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On the behavior of stringy motives under Galois
quasi-étale covers

Javier Carvajal-Rojas and Takehiko Yasuda

Abstract. We investigate the behavior of stringy motives under Galois quasi-étale covers. We prove
that they descend under such covers in a sense defined via their Poincaré realizations. Further, we
show that such descent is strict in the presence of ramification. As a corollary, we reduce the problem
regarding the finiteness of the étale fundamental group of KLT singularities to a DCC property for
their stringy motives. We verify such DCC property for surfaces in arbitrary characteristic. As an
application, we give a characteristic-free proof for the finiteness of the étale fundamental group of
log terminal surface singularities, which was unknown in equal characteristics 2 and 3 and in mixed
characteristics.

1. Introduction

Kawamata log terminal singularities (KLT for short) are arguably the most important class
of singularities in algebraic geometry. For instance, they are the gold standard for mild log
canonical singularities and are the singularities required to run the Minimal Model Pro-
gram. Hence, there has been a great effort in the last decades to understand how mild these
singularities actually are. In general, much is known over fields of characteristic zero, but
the situation over positive characteristic fields—let alone mixed characteristics—is rather
thorny. A typical example of this is their rationality. We know that KLT singularities are
rational in characteristic zero thanks to vanishing theorems such as Kodaira vanishings
and their generalizations. However, they are not rational in general over positive charac-
teristic fields and it is yet to be determined when exactly they are rational. Another but
related problem has to do with the purity of the branch locus over KLT singularities, or, to
be more precise, with the finiteness of their local étale fundamental groups. In this note,
we study this problem by means of stringy motives; which is an invariant of KLT singular-
ities amalgamating their log discrepancies with (generalized) Euler characteristics. Next,
we recall what the problem inspiring this work is.

Let .X;�/ be a log pair over an algebraically closed field k of characteristic p � 0 and
KX be a canonical divisor on X . That is, X is a normal k-variety and � is a Q-divisor on
X with coefficients in Œ0;1� such thatK.X;�/ WDKX C� is a Q-Cartier Q-divisor. We may
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also refer to� as a boundary onX . Let r.X;�/ denote the index of .X;�/, i.e., the minimal
positive integer r such that rK.X;�/ is Cartier. A morphism gW .X 0;�0/! .X;�/ between
log pairs is said to be a Galois quasi-étale log-cover if g is a finite dominant morphism
such thatKX 0 D g�KX ,�0 D g��, and the extension of function fields K.X 0/=K.X/ is
Galois. In such a case, g is crepant and r.X 0;�0/ divides r.X;�/.

This work is concerned with the following fundamental problem.

Question 1.1. Assume that .X; �/ is a Kawamata log terminal log pair and consider a
tower of Galois quasi-étale log-covers

.X;�/ D .X0; �0/
f0
 � .X1; �1/

f1
 � .X2; �2/

f2
 � � � � : (1.1.1)

Does there exist N 2 N such that fi is étale for all i � N ?

Remark 1.2. In Question 1.1, the compositions gn WD fn ı � � � ı f0 are the ones being
required to be Galois quasi-étale log-covers (not the fi ’s), which then implies that the
maps fi are Galois quasi-étale. Further, the Galois hypothesis is essential; see [26, Propo-
sition 11.4]. Additionally, if .X; �/ is KLT then so is .Xi ; �i / for all i ; see [38, Corol-
lary 2.43].

Question 1.1 has attracted great attention in recent years; see [8, 26, 51]. It is well
known that Question 1.1 is intimately related to the problem of determining the finiteness
of the (regional) local étale fundamental group of KLT singularities; see [46]. This “twin”
problem has been considered in the works [10–12,14,15,51], cf. [34, Corollary 1.9] which
settles this for surfaces in characteristic zero. Despite these efforts, Question 1.1 remains
open in positive characteristics. Nonetheless, we know its answer to be affirmative for F -
regular pairs (in full generality) as well as in dimensions � 3 but characteristics � 7; see
[8,15]. In dimension 2, we may add p D 5 to the known cases by putting together [4,35];
see Remark 5.5.

It is worth noting that, in dimensions � 3, Question 1.1 can be answered in the tame
case due to recent advances in the minimal model program; see [28, Proposition 5.2], cf.
[52, Theorem 3.4]. Note also that the local étale fundamental group of an F -regular singu-
larity as well as the one of a KLT singularity in dimension 3 and characteristic � 7 is not
only finite but tame as shown in [14,15]. On the other hand, even in dimension two, there
are rational double points (hence KLT singularities) having no non-trivial tame quasi-étale
cover, equivalently, whose local étale fundamental group has no non-trivial tame quotient
[4, p. 15]. In general, the wild aspects in low characteristics make these problems much
more difficult. For instance, Kawamata’s method using index-1 covers does not apply to
characteristics� 3 in dimension 2 as log terminal singularities are not preserved by index-
1 covers. Thus, a new approach is needed in this case which we provide here.

In this work, we propose a novel strategy to attack Question 1.1 via stringy motives;
at least in dimensions � 3 where resolution of singularities and (WO-)rationality of KLT
singularities are available. Loosely speaking, stringy motives are a hybrid between log
discrepancies and Euler characteristics and are well suited to the study of wild quotients.
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We sketch our approach next. Following [53, Section 6], we consider the stringy
motive

Mst.X;�/ WD

Z
J1X

LF.X;�/d�X 2 yM0k;r.X;�/

of a log pair .X;�/ which, by definition, is convergent (i.e., exists) if and only if .X;�/
is stringily KLT. Such pairs form a subclass of KLT log pairs. Conversely, a KLT log pair
is stringily KLT if it has a log resolution. Hence, these two notions agree in characteristic
zero and in dimensions � 3 in positive characteristics.

Then, our goal is to examine the behavior of stringy motives under Galois quasi-étale
log-covers gW .X 0; �0/ ! .X; �/. Let G WD Gal.K.X 0/=K.X// be the corresponding
Galois group. To do so, we are going to require a notion of ordering among stringy
motives, for which we use the Poincaré realization, which is a ring homomorphism

P W yM0k;r ! ZLT �1=rM;

where r WD r.X;�X / and ZLT �1=rM is the ring of integral Laurent series on T �1=r . Thus,
to a stringy motive we may associate its Poincaré realization

Pst.X;�X / WD P
�
Mst.X;�X /IT

�
2 ZLT �1=rM:

For instance, in the surface case, any stringy motive we consider here will belong to the
subring ZLL�1=rM � yM0

k;r
on which the Poincaré realization map is given by L 7! T 2

(where L WD ¹A1º)
We obtain an ordering on ZLT �1=rM as follows. For 0 ¤ f 2 ZLT �1=rM, f > 0 if and

only if for f D
P1
iD�n aiT

�i=r we have a�n > 0. This is none other than the lexico-
graphic ordering. We lift this ordering to the ring yM0

k;r
via the Poincaré realization. For

instance,Mst.X;�X / > 0means Pst.X;�X / > 0. In general, we shall say that an element
of yM0

k;r
(e.g., motivic measures and integrals) is positive if so is its Poincaré realization.

