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Weighted homomorphisms between C*-algebras

Eusebio Gardella and Hannes Thiel

Abstract. We show that a bounded, linear map between C*-algebras is a weighted *-homomor-
phism (the central compression of a x-homomorphism) if and only if it preserves zero-products,
range-orthogonality, and domain-orthogonality. It follows that a self-adjoint, bounded, linear map is
a weighted *-homomorphism if and only if it preserves zero-products. As an application we show
that a linear map between C*-algebras is completely positive, order zero in the sense of Winter—
Zacharias if and only if it is positive and preserves zero-products.

1. Introduction

The study of bounded, linear maps between C*-algebras that preserve various types of
orthogonality has a long history. One of the earliest results, due to Arendt [3], is the
description of such maps between unital, commutative C*-algebras: every bounded, linear
map ¢: C(X) — C(Y) that preserves zero-products (such maps are also called disjoint-
ness preserving, or separating) is spatially implemented, that is, setting & := ¢(1) € C(Y)
and U :={y € Y : h(y) # 0}, there exists a continuous map p: U — X such that ¢ is
given as

e(HY) =h») f(p(»)

forevery f € C(X) andevery y € Y. Note that p induces a *-homomorphism 7: C(X) —
Cp(U) given by n(f) = f o pforall f € C(X). By embedding C(Y) and C(U) into
a suitably larger (commutative) C*-algebra — the canonical choice is C (Y )** — we obtain
that o(f) = hxn(f) = w(f)h for all f € C(X). In particular, ¢ is the compression
of the x-homomorphism 7 by /h. For this description of ¢ as the compression of a *-
homomorphism, it is crucial to allow for an enlarged target algebra. Indeed, an example
of Wolff [28], shows that the image of & is not in general contained in C(Y).
Generalizing this idea to the noncommutative setting, we define:

Definition A. A map ¢: A — B between C*-algebras is said to be a weighted *-homomor-
phism if there exist a C*-algebra D containg B, a x-homomorphism 7: A — D, and an
element 7 € D such that p(a) = w(a)h = hn(a) foralla € A.
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By the above-mentioned result of Arendt, it follows that a bounded, linear map between
unital, commutative C*-algebras is a weighted *x-homomorphism if and only if it preserves
zero-products. In order to generalize Arendt’s result to the noncommutative setting, we
also need to consider the following types of orthogonality: two elements a and b in a C*-
algebra are said to be range-orthogonal if a*b = 0; and are said to be domain-orthogonal
ifab* = 0.

In his PhD thesis [25], Schweizer showed that for every bounded linear map ¢: A — B
between C*-algebras which preserves range-orthogonality, there exist # € B**, which can
be taken to be ¢**(14++), and a *x-homomorphism 7: A — B** satisfying

¢(a) =m(a)h and h*p(a*b) = ¢(a)*p(b)

for all a, b € A; see [25, Theorem 3.7] and also [22, Theorem 3.6]. See Theorem 2.2 for
the complete statement. Note that this result does not show that ¢ is a weighted *-homo-
morphism, since it is not in general true that the element s above can be chosen to
commute with the image of ¢. In many cases of interest, it is important at the techni-
cal level to know that / can be chosen to commute with ¢(A), and this motivates us to
pursue a characterization of this more restricted class of bounded, linear maps.

Inspired by the result mentioned above, and building on the work done in [22], we
prove the following generalization of Arendt’s characterization of weighted *-homomor-
phisms to the noncommutative setting; see Theorem 4.2.

Theorem B (Theorem 4.2). A bounded, linear map between C*-algebras is a weighted
sx-homomorphism if and only if it preserves range-orthogonality, domain-orthogonality
and zero-products.

Note that two elements in a commutative C*-algebra are range-orthogonal if and only
if they are domain-orthogonal, and if and only if they have zero-product. In particular, our
Theorem B generalizes the description of bounded, linear mpas between unital, commu-
tative C*-algebras that preserve zero-products.

Bounded, linear maps between (noncommutative) C*-algebras that preserve zero-prod-
ucts have been extensively studied by Wong and coauthors, [7, 18,29], and a general
description of the structure of such maps in terms of Jordan homomorphisms is given
in [7, Theorem 4.7]. More explicitly, if ¢: A — B is linear, bounded, and preserves zero-
products, then there exists 7 € B**, which can be taken to be ¢**(14++), such that

ho(a®) = ¢(a)®

for all @ € A. Moreover, if & is invertible, then ¢ - h~! is a linear Jordan homomorphism
from A to B. See Theorem 4.3 for a complete statement.

Since a zero-product preserving linear map which is additionally self-adjoint (equiva-
lently, x-preserving) automatically preserves domain- and range-orthogonality, we obtain
the following consequence of Theorem B above.

Corollary C (Corollary 4.5). A self-adjoint, bounded, linear map between C*-algebras
is a weighted x-homomorphism if and only if it preserves zero-products.
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The above corollary is the analog of a result of Wolff [28], who showed that a self-
adjoint, bounded linear map between C*-algebras that preserves zero-products among
self-adjoint elements is a weigthed Jordan *-homomorphisms. (Wolff showed the result
under the assumption that the domain is unital. This condition can be removed using [29,
Lemma 2.2].)

In [26], Winter and Zacharias introduced completely positive maps of order zero as
those completely positive maps between C*-algebras that preserve zero-products among
positive elements (equivalently, among self-adjoint elements). The main result of [26] is
a characterization of completely positive maps of order zero as the positively weighted *-
homomorphisms. These maps play an important role in the fine structure theory of nuclear
C*-algebras; see [17,27].

Using that a positive, linear map between C*-algebras is automatically bounded and
self-adjoint, we obtain the following new characterization of completely positive, order
ZEero maps.

Corollary D (Corollary 4.9). A map between C*-algebras is completely positive, order
zero if and only if it is positive and preserves zero-products.

In particular, every positive, zero-product preserving map between C*-algebras is
completely positive (and order zero).

As a consequence of Corollary D, we recover the result of Sato [24] that every 2-
positive, order-zero map between C*-algebras is automatically completely positive; see
Remark 4.10.

Our results are embedded in an enormous body of research in functional analysis on
maps that preserve different notions of orthogonality between various classes of Banach
algebras and Banach lattices. We refer to the survey articles [1, 16,22] for an overview.

One major theme are automatic continuity results for certain maps preserving some
concept of orthogonality. In the context of von Neumann algebras and more generally
AW *-algebras such results were obtained in [20, 21]. Another main theme are structure
results for continuous, orthogonality-preserving maps, and our findings lie in this domain.
An emerging area are stability results of orthogonality-preserving maps. In the context of
C*-algebras, maps that only approximately preserve zero-products have been studied in
[8,19].

