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Extrinsic GJMS operators for submanifolds

Jeffrey S. Case, C Robin Graham and Tzu-Mo Kuo

Abstract. We derive extrinsic GIMS operators and Q-curvatures associated to a
submanifold of a conformal manifold. The operators are conformally covariant scalar
differential operators on the submanifold with leading part a power of the Lapla-
cian in the induced metric. Upon realizing the conformal manifold as the conformal
infinity of an asymptotically Poincaré—Einstein space and the submanifold as the
boundary of an asymptotically minimal submanifold thereof, these operators arise as
obstructions to smooth extension as eigenfunctions of the Laplacian of the induced
metric on the minimal submanifold. We derive explicit formulas for the operators of
orders 2 and 4. We prove factorization formulas when the original submanifold is
a minimal submanifold of an Einstein manifold. We also show how to reformulate
the construction in terms of the ambient metric for the conformal manifold, and use
this to prove that the operators defined by the factorization formulas are conformally
invariant for all orders in all dimensions.

1. Introduction

The GJMS operators [28] are a family of conformally covariant natural differential oper-
ators on a Riemannian manifold with principal part a power of the Laplacian. They are
basic objects in conformal geometry which arise in many contexts. In this paper, we con-
struct analogs of the GIMS operators associated to a submanifold of a conformal manifold.
These are differential operators on the submanifold which depend on its extrinsic geome-
try in the background space.

The original construction of operators in [28] used the ambient metric of [15]. Their
derivation was reformulated in [33] in terms of a Poincaré metric. There they arise as
obstructions to smoothly extending functions on the conformal manifold as eigenfunc-
tions of the Laplacian of the Poincaré metric with prescribed leading order asymptotics.
In [33], it was pointed out that the same construction can be carried out upon replacing the
Poincaré metric by any asymptotically hyperbolic metric. In the general case, the operators
still act on functions on the boundary at infinity and satisfy the same conformal transfor-
mation law with respect to rescaling the boundary metric. However, they now depend on
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the Taylor coefficients at the boundary of a compactification of the asymptotically hyper-
bolic metric, which in general need not have any relation to the intrinsic geometry of the
boundary itself.

In order to construct operators associated to a submanifold of a conformal mani-
fold, we apply the latter construction to an asymptotically hyperbolic metric determined
asymptotically by the extrinsic geometry of the submanifold. Let ¥ be a k-dimensional
submanifold of an n-dimensional Riemannian manifold (M, g). Let X = M x [0, &¢) for
some small g9 > 0. We realize the conformal class (M, [g]) as the conformal infinity of
a Poincaré metric g4+ on X , i.e., a smooth, even asymptotically hyperbolic approximate
solution of the Einstein equation Ric(gy+) = —ng+ (see [15]). In turn, we realize ¥ as
the boundary of a smooth submanifold ¥ C X which is asymptotically minimal with
respect to g+ and even in a suitable sense. We equip Y with the metric h4 induced by g,
which is also asymptotically hyperbolic. We then derive our operators by applying the

usual construction of [33] on the space ()(3 , hy). We call the resulting operators (minimal
submanifold) extrinsic GIMS operators.

Branson’s (critical) Q-curvature [6] is another fundamental object in conformal geom-
etry. It is a natural scalar defined in even dimensions whose conformal transformation law
is linear in the log of the conformal factor. Branson defined it from the zeroth order terms
of the GIMS operators via analytic continuation. Just as for the operators, the same con-
struction can be carried out on a general asymptotically hyperbolic manifold. Applying

]
the construction on (Y, ), we obtain for k even a Q-curvature associated to the sub-
manifold ¥ C (M, g).
Our main existence result is the following.

Theorem 1.1. Let (M", g) be a Riemannian manifold and ¥ M a submanifold, with
n>3and1 <k <n-1.

(1) For the following values of {, there is a minimal submanifold extrinsic GIMS
operator Pyyp: C®(X) — C*°(X) of order 2¢:

(@) 1<{ < o0 if nandk are both odd,
(b) 1 <€ <n/2if nisevenandk is odd,

() 1 <€ <k/24+1ifkiseven. (If L =k/2+ 1 and n is even, we also assume
n>k+2)

The operator Py is formally self-adjoint, has leading term (—Ap)t, where h is the
metric induced on X by g, is natural (as defined in Section 2), and satisfies the transfor-
mation law

(1.1) ﬁze = k2=Dolz 4 Py o ek/2=Dols

under a conformal change g = e?>® g with w € C®(M).

(2) If k is even, there is a minimal submanifold extrinsic Q-curvature Qy, which is a
natural scalar on Y. Under conformal change g = e>®g, it satisfies

(1.2) ekl O = Ok + Pr(o]x).

Moreover, P, 1 = 0.
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Equation (1.2), the formal self-adjointness of Py, and the fact that Px1 = 0 imply
that if ¥ is compact, then fz Oy da is a conformal invariant, where da denotes the area
density on ¥ determined by g. This invariant is a multiple of the higher-dimensional
Willmore energy of ¥ studied in [31,37,40]. See Remark 4.3.

We give explicit formulas for P, and P4 in Theorems 5.2 and 5.3. These are discussed
in more detail in the last paragraph of this introduction.

The transformation law (1.1) can be interpreted as saying that for fixed £, the g-de-
pendent family of operators P, defines a single invariant operator on conformal densities
on X. The zeroth order terms of the operators P,y for 2¢ # k define non-critical curva-
tures O, which we also study.

In this paper, by a submanifold we mean an embedded submanifold. But since the
construction is local and an immersed submanifold is locally embedded, Theorem 1.1
also holds on an immersed submanifold i: ¥ — M . Likewise, Theorems 1.2 and 1.3 below
apply to immersed submanifolds.

Note that the transformation laws (1.1) and (1.2) only involve w|s. A consequence
is that the P,y and Qj only depend on the conformal class [¢g] on M near ¥ and the
representative & on X. That is, they are independent of the way that the representative / is
extended off of ¥ to a metric g in the conformal class on M . This observation is pertinent
to the application of our results to immersed submanifolds in the follow-up paper [9]
described below. When we view the P,; and Qy as determined by (M, [¢]) and a choice
of representative 1 on X, in the immersed case & can be any representative, allowing
rescalings by any positive function in C°°(X), not just the pullback of a representative g
on M. In this setting, (1.1) and (1.2) hold for any w € C°°(X), again not just the pullback
of a function on M.

We usually write as if we are working in Riemannian signature. But everything in this
paper is formal, so is valid for metrics g of general signature. If g has mixed signature,
it is assumed that the submanifold ¥ is such that g|7x is everywhere nondegenerate.
A nondegenerate submanifold is called minimal if its mean curvature vector vanishes.

The restrictions in Theorem 1.1 when 7 or k is even arise from the fact that the exten-
sion problems for Poincaré metrics and minimal submanifolds are obstructed at finite
order in these cases. The original GJMS construction is similarly obstructed in even
dimensions. The instance £ = k/2 + 1 of case (c) is subtle. Unlike the other cases, the
ambiguity in the minimal submanifold expansion does enter into the induced metric at
the order which could affect Py.,. However, this ambiguity does not contribute in the
derivation of Py,; see Section 5 below for details.

There are other constructions of operators and Q-curvatures on submanifolds of con-
formal manifolds.

The simplest is just to forget about the extrinsic geometry. That is, consider the induced
metric . on ¥ and take the usual GIMS operators and Q-curvatures determined by &. We
call these the intrinsic operators and Q-curvatures. Unfortunately, in general these do not
satisfy the factorization identities given in Theorem 1.2 below, which are crucial for the
application we have in mind. However, as we show in Section 4, our operators coincide
with the intrinsic operators for umbilic submanifolds of locally conformally flat spaces.

In [22,24], a calculus on conformally compact manifolds is developed, including a
construction of families of operators and Q-curvatures on the conformal infinity as well
as generalizations thereof to operators acting on sections of more general vector bundles.
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In the setting of a hypersurface ¥ C (M, [g]), the papers [4,23,25,26] apply this general
construction to a distinguished asymptotically hyperbolic representative of the conformal
class (M, [g]) to derive and study natural extrinsic operators and Q-curvatures on % anal-
ogous to those in Theorem 1.1. This distinguished representative is an asymptotic solution
of the singular Yamabe problem, i.e., a metric which is asymptotically hyperbolic along X
with asymptotically constant scalar curvature —n(n + 1). It follows from the explicit for-
mulas for our operators P, and P, derived in Theorems 5.2 and 5.3 that our operators in
the case of hypersurfaces are different from the Gover—Waldron singular Yamabe extrin-
sic operators. In particular, the singular Yamabe extrinsic operators also do not satisfy
the factorization identities. Unlike our construction via minimal submanifold extension,
the construction via the singular Yamabe problem also produces operators of odd order.
Further studies of the singular Yamabe extrinsic operators and Q-curvature can be found
in [11,35,36]. The paper [3] uses minimal extension into a singular Yamabe space to con-
struct operators, Q-curvatures, and associated boundary transgression curvatures when
the hypersurface ¥ C M itself has a boundary.

The singular Yamabe problem and therefore the construction of operators using it are
obstructed at finite order in all dimensions. But in [26], a tractor construction is applied
to the highest order operator produced by the singular Yamabe construction to produce
operators of all even orders in all dimensions when X is a hypersurface. This is in contrast
to the situation for the original GIMS operators, where it is known that operators of higher
orders do not exist [20,27]. It would be interesting to determine whether such operators
exist for all £ in higher codimension when & and/or # is even.

Suppose now that g is Einstein. In this case, a Poincaré metric can be written explicitly.
If Ric(g) = A(n — 1)g, then the Schouten tensor is given by P;; = % gij» and a Poincaré
metric for g is

(1.3) g+ =r2dr*+ (1 - %krz)zg)

(see [15]). We call this the canonical Poincaré metric associated to the Einstein metric g.
This explicit identification of g leads to a factorization formula for the GJIMS operators
for an Einstein metric as a product of second order operators of the form A + c. It also
leads to the conclusion that for conformal classes containing an Einstein metric, the oper-
ators defined by the factorization formula are invariantly associated to the conformal class
for all £ > 1 in all dimensions. See [15]. Another treatment of these results is contained
in [19].

A minimal extension Y can also be written explicitly if ¥ C M is a minimal sub-
manifold with respect to the Einstein metric g. Namely, it was observed in the proof of
Proposition 4.5 of [31] that Y = ¥ x [0,&¢) C X is a minimal extension of ¥ with respect
to g4 (we recall this argument in Section 4). We call ¥ x [0, g¢) the canonical minimal
extension of the minimal submanifold X of the Einstein manifold (M, g). The next the-
orem establishes that the same factorization formula holds for the minimal submanifold
extrinsic GJMS operators. We regard this as a fundamental feature of these operators.