Since .Y;�Y / admits a logG-action (with log quotient .X;�X /) so doesMst.Y;�Y /.
Then, we may form the quotient Mst.Y;�Y /=G; see Section 2.2. Our first observation is
the equality

Mst.Y;�Y /=G D

Z
g1.J1Y /

LFX;�X d�X ;

where g1W J1Y ! J1X is the induced morphism on the spaces of arcs; see Corol-
lary 2.12. Consequently, Mst.X;�X / and Mst.Y;�Y /=G can be compared as follows:

Mst.X;�X / D

Z
J1X

LFX;�X d�X

D

Z
g1.J1Y /

LFX;�X d�X C
Z
J1Xng1.J1Y /

LFX;�X d�X

DMst.Y;�Y /=G C

Z
J1Xng1.J1Y /

LFX;�X d�X :

Our main result is then the following.
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Main Theorem (Theorem 3.12). With notation as above, assume that .X;�X / is a KLT
pair of dimension � 3 and that g is not étale. Further, assume G to be a p-group if d D 3
and 0 < p � 5. Then, the motivic integral

R
J1Xng1.J1Y /

LFX;�X d�X is positive and so

Mst.X;�X / > Mst.Y;�Y /=G:

In particular, if there were a non-affirmative answer to Question 1.1 in any of the
following cases:

(1) dimX D 2 and p � 0,

(2) dimX D 3 and p … ¹2; 3; 5º,

(3) dimX D 3, p 2 ¹2; 3; 5º, and Gal.Xi=X/ is a p-group for all i � 0,

then, the corresponding tower (1.1.1) would yield a strictly descending chain

Mst.X0; �0/=G0 > Mst.X1; �1/=G1 > Mst.X2; �2/=G2 > � � �

whereGi WDGal.K.Xi /=.X0//. Hence, we reach a contradiction if we can prove a descend-
ing chain condition (DCC) for stringy motives in those cases. We are able to achieve this
in case (1); see Proposition 4.6, but leave it open in the remaining two cases. Notewor-
thy, a DCC property for another version of stringy invariants was discussed by Takahashi;
see [47].

As an application, we give a characteristic-free proof for the finiteness of the local
étale fundamental group of KLT surface singularities; see Theorem 5.3. Of course, if the
(purely wild) DCC condition holds for threefolds, the same would hold for KLT threefold
singularities.

In proving our main theorem, the main technical step is showing that J1X ng1.J1Y /
has positive measure if g is not étale. To this end, we have improved upon results of Kato
and Kerz–Schmidt; see [33, Lemma 3.5], [36, Lemma 2.4]. Our argument was inspired
by those of Nakamura–Shibata in [42]. We let D denote the formal disk Spec kJtK and
ı; � 2 D denote its closed and generic points, respectively.

Theorem A (Corollary 3.7). Let G be a finite group and H � G be a subgroup. Let
gW Y ! X be a G-cover between normal varieties such that Y is smooth and there is
y 2 Y.k/ being fixed by H . Let E ! D be another G-cover such that H fixes some
connected component E0 of E (i.e., E0 ! E is H -equivariant). Let N � J1X be the
subset of arcs 
 WD! X such that: 
.ı/D g.y/, g is étale over 
.�/, and the pullback of

 along g induces E! D. Then, N has positive measure.

We have discussed so far only the equal characteristic case, where we have a suitable
theory of motivic integration. Motivic integration makes the proof of our Main Theorem
rather formal. Unfortunately, such a theory is not available yet in mixed characteristics.
Nevertheless, at least for surfaces, we may define the required stringy motives directly via
minimal resolutions and we may rely on the strong factorization theorem. In Section 6,
we prove our Main Theorem in this case as well without relying on motivic integration.
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See Theorem 6.3. This lets us prove the finiteness of the étale fundamental group of log
terminal surface singularities in all equal/mixed characteristics.

Theorem B (Corollary 6.4). Let .R;m; k/ be a log terminal 2-dimensional complete
local ring with algebraically closed residue field k. Then, �ét

1 .SpecR n ¹mº/ is finite.

Convention 1.3. We fix an algebraically closed field k of characteristic p � 0. Except
for Section 6, every relative notion/object/operation is defined over k unless otherwise
explicitly stated. Also, 0 2 N.

2. Stringy motives

For the reader’s convenience, we recall how to define the stringy motive Mst.X; �/ of a
KLT log pair .X;�/ as well as its main properties. We follow [59], where the reader can
find full details. See also [57, Chapter 6] for another reference that might be more friendly
to non-specialists.

2.1. Motivic integration

We briefly review the theory of motivic integration over Deligne–Mumford stacks and
in the equivariant setting. Motivic measures and integrals take values in a version of the
Grothendieck ring of varieties. In this paper, we choose the one yM0

k;r
used in [59]. The

class of a variety X in this ring is denoted by ¹Xº (square brackets Œ�� are reserved to
express quotient stacks). More generally, we can define the class ¹C º of a constructible
subset C of a variety via its partition into locally closed subsets: if C D

Fn
iD1 Ci ; with

Ci locally closed, then ¹C º WD
Pn
iD1¹Ciº. As usual, L WD ¹A1º. The subscript r 2 N of

yM0
k;r

means that the ring is adjoined with the fractional power L1=r of L. We often take
a sufficiently divisible r so that every rational number showing up sits in 1

r
Z.

We work with the Poincaré realization map yM0
k;r
! ZLT �1=rM, which sends ¹Xº

to the Poincaré polynomial P.X/ D P.X I T / of X ; see [43, Section 8]. For example,
P.L/ D T 2. We define an order > on ZLT �1=rM by comparing coefficients lexicograph-
ically. That is, for two distinct elements f; g 2 ZLT �1=rM, f > g (resp. f < g) if and
only if the leading coefficient (i.e., the coefficient of the highest degree term) of f � g
is positive (resp. negative). As usual, the symbol � means either < or D (and likewise
for �).

Proposition 2.1. The Poincaré polynomial P.X/ of a variety X is positive (i.e., > 0

with respect to this order) unless X D ;. Moreover, for a countable family ¹Xiºi2Z of
varieties such that Xi ¤ ; for some i , if a sum

P
i P.Xi /T

ei with ei 2 1
r
Z is convergent

in ZLT �1=rM, then it is positive.

Proof. Let d be the dimension of X and c be the number of d -dimensional irreducible
components of X ˝k

Nk. Then, P.X/ is a polynomial of the form

cT 2d C .terms of degree < 2d/;
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which shows the first assertion. As for the second assertion, from the assumption, at least
one of the termsP.Xi /T ei has degree>�1. Moreover, the convergence condition shows
that the degrees of the terms are bounded above and the maximum is attained by finitely
many terms, say P.X1/T e1 ; : : : ; P.Xm/T em . Then, the leading coefficient of P.X/ is
equal to the one of

Pm
iD1 P.Xi /T

ei , which is positive from the first assertion.

Definition 2.2. We shall say that ˛ 2 yM0
k;r

is positive (i.e., ˛ > 0) if P.˛/ > 0. For two
elements ˛; ˇ 2 yM0

k;r
, we write ˛ > ˇ if P.˛/ > P.ˇ/.