Zero-product preserving maps have also been studied extensively in a purely algebraic
context. We refer to the book [5] for an overview, and to [13, 15] for recent results that
have applications to C*-algebras.

In Section 2, we study bounded, linear maps between C*-algebras that preserve zero-
products, range-orthogonality, or domain-orthogonality and we provide characterizations
of these properties in terms of algebraic identities. For example, a bounded, linear map ¢
preserves zero-products if and only if p(ab)p(c) = ¢(a)@(bc) for all a, b, ¢ in the domain;
see Theorem 2.3. Using this, we show that preserving these types of orthogonality passes
to bitransposes and tensor products.

We also consider maps preserving zero-TRO-products or ‘usual’ orthogonality.
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In Section 3, we consider a bounded, linear map ¢: A — B between C*-algebras, and
a x-representation B € B(H) of B on some Hilbert space H. Assuming that 7 preserves
zero-products, range-orthogonality, and domain-orthogonality, we construct a (canonical)
*-homomorphism 7,: A — B(H) that takes image in the bicommutant B” € 8(H) and
that satisfies wy,(a)@(b) = ¢(ab) and ¢(a)m,(b) = ¢(ab) for all a, b € A. This is the
main technical step in the proof of our main result, which we complete in Section 4.

2. Maps preserving different notions of orthogonality

In this section, we study bounded linear maps between C*-algebras that preserve certain
notions of orthogonality. We begin by defining these notions.

Definition 2.1. Let A be a C*-algebra, and let a, b, ¢ € A. We say that
* a and b have zero-product if ab = 0;

* a and b are range-orthogonal if a*b = 0;

* a and b are domain-orthogonal if ab* = 0;

* qand b are orthogonal if a*b = ab* = 0,

* a,b and c have zero-TRO-product if ab*c = 0.

We will be interested in maps preserving certain combinations of the above notions.
More explicitly, we say that a map ¢: A — B between C*-algebras preserves:

(1) zero-products if ab = 0 implies ¢(a)p(b) = 0;

(2) range-orthogonality if a*b = 0 implies ¢(a)*¢(b) = 0;

(3) domain-orthogonality if ab* = 0 implies p(a)p(b)* = 0;

(4) orthogonality if ab* = a*b = 0 implies ¢(a)p(b)* = ¢(a)*¢(b) = 0;

(5) zero-TRO-products if ab*c = 0 implies ¢(a)p(b)*¢(c) = 0.

We provide characterizations of (1), (2), (3) and (5) in terms of algebraic equations
(Theorem 2.3), which we then use to show that each of those properties passes to the
bitranspose (Proposition 2.4) and to tensor products (Proposition 2.5). In particular, if
a bounded linear map A — B preserves zero-products, then so does every amplification
M,,(A) — M, (B) — and analogously for maps preserving range-orthogonality, preserving
domain-orthogonality, or preserving zero-TRO-products; see Corollary 2.6. In particular,
a zero-product preserving map is automatically completely zero-product preserving (and
similarly for range-orthogonality, domain-orthogonality, and zero-TRO-products).

The situation for orthogonality-preserving maps is different: As noted in [9, Sec-
tion 4], the transpose map v on M, (C) preserves orthogonality, but its amplification 7?
does not. Thus, orthogonality-preservation does not pass to tensor products. Nevertheless,
using the structure result for orthogonality-preserving maps obtained in [6], we show that
the bitranspose of an orthogonality-preserving map is again orthogonality-preserving; see
Proposition 2.4.



Weighted homomorphisms between C*-algebras 591

For comparison with our results, and to faithfully illustrate the historical developments
in this direction, we recall here the following result of Schweizer from [25, Theorem 3.6],
whose statement was simplified in [22]:

Theorem 2.2 (Schweizer). Let ¢: A — B be a bounded, linear map between C*-algebras
preserving range-orthogonality. Then

™ (Dp(a™b) = p(a)*¢(b)

foralla,be A, and there is a x-homomorphism 7: A— B** satisfying ¢(a) = w(a)p**(1)
foralla € A. Moreover:

(1) If o**(1) is invertible, then ¢ - **(1)~1 is a x-homomorphism from A to B**.

(2) Assume that ¢ is bijective. If o~ also preserves range-orthogonality or if **(1)
is normal, then ¢**(1) is invertible.

The case of domain-orthogonality is symmetric.

Part (1) of the next result follows from [2, Lemma 3.4]. (Note that by Examples 1.3 (2)
and [2, Theorem 2.11], every C*-algebra has property (B) introduced in [2].) The proof
in [2, Lemma 3.4] is based on the fact that every element in a unital C*-algebra is a
linear combination of unitaries and that unitaries are doubly power-bounded operators.
For maps between von Neumann algebras (and more generally, C*-algebras of real rank
zero), Part (1) of the next result has also been obtained in [7, Theorem 4.1], using that the
linear span of projections is dense.

Part (2) of the next result also follows from [22, Theorem 3.6], which the authors
of [22] trace back to the PhD thesis of Schweizer [25]. Our proof is inspired by [7,
Lemma 4.4], and uses methods that go back to Wolff [28]. We include the argument for
the convenience of the reader, and observe that part (1) can also be deduced from [7, The-
orem 4.7] as one can show that the Jordan homomorphisms J, and J appearing in its
statement are actually x-homomorphisms in our setting.

Theorem 2.3. Let ¢: A — B be a bounded, linear map between C*-algebras. Then:

(1) @ preserves zero-products if and only if p(ab)p(c) = p(a)p(bc) foralla,b,c € A.

(2) ¢ preserves range-orthogonality if and only if p(b*a)*¢(c) = ¢(a)*¢(bc) for all
a,b,c € A.

(3) ¢ preserves domain-orthogonality if and only if (ab)p(c)* = (a)p(cb™)* for
alla,b,c € A.

(4) @ preserves zero-TRO-products if and only if the equality p(ab)p(c)*¢(de) =
p@)p(d*cb*)*@(e) holds for all a,b,c,d,e € A.

Proof. We only prove statement (2). Statements (1), (3) and (4) are shown analogously.

Backward implication. Let a, b € A satisfy a*b = 0. We need to verify that

p(a)*p(b) = 0.
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Let e>0. Using an approximate identity in A, we can choose ¢ € A4 satisfying | — bc|| <e.
Using that b*a = 0 and applying the assumption at the first step, we get

p(@)*¢(bc) = p(b*a)*p(c) =0

and therefore

le@ )| = [e@)*p®) —p@)*ebe)| < |e@*|llellb —bell < e e@*|lell.
Since ¢ > 0 was arbitrary, we get p(a)*@(b) = 0, as desired.

