) does retain some features of an actual scaling limit.

It is also worth noting that the simple proof of Gaussian field convergence in [6, 9],
there obtained for ˇ D 1, extends naturally to all ˇ > 0 provided that some apriori tight-
ness and asymptotic symmetry properties for all bulk scaling limits Bˇ can be proven.
In short, if after rescaling about zooming points well in the bulk, subsequential lim-
its Bˇ .u; v/ exist and are functions of ju � vj, then the strategy of proof in [9] carries
over to all ˇ. In this way, the problem is reduced to determining to what extent the (bulk)
limiting measures Bˇ .u; v/ dA.v/ are symmetric with respect to rotations about u. We
shall find opportunity to return to this question below.

6.2. Comparison with the thermal equilibrium measure

In some approaches to the Coulomb gas (cf. [30] and references), the so-called thermal
equilibrium measure plays a central role. It therefore seems appropriate to compare a little
with the one-point function.

For a smooth unit charge density ı.z/ on the plane (ı � 0 and
R
ı dAD 1), we consider

the weighted logarithmic energy

IQŒı� D

“
C2

�
log

1

jz � wj

�
ı.z/ ı.w/ dA.z/ dA.w/C

Z
C
Qı dA

and the (negative of the) entropy

EQŒı� D

Z
C
ı log ı dA:

(We adopt the convention that 0 log 0 D 0.)
It is natural to consider the following combined energy/entropy functional:

FnŒı� D IQŒı�C
1

nˇ
EQŒı�:

We let ıˇn denote the minimizer among smooth ı � 0 with
R
ıdA D 1 (that exists

under suitable conditions on Q, see [30] and references there).
The density ıˇn is known as the thermal equilibrium density and it has been hypo-

thesized that this should somehow be a better approximation of the normalized one-point
function 1

n
R
ˇ
n , rather than the naive approximation by the equilibrium density @N@Q � 1S .

We shall presently show that this is not really the case.
To see this, we first note that the variational equation for ıˇn is

(6.10) �ıˇn C @
N@QC

1

nˇ
@N@ log ıˇn D 0:
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Indeed, taking a perturbation Qı with
R
Qı dA D 0, we find

0 D
d

d"
FnŒı

ˇ
n C "

Qı�

ˇ̌̌̌
"D0

D 2

Z
Qı.z/ dA.z/

Z
ıˇn .w/ log

1

jz � wj
dA.w/

C

Z
Qı.z/Q.z/ dA.z/C

1

nˇ

Z
Qı.z/ log.ıˇn .z// dA.z/:

Eliminating Qı, this gives the pointwise equation in z:

0 D 2

Z
ıˇn .w/ log

1

jz � wj
dA.w/CQ.z/C

1

nˇ
log.ıˇn .z//;

and applying @N@ we immediately verify (6.10).
In a way similar as before, we fix a point p at which @N@Q.p/ > 0 and rescale the

thermal equilibrium density ıˇn by setting

(6.11) z D p C
1q

n@N@Q.p/

u and Q�ˇn .u/ WD
ı
ˇ
n .z/

@N@Q.p/
,

where we pick the rescaled variable u in some large but fixed compact subset of C. The
function Q�ˇn can naturally be called a rescaled thermal equilibrium density (about p).

The equation (6.10) then leads to

(6.12) � Q�ˇn .u/C 1C
1

ˇ
@N@ log Q�ˇn .u/C o.1/ D 0;

where o.1/! 0 as n!1 uniformly for u in a fixed compact subset of C.
Assuming that we can form a locally uniform, strictly positive subsequential limit

Q�ˇ D lim Q�ˇnk

we thus obtain the formal limiting equation:

(6.13) � Q�ˇ C 1C
1

ˇ
@N@ log Q�ˇ D 0:

We recognize (6.13) as a simplified version of the Ward equation (6.6), obtained by
replacing the “Berezin term”

N@u

Z
C

Bˇ .u; v/

u � v
dA.v/

by zero. This is certainly not a correct approximation (especially near the boundary) if we
replace Q�ˇ by a limiting one-point function �ˇ .

Indeed, if p is in the bulk (i.e., the interior) of S , then (at least heuristically) a sub-
sequential limiting Berezin measure Bˇ .u; v/ dA.v/ might be expected to be “nearly”
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invariant under rotations about u. (As we noted above this is the case when ˇ D 1.) There-
fore it could be surmised that the left hand side in (6.6) should be nearly zero, and that
“��ˇ C 1C 1

ˇ
@N@ log �ˇ � 0”.

When rescaling about a regular boundary point p 2 @S , rotational symmetry breaks
down: the limiting Berezin measuresBˇ .u;v/dA.v/ are not invariant under rotations even
when ˇ D 1, and the left-hand side in (6.6) gives a nontrivial contribution. See [10,11] for
several related calculations.

We shall now compare the one-point function R.ˇD1/n and the thermal equilibrium
density nıˇD1n for the Ginibre ensemble, whereQ.z/D jzj2. Recall that the corresponding
droplet is the closed unit disc S D D.0; 1/.