The positivity and the order defined above for elements of yM0
k;r

play an essential role
in the proofs of our main results. Indeed, a key step in our arguments is to show ˛ > ˇ for
invariants ˛;ˇ 2 yM0

k;r
associated with two singularities. This inequality is then proved by

showing that P.˛ � ˇ/ is a countable sum of the form in Proposition 2.1.
We denote the formal disk by D WD Spec kJtK. We let ı; � 2 D denote its closed and

generic points; respectively. The punctured formal disk is D� WD Spec kLtMD D n ¹ıº. An
arc of a variety X is a morphism D ! X . Given n 2 N, an n-jet of X is a morphism
Spec kŒt �=.tnC1/! X . The n-jet scheme JnX of X is the moduli scheme of n-jets of X ,
which is a separated scheme of finite type. For n0 � n, there is a natural map Jn0X! JnX .
The arc space J1X is the moduli space of arcs of X and is identified with the projective
limit lim

 �
JnX . For each n 2 N, we have a truncation map map �nW J1X ! JnX . A

subset C � J1X is said to be a stable if there is n � 0 such that: �n.C / � JnX is
constructible, C D ��1n .�n.C //, and �mC1.C /! �m.C / is a piecewise trivial AdimX

k
-

bundle for allm � n. The arc space is equipped with the motivic measure �X ; for a stable
subset C � J1X , we write

�X .C / WD
®
�n.C /

¯
L�n dimX

2 yM0k;r ; n� 0: (2.2.1)

Thus, we may say that a measurable subset C � J1X has positive measure if P.�X .C //
> 0.

If X is endowed with an action of a finite group G and if C is a G-invariant stable
subset, the same formula as in (2.2.1) gives an element of the G-equivariant version G-
yM0

k;r
of yM0

k;r
; which we denote by �X .C / too. The ring G- yM0

k;r
is constructed from the

Grothendieck ring of G-varieties (varieties given with a G-action) by the same procedure
as the construction of yM0

k;r
from the Grothendieck ring of k-varieties. Using the forget-

ful map G- yM0
k;r
! yM0

k;r
, the equivariant version of �X .C / maps to its non-equivariant

version. However, there is a quotient map

G- yM0k;r ! yM0k;r ;

which extends ¹Xº 7! ¹X=Gº (e.g., for X quasi-projective). The image of ˛ 2 G- yM0
k;r

under this map is denoted by ˛=G. This lets us define �X .C /=G.
LetG be a finite abstract group. AG-cover of D is a morphism E!D together with a

G-action on E such that: E is regular, E!D is flat of rank #G, and E� WDD� �D E!D�

is a G-torsor. Equivalently, a G-cover E! D is the same as the normalization of D along
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a G-torsor E�! D�. A twisted formal disk is the quotient stack E D ŒE=G� associated to
a G-cover E! D, which is equipped with a morphism E ! D. Note that isomorphism
classes of twisted formal disks are in one-to-one correspondence with isomorphism classes
of Galois extensions of kLtM and that these are parametrized by an infinite-dimensional
space. See [53, Section 2.1], [59, Section 5].

Let X be a separated, irreducible, and reduced Deligne–Mumford stack of finite type.
A twisted arc of X is a representable morphism E!X from a twisted formal disk E . The
moduli stack of twisted arcs of X is denoted by J1X. For a twisted formal disk E , we
denote by JE

1X the locus of twisted arcs E ! X, so J1X D
F

E JE
1X. An untwisted

arc of X is a (necessarily representable) morphism D ! X. Since D is a special case of
twisted formal disks, untwisted arcs are twisted arcs. The moduli stack of untwisted arcs
is denoted by J1X, which is the substack JD

1X of J1X.
To define the motivic measure �X on J1X, we need first to define the class ¹Yº 2

yM0
k;r

of a Deligne–Mumford stack Y of finite type. If Y is an algebraic space, it admits a
partition Y D

Fn
iD1 Yi into schemes of finite type, and we define ¹Yº WD

Pn
iD1¹Yiº. For

a Deligne–Mumford stack Y, we define ¹Yº as the class of its coarse moduli space. We
can also define the class ¹C º of a constructible subset C � Y via its partition into locally
closed subsets. If C � J1X is a stable subset and if JnX is a suitably defined stack of
twisted n-jets with the truncation map �nWJ1X ! JnX, we define

�X.C / WD
®
�n.C /

¯
L�n dim X ; n� 0;

by mimicking (2.2.1).

Remark 2.3. The above definition of �X is implicit in [59], which deals with schemes/
stacks over Spf kJtK. To pass to this setting, we just base change from k to Spf kJtK and
get a formal Deligne–Mumford stack over Spf kJtK, denoted again by X. To this for-
mal Deligne–Mumford stack, we associate the untwisting stack Utg�.X/

pur, which is a
formal Deligne–Mumford stack over Spf kJtK � � for some Deligne–Mumford stack �
locally of finite type over k. The stack of twisted arcs of X is then identified with the
stack J1.Utg�.X/

pur/ of untwisted arcs of Utg�.X/
pur, that is, morphisms Spf kJtK!

Utg�.X/
pur that are compatible with a morphism Spf kJtK! Spf kJtK � � induced by

a k-point of � . Then, �X was defined to be the motivic measure of the untwisted arc
space J1.Utg�.X/

pur/ of the untwisting stack Utg�.X/
pur. In turn, the motivic mea-

sure of J1.Utg�.X/
pur/ was defined in terms of truncation maps J1.Utg�.X/

pur/ !

Jn.Utg�.X/
pur/, similarly to the classical case where X is a variety over a field. How-

ever, since JnX D Jn.Utg�.X/
pur/ by definition, we may define the motivic measure on

J1X in the usual way in terms of truncation maps J1X ! JnX eventually.

When X is the quotient stack ŒV=G� associated to an action of a finite group G on a
variety V , we then have J1X D Œ.J1V /=G�. To describe twisted arcs of X in terms of
the G-action on V , we need the notion of G-arcs. For a G-cover E! D, an E-twisted
G-arc of V is a G-equivariant morphism E! V . Two G-arcs E! V and E0 ! V are
isomorphic if there is a V -morphism E! E0 that is an isomorphism as G-covers of D.
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We denote the space of E-twisted G-arcs of V by

JE;G
1 V WD ¹G-equivariant E! V º=Aut.E/opp;

where Aut.E/opp is the opposite group of the automorphism group of E as a G-cover of
D and isomorphic to the centralizer CG.H/ of the stabilizerH of a connected component
of E. In particular, for the trivial G-cover Etriv D D � G ! D, we have JEtriv;G

1 V D

.J1V /=G. Further, we have identifications JE
1X D JE;G

1 V , where E D ŒE=G�. Thus,

J1X D
G
E

JE
1X D

G
E

JE;G
1 V:

Remark 2.4. We follow the convention that groups act on spaces from the left. The
automorphism group Aut.E/ ' CG.H/opp, a priori, acts on JE;G

1 V from the right. This
induces the left action of Aut.E/opp ' CG.H/ on JE;G

1 V . This action is identical to the
one induced by restricting the G-action on V to CG.H/.

The measure �X restricted to J1X D Œ.J1V /=G� and the measure �V are related
as follows (with X D ŒV=G� as above). For a measurable subset C � J1X, its preimage
zC � J1V is a G-invariant measurable subset, and the following equality holds:

�X.C / D �V . zC/=G: (2.4.1)

Let Y be another Deligne–Mumford stack satisfying the same conditions as X and let
f WY!X be a (not necessarily representable) morphism. For a twisted arc 
 WE! Y, the
composition f ı 
 WY ! X is not generally a twisted arc as it may not be representable.
Nevertheless, it factors uniquely as

f ı 
 WE ! E 0

 0

�! X;

where E ! E 0 is a D-morphism of twisted formal disks and 
 0 is a twisted arc of X.
If X is an algebraic space, then E 0 D D and 
 0 are induced from the universality of the
coarse moduli space E ! D. Sending 
 to 
 0 defines a map f1WJ1Y ! J1X. When
f is proper and birational, f1 is almost bijective (meaning bijective outside subsets of
motivic measure zero); see [59, Example 13.7]. On the other hand, the restriction of f1
to untwisted arcs f1jJ1Y WJ1Y! J1X is not necessarily almost bijective, which is the
main reason for introducing twisted arcs. When Y is the quotient stack ŒV=G� and X is
the corresponding quotient scheme V=G, the map

J1Y D
G
E

JE;G
1 V ! J1.V=G/ D J1X

sends aG-arc E! V to the associated morphism of quotient schemes DDE=G! V=G.

Theorem 2.5 (The change of variables formula; [59, Theorem 16.1]). Let f WY ! X be
a morphism of separated, irreducible, and reduced Deligne–Mumford stacks of finite type
over k. Let hWf1.A/ � J1X ! 1

r
Z[ ¹1º be a measurable function where A � J1Y
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is a measurable subset over which f1 is almost geometrically injective. Then,Z
f1.A/

LhCsX d�X D

Z
A

Lhıf1�jfCsY d�Y ;

where jf is the Jacobian order function associated to f and sX and sY are the shift
functions of X and Y; respectively.

Recall that the shift function sX is constantly zero on the space J1X of untwisted
arcs.

2.2. Stringy motives of log pairs

Let X be a d -dimensional normal variety. If x 2 X is a closed point, .J1X/x � J1X
denotes the preimage of x along the projection J1X ! X . Let � be a boundary on X
such that .X;�X / has index r . Let 	X;� � OX be defined by

	X;�OX
�
r.KX C�/

�
D Image

�
.�dX=k/

˝r
! OX

�
r.KX C�/

��
:

In other words, 	X;� � OX is the image of the pairing map

.�dX=k/
˝r
˝OX

�
� r.KX C�/

�
! OX :

Further, we consider the associated order function ord 	X;�WJ1X ! N [ ¹1º (namely,

 7! length kJtK=
�1	X;�) and set for notation ease

F D F.X;�/ D
1

r
ord 	X;�WJ1X !

1

r
�N [ ¹1º:

Note that F �1.1/ D J1Z, where Z D V.	X;�/, and that this is a subset of measure
zero with respect to the measure �X on J1X .

Definition 2.6 (Stringy motive of a log pair). Suppose that .X;�/ is a KLT log pair that
admits a log resolution. The stringy motive of .X;�/ is defined as

Mst.X;�/ WD

Z
J1X

LF.X;�/d�X 2 yM0k;r :

More generally, for a constructible subset C � X , the stringy motive of .X;�/ along C ,
denoted by Mst.X;�/C , is defined as follows. Let .J1X/C WD .�0/�1.C / � J1X and
put

Mst.X;�/C WD

Z
.J1X/C

LF.X;�/d�X 2 yM0k;r :

IfX is log terminal, we defineMst.X/ andMst.X/C as the corresponding stringy motives
associated with the log pair .X; 0/.

We are mainly interested in the case where C consists of a single closed point x 2 X .
In that case, we write Mst.X;�/C DMst.X;�/x .



J. Carvajal-Rojas and T. Yasuda 718

Remark 2.7. Since .X;�/ has a log resolution, the KLT condition implies that the above
integral converges. In fact, let �W zX ! .X;�/ be a log resolution and write:

K zX �Q ��.KX C�/C
X
i2I

bi .E;X;�/ �Ei ;

where the Ei are prime divisors on zX . For notational ease, we set

K zX=.X;�/ WD
X
i2I

bi .E;X;�/ �Ei DW
X
i2I

bi �Ei ;

If r is the index of .X;�/, then bi 2 1r �Z. Moreover, .X;�/ being KLT means that the log
discrepancies ai WD 1C bi are positive. The change of variables formula and the explicit
computation of stringy motives for simple normal crossing divisors yield

Mst.X;�/C DMst. zX;�K zX=.X;�//��1.C/ D
X
J�I

®
EıJ \ �

�1.C /
¯Y
j2J

L � 1

Laj � 1
; (2.7.1)

whereEıJ WD
T
j2J Ej

�S
j…J Ej . These formulas are well known to specialists. They can

be found in [55, Proposition 8.4], cf. [17, Proposition 3.4.4 and Theorem 4.1.2]. Further
details are given in [57].

The invariantMst.X;�/C satisfies the following additivity property: when C1; : : : ;Cn
� X are mutually disjoint constructible subsets, then

Mst.X;�/Fn
iD1 Ci

D

nX
iD1

Mst.X;�/Ci ; (2.7.2)

which is a direct consequence of either the definition or formula (2.7.1). Also, one readily
sees that Mst.X;�/x depends only on the formal completion (or the henselization) of X
at x and so we may regard it as an invariant of yOX;x (or Oh

X;x).

Example 2.8 (Surfaces and minimal resolutions). With notation as above, suppose that
.x; X/ is a log terminal surface singularity (with Gorenstein index r 2 N) and �W QX !
.x; X/ is a minimal log resolution, so that ai 2 .0; 1� (see [38, Claim 2.26.4, p. 56]). In
this case, .x;X/ is further rational and so the dual graph � associated to �W QX ! .x;X/ is
a tree of P1’s, which means thatEi Š P1 for all i 2 I . Let us recall that the set of vertices
of � is I and there is an edge connecting two different vertices i; j 2 I if and only if
Ei \Ej ¤ ;. Let H be the set of edges of � . We denote an element of H by Œi; j � where
i; j 2 I are the vertices that edge connects (of course, Œi; j � D Œj; i �). Further, denote by
mi � 1 the number of edges sticking out of a vertex i 2 I . From (2.7.1), we may compute
Mst.X/x as

Mst.X/x D
X
i2I

²
Ei

�[
j¤i

Ej

³
L � 1

Lai � 1
C

X
¹i;j º�I

¹Ei \Ej º
.L � 1/2

.Lai � 1/.Laj � 1/

D

X
i2I

.LC1�mi /
L�1

Lai�1
C

X
Œi;j �2H

.L � 1/2

.Lai�1/.Laj �1/
2ZLL�1=rM� yM0k;r :
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We will further review how the first equality above works in the proof of Lemma 2.14
below. Its Poincaré realization then is

Pst.X/x D
X
i2I

.T 2 C 1 �mi /
T 2 � 1

T 2ai � 1
C

X
h2H

.T 2 � 1/2

.T 2ai � 1/.T 2aj � 1/
2 ZLT �2=rM;

which is a formal Laurent series in T �2=r with integral coefficients.