Forward implication. We assume that ¢ preserves range-orthogonality. Given a, b, c € A,
we need to show that

pb*a)*p(c) = p(a)*¢(bc).
Using linearity of ¢, we may assume that b is self-adjoint and satisfies ||b|| < 1.

For k > 2, let fx: R — [0, 1] be the continuous function that takes the value 0 on
(—o0, %] Ul + % 00), that takes the value 1 on [% 1], and that is affine on [% %] and on
[1,1+ %].Letm > 1.Foreach j e {—m,...,m—1}and k > 2, we define f; x:R — [0,1]
by

Jik @) == fi(mt — j)

for t € R. Note that the support of f  is (r% + ﬁ ’mi ﬁ). In particular, f;x and

fj .k are orthogonal if k # k’. Moreover, the sequence ( fj x)x converges pointwise to the
characteristic function of (%, jmll].

Let ®:=¢**: A** — B** denote the bitranspose of . In A**, the sequence ( fj x(b))k
converges weak* to a projection e;.

Claim 1. Let j > j'. Then ®(e;a)*®(ejc) = 0.

To prove the claim, let k > 2. Given k’ with k < k’, we have

(fia(B)*a)" (fjra(b)c) =0

since fjx firx = 0, and thus

o(fix®)*a) o(fir g (b)c) = 0.

Using that ® is weak*-continuous, and that multiplication in B** is separately weak*-
continuous, we get

(p(ﬁ,k(b)*a)*tb(ej/c) = wk*- likrp(p(]?,k(b)*a)*w(ﬁ,,k,(b)c) =0.
Since this holds for every k > 2, we get
D(efa)* D(ejic) = wk- lilzn (fix(b)*a) p(ejic) = 0.

This proves the claim.
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Claim 2. Let j < j'. Then ®(e;a)*®(ejc) = 0.

The proof is analogous to that of the previous claim. For fixed k' > 2, and k > k', we
have (fjx(b)*a)*(fjr x(b)c) = 0, and thus ¢( f; x (b)*a)*¢(fj k' (b)c) = 0. We then get

®(efa) o(firx(b)c) = wk*- likr/n(p(]?,k(b)*a)*w(ﬁ/’kr(b)c) = 0.
Since this holds for every k' > 2, we get
D(efa)* D(ejc) = wk*- lilgmp(fj,k(b)*a)*d)(ej/c) =0.

This proves the claim.
Using that b is selfadjoint and ||p|| < 1, we have

m—1

b5 2

j=-m

Moreover, we have } ; ¢; = 1 and thereforea = ) ; efaandc =} ; ejc. Set K :=
lell?llallllc||. We write x ~, y to mean ||x — y|| < &. Using Claims 1 and 2 at the second
and third steps, we get

m—1 . * m—1
* * ] *
eb*a)*¢(c) ~K CID( Z n—qeja) CD(Z e_,-c)
j=-m j=—m
m—1 .
= Z L@(e;‘a)*@(ejc)
mo

j=-m

m—1 * m—1 j
= * Lo

j=—m j=—m
~x g(a) p(be).

Since this holds for every m > 1, we get the desired equality. |

Peralta showed in [23, Proposition 3.7] that if ¢: A — B preserves zero-products,
then so does the restriction of the bitranspose ¢**: A** — B** to the multiplier algebra
M (A). We generalize this by showing that ¢** preserves in fact all zero-products in A™*.
We obtain similar results for range-orthogonality, domain-orthogonality and zero-TRO-
products. Using the structure result for orthogonality-preserving maps from [6], we show
that orthogonality-preservation also passes to bitransposes.

Proposition 2.4. Let ¢: A — B be a bounded, linear map between C*-algebras. If ¢
preserves zero-products (range-orthogonality, domain-orthogonality, zero-TRO-products,
orthogonality), then so does the bitranspose ¢**: A** — B**.

Proof. Set ® = ¢**: A** — B**. We first show the result for the case that ¢ preserves
zero-products. By Theorem 2.3 (1), we have ¢p(ab)p(c) = p(a)p(bc) forevery a,b,c € A.
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Fora,b,c € A™, we denote by E(a, b, ¢) the (potentially false) identity
D(ab)d(c) = ©(a)P(bc). E(a,b,c)

By assumption, E(a, b, ¢) holds whenever a, b, ¢ € A. In three steps, we will show that it
holds for all a, b, c € A**.

Leta e A** and b, ¢ € A be given. Choose a net (a; ) in A that converges weak* to a,
and note that E(ay, b, ¢) is true. Using at the first step that ® is weak*-continuous and
that the multiplication operations in A** and B** are separately weak*-continuous, and
using E(a,, b, ¢) at the second step, we get

D(ab)d(c) = wk*- 11?1 D(apb)®(c) = wk*- 1i){n D(ay)®(bc) = ®(a)P(be),

so E(a, b, ¢) holds whenever a € A** and b, ¢ € A.

Given a,b € A** and ¢ € A, we choose as above a net (by), in A converging weak*
to b. By the previous paragraph, E(a, by, c¢) is true for all A. Using weak*-continuity of
® and the fact that the multiplication operations in A** and B** are separately weak*-
continuous, we deduce that E(a, b, ¢) holds for the triple (a, b, ¢). The general case for
arbitrary a, b, ¢ € A** is proved similarly. We deduce that ® preserves zero-products.

Using the characterizations of maps preserving range-orthogonality, domain-orthogo-
nality or zero-TRO-products from Theorem 2.3, an analogous argument shows that ®
preserves range-orthogonality, domain-orthogonality, or zero-TRO-products, whenever ¢
does.

Lastly, assume that ¢ preserves orthogonality. Recall that the triple product in a C*-
algebra is defined as {a, b, c} = %(ab*c + c¢b*a), and that a bounded linear map 6
between C*-algebras is a triple homomorphism if 6({a, b, c}) = {0(a), 8(b), 6(c)} for
all a, b, ¢ in the domain of 6. Equivalently, 0 satisfies

(ab*c + cb*a) = 0(a)d(b)*0(c) + 0(c)8(h)*6(a)

for all a, b, c. Using an argument similar to the one above, it follows that the bitranspose
0** is a triple homomorphism as well.

By [6, Lemma 1], two elements @, b in a C*-algebra are orthogonal if and only if
{a,a,b} = 0.1t follows that every triple homomorphism preserves orthogonality.