Theorem 1.2. Suppose that Ric(g) = A(n — 1)g and X is minimal in (M, g). Let g+ be
the canonical Poincaré metric (1.3) and let Y = ¥ x [0, g9) be the canonical minimal

extension of X. Denote by h the metric on X induced by g, and by h the metric on Y
induced by g. Let £ € N. The operators produced by the GIMS construction for (Y ,h)
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are given by

L
(14) Py =[[(=An+Ac). where ¢; = (k/2+ j—1)(k/2— j).
j=1

If k is even, then
Or = A2 (k = 1)1

In the case that g is Einstein and ¥ C (M, g) is minimal, (1.4) gives a formula for
the operator P,y for £ in the ranges stated in Theorem 1.1. The next theorem shows that
for all £ > 1 in all dimensions, the operators (1.4) satisfy (1.1) under conformal change
to another Einstein metric for which X is also minimal (if there is another such Einstein
metric). This result can be used to define consistently operators via (1.1) for non-Einstein
metrics in the same conformal class.

Theorem 1.3. Let (M, g) be Einstein with Ric(g) = A(n — 1)g and let § = e*“g be a
conformally related Einstein metric with Ric(g) = ;X\(n —1)g. Suppose T C M is minimal
relative to both g and g. Define P,y by (1.4). Let h denote the metric induced on T by g
and define ﬁze by (1.4) with h replaced by h and X replaced by A. Then (1.1) is valid for
all £ > 1.

In this paper, asymptotically minimal submanifolds for Poincaré metrics are a tool
used to derive and study the minimal submanifold extrinsic GJIMS operators P,¢. The
paper [18] is in the same spirit. In the case k = 1, it uses the even asymptotically minimal
extension to study canonical parametrizations of the curve ¥ and to characterize when it
is a conformal geodesic.

Asymptotically hyperbolic metrics that are exact solutions of Ric(g4+) = —ngy are
known as Poincaré—Einstein metrics. Actual minimal submanifolds of Poincaré—Einstein
spaces, not just asymptotic ones, have been and continue to be an object of intense study
themselves, motivated partially by physical considerations. In a follow-up paper [9], The-
orem 1.2 and a construction based on scattering theory are applied to derive a formula
of Gauss—Bonnet type for the renormalized area of such an even-dimensional minimal
submanifold of a Poincaré—FEinstein space, assuming a submanifold version of a result of
Alexakis [1] establishing a decomposition of integrands of conformally invariant integrals.
This application was the genesis of our project: we were led to search for extrinsic GIMS
operators satisfying a factorization of the form (1.4) in order to derive such a formula. The
formula takes the form

A=ax¥)+ [ Wedu,.
Y

where k is even, Y is a minimal submanifold of dimension k of a Poincaré—Einstein
space, hy is the induced metric on Y, y(Y) denotes the Euler characteristic and +4 the
renormalized area of Y, Wy is a pointwise conformal submanifold invariant, and a; € R.
A formula of this type was derived for k = 2 in [2], and a formula in the same spirit
for k = 4 in the case of hypersurfaces in [39]. The derivation in [9] follows the same
outline as the proof in [12] of an analogous formula for the renormalized volume of even-
dimensional Poincaré—Einstein manifolds.
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The paper [33] showed that the usual GIMS operators can be embedded in a contin-
uous family of fractional order scattering operators. In general, such a family depends on
a choice of an exact or asymptotic Poincaré—Einstein manifold with prescribed confor-
mal infinity. Such fractional order operators have been of great interest in recent years,
motivated in part by the connection to the Caffarelli-Silvestre extension [7, 8, 10, 13]. As
indicated in [33], the scattering construction can be carried out for any asymptotically
hyperbolic metric. Consequently, our minimal submanifold extrinsic GIMS operators can
also be embedded in families of fractional order minimal submanifold extrinsic scattering
operators upon choosing an extension of ¥ as an exact or asymptotically minimal sub-
manifold of an exact or asymptotically Poincaré—FEinstein space. It would be interesting
to explore possible uses of such operators. The scattering operators for general asymptoti-
cally hyperbolic metrics and nonzero potentials were studied also in [34], where moreover
inverse scattering results were obtained.

A summary of the paper is as follows. In Section 2, we describe our notation and con-
ventions and formulate the notion of naturality in the submanifold setting. In Section 3,
we review the formal asymptotics of smooth, even Poincaré metrics, minimal submani-
folds, and their induced metrics, mostly following [15] and [31]. In Section 4, we review
the GJMS construction in the setting of a general asymptotically hyperbolic metric and
prove Theorem 1.1 except for case (c) with £ = k/2 + 1. We discuss minimal subman-
ifolds of Einstein manifolds and prove Theorem 1.2. We then formulate Theorem 4.10,
which asserts the infinite order diffeomorphism invariance of the canonical minimal exten-
sion, and prove Theorem 1.3 assuming Theorem 4.10. We close Section 4 by showing
that if (M, [g]) is locally conformally flat and ¥ is umbilic, then the extrinsic operators
equal the intrinsic operators. In Section 5, we derive two versions of formulas for P,, 0>
and P4, Q4 for general g, X, k and n. One version is Theorem 5.2, in which the operators
are expressed in terms of the second fundamental form and curvature of the background
metric g. This version is well-suited to seeing the factorization formula (1.4) when g is
Einstein and X is minimal. The second one is Theorem 5.3, in which P, and P, are written
as the GIMS operators P and P4 intrinsic to X plus additional terms involving extrinsic
quantities. The derivation of both is based on a fourth-order passage to normal form of the
induced metric 44 on Y. We conclude Section 5 by proving Theorem 1.1 in the remain-
ing case (c) for £ = k/2 + 1. The main step is Lemma 5.5, which uses a calculation of a
higher order passage to normal form to identify explicitly the contribution to the induced
metric of the ambiguity in the minimal submanifold expansion. Finally, in Section 6 we
show how to reformulate the whole construction in terms of the ambient metric. We use
this to prove Theorem 4.10, thereby completing the proof of Theorem 1.3. The proof of
Theorem 4.10 is modeled on the proof of the analogous result in [15] asserting the diffeo-
morphism invariance of the canonical Poincaré metric associated to an Einstein metric.

2. Notation and conventions

For a Riemannian manifold (M", g), we denote the Levi-Civita connection by ¢V, the
curvature tensor by R;jx;, the Ricci tensor by Ric(g) or R;j = R*;1 > and the scalar
curvature by R = R';. Our sign convention for R; ik s such that spheres have positive
scalar curvature.
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The Schouten tensor of (M, g) is

Pij = ;(Rij SR gij')
n—2 2(n —1)
and the Weyl tensor is defined by the decomposition
Rijkr = Wijki + Pik &1 — Pjk &i1 — Pi1 &k + Pji &ik-
The Cotton and Bach tensors are
Cijk = #VkPi; —8V;Pig

and

Bij = &V*Ciji — P* Wi
Latin indices i, j, k run between 1 and n in local coordinates, or can be interpreted as
labels for TM or its dual in invariant expressions such as those above (Penrose abstract
index notation).

We will denote by X a submanifold of (M, g) of dimension k, 1 <k <n — 1. All
considerations in this paper are local, so all submanifolds are assumed to be embedded.
We use a, B, y as index labels for TX, and o', f, y’ for the normal bundle N X. A Latin
index i thus specializes either to an « or an «’. So, for instance, when restricted to X, the
Schouten tensor P;; splits into its tangential Pyg, mixed Pyos, and normal Py/gs pieces.
Likewise, the restriction of the metric g;; to X can be identified with the metric gqg
induced on X together with the bundle metric g4’ induced on N X. We use gqg and go/ g/
and their inverses to lower and raise unprimed and primed indices.

The second fundamental form L: S?TS — N X is defined by L(X,Y) = (8 VxY)> .
We typically write it as Lg;q , or perhaps as Lqgo’ or L¢P o upon lowering and/or raising
indices. Since L has only one primed index and is symmetric in 8, it is not necessary to
pay attention to the order of the three indices. The mean curvature vector is H = % tr L,

. . . / 1 ! 1 ’
i.e., the section of N X given by H% = Fg"‘ﬂ Lgﬁ = g L.
The Levi-Civita connection of g induces connections on 7% and N X together with
their duals and tensor products, all of which we denote V. So, for instance, we can form
. . . ! . . .
the covariant derivative Vo, H% , which is a section of T*X ® N X.

When working in coordinates, we always use a local coordinate system
=% uY), 1<a<k, k+1<d <n

for M near X, with the properties that £ = {u® = 0} and 9y L 9, on =. We call such
a coordinate system adapted. The coordinates x restrict to a coordinate system on X.
On X, the vectors dg span T X, the dos span N X, and the mixed metric components ggq
vanish. This use of indices for coordinates is consistent with the abstract interpretation
described above. Partial derivatives in local coordinates are expressed using either of the
two notations dyug = ug . In Section 6, indices preceded by a semicolon, such as ug.y,
are used to denote covariant differentiation.

By a (scalar, linear) natural differential operator on k-dimensional submanifolds of
n-dimensional Riemannian manifolds, we will mean an assignment to each % c (M", g)
of a differential operator P on X, such that the following two conditions hold:



J.S. Case, CR. Graham and T.-M. Kuo 1400

() If ¥ c (M, g')and ¢: (M, g) — (M’, g’) is an isometry for which ¢(X) = ¥/,
then ¢* P’ = P.

(2) There are m € N U {0} and universal polynomials ¢4 such that in any adapted local
coordinate system z = (x, 1), P has the form

@D P =) qa(e® ¢ 0] g 0L f(x), feCP(D).

[d|<m

Here J is an n-multiindex and J is a k-multiindex. The argument 8! gij denotes all
derivatives of all g;; of orders up to N, for some N, except that the variables 8;5: Lo
for k-multiindices § do not appear (since these vanish in adapted coordinates).
The g*#, g*#" and 8! gi; are evaluated at z = (x, 0).

To clarify, g4 is a polynomial function on the vector space in which the inverse metric
and the metric and its derivatives take values in local coordinates, taking into account
the symmetry in the metric and partial derivative indices. For instance, for N = 1, the
arguments are

(gaﬁ > ga’ﬁ” 8ap>8a’'p’> 8aB,i> 8aa,y’ s ga/ﬂ’,i),
so each gy is a universal polynomial function on the vector space

SZRk D SZRn—k P SZRk* @ SZRn—k*
D (SZRk* ® Rn*) ® (Rk* ® (®2Rn_k*)) D (San_k* ® ]Rn*)

The special case m = 0 serves to define natural scalars of k-dimensional submanifolds of
n-dimensional Riemannian manifolds. In a follow-up paper [29], it is shown that any natu-
ral differential operator as above can be expressed as a linear combination of contractions
of covariant derivatives of the curvature tensor of g, covariant derivatives of the second
fundamental form, and covariant derivatives of f.

Our sign convention for Laplacians is that A = ) 81-2 on Euclidean space. Norms are
always taken with respect to the metric on tensor products induced by the metric on the
underlying bundle.