Example 2.9 (Cones). Let V be a smooth Fano variety and write KV C aL �Q 0 for
some ample Cartier divisor L on V and some 0 < a 2 Q. Then, the affine cone X D
Spec

L
i2N H

0.V; iL/ is log terminal; let x 2 X denote its vertex. See [38, Lemma 3.1].
The blowup Y WD Blx X ! X is a resolution with exceptional divisor E Š V . From
(2.7.1), it follows that

Mst.X/ D .L � 1/¹V º C ¹V º
L � 1

La � 1
whereas Mst.X/x D ¹V º

L � 1

La � 1
:

Observe that ¹Xº D .L � 1/¹V º C 1. For instance, if V were a smooth hypersurface
of degree d inside Pn (with L being the hyperplane section), then a D nC 1 � d . For
example, if V � Pd is the rational normal curve, then ¹V º D LC 1 and a D 2=d so that
Mst.X/x D .L2 � 1/=.L2=d � 1/.

The formula above can be generalized to the case in which V is a log terminal Fano
variety as follows:

Mst.X/x DMst.V /
L � 1

LaC1 � 1
:

To show this, let us take a log resolution zV ! V . Since Y is a line bundle over V , we
have the corresponding log resolution f W zY ! Y . Let us write K zV =V D

P
i2I biEi and

K zY =Y D
P
i2I biFi , where the Ei are prime divisors on zV and the Fi are their corre-

sponding prime divisors on zY ; respectively. Then

Mst.V / D
X
J�I

¹EıJ º
Y
j2J

L � 1

LbjC1 � 1
:

To compute Mst.X/x , observe that

K zY =X D K zY =Y C f
�KY=X D

X
i2I

biFi C aG;

where G denotes the strict transform of the exceptional divisor of Y ! X , which is iso-
morphic to V . Setting F0 WDG and b0 WD a, we may writeK zY =X D

P
i2I[¹0º biFi . Thus,

letting g denote the map zY ! Y ! X , we have

Mst.X/x D
X

J�I[¹0º

®
F ıJ \ g

�1.x/
¯Y
j2J

L � 1

LbjC1 � 1

D

X
J�I

®
F ıJ\g

�1.x/
¯Y
j2J

L�1

LbjC1�1
C

X
02J�I[¹0º

®
F ıJ\g

�1.x/
¯Y
j2J

L � 1

LbjC1�1
:
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Since g�1.x/ D F0, we have that F ıJ \ g
�1.x/ D ; for every J � I . Therefore,

Mst.X/x D
X

02J�I[¹0º

®
F ıJ \ g

�1.x/
¯Y
j2J

L � 1

LbjC1 � 1

D

X
J 0�I

¹EıJ 0º
Y

j2J 0[¹0º

L � 1

LbjC1 � 1

D

� X
J 0�I

¹EıJ 0º
Y
j2J 0

L � 1

LbjC1 � 1

�
L � 1

Lb0C1 � 1

DMst.V /
L � 1

Lb0C1 � 1
I

as required. This concludes our example about stringy motives of cone singularities.

If a finite group G acts on X preserving the boundary �, there exists a canonical
lift of Mst.X; �/ to G- yM0

k;r
, which we denote by Mst.X; �/ by abuse of notation. The

same lifting principle holds for Mst.X; �/x if G fixes x. This lets us define Mst.�/=G

where “�” denotes any of the data we had considered above. Once again, the invariant
Mst.X;�/x=G depends only on the completion/henselization ofX at x (and theG-action
on it).

We may also defineMst.�/=G in terms of motivic integration over Deligne–Mumford
stacks. This interpretation will be useful when a change of variables formula is required.
Let X be the quotient stack ŒX=G�. Then, Mst.X=G/ DMst.X/ (use [59, Theorem 1.2])
whereasMst.X/=G is equal to the untwisted stringy motiveM utd

st .X/ [59, Definition 13.2],
which is by definition a motivic integral over the space J1X of untwisted arcs D ! X.
That is,

Mst.X/=G D

�Z
J1X

LFX d�X

��
G D

Z
J1X

LFX d�X DWM
utd
st .X/;

where FX is the function corresponding to the G-invariant function FX by identifying
J1X with .J1X/=G. Analogous descriptions apply toMst.X;�/=G andMst.X;�/x=G,
e.g.,

Mst.X;�/x=G DM
utd
st .X;

x�/ Nx WD

Z
.J1X/ Nx

LFX;x�d�X

where x� and Nx are, respectively, the divisor and point of X induced by � and x. Further,
observe that the stringy motive Mst.X; x�/ Nx (without the adjective “untwisted”) is instead
a motivic integral over the whole space J1X of twisted arcs of X

Mst.X; x�/ Nx D

Z
.J1X/ Nx

LFX;x�CsX d�X DMst.X=G;�=G/ Nx ;

where the function FX;x� (as defined above) extends to J1X, sX is the shift function,
�=G and x=G are respectively the divisor and the point on X=G induced from � and x,
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and the second equality is a direct application of [59, Theorem 1.2]. Those functions take
values in 1

r
Z except that FX;x� takes value1 on the twisted arc space J1Z of a proper

closed substack Z ¨ X. However, J1Z has measure zero as a subset of J1X. Note
also that sX is identically zero on J1X. Summing up, M utd

st .X;
x�/ Nx is obtained from

Mst.X; x�/ Nx by restricting the domain of integration to untwisted arcs. Therefore,

Mst.X=G;�=G/ Nx DMst.X; x�/ Nx �Mst.X; x�/
utd
Nx

and the inequality is strict whenever J1X n J1X has positive measure.

Setup 2.10. Let us consider a commutative diagram

.X1; �1/

g1
&&

.X2; �2/
f

oo

g2
xx

.X0; �0/

of crepant finite covers among log pairs. Moreover, suppose that gi is generically Galois
with Galois group Gi . Let us define Xi WD ŒXi=Gi � and let x�i be the boundary divisor on
Xi induced by �i . Let x0 be a k-point of X0 and let Nxi be its unique lift to Xi .

Proposition 2.11 ([59, Theorem 16.2]). Work in Setup 2.10. Then, for all i 2 ¹1; 2º:

Mst.X0; �0/ DMst.Xi ; x�i / and likewise Mst.X0; �0/x0 DMst.Xi ; x�1/ Nxi :

Corollary 2.12. Work in Setup 2.10. Then,

Mst.X1; �1/=G1 DM
utd
st .X1; x�1/ �M

utd
st .X2; x�2/ DMst.X2; �2/=G2:

Moreover, if J1X1 n f1.J1X2/ has positive measure, then the inequality is strict.
Let xi 2 Xi be the preimage of x0 (which we are assuming to be a point and so that

Gi fixes xi ). Then,

Mst.X1; �1/x1=G1 DM
utd
st .X1; x�1/ Nx1 �M

utd
st .X2; x�2/ Nx2 DMst.X2; �2/x2=G2:

Moreover, the inequality is strict if .J1X1/x1 n f1..J1X2/x2/ has positive measure.