Set h := ®(1) € B**. Let h = v|h| be the polar decomposition of /. The partial
isometry v is also called the range tripotent of h, and it is denoted by r(h) in [6]. By
[6, Theorem 17], there exists a triple homomorphism 7: A — B** such that

¢(a) = hv*n(a) = m(a)v*h

foralla € A. Set I1 := n**: A** — B**, which is readily checked to be a triple homo-
morphism It follows that

®(a) = hv*T(a) = (a)v*h

forall a € A**.
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To show that ® preserves orthogonality, let a, b € A** be orthogonal, that is, ab™* =
a*b = 0. Since IT is a triple homomorphism and therefore preserves orthogonality, we get
(a)I1(b)* = I(a)*I1(h) = 0. Using this at the last steps, we get

D(a)D(b)* = (hv*T1(a))(hv*T1(h))" = hv*TI(a)TI(h)*vh* = 0

and
®(a)* d(b) = (M(a)v*h) " (TI(h)v*h) = h*vI1(a)*TI(h)v*h = 0,

as desired. [

In the next result, we use ® to denote the minimal tensor product of C*-algebras. We
note that Proposition 2.5 also holds for maximal tensor products, with essentially the same
proof.

Proposition 2.5. Let ¢: A — B and : C — D be bounded, linear maps between C*-
algebras. If ¢ and  preserve zero-products (range-orthogonality, domain-orthogonality,
zero-TRO-products), then so does the tensor product map ¢ @ v: A C —- B ® D.

Proof. We prove the results for zero-product preserving maps. The statements for range-
orthogonality and domain-orthogonality preserving maps are shown analogously.

Assume that ¢ and y preserve zero-products andset ;== o @ Y:AO B — C O D.
Using that ¢ and v satisfy the formula from Theorem 2.3 (1), we verify that o satisfies
the formula as well. Let

a:Zuj(X)vj, b:Zwk(X)xk, and c:Zyl(X)zl
J k 1

be finite sums of simple tensors in A ® B. Then

a(ab)a(c) = (90 ® W(Zujwk ® vjxk))(<ﬂ ® W(Zyl ® Zz))
Ik 1

=Y puyw)e(y) ® ¥ (v;x) ¥ (zr)

gkl

= D epewry) ® ¥ (v)¥ (xz1) = a(@a(be).

Ikl

Using that finite sums of simple tensors are dense in A ® B, and that « is continuous,
it follows that a(ab)a(c) = a(a)a(bc) foralla,b,c € A ® B. Applying Theorem 2.3 (1),
it follows that o preserves zero-products. ]

The next result shows that every bounded, zero-product preserving map is automatically
‘completely zero-product preserving’ (and similarly for range-orthogonality preserving,
domain-orthogonality preserving and zero-TRO-product preserving). For orthogonality-
preserving maps, this is not the case: the transpose map on M, (C) is orthogonality-preserv-
ing, but its amplifications are not.
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Corollary 2.6. Let ¢: A — B be a bounded, linear map between C*-algebras. If ¢
preserves zero-products (range-orthogonality, domain-orthogonality, zero-TRO-product),
then so does the amplification ¢™: M, (A) — M, (B) for everyn > 1.

Proof. This follows by taking C = D = M, and ¥ = idyy, in Proposition 2.5. ]

Some of the statements in this section do not involve the adjoint operation in a C*-
algebra, and therefore make sense in more general settings. It would thus be interesting to
find other classes of Banach algebras for which part (1) of Theorem 2.3 or Corollary 2.6
are true. For example, one could explore these questions in the context of L”-operator
algebras [10], or at least for the well-behaved class arising from groups as in [11, 12].

3. Constructing the support %-homomorphisms

Throughout this section, we assume that ¢: A — B is a bounded, linear map between C*-
algebras that preserves zero-products, range-orthogonality, and also domain-orthogonality.
By Theorem 2.3, for all a, b, ¢ € A we have

p(ab)p(c) = p(a)p(bc); (3.1
p(b*a)*¢(c) = ¢(a)*p(bc): (3.2)
p(ab)p(c)* = p(a)p(ch™)*. (3.3)

For later use, we observe that the adjoint p*: A— B of ¢, defined by ¢* (a) =¢(a™)* for all
a € A, also preserves zero-products, range-orthogonality, and also domain-orthogonality.
We fix a representation B € B(H) of B on some Hilbert space. Our goal is to construct
a *-homomorphism 7,: A — B” € B(H) such that

7y (@)p(b) = p(ab) = ¢(a)my(b)

forall a,b € A. Using this, we will show in Theorem 4.2 that ¢ is a weighted *-homomor-
phism in the sense of Definition A.
We begin the construction by setting

Ho :=span({p(a) :a € A,§ € H} U{p(a)*§ :a € A,§ € H}).
Given a € A, we first show that there exists a unique operator 7, (a) € 8 (H) such that
me(a)p(b)§ = p(ab)s, and my(a)p(c)™n = p(ca™)™n (34)
forallb,c € Aand &, € H, and such that 7,(a){ = 0forall { € Hol.

Lemma 3.1. Let J and K be finite index sets, let b € A and §; € H for j € J, and let
cx € Aand n; € H fork € K. Then

| Yo wtabg + Y elexa®y ne| < lall| Yo ebg + Y- ol e
jeJ kekK jeJ kekK

forall a € A.
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Proof. We first establish the following

Claim 1. Givena € A, we have
[ > otabg + 3 oteray e
J k
= |2 wt@abpg + 3 gtera o me || Yo ebg + 3 et |-
J k J k

To prove the claim, let j € J and k" € K. Then

(0(ab))g;. pcwa™) nw) = (p(cra™)p(ab;)s;. m)
(D (p(ck)p(a*aby)§j. ni)
= (¢(a*abj)éj’(ﬂ(ck’)*ﬂk’>'

Similarly, for all j, j € J we obtain

(0(abj)E;, p(abj)Ey) = (p(abj)*p(ab))E;. &)

o) pla*ab)E . &)
= (p(a*abj)g;. ¢(b;)g).

Also, for all k, k' € K we have

(p(cka™) i, p(cra™ ) ne) = (elcwa®)p(cka™) i, ner)
(é) (

w

o(cr)p(cra™a) ne. i)
= (p(cxa*a)* ni. o(cr) i)

Further, for each k € K and j' € J we get
{p(cxa™) ni, p(abjngy) = (p(cka™a) i, o(bj)E)).