We rescale about the boundary point pD 1 using the map z D 1C u=
p
n and consider

the rescaled 1-point function �n.u/ in (6.4) along with the thermal equilibrium dens-
ity Q�n.u/ in (6.11).

Indeed it is well known (e.g., see [10, 14]) that �n ! � locally uniformly as n!1,
where

�.u/ D
1

2
erfc

�uC Nu
p
2

�
;

and a computation using

.erfc/0.u/ D �
2
p
�
e�u

2

gives

@N@ log �.0/ D
�@N@� � j@�j2

�2
D
0 � .1=

p
2�/2

.1=2/2
D �

2

�
�

On the other hand, if we assume that Q�n ! Q� locally uniformly, where Q�.0/ D 1=2,
then by the differential equation (6.12),

@N@ log Q�n.0/ D Q�n.0/ � 1C o.1/! �
1

2
�

Assuming that � � Q� in a neighbourhood of 0, we get the contradiction � D 4, so
indeed � ¤ Q�.

We have shown the following statement.

Theorem 6.1. Suppose that Q.z/ D jzj2. Then there is a constant c > 0 such that

lim inf
n!1

®
n�1 � kR.ˇD1/n � nı.ˇD1/n k1

¯
� c:

As the erfc-kernel is universal when rescaling about regular boundary points for a
large class of ˇ D 1 ensembles, the above argument generalizes in a straightforward way
beyond the Ginibre ensemble.

While the above shows that the approximation of R.ˇD1/n with nı.ˇD1/n fails spectacu-
larly near the boundary, it might still be hoped that the approximation should be reasonable
in the bulk. We will show presently that such hopes must be abandoned.

Fix a point p 2 IntS and recall the bulk approximation (e.g., equation (5.24) in [14])

(6.14) R.ˇD1/n .z/ D n@N@Q.z/C
1

2
@N@ log @N@Q.z/CO.n�1/ .n!1/;
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which holds uniformly for all z in some neighbourhood of p provided that Q is smooth
and strictly subharmonic at p. (See, e.g., [3] for a short proof under the assumption thatQ
is real-analytic at p; the case of smooth Q can be obtained by well-known adaptations.)

For what follows, we assume that Q strictly subharmonic in a neighbourhood of the
droplet S , and that there are no shallow points, i.e., S� D S .

The O.1/-correction term 1
2
@N@ log @N@Q appearing in (6.14) is what gives rise to the

formula for the expectation of smooth linear statistics supported in the bulk in [6,9]. (The
general formula, for f ’s that are not supported in the bulk, also contains some boundary
terms.)

If the approximation of R.ˇD1/n by nı.ˇD1/n is to be useful in the bulk, it is thus reas-
onable to ask that the two functions should agree on compact subsets of the bulk up to an
error which is o.1/ as n!1. However, if we make the ansatz in the bulk,

ı.ˇD1/n WD @N@QC
1

2n
@N@ log @N@QC o.1=n/;

and insert in the equation (6.10), we arrive at

�
1

2n
@N@ log @N@QC

1

n
@N@ log @N@Q D o.1=n/;

which leads to @N@ log @N@Q D 0, i.e., log @N@Q is harmonic.
Likewise, the ansatz

ı.ˇD1/n WD @N@QC
k

n
@N@ log @N@QC o.1=n/

(along some subsequence) leads to k D 1.
We have shown the following result.

Theorem 6.2. If p is a point in the bulk, then

lim inf
n!1

jR.ˇD1/n .p/ � nı.ˇD1/n .p/j �
1

2
j@N@ log @N@Q.p/j:

We conclude that if log @N@Q is not harmonic (essentially: if Q is not a Hele-Shaw
potential), then the hypothesis that

R.ˇD1/n D nı.ˇD1/n C o.1/�

in the bulk is not consistent with the Gaussian field convergence of linear statistics in
[6,9]. And even for Hele-Shaw potentials, the approximation in the bulk is not better than
approximating with the equilibrium density n�, see [3].

It is possible to go further and, for example, come up with examples where the quotient
R
.ˇD1/
n =.nı

.ˇD1/
n / is unbounded as n!1, as will be the case for instance at a shallow

outpost as in [7]. Cf. also the recent work [24] where the one-point function is studied
near a contact point.

In conclusion, we find that the thermal equilibrium measure is not a very good approx-
imation of the one-point density, or at least it is not much better than approximatingR.ˇD1/n

by the classical equilibrium density n@N@Q 1S .
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In any event, the study of the macroscopic Berezin kernel (6.3) and its global and
microscopic limits is a central and ongoing enterprise in random normal matrix theory
(i.e., ˇ D 1). While substantial progress has been made in recent years, there remains
many important open questions, see e.g. [14] or [6] and the references there.

Remark 6.3. The similarity between Ward’s (integro-differential) equation (6.6) and the
simpler PDE (6.10) for the thermal equilibrium measure is noted in [1] in the context of
high temperature crossover. (We thank S.-S. Byun for making us aware of this fact.)

Funding. The second author was partially supported by Swedish Research Council Grant
2022-04917.
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