Proof. From the change of variables formula,

M utd
st .X1; x�1/ �M

utd
st .X2; x�2/ D

Z
J1X1nf1.J1X2/

LFX1;
x�1
CsX1 d�X1

� 0:

The inequality is strict if J1X1 n f1.J1X2/ has positive measure. By (2.4.1), this is
the case if J1X1 n f1.J1X2/ has positive measure. The local statements are shown
likewise.
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2.3. Explicit description for log terminal surface singularities

In this section, we compute Mst.X/x=G explicitly for a log terminal surface singularity
x 2 X with a given action by a finite group G fixing x. Our results will be analogous
to those in Example 2.8 but we will need to use G-equivariant minimal log resolutions
instead.

Recall that if .X; �/ is a KLT surface pair then X is necessarily Q-factorial and so
log terminal; see [48, Corollary 4.11], [39, Corollary 2.35]. Thus, since we are ultimately
interested in the topology around x 2X , there is no harm in assuming�D 0. This will turn
out being a considerable simplification on the possible shapes of the dual graph associated
to the minimal resolution (i.e., in the terminology of [38, Section 2.2], we shall avoid
dealing with extended dual graphs). Further, we may shrink X such that X n ¹xº is non-
singular. In such case

Mst.X/=G D
®�
X n ¹xº

�
=G
¯
CMst.X/x=G: (2.12.1)

More generally, ifX n ¹x1; : : : ;xkº is regular andG acts on ¹x1; : : : ;xkº then from (2.7.2),

Mst.X/ D
®
X n ¹x1; : : : ; xkº

¯
C

kX
iD1

Mst.X/xi

and so

Mst.X/=G D
®�
X n ¹x1; : : : ; xkº

�
=G
¯
C

lX
jD1

Mst.X/xj =Stab.xj /; (2.12.2)

where the x1; : : : ; xl are representatives for the orbits of the action of G on ¹x1; : : : ; xkº;
in particular ¹x1; : : : ; xkº D

Fl
jD1Gxj .

Let us commence by making a general remark on how a G-equivariant log resolu-
tion can be used to compute Mst.X/x=G. Let us take a G-equivariant log resolution
�W zX ! .x; X/ and use the notation of Remark 2.7 (for I , Ei , ai , and so on). Follow-
ing [6, Definition 5.1], we introduce the following notion.

Definition 2.13. We say that � is G-normal if, for every node w 2 E, the stabilizer
Stab.w/ preserves each of the two irreducible components Ei including w. In terms of
the dual graph � of E, this means that if an element g 2 G fixes some edge e then it fixes
the two vertices adjacent to e (instead of swapping them).

Let us suppose that � is G-normal. Then, for all � 2 I=G, the prime divisors ¹Eiºi2�
are mutually disjoint. Here, we think of � as an orbit of G acting on I . Thus, we may
define

E� WD
G
i2�

Ei and Eı� WD E�
/ [
�2.I=G/n¹�º

E� :

Observe that, for all � 2 I=G, the prime divisors ¹Eiºi2� have the same log discrepancy;
which we denote by a� (i.e., a� D ai for all i 2 �). Our general remark is the following.
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Lemma 2.14. With notation and hypotheses as above, the following formula holds

Mst.X/x=G D
X
�2I=G

¹Eı� =Gº
L � 1

La� � 1
C

X
¹�;�º�I=G

®
.E� \E�/=G

¯ .L � 1/2

.La� � 1/.La� � 1/
;

where ¹�; �º runs over the subsets of I=G with two elements.

Proof. This is basically the g D 1 part of the formula defining the orbifold E-function
[6, Definition 6.3]. Note also that the formula in the case G D 1 is well known and is a
special case of (2.7.1). Let us first recall how the formula in that case is deduced. We have

Mst.X/x D

Z
.J1X/x

LF.X;0/d�X

D

Z
.J1 zX/��1.x/

L� ordKzX=X d� zX

D

X
i2I
n2N

¹Eıi º.L � 1/L
�ain C

X
¹i;j º�I
n;m2N

¹Ei \Ej º.L � 1/
2L�nai�maj

D

X
i2I

¹Eıi º.L � 1/
X
n�0

L�ain C
X
¹i;j º�I

¹Ei \Ej º.L � 1/
2
X
n;m�0

L�nai�maj

D

X
i2I

¹Eıi º
L � 1

Lai � 1
C

X
¹i;j º�I

¹Ei \Ej º
.L � 1/2

.Lai � 1/.Laj � 1/
:

The second equality follows from the change of variables formula. For the third one,
observe that the term ¹Eıi º.L� 1/L

�ain is the contribution of arcs on zX meeting Ei with
order n but not meeting any other exceptional prime divisor: ¹Eıi º.L� 1/L

�n is the mea-
sure of the set of those arcs (see [17, Chapter 7, Lemma 3.3.3]; note that our normalization
of the motivic measure is different from the one in the cited reference by the factor of L to
the power of the dimension of the variety in question) and since bi D ai � 1 is the multi-
plicity ofEi inK zX=X , then L�bin is the value of the function�ordK zX=X there. Likewise,
the term ¹Ei \ Ej º.L � 1/2L�nai�maj is the contribution of arcs that meet Ei and Ej
with orders n and m respectively: ¹Ei \ Ej º.L � 1/2L�2n is the measure of the set of
those arcs (again [17, Chapter 7, Lemma 3.3.3]) and L�nbi�mbj is the value of the function
� ordK zX=X there. The remaining two equalities are simple algebraic manipulations.

We now explain how we modify the above computation to get the formula of the
lemma for a general finite group G. Let � 2 I=G and consider the set Cn (resp. C�n)
of arcs on zX that meet Ei for some i 2 � with order n (resp. � n) but do not meet any
exceptional prime divisor (with index) not belonging to �. These are cylinders of level n
and their images xCn and xC�n in the n-th jet scheme Jn zX are, respectively, a Gm-bundle
and an A1-bundle over Eı� . Therefore,

¹ xC�n=Gº D ¹E
ı
� =GºL and

®
. xC�n � xCn/=G

¯
D ¹Eı� =Gº
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by the relation imposed in the definition of our complete Grothendieck ring of varieties
[59, Definitions 9.5 and 9.6]. Hence,

¹ xCn=Gº D ¹E
ı
� =Gº.L � 1/:

This explains the first summation on the right-hand side in the formula of the lemma. The
second summation is explained likewise.

2.3.1. On the G -normality of the minimal resolution of a surface. Lemma 2.14 raises
the question of whether aG-normal log resolution exists. We discuss next theG-normality
of the minimal resolution of X , say  WX 0 ! .x; X/; see [38, Theorem 2.25]. By [38,
p. 123] (also see [37, Section3]), the exceptional set of  is a simple normal crossing
divisor whose dual graph � 0 is either a straight line (Figure 1) or has three straight branches
sticking out of a single vertex (Figure 2). In the latter case, we refer to the single vertex as
the node.

ı ı � � � ı

Figure 1. Straight dual graph.

ı � � � ı � � � ı

:::

ı

Figure 2. Three branches dual graph.