Using all of these equalities at the third step, and using the Cauchy—Schwarz inequality
at the last step, we get

H D eab)E + Y plera™)*ni H2
J k
= (Y etabpg; + " gleka™) me. Y plab;)y + 3 plewa*) i)
J k Jj’ k'
= Z ((abj)E; . p(abjnk) + Z((ﬂ(abj)éjwﬂ(wa*)*nk/)

B! Ik

+ Y (pleka™) . plabi)gy) + Y (e(cea™)* ne. glcra™) i)
k,j’ k.,k’
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=Y (p(a*ab)g;. p(bj)Ey) + Y (pla*ab))E; . o(ck)* ni)

JJ! ik

+ > elcra*a)y ni. (b)) + > (e(cea*a)* ni. oler) *nic)
P Tk

= (Y eta*ab)g; + Y plera*a) e Y ¢k + Y elcr) i)
j k j/ k’

= | X wt@abg + Y gterarar e || Yo ebg + Y el n |-
J k J k

This proves the claim.
Fix a € A for the rest of the proof. We set

¢ = H D wlabpg + Y plera™) mi H and D = H D eb)E + Y ele) H
J k J k
For n € N, we denote by /(n) the (potentially false) expression
1
C? < H Y (@ a)'b)E + > plera*a)*ne ” ¥ pra I(n)
J k

Claim 2. [(n) is true for all n € N. We will prove the claim by induction. Applying
Claim 1, we get

¢ = | Y otabpg + ¥ otera”y e
J k

IA

> etatabg; + Y wlea*a) me| | Do bE + Y pler) |
J k J k

1
= | D ela*abpg + ) plera*a) i H ¥ pr,
J k

In other words, 1(0) holds. For the induction step, assume that I (n) is true for some n > 0.
Applying Claim 1 with the self-adjoint element (a*a)?" in place of a, we obtain

> e(@*a)® bj) + > elcr@a)*) me
J k

1
2

D2,

* n+1 n+1
= H Y o(@a)* b)E + > e(c@a)™ ) n
J k
Using this at the second step, we obtain

‘ Z(p((a*a)znbj)é_/ 4 Z(P(Ck(a*a)zn)*ﬂk
7 k

I(n)

1
b3 1
C2 < 2 D2—27

1
on+1 S N
D 2T 2o

S gD((a*a)zn-Hbj)é:j + (p(ck(a*a)zn+l)*7’]k
> 2
J k

which shows that I(n + 1) is true. This completes the induction and proves the claim.
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Now, for every n > 0, we get

c'?

1
‘ Z‘p((a*a)znbj)éj + th(cka*a)*nk H 2 D272i,,
J k

1
2m n i,l _ 1
= (X ol + Y lellined)™ @ a) |7 D23,
J k
Using that || (a*a)*" || = llal||?, and taking to the limit as n — oo, we deduce that C? <
lal|>D?, and so C < ||a|| D, as desired. |

Given a € A, it follows from Lemma 3.1 that the map Hy — Hy, given by

D 0k + > el e = Y wlabpE + > elcra®) i
k j k

J

is well defined, bounded and linear, and therefore extends to a bounded, linear map
nq()o) (a):Hy — Hoy

satisfying |73 (a)|| < ||a|| for all a € A. We define 7,,(a) € B(H) by 7, (a)§ := 1’ (a)€
for £ € Hy and my(a)n :=0forn e FOL. We note that 7, is determined by

mo(@p(b)§ = p(ab)é and  my(a)p(b)*s = p(ba*)*§ (3.5
foralla,b € A and all § € H. Moreover, one readily checks that 7w, = .

Proposition 3.2. Let A and B be C*-algebras with B C B(H ), and let ¢: A — B be a
bounded, linear map between C*-algebras that preserves zero-products, range-orthogo-
nality, and also domain-orthogonality. Denote by m,: A — B(H) the canonical bounded,
linear map defined in the preceding comments. Then:

(1) The map m, is a x-homomorphism.
(2) The image of m,, is contained in B” < B(H).
(3) Foralla,b € A, we have

my(@)p(b) = @(ab) = p(a)my(b),
me(@)p(b)* = @(ba™)* = ¢(a*) 7y (b™).

Proof. (1) We first show that m,, which we will abbreviate to 7 throughout in the proof
of this proposition, is linear and multiplicative. For a;,a, and A € C, we have

n(ay 4 Aaz)p(b)E = ¢((ar + Aaz)b)§
= p(a1b)§ + Ap(azb)é = (w(ar) + An(az))e(b)E,
m(a)m(az2)eb)e = m(a1)p(azb)§ = p(araxb)§ = n(ara2)p(b)§
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forall b € A and £ € H. Similarly, we have
n(a1 +Aa2)p(e)*n = p(c(ar + Aaz)*)
= p(ca})™n + Ag(caz)*n = (w(ar) + An(az))p(c)*n,
m(ay)m(az)e(c)™n = m(a)p(caz)™n = g(bazay) n = w(a1az)e(c)*n

for all ¢ € A and n € H. Using linearity and continuity of w(a; + Aas) and 7w (ay) +
An(a), it follows that these operators agree on Hy. Since both operators vanish on
Fol, it follows that w(a; + Aaz) = w(ay) + An(az). Similarly, we obtain (a1 )7 (az) =
m(ajaz). Thus, 7 is linear and multiplicative.

To show that 7 preserves adjoints, let a € A. Given b, b’ € A and &, &' € H, using
(3.2) at the fourth step, we get

(r@*p®E pB)E) = (pb)§, w(@)p(B)E') = {p(b)§, p(ab)E')
= {pab) Bt &) = (p(b) p(a"b)s. §)
= (p(a*b)s, o(0")E') = (m(a)p(D)E. p(B)E').
Similarly, given ¢, ¢’ € A and n, 7’ € H, using (3.3) at the fourth step, we get
(@ e)* n. o)1) = (p(e)"n. w(@)e(c)*n') = (p(c)*n. p(c'a™)*n')
= {p(c'a®)p(c)* n.n') = (p()p(ca)™n. 1)
= {p(ca)*n. ()"0} = (x(@™)p(c)*n, p(c")" 7).
Further, given b,c € A and &, n € H, using (3.1) at the fourth step, we get
(@ e®)E. p(c)"n) = {p(b)§, m(@)¢(c) 1) = (p(b)E. p(ca™)*n)
= {p(ca™)p(®). 1) = (p(c)"¢(a”b)§. n)
= {p(a*b)s. p(c)"n) = (w(@)pB)E. p(c)" ).

and analogously

(m(@ () n. p(b)§) = (n(@™)p(c)*n, p(D)E).

Using linearity and continuity of 7(a)* and 7 (a*), we get

{m(@*a., B) = (w(a")a. B)

for all «, B € Hy and consequently 7 (a)* = m(a*), as desired.
(2) Leta € A, and let x € B’. We need to show that w(a)x = xm(a). Given b € B and
& € H, using at the first and third step that x commutes with ¢(b) and ¢(ab), we have

n(a)xp(b)§ = n(a)p(b)x§ = p(ab)x§ = xp(ab)§ = xm(a)p(b)§.
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Similarly, given ¢ € B and & € H, using that ¢(c)* and ¢(ca*)* belong to B and that
they therefore commute with x, we get

m(@)xp(c)*s = m(a)p(c)*x§ = ¢(ca™)*xE = xo(ca®)*§ = xm(a)p(c)™s.