3. Background: Smooth even formal asymptotics

In this section, we review the formal asymptotics of Poincaré metrics and minimal sub-
manifolds thereof. We restrict consideration here to smooth even expansions, which we
use in Section 4 to derive extrinsic GIMS operators. We largely follow [15] for Poincaré
metrics and [31] for minimal submanifold asymptotics. The asymptotics of minimal sub-
manifolds of Poincaré—Einstein spaces have also been studied in [32,38,40].

Let (M",[g]) be a conformal manifold, n > 2, and g a chosen metric in the conformal
class. Set X = M x [0, &9),, X =M x (0, &0)r, and identify M with M x {0} C X. By
an even Poincaré metric in normal form relative to g, we will mean a metric g+ on b , for
some &g > 0, of the form

dr’ + g
3.1) gr ="
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where g, is a smooth 1-parameter family of metrics on M for which g¢o = g, such that
the Taylor expansion of g, at r = 0 is even, and satisfying the following:

(1) If n is odd, then Ric(g+) + ng4 vanishes to infinite order at r = 0.

(2) If n is even, then |Ric(g4) +ngyle, = O(™).

(For n even, the definition in [15] includes an additional trace condition that will not
be relevant here.) An even Poincaré metric in normal form relative to g exists and g, is
unique, to infinite order if # is odd, and modulo O(r") if n is even. Even Poincaré metrics
in normal form relative to conformally related metrics are related, to infinite order if n is
odd, and modulo O(r") if n is even, by an even diffeomorphism between neighborhoods
of M in X which restricts to the identity on M. See [15]. Set g = r2g, = dr? + g,. We
view M = 0X as the boundary at infinity relative to g .

Let ¥ C M be a smooth embedded submanifold of dimension k, 1 <k <n — 1. Let
Y*+1 c X be a smooth submanifold which is transverse to M and satisfies Y N M = X.
We describe Y near X in terms of a 1-parameter family of sections of the g-normal bun-
dle N¥ of ¥ in M as follows: the normal exponential map of ¥ with respect to g,
denoted expy;, defines a diffeomorphism from a neighborhood of the zero section in N X
to a neighborhood of ¥ in M. For r > 0 small, let ¥, C M denote the slice of Y at
height r, defined by Y N (M x {r}) = Y, x {r}. Then Y, is a smooth submanifold of M
of dimension k and Yy = X. For each r, there is a unique section U, € I'(N X) so that
exps{U,(p) : p € £} = Y,. This defines a smooth 1-parameter family U, of sections
of N X for which, near X, we have

(3.2) Y = {(expg Ur(p).7) : p € .1 = 0}.

In particular, Uy = 0. The submanifolds ¥ C X that we consider will all be orthogonal
to M along X with respect to g. Thus the tangent bundle to Y along ¥ is TX & span 9,,
and the normal bundle to Y along ¥ can be identified with N 3. Orthogonality of Y to M
along ¥ is equivalent to the condition 9, U, |,—o = 0, i.e., U, = O(r?).

The inverse normal exponential map determines a boundary identification diffeomor-
phism ¢ from a neighborhood of ¥ in Y to a neighborhood of ¥ in ¥ x [0, g9) by

¥ (g.r) = (m((expg)'q). 7).

where (¢,7r) €Y C M x[0,&) and : N ¥ — X is the projection onto the base. It is easily
seen that ¥ is indeed a diffeomorphism if Y is transverse to M.

It is useful to realize ¥ explicitly in terms of geodesic normal coordinates. Choose a
local coordinate system {x* : 1 < o < k} for an open subset V C ¥ and a local frame
{ew(x) :k+1<a <n)for NE|y.Let {u® :k + 1 <o’ <n} denote the corresponding
linear coordinates on the fibers of N X|y. The map expz(u“/ea/ (x)) — (x, u) defines
a geodesic normal coordinate system (x%,u®) in a neighborhood W of 'V in M, with
respect to which ¥ is given by u® = 0. For each (x, u), the curve 7 —> (x, 7u) is a geodesic
for g normal to X. In particular, in these coordinates the mixed metric components gy
vanish on V, so that (x, u) is an adapted coordinate system as defined in §2. Extend
the coordinates (x,u) to W x [0, g9) C X to be constant in r. In these coordinates, the
diffeomorphism v is given by ¥ (x,u,r) = (x,r) for (x,u,r) € Y. The coordinates (x, r)
restrict to a coordinate system on Y. If U, is a 1-parameter family of sections of N ¥ and
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we define u® (x,r) by U,(x) = u® (x, r)eq(x), then the description (3.2) of Y is the
same as saying that, in the coordinates (x,u,r) on X, Y is the graph u? = u? (x,r).
The notation u® (x, r) can therefore be interpreted as the components of U, in the frame
ea(x) = g, or equivalently as the graphing function u® = u® (x, r) for Y in these
coordinates. When we write Ur"‘/, the index is interpreted as an abstract index indicating
that U, is a section of N 2.

We now impose the condition that Y is asymptotically minimal with respect to the
metric g4. This becomes a system of partial differential equations on the normal vector
fields U,. Recall that minimality of Y is equivalent to the statement that the mean curva-
ture vector field of Y with respect to g4 obeys Hy = 0.

Proposition 3.1. Let g be an even Poincaré metric in normal form and X a submanifold
of M as above.

(1) If k is odd, then there exists U, whose Taylor expansion in r at r = 0 is even and for
which Hy vanishes to infinite order. Such U, is unique to infinite order. If n is even,
the Taylor expansion of U, modulo O(r"+?2) is independent of the O(r™) ambiguity
ingy.

(2) If k is even, then there exists U, so that |Hy|g = O(rk*2). The Taylor expansion
of U, modulo O(r¥*2) is uniquely determined (and is independent of the O(r")
ambiguity in g, if n is even), and is even modulo O (r¥+2).

Proposition 3.1 is proved in Theorem 3.1 of [31] for k even. It is straightforward to
verify that the same sort of analysis can be used to prove Proposition 3.1 for k odd. One
expresses Y as a graph in local coordinates and then carries out a perturbative analysis
of the minimal submanifold equation order by order. The main point is that the equation
respects parity and has indicial roots of 0 and k + 2. The freedom at the indicial root of 0
corresponds to the freedom to prescribe X arbitrarily. When & is odd, the freedom at the
indicial root of k + 2 is fixed by requiring the expansion of U, to be even. When k is even,
the indicial root of k + 2 generates an obstruction to existence of a smooth solution. Note
that U, = O(r?); a minimal submanifold is orthogonal to M along X.

If ¢ is an even diffeomorphism that restricts to the identity on M and pulls back g to
another even Poincaré metric g+ in normal form relative to a conformally related metric,
then ¢ pulls back the minimal extension Y for g4 to that for g4, to infinite order if k
is odd, and modulo O(rk+2) if k is even. This follows from the isometry invariance of
the minimality condition, the parity preservation of ¢, and the uniqueness of Y. In this
sense Y is conformally invariant, to infinite order if k and n are odd, to order o@(r™"t?)
if k is odd and # is even, and to order O(r¥*+2) if k is even.

In case (2), the condition |Hy|z = O(r**2) only determines the expansion of U,
modulo O(r¥+2). Here and in Section 4, we will take the expansion to be even to infinite
order, so that the full Taylor expansion of U, is even in all cases. We write the expansion
of U, in the form

(3.3) U, = U(z)rz + U P ,

where the U,y are globally and invariantly defined sections of N X determined by the
choice of metric g in the conformal class, up to the order specified by Proposition 3.1.
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The first coefficient is given by U(z) = %H , where H is the mean curvature vector of
3 C M with respect to g; see (5.1) of [31].

Let 4+ denote the metric on Y induced by g+. Since g+ and Y are invariant up to
diffeomorphism to the orders stated above under conformal change of g, it follows that /2
is likewise invariant up to diffeomorphism. Set 4 = r2h, so that & is the metric induced
by g = dr? + g,. In terms of the coordinates (x®,r) on Y introduced above, his given by

Eaﬁ = 8ap t+ 2ga’(aua,ﬂ) + 8u'p ua/,a uﬂ/,ﬁ»
(3.4) E(xO = Saa’ ua/,r + 8o’ B’ ua/,ot uﬁ/,r»
iloo =1+ ga/lg/ ua,,r Mﬂ/,r.

We use a “0” index for the r-direction. The components of i_z_and the derivatives of u
are evaluated at (x, r). The above formulas for components of & were obtained from the
pullback of g upon writing

gr = 8ap(x,u,1) dx®dxP + 2gge (x,u, r) dx®du® + Sarp(x,u, 1) du® du?'.

In (3.4), all g;; are understood to be evaluated at (x,u(x,r),r). Since the expansions of g,
and u(x, r) are even in r, it follows upon inspection of (3.4) that the Taylor expansions
of hgg and hoo in 7 at 7 = 0 are even and the Taylor expansion of /14 is odd. The following
proposition is easily verified from (3.4), Proposition 3.1, and the formal determination of
the Poincaré metric (3.1).

Proposition 3.2.

(1) If n and k are both odd, then the infinite order Taylor expansions of /jla/g, hao, and
hoo are uniquely determined by X and g.

(2) If nis even and k is odd, then the Taylor expansions of }_zaﬂ and hoo mod O(r") and
of hao mod O(r"t1) are independent of the O(r™) ambiguity in g, and therefore
are uniquely determined by ¥ and g.

(3) If k is even, then the Taylor expansions of i_za,g and hop mod O(rk*2) and of ho
mod O(rk*3) are independent of the O (r**2) ambiguity in U, (and independent of
the O(r™) ambiguity in g, if n is even), and therefore are uniquely determined by %
and g.

_ Since ggor = O(r?) and u® = O(r?), it is evident from (3.4) that hgo = O(r3) and
hoo = 1 + O(r?). In particular, & is asymptotically hyperbolic since |d r|% =latr =0.

4. Extrinsic GJMS operators

As described in the introduction, it was noted in [33] that the GIMS construction can
be carried out for general asymptotically hyperbolic metrics. (In this paper, asymptoti-
cally hyperbolic metrics have smooth compactifications.) The conclusions of this general
GJMS/Q-curvature construction are summarized in the following proposition. We for-
mulate the characterization of the operators as obstructions to the existence of smooth
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expansions for eigenfunctions of the Laplacian of the asymptotically hyperbolic met-
ric, rather than by the equivalent characterization as log coefficients in the expansions
of non-smooth solutions. Our choice of notation is governed by our intended application
to extrinsic GJMS operators.

Proposition 4.1. Ler Y5+ be a manifold with boundary $*, k > 1. Let h. be an asymp-

totically hyperbolic metric on Y. Lethbea representative of the conformal infinity of h,
and let r be a defining function for ¥ satisfying r*hy |rs = h. Let £ € N.

(1) Given f e C®(X), there exists F € C®(Y), uniquely determined modulo O(r2%),
so that F|x = f and u = r¥/2>7tF satisfies

(Ah+ + ((k/2)2 - gz))u — O(Vk/z_w).
The function
@D (2 B+ (R/27 = D)

is independent of the O(r2Y) ambiguity in F, independent of the choice of r, and
can be written as ag Pyg f, where a[l = (—1)¢22¢=D ¢ — 1)12 and P,y is a formally
self-adjoint differential operator on ¥ with leading term (—Ap)t. If h = €2®h for
w € C*®(X), then

4.2) Py = K200 5 p, o ok/2-00

(2) There exists a function Q,q, which depends polynomially on k, so that Pyl =

~

(k/2—€)Qxy. Fork even, if h = e®>*h for w € C®(X), then
e+ 0 = Ok + Pro.