We study the G-normality of  by checking three distinct cases separately:
The case where � 0 is a straight line and has an odd number of vertices: In this case,

� 0 has only two automorphisms; namely, the identity and the involution switching the two
ends. The involution does not fix any edge. Thus, the minimal resolution  is G-normal
(for all G) and we choose it as our G-normal log resolution �W zX ! X .

The case where � 0 is a straight line and has an even number of vertices: As in the
previous case, � 0 has only two automorphisms. This time, however, the involution does
fix the middle edge and switches the two vertices adjacent to it. Hence,  may not be
G-normal. To fix it, we take the blowup zX ! X 0 at the point corresponding to the middle
edge. The dual graph associated to the resulting log resolution �W zX ! X is a straight
line with an odd number of vertices. As before, � is G-normal and we choose it as our
G-normal log resolution.

The case where � 0 has three branches: Any automorphism of � 0 fixes the node. If
it fixes some edge e, then it fixes the branch including e. Since one end of the branch;
the node, is fixed, the automorphism fixes all the edges and the vertices in the branch. In
particular, it fixes the two vertices adjacent to e. This shows that the minimal resolution
 WX 0 ! X is G-normal. We choose  to be our log resolution �W zX ! X .
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Summing up, we have constructed a G-normal log resolution �W zX ! X in each of
the above three cases, which is the minimal resolution possibly followed by the blowup at
a G-fixed point. Furthermore, it is independent of the group action and is minimal among
G-normal log resolutions.

Definition 2.15. We refer to �W zX ! .x;X/ as the modified minimal resolution of x 2 X .

According to [38, Claim 2.26.4, p. 56], an exceptional prime divisor of the minimal
resolution  WX 0!X has log discrepancy� 1. In the case where zX is a one-point blowup
of X 0, then the exceptional divisor of this blowup has log discrepancy � 2 over X . Thus:

Lemma 2.16. All but one exceptional prime divisors of the modified minimal resolution
have log discrepancy � 1. Moreover, the possible exception has log discrepancy � 2.

With the above in place, we can now specialize the computation of Mst.X/x=G in
Lemma 2.14 to the case where � is the modified minimal resolution. Let � be the dual
graph associated to the modified minimal resolution �W zX ! X . Note that � also has
one of the forms of either Figure 1 or Figure 2 and the same is true for the quotient
�=G. We may think of a vertex � 2 I=G as a set of orbits of vertices of I . Note that
two vertices i; j 2 � correspond to disjoint exceptional prime divisors (precisely because
the modified minimal resolution is G-normal). Further, the log discrepancies are constant
across G-orbits, i.e., ai D aj if i; j 2 �. This lets us define the quotient log discrepancy a�
of � 2 I=G. An edge Œ�; �� 2 H=G of �=G corresponds to at least one vertex i 2 � being
connected to a vertex in j 2 � (by an edge Œi; j � 2 H ). Note that the set of edges ¹Œi; j � 2
H j i 2 �; j 2 �º corresponds (bijectively) to the intersection points of E� WD

F
i2� Ei

and E� WD
F
j2� Ej , which get all identified under the action of G. Thus, an edge Œ�; ��

of �=G corresponds to E� \ E� ¤ ; and ¹.E� \ E�/=Gº D ı�;� 2 yM0k;r (where ı�;� is
Kronecker’s delta) as there is only one edge connecting two vertices in �=G. Further, we
see that ¹.E� n

S
�¤�E�/=Gº 2

yM0
k;r

equals LC 1�m� wherem� is the number of edges
of �=G sticking out of �—this uses Lüroth’s theorem to see that .E� n

S
�¤� E�/=G are

rational curves.
In conclusion,

Mst.X/x=G D
X
�2I=G

.LC 1 �m�/
L � 1

La� � 1
C

X
Œ�;��2H=G

.L � 1/2

.La� � 1/.La� � 1/

2 ZLL�1=rM � yM0k;r : (2.16.1)

Example 2.17. Rational double points (also known as Du Val singularities) are exactly
the canonical surface singularities or, equivalently, the rational Gorenstein surface singu-
larities. These can be further characterized as those surface singularities whose minimal
resolution is crepant. As such, the dual graphs associated to their minimal resolution are
the simply laced Dynkin diagrams. See [38, Example 3.26] for further details. Following
[4, Section 3], it is standard to denote the formal germ at a rational double point by X rn
where X 2 ¹A;D;Eº and n; r vary in between certain intervals of non-negative integers.
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However, if p � 7, the index r is superfluous and in that case we only have the so-called
standard forms of the rational double points. Else; p D 2; 3; 5, we obtain an interesting
zoo of non-standard forms; [4, Section 3] for details. In general, we let Xn D X0n denote
the standard forms, which can be realized as linear quotients yA2=G by a finite subgroup
G � SL2.k/. As far as stringy motives are concerned, what matters is that the dual graph
of the minimal resolution of X rn is the simply laced Dynkin diagram Xn with vertices
of weight 2. In particular, the vertices correspond to rational smooth curves intersecting
transversely at exactly one point on the minimal resolution. Let us denote by Mst.X

r
n/ the

stringy invariant Mst.X/x associated to a rational double point x 2 X . Since the minimal
resolution zX ! .x; X/ is crepant (i.e., ai D 1), Mst.X

r
n/ equals the motive associated to

the exceptional set of curves (which is a tree of n P1’s intersecting as prescribed by the
diagram Xn). An easy calculation then shows

Mst.X
r
n/ D nLC 1:

Further, using (2.12.1), we see that

Mst.A
2=G/ D

®
A2=G n ¹0º

¯
CMst.Xn/ D ¹A

2=Gº � 1C nLC 1 D L2 C nL

for the standard forms. Here, we used ¹A2=Gº D L2, which follows from the relations
imposed in the definition of yM0

k;r
.

It is well known that there are many Galois quasi-étale covers among rational double
points; see [13, p. 15]. For instance, if p ¤ 3, there is a degree-3 Galois quasi-étale cover
D4 ! E6. Let us consider the action of Z=3 on D4. Recall that the dual graph of D4 is
the one in Figure 3. Then, one readily sees that the action of Z=3 on this graph is given
by fixing the node and permuting the other three vertices cyclically. The quotient graph
is then displayed in Figure 4. One vertex represents a copy of P1 (which is the quotient
of the disjoint union of three P1’s under the trivial cyclic action) whereas the other vertex
represents the quotient of P1 under the action of Z=3 (where the points 0; 1;1 are being
permuted cyclically). This lets us conclude that

Mst.D4/=.Z=3/ D LC
®�

P1 n ¹0; 1;1º
� ı

.Z=3/
¯
C 1 D 2LC 1:

ı ı ı

ı

Figure 3. Dual graph of D4.

ı ı

Figure 4. Quotient of the dual graph of D4 by
the action of Z=3.

Similarly, if p ¤ 2, there is an action of Z=2 on E6 whose quasi-étale quotient is E7.
To compute Mst.E6/=.Z=2/, we note that the induced action of Z=2 on the dual graph of
E6—being it depicted in Figure 5—is given by reflection across the symmetry axis. This
implies that the quotient graph is the one in Figure 6.
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ı ı ı ı ı

ı

Figure 5. Dual graph of E6.

ı ı ı ı

Figure 6. Quotient of the dual graph of E6 by
the action of Z=2.