Using linearity and continuity of 7 (a)x and xm(a), it follows that w(a)x& = xn(a)é for
all £ € Hy.

Using that x commutes with ¢(b) and ¢(c)* for all b, ¢ € A, one readily checks that
x(Hy) € Hy. Similarly, since x* commutes with ¢(b) and ¢(c)* for all b, c € A, we get
x*(Hoy) € Hy. It follows that x leaves Hy  invariant, and thus

w(a)xn=0=xn(a)y

forall n € FOJ'. In conclusion, we obtain 7 (a)x = xm(a), as desired.
(3)Leta,b € A. We have

(35)

m(a)p(b)§ = @(ab)é

for all £ € H, and therefore 7 (a)@(b) = ¢(ab).
To check that ¢(a)7(b) = @(ab), we prove that these operators agree both on Hy and
on its orthogonal complement. Given ¢ € A, we have

o(@)r(b)e)E L p@)pbe)e E plab)p(c)t. (3.6)

Similarly,

o(@)m(b)ee)t E p(@p(ch) e E plab)p(c)*t. 3.7)

It follows from (3.6) and (3.7) that the linear maps ¢(a)n(b) and ¢(ab) agree on Hy. Let
ne FOL. Then 7 (b)n = 0. On the other hand, we have

{@(ab)n, p(ab)n) = (n. p(ab)*p(ab)n) = 0,

where at the last step we use that ¢(ab)*@(ab)n belongs to Hy. This shows that ¢(ab)
and ¢(a)m(b) agree on ﬁoj', and hence ¢(a)m(b) = ¢(ab).

The last two equalities are proved analogously. (They also follow by replacing ¢
with ¢*, which satisfies the same assumptions as ¢ and has 7, = 7,+*.) ]

Notation 3.3. Let A and B be C*-algebras and let ¢: A — B C B(H) be a bounded, lin-
ear map that preserves zero-products, range-orthogonality, and also domain-orthogonality.
Denote by 7,: A — B” the canonical *-homomorphism provided by Proposition 3.2. We
denote by @, IT,: A** — B(H) the (unique) extensions of ¢, w,: A — B(H) to weak*-
continuous, bounded linear maps, which are explicitly constructed as follows. Let S1(H)
denote the space of trace-class of operators on H, which we naturally identify with the
(unique) isometric predual of B(H). Let k: S1(H) — S1(H)** be the natural inclusion
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of S1(H) into its bidual. Then the transpose map
K BH)™ = S1(H)™ — S1(H)* =~ B(H)
is a weak*-continuous *-homomorphism, and
O =k"0p*™:A™ - B(H), and T, =«"on,*: A" — B(H).

By Proposition 2.4, ¢** preserves range-orthogonality, domain-orthogonality and zero-
products, and hence so does ®. Similarly, IT,, is a x-homomorphism. Note that the images
of ® and I1, are contained in B” € B(H).

Proposition 3.4. Let A and B be C*-algebras and let 9: A — B C B(H) be a bounded,
linear map that preserves zero-products, range-orthogonality, and also domain-orthogo-
nality. Denote by w,: A — B” the canonical x-homomorphism provided by Proposi-
tion 3.2, and let ®, I1,: A** — B" the maps from Notation 3.3.

(1) Foralla,b € A, we have
Hy(a)®(b) = P(ab) = P(a)Iy (D),
y(a)®(b)* = (ba*)* = D(a™)* I, (b").
Let C be the (not necessarily self-adjoint) closed subalgebra of B generated by the image

of ¢, and let D := C*(¢(A)) be the sub-C*-algebra of B generated by ¢(A).

(2) Leta € M(A) C A**. Then ®(a) and I1,(a) normalize C and D, that is, ®(a)x,
x®(a), y(a)x, and xI,(a) belong to C (respectively, to D) for every x € C
(respectively, x € D).

(3) If a belongs to the center of M(A), then ®(a) belongs to C’.

Proof. (1) This follows from part (3) of Proposition 3.2 by applying the same argument
as in the proof of Proposition 2.4, using twice that multiplication on B(H) is separately
weak*-continuous.

(2) We only show the normalization for D. The proof for C is similar, but easier. Set

G = {p(b):b € A} U {p(c)*:c € A}.

Then the set of finite linear sums of finite products of elements in G is dense in D.

We first show that IT,(a) is a left normalizer of D, that is, I1,(a)D € D. Using
that IT,(a) is a bounded, linear operator, it suffices to show that I1,(a)x € D whenever
x € G" is a finite product of elements in G. Let x = gy with g € G and y € G”, for some
n € N.If g = ¢(b) for some b € A, then applying part (1) of Proposition 3.4, and using
that ab € A, we obtain

My(a)x = My(a)gy = My(a)@(b)y = ®(ab)y = p(ab)y € G"*! < D.
Similarly, if g = ¢(c)* for some ¢ € A, using that ca® € A, we obtain

My (a)x = My(a)gy = Hy(@)(c)*y = ®(ca®)*y = p(ca™)*y € G"*' C D.
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Analogously, one verifies that IT,(a) is a right normalizer of D, that is, we have
DIl,(a) € D.

Next, we show that ®(a) is a left normalizer of D. Again, it suffices to verify that
®(a)x € D forx = gy with g € G and y € G" a product of n elements in G. If g = ¢(b)
for some b € A, then choose by, b, € A with b = byb,. Using that ® preserves zero-
products and therefore satisfies the formula in Theorem 2.3 (1), and using that ab; € A,
we obtain

P(a)x = P(a)gy = P(a)P(b1b2)y = P(ab1)P(b2)y
= g(abi)p(bs)y € G"** C D.

Similarly, if g = ¢(c)* for some ¢ € A, then choose c¢1,¢; € A with ¢ = c¢jcs.
Using that @ preserves domain-orthogonality and therefore satisfies the formula in part (3)
of Theorem 2.3, and using that ac;‘ € A, we obtain

®(a)x = D(a)gy = P(a)P(c1c2)"y = Pacy)P(c1)"y
= p(acy)¢(c1)*y € "2 < D.
Analogously, one verifies that ®(a) is a left normalizer for D.

(3) Leta € M(A) be central. Let b € A and denote by 14 the unit of M(A). Using that
@ preserves zero-products and therefore satisfies the formula in Theorem 2.3 (1), we get

P(a)p(b) = P(14a)P(b) = ©(14)P(ab) = P(14)P(ba)
= O(140)®(a) = ¢(b)®(a).