Remark 4.2. As written, the definition of Q¢ in (2) fails in the critical case 2¢ = k,
where the factor k/2 — £ vanishes. Branson’s original definition was by analytic con-
tinuation in k. There are now other constructions avoiding this analytic continuation
[5,14,16,21,22,33].

Remark 4.3. If k is even, the properties stated in Proposition 4.1 imply that | 5, Ok dvy is
conformally invariant. This invariant can be identified: the volume expansion for /i reads

volp {r > ¢} = coe ¥ +ere b e 4 Llog% + 0(1),

where r is the geodesic defining function determined by /. Then
/ Ok dvy = b L, where by = (—=1)*/225"1(k/2)1 (k/2 = 1)!.
=

This is proved for asymptotically Poincaré—Einstein metrics in [33] and [14], and both
proofs are valid for general asymptotically hyperbolic metrics. The invariant L was stud-
iedin [31,37,40] and interpreted as a conformally invariant generalization of the Willmore
energy of X in the case that s is the induced metric on an asymptotically minimal sub-
manifold of an asymptotically Poincaré—Einstein space.
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Remark 4.4. The noncritical Q-curvatures Q¢ for £ # k/2 satisfy the transformation
law that follows from (4.2); namely,

¢ 0a¢ = Qa¢ + (k/2 = )1 K0 pyy (K270,

where Igzg = Py — (k/2—4£)Qoy4.

Remark 4.5. In the setting of Proposition 4.1, there are nonzero obstruction operators
for generic k4 also for £ € 1/2 + N. These vanish by parity considerations for the /.
induced by even Poincaré metrics on submanifolds defined by even Us,..

Remark 4.6. For k = 2, one has P, = —A for any asymptotically hyperbolic metric.

In Proposition 4.1, it is clear that if Y is a second manifold with boundary ¥ and if
@: Y >Yisa diffeomorphism that restricts to the identity on X, then for each represen-
tative /1, the operators P, generated by ¢*/h 4 are the same as those generated by /. In
particular, one can take /4 to be in normal form relative to /. In the next lemma, we calcu-
late explicitly the operators P, and P, for a general asymptotically hyperbolic metric /.
that is even and in normal form.

Lemma 4.7. Let
hy =r~2(dr® + hy)

be an asymptotically hyperbolic metric in normal form on X x (0, gg), where X has dimen-
sion k. Suppose h, has the form

hy =h+hor? + har* + -+ .

Then
k-2
P, =—-A+ — Q2.
“4.3) k—4
Py = A% 4 V(T VP) + —— Q4
where
Q2 = _trh27

k
Q4 = 8trhy + Altrhy) — 4|hs|? + E(trhz)z.

Proof. It is useful to introduce p = r? since /4 is even. Then hy = dp?/(4p?) + h,/p,
where

At p = 0, we have
(45) h/ = hz and h// = 2/’!4,

where " = 0.
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The operator Ay, takes the form
Ap, =4p*02 +2Q2—k)pd, + 2p*h* W50, + p Ap,.
Straightforward calculation shows that
@.6) 220 (A, + ((k/2)* = £3) o k27t
=4p02 +4(1— L+ $ph® hg) 9, + Ay, + (k/2— O hl .

Setting £ = 1 and p = 0 and recalling the definition of P, in Proposition 4.1 give P, =
—A — (k/2 — 1) trhy, as claimed.

When £ = 2, evaluating the equation

rRR2 (A 4+ (k)22 = ) (FPEF) =0

at p = 0 gives

4.7) 4F = (A n trh2>F.

Upon differentiating at p = 0, the B%F terms drop out and one sees that (4.1) equals
k k—4 /
(a+ 3 wh')F + ((An,) + 5 (07 h) )F.
Now

(M) =—0)* V2, — (Vg™ — L v (10)Pp) V.

4.8)
(haﬁ h:xﬂ)/ — trh// _ |h/|2.

Substituting (4.5), (4.7), (4.8) and multiplying by a, ! = 4 give

k—4

k
Po=(A+ 3 wha) (A + twh)
—4(h)*P V2, — 4(Vp(ha)™ — IV (h2)Pp) Vi + 2(k — 4) 2trhy — |2 [).
Elementary manipulations reduce this to the expression for P4 written in (4.3). ]

Later we will need the following lemma, which identifies the contribution of /5,
to P 20

Lemma 4.8. Suppose we are in the setting of Lemma 4.7. Let £ > 1. Write Poy = 1325 +
(k/2 —£)Qx¢. Then P,y depends only on h,j for j < £, and

4.9) Qo¢ = Lla; " trhye + ézz,

where Qoze also depends only on hyj for j < L.



Extrinsic GIMS operators for submanifolds 1407

Proof. Let f, F and u be as in the statement of Proposition 4.1. Introduce p = r? as in

the proof of Lemma 4.7. Equation (4.6) implies that
(4p02 +4(1 — £+ 3 ph*Ph5) 0, + A, + (k/2— Oh*P b 5) F = p*7' G,

where G|po—9 = ay P f. Differentiate £ — 1 times with respect to p and set p = 0. The
right-hand side becomes (¢ — 1)!ay Py¢ f . The left-hand side depends only on 9% F|,=o

for j < £ and 8£hp| o=0 for j < £. All the derivatives 8£F |p=0 for j < { are determined
and depend only on /,; for j < £. The only term which involves 8f;hp| p=0 arises when

all the derivatives hit h/, p in the zeroth order term (k/2 —£)h*h h), g I It follows that 132 ¢
depends only on h,; for j < £. Equation (4.9) for Q¢ follows upon equating the zeroth
order term on both sides and using that af,h,,| p=0 = L1 hyy. L]

The original GIMS operators were defined by taking /. to be a Poincaré metric for &.
For a Poincaré metric, the coefficients are given by

(hZ)otﬂ = _Paﬂv

(ha)op = % (- % +Po Pyg).
where the Schouten and Bach tensors refer to the metric /2 on X. In this case, (4.3) reduces
to the formulas for the usual Yamabe and Paneitz operators.

Now return to the setting of Section 3. So % is a submanifold of (M", g) with
induced metric &, g4 is an even Poincaré metric in normal form relative to (M, g) on
X =M x (0, &9), Ykﬂ) is an asymptotically minimal extension of X to X, and & is
the metric induced on Y by g4. Since g4+ was chosen to be in normal form relative
to the chosen metric g, the defining function r on X is the geodesic defining function
for g+ determined by g, and we denote also by r its restriction to Y. The compactification
h = r2h is uniquely determined to the orders stated in Proposition 3.2.

Proof of Theorem 1.1 (except case (¢) for £ = k/2 + 1). We prove here cases (a) and (b),
and case (c) with £ < k/2. The proof for case (c) with £ = k/2 + 1 will be given after
Lemma 5.5 below.

Since h 4 is asymptotically hyperbolic, we can construct the operators P, and associ-
ated Q-curvatures according to Proposition 4.1. These will depend only on the geometry
of ¥ C (M, g) so long as the numbers of derivatives applied to the components of /& are
constrained as in the statement of Proposition 3.2. In this case, invariance of &4 up to
diffeomorphism under conformal change of g as discussed in Section 3 implies that the
resulting operators satisfy (1.1).

Next we show that for the stated ranges of £, the operators P,y of Proposition 4.1
associated to s are uniquely determined independently of the ambiguities in g, and U,..
If n and k are both odd, there are no ambiguities, so the operators are well-defined for
all £. This proves case (a).

Since hy = r~2h, we have

(4.10) Ap, =r?Ap+ (L =k)rh 9;r 0; = r>h" (0} =T 0m) + (1 —k)r k" 3;r 0;.
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It follows that the differential operator
@.11) rRH o (Mg, + ((/2)? — 2)) o rk/27

has smooth coefficients up to = 0 which involve / only through 4% and the Christoffel
symbols I:Z’

The construction of the obstruction operator P,, involves differentiating the opera-
tor (4.11) up to 2¢ times at » = 0. By hypothesis, 2¢ < n if n is even and 2¢ < k + 2
if k is even. So according to Proposition 3.2, all derivatives of all components of & of
orders at most 2¢ are determined independently of the ambiguities in U, and g,. Thus all
derivatives of the 4"/ terms which can enter are independent of these ambiguities.

The Christoffel symbols involve an extra derivative of i. The Christoffel symbol term
in (4.10) is —r2ni l:l’.;f 9. Since this includes the factor r2 and only the first order dif-
ferentiation d,,, it follows that each occurrence of I_‘l’-;? in the operator (4.11) is multiplied
by a factor of either r or r2. So if (4.11) is differentiated at most 2 times at » = 0,
at most 2¢ — 1 of the differentiations can hit F';’ Thus again the maximum number of
differentiations of a component of 7 is 2.

We now explain why the operators P,; are natural. The isometry invariance is a
consequence of the uniqueness and invariance of the Poincaré metric and the minimal
submanifold extension, and of the GJMS construction as formulated in Proposition 4.1.
The polynomial dependence on the inverse and the derivatives of the metric can be seen
by following through each step of the construction as outlined below.

Our data is the metric g, written in terms of an adapted coordinate system (x, u)
for 3. First consider the Poincaré metric for g. Proposition 3.5 of [15] asserts that each
determined derivative ;. grlr=0 of g, in (3.1) can be written as a linear combination of
contractions of Ricci curvature and covariant derivatives of Ricci curvature of the initial
metric g. Of course, this step is independent of X.

Next consider the minimal submanifold Y. If (x, u) is an adapted coordinate sys-
tem, then Y is written as a graph u = u(x, r) in (x, u, r) space. The graphing function
u(x, r) is determined by the minimal submanifold equation, which is written explic-
itly in any adapted coordinate system in (2.11) of [32] in terms of the metric g, and
the induced metric h glven by (3.4). It is easily verified from (3.4) that the derivatives
0} 'h |r=0 of components of h can be expressed as universal polynomials in derivatives of
components of g, and its inverse and derivatives of components of u(x, r). The Taylor
expansion of u(x, r) is derived inductively from the minimal submanifold equation in
terms of derivatives of & and g, and previously determined Taylor coefficients of u(x, r),
beginning with u(x, 0) = 0. It follows that each component of each determined derivative
07 u|,—o can be expressed as a universal polynomial in derivatives of the initial metric g
and its inverse. Hence the same is true for the components of the determined deriva-
tives 07 }_z|r=0.

Next consider the GIMS algorithm applied to the induced metric 7 = r~2h. This is
perhaps best analyzed by first putting /4 into normal form relative to the metric 4 on X
induced by g. The passage to normal form is affected (see Section 5 of [30]) by solving the
eikonal equation |d r|~2 hy = = 1 for the geodesic defining function 7 and then straightening
the flow of the vector ﬁeld grad;zy,, 7 by solving ordinary differential equations. The
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Taylor expansions of the solutions for both steps can be inductively calculated from the
equations in terms of the expansions of the components of 4. It therefore follows that
when written in normal form,

(4.12) hy = F2(di? + 7).

the components of each determined derivative 9 h #|7=0 can be written as universal poly-
nomials in derivatives of the initial metric g and its inverse. See Lemmas 5.1 and 5.5
below for some explicit special cases.

Finally, when applied to a metric in normal form (4.12), the GJIMS algorithm produces
operators whose coefficients can be written polynomially in terms of derivatives of the
Taylor coefficients of /, as in Lemmas 4.7 and 4.8. [

As described in the introduction, if g is Einstein, then a Poincaré metric is given
by (1.3). If in addition ¥ C (M, g) is minimal, then Y = ¥ X [0, &¢) is a minimal exten-
sion. We recall the argument that ¥ is minimal for completeness. Upon setting s = —logr,
the metric g+ takes the form

g+ =ds* + (e — %Ae_s)zg.

But it is a general fact that if ¥ is a minimal submanifold of a Riemannian manifold
(M, g), then ¥ x R is a minimal submanifold of M x R with respect to any warped
product metric g+ of the form g = ds? + A(s)g, where s denotes the variable in R and
A(s) is a positive function.

Proof of Theorem 1.2. Recall that & is defined to be the pull back of g4 given by (1.3)
to Y = X x [0, &9). Clearly, this gives

(4.13) hy =r72(dr* + (1 — 2 1r%)%h).

If g is an Einstein metric on M" satisfying Ric(g) = A(n — 1)g, then its usual GJIMS
operators are given by the same formula (1.4) with Ay replaced by A, and k replaced
by n. There are now several proofs of this fact. In Chapter 7 of [15], it is shown that
in the Einstein case, the recursion for the GIMS operators reduces to a recursion for a
sequence of polynomials of the one variable A, /A. The last proof presented there solves
this recursion explicitly to obtain the factorization. This proof carries over verbatim for
the operators determined by the asymptotically hyperbolic metric i given by (4.13). The
relevant point is that in (1.3), the metric g is independent of r. Since 44 in (4.13) is given
by the same formula with /& independent of r, the same proof applies. This proves (1.4).
The formula for Q follows upon inspecting the constant term in (1.4). ]

Remark 4.9. Inspection of the constant term in the factorization (1.4) shows that the O,/
for general £ > 1 are given by

2(—1

050 = 2 1‘[1(’§—£+j).
I
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If n is odd, then (1.3) is the unique even Poincaré metric in normal form for g to
infinite order. But if n is even, there are others, differing at order n. Proposition 7.5 of [15]
shows that the canonical Poincaré metric g4 defined by (1.3) is conformally invariant
in the sense that if & = ¢?®g is a conformally related Einstein metric with Ric(g) =
A(n — 1)g, then g4 and 24 = r2(dr? + (1 — %sz)zg) are diffeomorphic to infinite
order by a diffeomorphism that restricts to the identity on M. The diffeomorphism is
unique to infinite order, since the diffeomorphism putting any asymptotically hyperbolic
metric into normal form relative to a given representative for the conformal infinity is
unique.

If k is odd, then Y = ¥ X [0, g¢) is to infinite order the unique even minimal exten-
sion. If k is even, the fact that Y is smooth implies that the obstruction to existence of a
smooth minimal extension of ¥ vanishes, see Proposition 4.5 in [31]. But there are other
infinite order minimal extensions, corresponding to different choices of the freedom in U,
at order k + 2. The following theorem shows that the canonical minimal extension is
conformally invariant.

Theorem 4.10. Let (M, g) be Einstein and let § = e>® g be a conformally related Einstein
metric. Suppose ¥ C M is minimal relative to both g and g. Then the diffeomorphism that
pulls back g+ to g+ preserves X X [0, &9) to infinite order

For k odd, this follows from the uniqueness to infinite order of the even minimal
extension. We will prove Theorem 4.10 for k even in Section 6 using the realization of
the minimal extension in the ambient space. So for minimal submanifolds ¥ of Einstein
manifolds (M, g), for all k and n the canonical choices of both g+ and Y are invariant to
infinite order up to diffeomorphism.

Proof of Theorem 1.3. Theorem 4.10 implies that the metrics 44 and hA+ induced on X x
[0,&0) by g+ and g+ are diffeomorphic to infinite order. The diffeomorphism invariance in
Proposition 4.1 shows that the operators P,¢ and 132 ¢ arising from the GIMS construction
for hy and l?+ satisfy (1.1). Theorem 1.2 shows that these operators are given by the
factorization formula (1.4). [ ]

We close this section by identifying the extrinsic operators in another special case:
when g is locally conformally flat and X is umbilic. Any locally conformally flat mani-
fold (M, [g]), of any dimension n > 3, is the conformal infinity of a hyperbolic metric g+
in a deleted neighborhood of M in X = M x [0, ¢); see Proposition 7.2 and Theorem 7.4
in [15]. The hyperbolic metric g4 is uniquely determined by (M, [g]) up to a diffeomor-
phism restricting to the identity on M. There is an explicit formula for g when written
in normal form relative to any representative g, but we will not need this formula.

Suppose ¥ C (M, [g]) is umbilic of dimension k, 2 < k < n — 1. (We rule out the
case k = 1 because the umbilic condition is vacuous in this case.) We claim that there
is an extension Y in a neighborhood of ¥ in X which is totally geodesic with respect
to g+, and such a Y is unique. To see this, choose locally a representative go € [g] of
constant sectional curvature one on an open set U C M and an isometric embedding
of (U, go) into the round n-sphere. Use this to regard U C S” = dB"*!. Now X can be
realized locally as a neighborhood of U in B”*! and g as the standard hyperbolic metric

m |dx|?. A connected component of & N U is a piece of a sphere S¥ € U C §™. The
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sphere S¥ extends into B”*! as a spherical cap intersecting the boundary orthogonally.
This extension is the unique totally geodesic extension into the hyperbolic ball.

Since the hyperbolic metric g4+ and the totally geodesic extension Y are uniquely
determined by (M, [g]) and ¥ up to diffeomorphism, the induced metric ~4+ on Y is
too. So the GJIMS construction on (Y, i) produces extrinsic operators P,y satisfying the
conformal covariance relation (1.1) for all £ > 1 and for alln > 3 and k > 2.

Consider now the intrinsic GIMS operators for the induced conformal class on %,
which we denote by P,;. We have to rule out k = 1 here too since intrinsic operators do
not exist on 1-manifolds. For k = 2, the only intrinsic operator is P, = —A = P, (recall
Remark 4.6). So suppose k > 3. If as above we choose locally a round representative g,
then since ¥ N U is a piece of a sphere, the metric induced by go on ¥ N U is Einstein.
So the induced conformal class contains (local) Einstein representatives. As mentioned in
the introduction and discussed in Chapter 7 of [15], for such a conformal class, operators
can be defined for all £ > 1 for all representatives so that the conformal covariance relation
holds. For a local Einstein representative, the operator P, is given by the factorization
formula (1.4) with P, on the left-hand side replaced by Py

Proposition 4.11. Let g be locally conformally flat and let ¥ C (M, g) be umbilic of
dimension k > 3. For any { > 1, the minimal submanifold extrinsic operator P,y equals
the intrinsic operator P ,y.

Proof. Since both operators satisfy the same covariance relation, it suffices to prove the
equality for a single representative, and it suffices to prove it locally. Take gy as above.
The extrinsic operator P is constructed via the GIMS algorithm on (Y, 24). Since Y is
a piece of a totally geodesic sphere, the induced metric .4 is hyperbolic and thus is the
canonical Poincaré metric associated to the Einstein metric induced by g¢ on X. So Py
and P,y are determined by the same construction. [

5. The operators P, and P,

‘We now turn to the derivation of formulas for the extrinsic GIMS operators P, and P4. We
intend to use Lemma 4.7 for this purpose. But /4 is not in normal form in the boundary
identification ¥: Y — ¥ X [0, &) introduced in Section 3. This is clear from (3.4): the
equations /49 = 0, hgo = 1 need not hold. The defining function r on Y is the restriction
of a geodesic defining function for g4 on X but need not be a geodesic defining function
for h4. We must first rewrite /4 in normal form in order to apply Lemma 4.7.

By Proposition 3.2 and the statement immediately thereafter, the beginning terms of h
in (3.4) can be written in the following form:

iloeﬁ = hog + Daog r2 4+ Kaﬂr4 + 0(r4),
(5.1) hao = Aar> + 0(r?),

hoo = 1 + Er? + Fr* 4+ o(r*),

relative to the boundary identification v, for some coefficients Dyg, Ky, Ao, E, and F
defined on X.
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Lemma 5.1. Let hy = r~2h be an asymptotically hyperbolic metric on S x (0, o), with
Taylor coefficients given by (5.1). When written in normal form (4.12) with respect to the
same representative h on %, the Taylor expansion of hy has the form

(52) E?=h+};2;2+ﬁ4f4+,

with

(5 3) (52)04,8 = Dotﬂ + %Ehaﬂv

(ha)ap = Kop = 3VaAp) + §Vap E + (3 F — 16 E7) hap.

Proof. The existence result for the normal form states that there exists a unique change
of variables x = X(x,r), r = 7(x, r) with X(x,0) = x, 7 = r + O(r?), such that /i, is
in normal form (4.12) relative to (X, 7). It is tedious but straightforward to verify that 4
takes the claimed form modulo higher order terms under the change

X% =34 j(— A+ [ VUE)F,
r=F—3EP+(-3F+%E>)P.
In carrying out this verification, note that (5.1) refers to the coefficients in
h = hep(x,r)dx* dxPB + 2hao(x,r) dx*dr + hoo(x,r) dr?,

i.e., hog and the coefficients of the powers of r in (5.1) are evaluated at x. Similarly,
in (5.2) one has

hi = (hap (X) + (h2)ap (R) 72 + (ha)ap () F* + ) dFd 5P,
i.e., h in (5.2) and the coefficients in (5.3) are evaluated at X. [ ]
Observe that /14 enters in (4.4) only via its trace. Equation (5.3) gives
(5.4) trhy = Ko® — V¥ Ay + § AE + X (F - 2 E?).

The coefficients Dyg, Kog, E, and F in (5.1) were identified in (5.15) and (5.16)
of [31] for the metrics A4 that are induced on minimal submanifolds Y by Poincaré met-
rics g+. (In [31], Ko was called Qgg, and the convention HY = L% was used.) These
coefficients were calculated in [31] by first evaluating the coefficients Uy,) and Uy in the
expansion (3.3) of the normal graph U,, then Taylor expanding (3.4) and inserting the
expansion of U, and the Poincaré metric expansion of g,. The same process gives Ag;
only the leading term for /40 in (3.4) is needed for this. The formulas are:

Dap=— H" Laper — Pup.
Kap = = 2Lapa Uy +§ Ruappr H HP + { LG, Ly g Ho HP — 38 VarPug HY
+ L% oPgy” Ho + 535 Bap + +Pa’ Pip —Paria V) HY + Vo H* Vg Hop,
Aa= —Pow H* + Y Hy Vo HY,
E=|HP,
F=—PygH"HP +8HyUY).