We deduce that ®(a) commutes with every finite linear combination of products of finitely
many elements in ¢(A). Since such elements are dense in C, we have ®(a) € C’. |

4. Weighted #%-homomorphisms

In this section, we prove the main result of the paper (Theorem 4.2), where we obtain
an intrinsic and algebraic characterization of weighted *-homomorphisms between C*-
algebras. Our characterization simplifies considerably for self-adjoint and positive maps;
see Corollaries 4.5 and 4.9.

Lemma 4.1. Letr ¢: A — B be a bounded, linear map between C*-algebras that pre-
serves range-orthogonality, domain-orthogonality and zero-products. Assume that B =
C*(¢(A)), that is, ¢(A) is not contained in a proper sub-C*-algebra of B. Let C be the
closed subalgebra of B generated by the image of ¢. Set h := ¢**(1) € B**.

Then there exists a canonical x-homomorphism 7wy: A — B** such that

¢(a) = hny(a) = my(a)h foralla € A,

and such that w,(a) normalizes both B and C for every a € A. Further, h normalizes
B and C, and commutes with every element of C. In particular, we may view m, as a
x-homomorphism n,: A — M(B) N {h}, and h belongs to M(B) N C'.
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Proof. Use [4, Section I11.5.2] to choose a (universal) representation B € B(H ) such that,
with «*: B(H)** — B(H) denoting the *x-homomorphism described in Notation 3.3,
the restriction of k* to B** is an isomorphism onto B”. The situation is shown in the
following commutative diagram:

A—2 B B'C B(H).

By Proposition 3.2, there is a canonical *-homomorphism 7,: A — B” such that

mo(a)p(b) = ¢(ab) = ¢(a)my(b)
foralla,be A. Let d=¢**: A** — B** C B(H) be the unique extension of ¢ to a weak-*

continuous map. After identifying B** with B”, the map ® is simply the bitranspose of ¢.
Hence, applying part (1) of Proposition 3.4 at the second steps, we obtain

p(a) = @(la) = @(V)my(a) = hmy(a),
p(a) = ®(al) = 1,(@)(1) = 7, (@)h
for every a € A.
It follows from part (2) of Proposition 3.4 that m,(a) normalizes both B and C, for

each a € A. Moreover, h = ®(1) normalizes both B and C by part (3) of Proposition 3.4,
and clearly belongs to C’. ]

The following theorem characterizes weighted x-homomorphisms (Definition A) in
terms of orthogonality-preservation properties. Note that part (2) gives canonical choices
for the algebra D and i € D.

Theorem 4.2. Let 9: A — B be a bounded, linear map between C*-algebras. Then the
following are equivalent:

(1) @ is a weighted x-homomorphism, namely: there exist a C*-algebra D with B C
D, a x-homomorphism w: A — D and h € D such that (a) = hn(a) = nw(a)h
foralla € A;

(2) there exists a (canonical) *-homomorphism wy: A — B** such that we have
¢(a) = ™ (D) my(a) = my(a)e** (1) foralla € A;
(3) ¢ preserves range-orthogonality, domain-orthogonality and zero-products.
Proof. 1t is clear that (2) implies (1). To show that (1) implies (3), assume that there
exist a C*-algebra D with B C D, a *-homomorphism 7: A — D and h € D such that

¢(a) = hm(a) = w(a)h for all a € A. To verify that ¢ preserves range-orthogonality, let
a,b € A satisfy a*b = 0. Then

p(a)*o(b) = (w(@)h)* (x(b)h) = h*n(a)*n(b)h = h*w(a*b)h = 0.

Similarly, one verifies that ¢ preserves domain-orthogonality and zero-products.
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To show that (3) implies (2), assume that ¢ preserves range-orthogonality, domain-
orthogonality and zero-products. Let By := C*(¢(A)) be the sub-C*-algebra of B gener-
ated by the image of ¢. Let go: A — By be the corestriction, and set /1o := ¢*(1) € Bg*.
Applying Lemma 4.1, we obtain a s-homomorphism w9: A — Bg™ such that ¢o(a) =
homo(a) = mo(a)ho for all a € A. The inclusion t: By <> B induces a natural inclu-
sion (**: B§* — B** that identifies ho with ¢**(1). Then the *-homomorphism 7, :=
1** o mp: A — B™** has the desired properties. [

For the sake of comparison, we state here a result due to Chebotar, Ke, Lee, and Wong
from [7] which was mentioned in the introduction and largely motivated our work.

Theorem 4.3 ([7, Theorem 4.7], see also [22, Theorem 3.5]). Let ¢: A — B be a bounded,
linear map between C*-algebras preserving zero-produces in Ag,. Then ¢** (1) commutes
with ¢(A), and

9™ (Np(a®) = p(a)
foralla € A. Moreover:

(1) If 9**(1) is invertible, then ¢ - **(1)~1 is a linear Jordan homomorphism from
A to B**.

2) If ¢**(1) is normal with support projection p € B**, then there is a sequence
(Jn)neN of bounded, linear Jordan homomorphisms Jy,: A — B** such that

SOT — lim J,(a)e**(1) = ¢(a)p
n—oo

foralla € A.
(3) If ¢ is surjective, then ¢** (1) is invertible.

Remark 4.4. Let us clarify the relationship between our notion of ‘weighted *-homomor-
phism’ from Definition A and the concept of ‘weighted homomorphism’ used in the theory
of (Banach) algebras.

A map ¢: A — B between Banach algebras is said to be a weighted homomorphism
if there exists a homomorphism 7: A — B and an invertible centralizer W on B such
that ¢ = Wr. Here, a centralizer on B is a linear map W: B — B satisfying W(ab) =
aW(b) = W(a)b forall a,b € B. We use I'(B) to denote the algebra of centralizers on B.

If B is faithful (that is, every element b € B satisfying bB = {0} or Bb = {0} is
zero), then centralizers correspond to central multipliers: A multiplier (also called a double
centralizer) on B is a pair (L, R) of linear maps L, R: B — B such thataL(b) = R(a)b
forall a,b € B. We obtain a natural map from I"(B) to the multiplier algebra M (B) given
by W — (W, W). If B is faithful, then this map defines an isomorphism between I"(B)
and Z (M (B)), the center of the multiplier algebra.

Now let ¢: A — B be a weighted *-homomorphism between C*-algebras. Let By :=
C*(¢(A)) be the sub-C*-algebra of B generated by the image of ¢, and let C denote the
closed subalgebra of B generated by ¢(A4). By Lemma 4.1, there exists a «-homomorphism
7: A — M(By) and a multiplier # € M(Bo) N C’ such that p(a) = hx(a) = n(a)h for
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all a € A. However, while & commutes with elements in the image of ¢ (and as a conse-
quence belongs to C”), it may not commute with the adjoints of the elements in ¢(A), and
therefore does not necessarily belong to Z (M (By)).