(5.5)
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The U4y expression appearing in Kyg and F is defined in (3.3). Its explicit form is given
in Proposition 5.5 of [31], but will not be needed here, since the occurrences in Ko* and F
cancel in (5.4).

Theorem 5.2. The first two extrinsic GIMS operators P,, Py are given by
Pr=—A+=—= 0,

(5.6) b—a
Py= A+ V' (Typ V) + —— Qu,

where
k
Q2 = Paa + 5 |H|25

, 1
Tup = 4Pap + 4H Loper — [ = 2P, + 5 (2 =2k + 41H ] hap.

2

k , 1
6T Qu= —A(Pa“ +3 |H|2) ~2|Pap + H* Lagar — 5 | H[* hap

k k 2
+ zlpaa/ - VaHa/lz + 5<Paa + 5 |H|2)

—2Wap HY HP —4C% HY — B%,.

n—4

In these formulas, L and H denote the second fundamental form and the mean curvature
vector of ¥ C M, all curvature quantities are of the background metric g, Vo denotes the
induced connection on T and NX, and A = V*V,.

Proof. Substitution of (5.5) into (5.3) gives

~ / 1
(5.8) (h2)ap = —(Pap + H Lapar = 5 |H ? hap)-

Taking the trace gives
A o k 2
(5.9) trhy = —(Pa + 514 )

Substituting these into the first two formulas of (4.4) with &, replaced by hy gives imme-
diately the formulas for Q and T,g in (5.7).
We claim next that

(5.10) 8trhy = 2|Pye — VaHor|> + 2|ha|> —2W 0 HY HP'
2
n—4
This can be verified by direct computation upon substituting (5.5) into (5.4). All of the

computations are straightforward except for the following point. Note from (5.4) that tr 4
includes the term — % V*Ay. Clearly,

—4C%y HY — BY,.

VeAy = —H* VPyq — P VEH® + L|VH> + L Hy AHY.
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In the first term, the V¢ denotes the induced connection on the bundle TX ® N X. One
rewrites this in terms of the Levi-Civita connection ¢V using the relation

VoPgor = VoPgor + Lﬁﬂpﬂ’a’ - Lza/PﬂV’

where the first term on the right-hand side is interpreted as the ¢’ component of 8§ VP.
This relation is a consequence of the definitions of the second fundamental form and the
induced connection. See (2.2) of [31] and the discussion there for elaboration of this point.

Now substituting (5.8), (5.9), and (5.10) into (4.4) gives the formula for Q4 written
in (5.7). |

The derivation of Theorem 5.2 automatically produces formulas (5.6) for P, and P4
written in terms of curvature of the background metric g. This is advantageous for verify-
ing the factorization formula of Theorem 1.2 when g is Einstein and ¥ is minimal, since
in that case all the terms involving the second fundamental form drop out, the Schouten
tensor is constant, and the Bach tensor vanishes. This approach also avoids application of
the Gauss—Codazzi equations. However, it can also be useful to express the operators in
terms of intrinsic geometry, for instance to compare with the intrinsic operators on ¥ and
thereby to verify directly the conformal transformation law (1.1). This cannot be done in
all cases, though. Intrinsic operators do not exist when k = 1, and intrinsic P4 does not
exist when k = 2.

In the rest of this section, we will denote intrinsic quantities for the induced metric &
on X with an overline. For instance, |5a5 is the Schouten tensor and R the scalar curvature
of h. Set

Ji= R
T2k 1)
so that J = P,% if k > 2. Recall that our convention is that V,, denotes the induced con-

nection on 7Y or N X, so we do not need the overline on A = V*V,,. Thus the intrinsic
Yamabe and Paneitz operators on X are written

_ k—2_
Py=—-A+—"1,

2
— k—4 —
P4=A2+Va(TaﬂVﬂ)+T Qa,

where

Tap = 4Pag — (k —2) Thap.

_ - k-
Q4=—AJ—ﬂm2+EJ?

Extrinsic geometry enters via the following three objects. The (manifestly conformally
invariant) Fialkow tensor [17] is

1
Fop = 2

_Z(waiﬁWV— wyp” — Ghap),
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where

1 o
G: (|L|2 - Waﬁaﬂ) = Faa-

T2k 1)
Set :
Dyo’ = m (VﬂLaﬂa’ + Waﬂa’ﬂ)-

Theorem 5.3. The extrinsic operators P, and P4 of Theorem 5.2 can be written

— k=2
(5.11) Pr=Py+—=G, for k > 1,
_ - k—4 ~
(5.12) Py= P4+ V(T VFP) + — Q4, fork>2,
where

faﬂ =4Fup — (k —Z)Ghaﬂ,
~ k _ _
(5.13) Q4=—AG—2|F|2+562—4FaﬂPaﬁ+kGJ+2|D|2
’ ’ ’ 2
—2HYHP' W g — 4 HY C% ey — B

In particular,

0,=J+G,
(5.14) Tup = Tap + Tup,
0s= 04+ 04
Proof. The Gauss—Codazzi equations imply the following relations (see [17]):
(5.15) Pop + H Lopor — % |H [ hap = Pup + Fap,
(5.16) Paor — Vo Hy = Dgy.

The trace of the first equation gives

(5.17) Pa"‘~|—§|H|2:J+G.

Combining (5.17) with (5.6) and (5.7) shows that
P2:—A+$Q2:—A+$(J+G):FZ—i—%G.

This proves (5.11).

For (5.12), it suffices to show that Topg and Q4 in (5.7) satisfy (5.14). Using (5.15)

and (5.17) in (5.7) gives
_ 1o
Top = 4<P¢xﬂ + Fop + §|H| haﬂ)
J k 2 1 2 2
—((k—2)<J+G—5|H| )+§(k — 2k + 4)|H| )haﬂ

= Taﬁ + Taﬂ.
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Finally, substituting (5.15), (5.16), and (5.17) in (5.7) gives

- _ k -
Q4 =—AWU+6G) —2[P+F*+2|D* + 5 (I +G)°
2

—2W ap HY HP —4C% HY — o

B%,.

Expanding and collecting terms, one sees that this equals Q 4 + Q4. ]

Remark 5.4. If we set
~ — ~ k—4 ~
Py=Py— Py =V (TupV’) + —— Oa.

it follows from the conformal covariance of P4 and P4 that under a conformal change
2 =e?**gon M, we have

134 = oK2Dols o o fkI2 Dol for k> 3,
(5.18) I
e*@= 0, = 04 + Py(0lx), for k = 4.

Reversing the logic, these conformal transformation laws can be checked directly and
thereby used to verify by direct calculation the conformal covariance of Py.

Note that the second and third terms —2|F|? + %GZ on the first line of formula (5.13)
for Q4 are conformally invariant. So (5.18) still holds if they are omitted. However, they
are needed to obtain the factorization in the case of minimal submanifolds of Einstein
manifolds.

We next prove Theorem 1.1 in the remaining case (c) for £ = k/2 + 1. The following
lemma is the key. It generalizes to higher order the cancellation of the occurrences of Uy

in K,% and F in the formula (5.4) for tr 154.

Lemma 5.5. Let Y be an extension of % described as a normal graph (3.2), (3.3), with
Up) = %H . Let m > 2. When the induced metric h4 on Y is written in the normal

Sform (4.12), (5.2), the contribution of U to h~2m is =2 lo,mga/ U("é/m).

Proof. First consider the Taylor expansions of ﬁaﬁ, hao, and hoo given by (3.4). The
coefficients of orders up to r2™ in l_zaﬁ and Eoo and up to r2m=lin E(xO are the only ones
that can affect fizp,. Staring at (3.4) and recalling that the g;; are evaluated at (x,u(x,r),r)
and that geor = O(r%) and u® = O(r2), one sees that for j < 2m, Um) cannot enter
into the coefficient of r/ in any of ]jlmg, l_zao, or }_100. So we are left with determining the
contribution of Uz, to the r?™ coefficient in l_za,g and l_zoo.

It is clear that Uj,,,) cannot contribute to the r?™ coefficient of the second or third
terms on the right-hand side in the formula for ljlmg in (3.4). To obtain the expansion in r
of the first term gqg (x, u(x, 1), r), first Taylor expand gqg (x,u,r) in r and then expand
in u the resulting coefficients and substitute for each u the expansion of u(x, r) in r. It is
clear that the 2™ coefficient in u(x, r) can only contribute to the 2™ coefficient in the
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resulting expansion when u(x, r) is substituted into the first term g,g (x, u,0). And since
on X we have gog,4' = —2Lopq, it follows that

gap(x,u(x,1),0) = gop(x,0,0) + gop .o (x,0,0) u® (x,r) + Ou?)
= hag(x) — 2 Lo (X) u® (x,7) + O(u?).

So the contribution of Uz, to the r2™ coefficient in ﬁaﬂ is —2Lalga/U°‘/ For hoo,

. 2m)*
substitute
!/ ’ ’
u* , =H%r+---+ 2mu‘z‘2m)r2m_1

into (3.4) to see that the contribution of Uy ) to the r2m coefficient of hog is 4m He U gm).
Set
A=4mHy Uém).

Now we have to transform /4 to normal form as in Lemma 5.1. Let hg?) be the metric
obtained by truncating the expansion of U, at order 2m — 2, i.e., by using

Ur = U(z) 7'2 +--+ U(Zm_z)r(zm_Z).

The above identification of the contribution of U, shows that 1, = th) + r~2k, where

kap = —2Lapar UG,y r>™ + O(r2™+2),
ka0 = OG™"*1),
koo = Ar¥™ 4+ O(r>"*?).

There exists a diffeomorphism ¢ which restricts to the identity on X, which satisfies ¢ *r =
r + O(r?), and for which hsrl) = go*hgf) is in normal form. It follows that

ohi =Y+ 97 (72 k) = r k.
with /,, of the form
(hp)ap = hiy) =2 Lapar Uy 1™ + O(r2"+2),
(g)ao = O(F2"T1),
(hg)oo = 1+ Ar>™ 4+ O(r>™+2),
It is easily verified that the coordinate change

o

A
X =3% r=F-——pmtl

4dm

transforms ¢* /4 to normal form to the same order, with
e = (1) =2 Laper UGy P + 2 gt O(F™+2)) d5*d .
ap 2m) om
Since ﬁ =2Hy U(‘;/m), it follows that the contribution of Uz, to ﬁzm is

~2Lapa Uy + 2 Ha U8 yhap = =2 Lapar Ul .
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Remark 5.6. In the more general context in which odd powers and/or log terms are
allowed in the expansion of U,, the argument of the proof of Lemma 5.5 also identifies
the contribution of these terms to the expansion of 4 in normal form.

Proof of Theorem 1.1 in case (¢c) for £ = k/2 + 1. As in the other cases, it suffices to
show that for k even (and n > k + 2 if n is even), the operator Py, depends only on the
determined coefficients Uy ;) for 2j < k, and not on the undetermined coefficient U 7).
Let (5.2) be the expansion when /. is written in normal form (4.12). Lemma 4.8
shows that Pg4» depends on /g 15 only through tr h k+2. And Lemma 5.5 shows that Uy 4
drops out when calculating tr iz ,, so that tr iz, depends only on the U, ;) for2j <k,
as desired. ]

6. Ambient realization

In this section, we show how to reformulate the minimal extension Y in terms of the
ambient space and use this to prove Theorem 4.10 for k even.

We first recall the ambient space its relationship with Poincaré metrics. See [15] for
details. The metric bundle of the conformal manifold (M, [g]) is

§={(p.”%¢(p)): p € M,1 >0} C S’T*M
and the ambient space is
g =9 x (—e,€)p fore > 0small

The choice of representative metric g induces an identification of € with Ry x M x
(—e¢, €), points of which we denote (¢, p, p). The ambient space admits dilations §; : >
for A > 0 defined by 6, (¢, p, p) = (A, p, p). A straight ambient metric in normal form
relative to g is a Lorentzian metric on § of the form

(6.1) g§=2pdt* +2tdtdp+1t*g,

that asymptotically solves Ric(g) = 0 to an appropriate order which depends on the
dimension. Here g, is a smooth one-parameter family of metrics on M with go = g.

The metric g is homogeneous of degree 2 with respect to the dilations §;: §7g = A%3.
LetT = %5 1/a=1 denote the infinitesimal generator of the dilations, so that T = 79,
in the identification § = Ry x M x (—¢, €). Note that ||T||§; = 2pt2. Introduce a new

variable s > 0 on {p < 0} by s% = —||T||§, so that s = rt where r = /—2p. In the new
variables (s, p,r), g becomes

(6.2) g =s%g, —ds%

One consequence of this relation is that the asymptotic conditions Ric(g) = 0 and Ric(g+)
= —ng4 are equivalent.
Define the projection rx: 9 — X = M x [0, &), by

mx(t, p.p) = (p,r), with r = /__2p_
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Define the hypersurface

H=ATIz=-1={s=1}C¥

and denote by i: # — € the inclusion. If we identify # with X via my , then clearly (6.2)
implies g4+ = i*g.

Let Y be a submanifold of X with 1 <dimY < dim X — 1. Define the homogeneous
lift Y of Y by Y = (), which we can identify with R4 x ¥ under our product decom-
position R4 x M x (—¢, ) and the change of variable r = /—2p. Clearly Y is invariant
under the dilations 6, . Observe from (6.2) that g|,3 has Lorentzian signature.

Proposition 6.1. A submanifold Y C X =M x (0, &9) is minimal with respect to g4 if
and only if its homogeneous lift Y is minimal with respect to g.

Proof. Observe that (6.2) exhibits g as a warped product of the form A(s)g+ — ds2. Thus
the conclusion follows from the same observation that we made in Section 4 to identify
the minimal extension of a minimal submanifold of an Einstein manifold: ¥ is minimal
in X with respect to g if and only if ¥ = R, x Y is minimal in § with respect to any
warped product of this form. ]

We mentioned in the introduction that in the case k = 1, Fine and Herfray in [18]
use the even minimal extension Y of a curve ¥ C M to study conformal geodesics and
conformal canonical parametrizations of 2. In order to relate the construction to tractors,

they also analyze the unique lift of Y to a surface contained in the hypersurface # C g
But they do not consider the homogeneous lift of Y.

Proposition 6.1 shows that the problem of extending X to a minimal submanifold Y is
equivalent to the problem of extending its homogeneous lift ¥ to a homogeneous minimal
submanifold ¥ of §. Therefore Proposition 3.1 gives asymptotic solutions of the latter
problem.

Remark 6.2. As mentioned in the introduction, the GJIMS operators were originally con-
structed in [28] in terms of the ambient metric, and it was shown in [33] that the construc-
tion is equivalent to the one used here in terms of the Poincaré metric. The equivalence
argument in [33] applies in the general setting of an asymptotically hyperbolic metric /.
and the ambient-like metric it determines upon replacing g+ by A4 in (6.2). Consequently,
our extrinsic minimal submanifold GIMS operators can also be obtained from either of
the two constructions given in [28] applied to the metric on the homogeneous minimal
extension Y that is induced from the ambient metric g associated to (M, g).

Now we turn to the proof of Theorem 4.10. The proof follows the same general outline
as the proof in Chapter 7 of [15] of the diffeomorphism invariance of the canonical ambient
metric associated to an Einstein metric. We have to develop a number of ingredients before
we can present the proof at the end of the section.

Let ¥ ¢ (M™", g) and let (x%, u®) be adapted coordinates near 3 defined via the
normal exponential map, as constructed in Section 3. We will need the following lemma,
which makes explicit certain consequences of the fact that ¥ is minimal for two confor-
mally related Einstein metrics.
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Lemma 6.3. Suppose g and § = e>®g are conformally related Einstein metrics on M.
Suppose ¥ C M is minimal for both g and g. For s > 0, let V¥ L be the section of
®ST2T*S @ N X which is the s-th covariant derivative of the second fundamental form
of X with respect to g. Then (grad, w 1)*TH(VSL) = 0, where (grad, w 1)ST1(V5L)
denotes the contraction of the tangential gradient of w|x into any s + 1 of the s + 2
covariant indices of V* L.

Proof. Recall that the mean curvature vector transforms by
20 (% = B —
Since ¥ is minimal for both g and g, it follows that 0¥ =0on .
The conformal transformation law for the Schouten tensor reads

(6.3) ﬁij =Py —wjj + wjwj — %wkwkg,-j,

where w;; = gVizja). Take the e’ component of (6.3) on X. Since ﬁij and P;; are both
multiples of g;; and wy = 0, this component reduces to simply wge = 0. But wge =

dawar — T ;. Now dywe = 0 since wy' = 0 on X, and I‘f‘x, =1¢P"00gay = —Lga,.
Therefore Lga,a)ﬁ = 0, which is equivalent to Lg/ w? = 0. This proves the case s = 0.

We proceed by induction on s. First consider a case with s = 1, which is indicative of

the general argument. Write
(6.4) L%, 00 = (L% 0%0”),y — L% 0%y0" — LY 0®w? .
The first and last terms on the right-hand side vanish by the case s = 0. For the middle
term, take the oy component of (6.3) and use as above that P;; and ﬁ,- 7 are multiples of g;;
to obtain wyy = we®y + fgay for some function f on X. In this equation, wy, = Voztya),
whereas in (6.4), w%, refers to the covariant derivative of grad, @ with respect to the
induced connection. But these agree since wy = 0 on X. Substituting w®, = 0w, +
f6%, into (6.4) shows that the right-hand side of (6.4) vanishes by the case s = 0 as
desired. The argument for the other s = 1 case, where w? is replaced by w” in the left-
hand side of (6.4), is easier: after factoring out the covariant derivative index y, all terms
on the right-hand side vanish by the s = 0 case.

The general inductive step going from s to s 4 1 is similar. One factors out the last
covariant derivative index on V5! L at the expense of terms involving V2. If the last
covariant derivative index is the free index, the induction hypothesis immediately implies
the result. If the last covariant derivative index is one of the contracted indices, substitute
the tangential component of (6.3) for all the second derivative terms. It is easily seen that
all terms vanish by the induction hypothesis. ]

If g is Einstein with Ric(g) = A(n — 1)g, then the canonical ambient metric is given
by (6.1), with g, = (1 + 3 Ap)?g. If T is minimal, then ¥ = Ry x ¥ x (—¢,0] is a
homogeneous minimal extension of Ry x X, which we call the canonical extension. More
general homogeneous extensions are written as a graph

Y ={(t.x%u”,p):t e Ry, u® =u®(x,p)};
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the canonical extension is given by u® = 0. For comparison, the graphing function in the
Poincaré metric picture is u® = u® (x, —r2/2). In particular, the indeterminacy in u®
appears at order pk/2+1 Let ~

h=1"%g
be the induced metric, where i: ¥ — §. We observed above that & has Lorentzian signature
for p small. This will be explicit in (6.5) below. Write

g = gop dx* dxP 4+ 2940 dx*du® + Sa'p’ du® du®’

where all g;; are functions of (x, %) and goo’ = 0 at u = 0. Since g is Einstein,

2
g =(1+340)g.
Now
1*gp = kop dx®dxP + 2kyoo dx® dp + koooo dp?,

where

kap = (1+ 1 20) (8ap + 28w@t®.p) + garpru® att? p).
kaoo = (1 + %Ap)z (gaa, ua’ W + S ua/,a uﬂ/,p)’

!

2
koooo = (1 + %/\p) ga/ﬁ/u puﬂ o

The coefficients kqg, koo, and koooo are functions of (x, p), and the g;; are evaluated at
(x,u(x, p)). It follows that

5 2p 0 t
(6.5) (/’ltgg) = 0 l‘zkalg l‘zkaoo
t t%kgoo 2 koooo

in (¢, x, p) coordinates. We use O for the ¢ direction and oo for the p direction. Indices J,

4, K, £ run over 0, , 00, i.e., 0, 1, ..., k, 0o, and in the following, indices 7, J, K run
over 0,1,00,1.e.,0,1,...,n, oo.
Set

eg = 0g + Ma:(g 0o’
so that {e,} is a basis for TY.Let I and - denote, respectively, the orthogonal projections
with respect to g of T¢|y onto 7Y and NY. Set

e = 0%

Let V denote the induced connections on TY and N Y, and let Fﬁ, and F‘}‘ B denote the
Christoffel symbols of V on TY and NY, respectively. Let L°‘ denote the components

of the second fundamental form of ¥ with respect to the frames ey and ey . The defining
relations for these quantities are

(66'] eg) = 1:']‘7; ex, (6&1 eg)t = Zj‘;( ey, and (ﬁe,, e‘g/)J‘ = ff}‘;g, Cq.
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The Christoffel symbols fIKJ of g with respect to a coordinate frame {d;, d;, 0, } are
given by (3.16) of [15]. In the case that g is Einstein and g, = (1 + % Ap)2g, these become

0 0 0
Iy =10 =320 +3r0g; 0],
0 0 0
0 1ok 0
(6.6) Tf, ="k rk S+ 3718k |,
0 J0+3ap)7tsk 0
0 0 17!
=10 (-1+32p)g; 0
171 0 0

In the middle equation, Fikj denotes the Christoffel symbol of g on M.
If u® =0, then ey = 94 and e = g, SO
K _pK Fo _ T B _ T8
Lyqy =Tig. j‘g_Fj‘g, and I, =Ty,.
Equation (6.6) gives

0 0 0 0 0 0
(6.7) Ly =10 T ol=[0 L2 of,
0 0 0 0 0 0

a/

where T p are the Christoffel symbols for the metric g on M, which is independent of p
(and 1), and LZ}} = I‘g[; is the second fundamental form of ¥ C M.