If & is normal (which is automatically the case if ¢ is self-adjoint), then Fuglede’s
theorem implies that & also commutes with the adjoints of elements in ¢(A4), and con-
sequently belongs to M(By) N By, and therefore to Z(M(By)). Similarly, if ¢(A) is a
self-adjoint subset of B (which is automatically the case if ¢ is surjective), then i belongs
to Z(M(By)). In both cases, we see that the map ¢p: A — By € M(By) is a weighted
homomorphism in the algebraic sense.

On the other hand, we may view ¢ as a map from A to the Banach algebra C. Note
that multiplication by / defines a centralizer on C, and that 7 (a) defines a multiplier on
C for each a € A. However, C can be very pathological. For example, if 12 = 0, then
multiplication by /4 defines the zero centralizer on C, the product of any two elements in
C is zero, C is not faithful, and the canonical map C — M(C) is the zero map.

Corollary 4.5. Let ¢: A— B be a self-adjoint, bounded, linear map between C*-algebras.
Then ¢ is a weighted x-homomorphism if and only if ¢ preserves zero-products.

Proof. Assume that ¢ preserves zero-products. For a, b € A with a*b = 0, we have

p(a)*o(b) = p(a®)p(b) = 0.

That is, ¢ preserves range-orthogonality. One similarly shows that ¢ preserves domain-
orthogonality, and the statement thus follows from Theorem 4.2. ]

The above corollary motivates the following problem.
Problem 4.6. Characterize weighted *-homomorphisms with normal weights.

The next result is a generalization to the setting of self-adjoint, zero-product preserving
maps of the structure theorem of Winter and Zacharias [26, Theorem 3.3] for completely
positive, order zero maps.

Corollary 4.7. Let ¢: A — B be a self-adjoint, bounded, linear map between C*-algebras
that preserves zero-products. Set C := C*(¢(A)) C B. Then h := ¢**(1) belongs to
M(C)NC’' € C* C B**, and there exists a canonical *-homomorphism my: A —
M(C) N {h} such that p(a) = hwy(a) forall a € A.

Proof. By Corollary 4.5, ¢ is a weighted *-homomorphism and thus preserves range-
orthogonality, domain-orthogonality and zero-products by Theorem 4.2. Since ¢ is self-
adjoint, it follows that C agrees with the closed subalgebra of B generated by ¢(A4). Now
it follows from Lemma 4.1 that there exists a exists a *-homomorphism m,: 4 — M(C) N
{h}’ such that ¢(a) = hmy(a) for all @ € A, and such that & belongs to M(C)NC’. =

We stress the fact that the map m,, that we obtain in the previous corollary is natural.
This has the following consequence:
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Remark 4.8. Adopt the notation and assumptions of Corollary 4.7. Let G be a topolog-
ical group, let @: G — Aut(A) and 8: G — Aut(B) be continuous actions, and suppose
that the map ¢: A — B is equivariant. Then % is G-invariant, and there is a canonical
continuous action of G on C, and hence there is a (not necessarily continuous) action
y:G — Aut(M(C) N {h}’). Using naturality of 7, at the first and third steps, and equiv-
ariance of ¢ at the second step, we get

Ty ©Ug = Tgoag = Tgop = Vg © Tp-

In other words, the *-homomorphism 7,: A — M(C) N {h} is equivariant. Since the
action on A is assumed to be continuous, the range of this map is contained in the y-
continuous part of M(C) N {h}’, namely

M(C), N{h}Y = {x € M(C):xh = hx and g > y,(x) is norm-continuous}.

Recall a linear map ¢: A — B between C*-algebras is positive if ¢(A4+) C By;itis
n-positive if the amplification ¢ = ¢ ® idy,: M (A) — M, (B) is positive; and it is
completely positive if it is n-positive for every n € N.

Note that a weighted *-homomorphism with weight % is self-adjoint (positive) if
and only if % is self-adjoint (positive). It is easy to see that a positively weighted *-
homomorphism is even completely positive. Hence, we obtain the following character-
ization of completely positive, order zero maps.

Corollary 4.9. A map between C*-algebras is completely positive, order zero if and only
if it is positive and preserves zero-products. In particular, every positive, zero-product
preserving map between C*-algebras is automatically completely positive.

Remark 4.10. Following Sato, [24], we say that a positive (but not necessarily completely
positive) map between C*-algebras is order zero if it preserves zero-products of positive
elements. By [24, Corollary 3.7], every 2-positive, order zero map is completely positive.
On the other hand, not every positive, order zero map is automatically completely positive,
and the transpose map on M5 (C) is a counterexample.

An alternative proof of [24, Corollary 3.7] can be obtained from Corollary 4.9 by
noting that every 2-positive, order zero map preserves zero-products. Indeed, we first
note that elements a, b in a C*-algebra satisfy ab = 0 if and only if (a*a)(bb*) =
0. Now, let ¢: A — B be a 2-positive, order zero map. Then ¢ satisfies the Kadison
inequality ¢(a)*¢(a) < |l¢ll¢(a*a) for all a € A. Hence, if a, b € A satisfy ab = 0,
then (a*a)(bb*) = 0 and therefore

p(a*a)p(bb*) =0, (@) ¢p(a) < llellp(a*a), and @b)e(®d)" < [lplledb®).
This implies p(a)*p(a)p(d)p(b)* = 0, and thus ¢(a)p(b) = 0, as desired.

Proposition 4.11. Let ¢: A — B be a bounded, linear map between C*-algebras. If ¢
preserves range-orthogonality, domain-orthogonality and zero-products, then ¢ is com-
pletely bounded with ||¢|lcp = ll@]| = llo** (D]
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Proof. Seth := ¢**(1) € B**. By Theorem 4.2, there exists a x-homomorphism 7: A —
B** such that p(a) = hn(a) for alla € A. We have

le** | < lle* 1 = el < l@llcp-

Givenn > 1,set h™ = 1 M, ® h € M,(B**), which is the diagonal matrix with diagonal
entries all equal to /. It follows that the amplification ™ satisfies ¢ (x) = h™ 7™ (x)
for all x € M, (A). Using that 7™ is a x-homomorphism, we deduce that

le® @) = [Ax @) | < 1R |x | < Wallx]
and thus ||¢™ || < ||||. Since this holds for every n, we obtain ||¢||c» < ||}, as desired. m

Remark 4.12. In [14], we show that Proposition 4.11 also holds for bounded linear maps
that only preserve range-orthogonality or domain-orthogonality. In particular, a bounded,
range-orthogonality preserving map is automatically completely bounded. We also show
that a range-orthogonality preserving map from a unital C*-algebra that has no one-
dimensional irreducible representations is automatically bounded, and hence completely
bounded.
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