Equation (6.7) evaluates L everywhere on Y for the canonical extension u® = 0.
Next we derive the form of the covariant derivatives of L. We begin with components
involving a 0 index. These relations depend only on the homogeneity, so they hold for
any homogeneous extension Y of ¥. Recall that T = d/d A|;—;8,. This is a vector field
on & which is tangent to Y. The components of 7" are given by T/ = téé . It is shown in
Proposition 3.4 of [15] that VT =1dis the identity endomorphism of T€ for any ambient
metric of the form (6.1), with g, an arbitrary 1-parameter family of metrics on M.

Proposition 6.4. The covariant derivatives of the second fundamental form of any homo-
geneous Y satisfy

r

—

g7 _ o
(6.8) r LJJ;JCrnJCr - ILJ,}CS;J(I...J%S...JQ’
s=

L7 7o
(6.9) T= Lyg. g0,y Kopr -, =~ + D Lig .. x,

r

Z G T K Ky Kospr -+ Fp Ky
t=s+1

On the right-hand side of (6.8) and (6.9), the index with the hat is omitted.
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Condition (6.8) in the case r = 0 is interpreted as the statement T¢L L g =0, or equiv-
alently, L&‘O = 0. Note that the case s = r in (6.9) reduces to

(6.10) TELSy g2 = =+ D) LSg. 50,56, -

Proof. 1f V' is a vector field tangent to Y, then ﬁl/T = V is also tangent to Y. So
L(T, V) = 0. In terms of indices, this is written T"L‘}iﬂ = 0. Now differentiate succes-

sively using Tﬂ;g = 8'15( to obtain (6.8).
For (6.9), we first prove the special case (6.10). Recall the identity

6.11) VxU = £xU + (VX).U

for a torsion free connection V on a manifold, where X is a vector field and U is a ten-
sor field, £x denotes the Lie derivative, and (VX).U denotes the algebraic action of the
endomorphism VX on U. Apply this on g, taking V = V,X=T,and U equal to an
extension of V'L to a tensor field on § near Y. Since L is homogeneous of degree 0
with respect to the dilations 85, we can choose U to have the same homogeneity so that
L7U = 0. The identity endomorphism acts on a tensor covariant in ¢ indices and con-
travariant in m indices by multiplication by m — £. So (6.11) becomes VU =—(r + HU.
This implies that the restriction of V7 U to Y is also a section of ® T2T*Y @ NY, so
that VTU|Y = V7(V"L). This proves (6.10).

To obtain (6.9), replace now r by s in (6.10) and differentiate r — s more times using
again T4, 4 = §%4. [

Now we restrict to the case ¥ = Ry x X x (—¢, 0], which is the canonical extension
when g is Einstein and ¥ is minimal. At each point p € Y, we can identify N,Y with
Nzs(p) X, where my: Y — X is the projection induced by this product decomposition.
Construct tensors on X from the covariant derivatives of L as follows. Choose an order
r > 0 of covariant differentiation. Divide the set of symbols d £ K - - - K, into three dis-
joint subsets Sy, S5 and S, of cardinalities 5o, s and s, respectively. Set the indices
in 8o equal to 0, those in o equal to 0o, and let those in §5; correspond to X in the decom-
position Y = R4 x X x (=&, 0]. (In local coordlnates the indices in Sy vary between 1
and k.) Evaluate the resulting component L% 9 fr’ Ky d, AP = 0 and ¢t = 1. This defines a
tensor on X which is a section of @ ZT*X ® N X, which we denote by Lg) S5.500"
Proposition 6.5. The tensor Z=(9r0) $5.5., 15 @ linear combination of tensor products of an
iterated covariant derivative of the second fundamental form L of ¥ with some power of
the induced metric g|rx, with some ordering of the covariant indices.

We provide a clarification of the statement. For any order s > 0 of covariant differen-
tiation and any m > 0, and any ordering of the indices, we can form a tensor on ¥ of the
form V'L ® (®™g|rx). The statement is that for any Sy, Sy, Soo, the tensor Lfg )Sz So
is a linear combination of tensors of this form. Since the ranks must agree, only terms for

which s 4+ 2 + 2m = sy can appear in the linear combination.
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Corollary 6.6. LY < =0 if sz =0or 1.
Proof. sy =s+2+4+2m > 2. n

Proof of Proposition 6.5. We shall prove a stronger statement: denote by L S S (p) the
1-parameter family of tensors on X constructed exactly the same way, but not restricting

to p = 0. So Zg)sz s, = Lgo)sz s..(0). We prove by induction on r > 0 that for each
(r)

choice of 8o, Sx, Seo With 59 + s + 500 = r + 2, the tensor L =500 (p) is a linear
combination of tensors of the form f(p)V*L ® (®™g|rx) Wlth some ordering of the
indices of each term, where f(p) is a smooth function near p = 0 which can vary from
term to term. The desired statement follows upon setting p = 0.

The case r = 0 is clear from (6.7): the only nonzero component of L is Z?g = Ljf'g
For this component, s = m = 0 and f(p) = 1.

Assume the induction statement is true for r. Consider a tensor Lfs’ J:gl) So (p), whose
components we write L% K Fopi Hy Ky ind* Proposition 6.4 shows that a zero index can
be removed at the expense of commuting the remaining indices. So we can assume that
So = @. Write

L% =94L% -7 I¢ -7 T%
K1 K2 Kz Krpad = VK Ko Kz Ky JK1 7 F K2 K3 Ko JK =K1Kz Kt

T e re TP
FJJCr+2L=7<1<7<2;JC3"'=7€r+15( + FJﬂ’LJCﬂCz;J(s"'KHz‘

As noted above, for the Christoffel symbols we have
—g _ ~g —_/ _ ~ ./
Ty =Tgx and Tgs =Tjp,

and the 1:IKJ are given by (6.6).
First consider the case 4 = oo, S0 d4 = d,. For the first term on the right-hand side,

apply the induction hypothesis to L% JC Ko1Ky sn 1DE d,, just hits the function f(p) in
each term in the linear combination, so the first term on the right-hand side has the desired
form. For the last term, substitute

T2 =40+ 10)7"6

and apply the induction hypothesis to see that it also has the desired form. Since f‘é”ooo =0
for all ¢, the terms with a factor I:i X for which K; = oo all vanish. The only other terms

involve Fixi with K; € Sx. For these terms, Fixi = Ounless 1 < ¢ <k, in which case
T =20+ 1ap)7"8%.

So again, the induction hypothesis implies these terms have the desired form.

Finally, consider the case J € Sx. Recall that ff o = Ounless 1 < ¢ < k, in which
case 4 4
= A 1 -1
9 =50+ 351p) 83
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So the terms on the right-hand side with a factor l:i( X with J; = oo all are of the desired

form. If KX; € Sy, then I_‘";” X is nonvanishing for all §. Since

T =—3tA(1+ 2Ap) gux.

we can apply the induction hypothesis to conclude that the terms with § = O are of the
desired form (recall that # = 1 in the definition of Z(S:)J;lz) S (p)). Since

F% = (14 220" gyx.

we can likewise apply the induction hypothesis to obtain the desired form for these terms.
This leaves the terms with K; € Sy and 1 < § < k. In this case, l:ix = fo is the
Christoffel symbol for g on M. Applying the induction hypothesis again, all of these terms
combine with the first and last term to produce the covariant derivative on M applied to
each of the terms VS L ® (®™g|rx) in the linear combination. This gives further terms
of the desired form. ]

. . X7 !
Next consider extensions Y defined by nonzero u* .

Proposition 6.7. Let k > 2 be even. Let g be Einstein and let g be given by (6.1) with
g =1+ %)&p)zg. If ¥ C M is minimal, then Y = R4 x X x (—e¢, 0] is to infinite order
the unique homogeneous minimal extension of X satisfying

6.12) L =0.

0000; 00 *+ 00 | =0
—— 14
k/2—1

o

Proof. First calculate the leading term in L% ,

which recall is defined by
(ﬁeweoo)l = Zg;oo €.

Recalling from (6.6) that 63 ,0p = 0, we have

Vgooeoo = §3p+u“’,p8a/e°° = ﬁapeoo + u“/,p 680‘/600

= Vs, @y + u” pdar) +u® , Vo, (3, +uP ,dp)

= (97 U)o + 2u°‘:p§3p8a/ +u¥ puf e dp + u“/,puﬂ/,pﬁaa, dpr.
Since eqr = (dor)*, we obtain
L% = 0> u® +LOTs,

where LOTS consists of terms involving fewer p-derivatives of u®.
Now successive differentiation shows that

Ta _ am+2 o
L mciooros = 7 4o

m

form > 0.
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In particular, this shows that 8’;/ 2y |p=0 is uniquely determined by
—o
Loooo;oo~~~oo ip=0

k/2—1

and the values of af;u"‘/ |p=0 for j <k /2. We know that any minimal extension of X satis-
fies u® = O(pk/2+1), and u® vanishes to infinite order if and only if u® = O(pk/2+2).
Corollary 6.6 shows that the choice u® = 0 makes

I

0000; 00 *++ 00 }p:()

=0. |
k/2—-1

Proof of Theorem 4.10. We have already observed that this follows from the uniqueness

of the even minimal extension when k is odd. So we can assume that k > 2 is even.

We prove the analogous statement for the diffeomorphism relating the ambient metrics
of g and 2.

Let § be the ambient metric on § = R4 x M x (—¢, &) obtained by replacing g by ?
and g, by
/g\p =1+ %Ap)zé’\
in (6.1). Let y be a homogeneous diffeomorphism mapping € to § which pulls back g to §
to infinite order at p = 0 and restricts to the identity on ¥. Then y is uniquely determined
to infinite order. Let Y C & and Y C & be the canonical extensions of = with respect to g

and g, respectively. Proposition 6.7 implies that y~1(Y) = Y to infinite order if and only
if )(*1 (17) satisfies (6.12). The condition (6.12) transforms tensorially under the Jacobian
of y. This Jacobian is identified at p = 0 in terms of w in (6.8)—(6.10) of [15]. It follows
that y~1(Y) satisfies (6.12) if and only if

(6.13) Zz:;l;JCquCk/z,] PJoo Pgoo leoo "'ka/z_loo =0

at p = 0, where

w; — % Wk W
pli=1o & —o
0 0 1
and L% 9 g oo refers to the covariant derivative of L on Y. (See the proof of Propo-

sition 6.5 of [15], and recall that o® = 0 on )
Expanding out (6.13), one obtains a linear combination with smooth coefficients of
contractions of grad, w with tensors LY S0 S 8., In which each index in Sy is contracted

against a factor of grad, w. Write the tensor Lfg ) S5.5, 3@ linear combination of tensors
of the form VS L ® (®™g|rx) as in Proposmon 6.3. Each index of each tensor VSL

which appears is contracted against a factor of grad, w. Lemma 6.3 implies that all the
terms vanish. ]
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