As before, we then have

Mst.E6/=.Z=2/ D LC
®�

P1 n ¹0; 1;1º
� ı

.Z=2/
¯
C L � 1C LC 3 D 4LC 1:

Finally, we consider the example A2n�5
Z=2
��! Dn where p ¤ 2 and n � 4. The dual

graph is as in Figure 1 with 2n � 5 vertices, which is an odd number. The only automor-
phism of such a graph is the one switching the two branches (with n � 3 vertices each)
sticking out of the middle point, which remains fixed under the action. Thus, the quotient
graph is another straight graph but with n � 2 vertices. By a similar computation to the
ones above, we get

Mst.A2n�5/=.Z=2/ D .n � 2/LC 1:

There is also the trivial example A0
G
�!Xn whenever .p;#G/D 1. Since A0 is the smooth

germ, Mst.A0/ D 1 and so Mst.A0/=G D 1 for all G.
Observe that we have built a tower (for p ¤ 2; 3):

E7
Z=2
 �� E6

Z=3
 �� D4

Z=2
 �� A3

Z=4
 �� A0;

where the displayed arrows are all Galois quasi-étale covers whose Galois group is the
one displayed on top of them. Note that the composite arrows E7

S3
 � D4 and the ones

Xn A0 (i.e., those with A0 as the source) are all Galois quasi-étale covers as well (with
Galois group displayed on top). Here, Sn denotes the n-th symmetric group. Nonetheless,
the composite arrow E6  A3 is not Galois although it is quasi-étale.1 In particular,

E7  � E6  � D4  A0

is a tower of Galois quasi-étale covers inducing (by the computations we had done above)
the following sequence on stringy motives

Mst.E7/=1 D 7LC 1 > Mst.E6/=.Z=2/ D 4LC 1 > Mst.D4/=S3

D 2LC 1 > Mst.A0/=BO D 1;

where BO denotes the binary octahedral group.

1Indeed, if it were Galois its Galois group would have to be cyclic as S3 does not have Z=2 as a
normal subgroup. In that case, Z=3 would have to act non-trivially on A3 which is impossible as it cannot
act non-trivially on its dual graph.
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Example 2.18. Let Xd be the (affine) cone over the rational normal curve C � Pd and
0 2 Xd be its vertex. As we had seen in Example 2.9, Mst.Xd /0 D .L

2 � 1/=.L2=d � 1/
and its minimal resolution consists of blowing up 0 2 Xd so that its dual graph is just one
vertex. On the other hand, we may think of Xd as a quotient singularity A2=�d as it is
the spectrum of the d -th Veronese subring of kŒx; y�. In fact, A2 ! Xd is a connected
�d -torsor over Xd n ¹0º. Thus, if d D nm, we may think of Xd as a quotient Xn=�m.
Assume now p − m. By the triviality of the dual graphs in this example,Mst.Xn/0=�m D

Mst.Xn/0. Furthermore,

Mst.Xd /0 D
L2 � 1

L2=d � 1
D .L2 � 1/

1X
iD1

L
�2i
d

D .L2 � 1/
1X
iD1

L
�2im
d C .L2 � 1/

X
.i;m/D1

L
�2i
d

DMst.Xn/0 C .L
2
� 1/

X
.i;m/D1

L
�2i
d > Mst.Xn/0:

3. Strict descent in the presence of ramification

In this section, we establish the core result of this work. That is, we explain why stringy
motives get smaller across ramified Galois quasi-étale covers. The main step is to show
that there is an abundance of non-liftable arcs.

3.1. Abundance of non-liftable arcs

Let us consider the following setup.

Setup 3.1. Let .X;�X / be a d -dimensional KLT log pair. Let gW .Y;�Y /! .X;�X / be
a Galois quasi-étale log-cover with Galois group G. As customary, g1WJ1Y ! J1X is
the induced map by functoriality. Further, let �W . zX;� zX /! .X; �/ be a log resolution;
where we mean that � is crepant and ��� zX D �X . Let  W . zY ; � zY /! .Y; �Y / be the
normalization of � along g (i.e., with respect toK.Y /) and QgW . zY ;� zY /! . zX;� zX / be the
induced morphism. Schematically,

. zX;� zX /

�

��

. zY ;� zY /

 

��

Qg
oo

.X;�X / .Y;�Y /:
g
oo

(3.1.1)

Note that � zY is defined as the Q-divisor on zY that makes both  and so Qg crepant and
 �� zY D �Y . Also,  is a proper birational morphism whereas Qg is a G-cover; i.e., a
finite cover whose extension of function fields is Galois with Galois group G.
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Remark 3.2 (On the nature of étaleness for G-covers). It is well known to experts that
a finite dominant morphism gW Y ! X between smooth varieties is étale if and only if it
is unramified. In fact, for this to work, we only need X and Y to be; respectively, regular
and Cohen–Macaulay. Indeed, one uses [21, Corollary 18.17] to conclude that finiteness
implies flatness in that case. In particular, if g is further a G-cover, then g is étale if
and only if for all k-points x 2 X the set-theoretic fiber Yx.k/ is a G-torsor under the
induced action. Nevertheless, the same principle works with no hypotheses whatsoever on
the singularities of Y and X except for normality. Indeed, we assert the following.

Claim 3.3. With notation as above, suppose that g is aG-cover between normal varieties.
If the set-theoretic fiber Yx.k/ is a G-torsor for all x 2 X.k/ then g is étale.

Proof of claim. We need to prove that g�OY is locally free and that g is unramified, which
can be checked at every point x 2 X.k/. Set OY;x WD .g�OY /x . Observe that the generic
rank of OY;x=OX;x is ŒK.Y /=K.X/� D #G. By [30, II, Lemma 8.9], the local freeness
claim would follow if we prove this to be its residual rank as well. To do so, let us pull-
back OY;x=OX;x to the completion of OX;x to get yOX;x ! yOY;x D

Q
y2Yx.k/

yOY;y , where
#Yx.k/ D #G by hypothesis. Now, the generic rank of yOY;x= yOX;x is still #G as ranks are
invariant under completion.2 Therefore, yOY;y= yOX;x must have generic rank 1. Since these
rings are assumed normal, we have yOY;y ' yOX;x ; as required. Along the way, we proved
that yOY;y= yOX;x and so OY;y=OX;x are unramified.

We use this freely in what follows. This finishes our remarks.

In proving that there are abundant non-liftable arcs ofX across gWY ! X , the follow-
ing two lemmas are crucial.

Lemma 3.4 (Reduction to the log smooth case). Work in Setup 3.1 and assume d � 3.
In case d D 3 and 0 < p � 5, assume that G is a p-group. If Qg is étale then so is g.
Equivalently, if g is not étale then neither is Qg.

Elementary proof of Lemma 3.4 for surfaces. We present first a proof in the surfaces case
and discuss its extension to threefolds in Section 3.2 below. We may assume that X is
affine with a k-rational isolated singularity x 2 X ; so Y is affine too. SinceX has rational
singularities, Exc� is a tree of P1’s (see [22, Theorem 4.1] for a characterization of when
this is the case). In particular, Exc� is algebraically simply connected which implies that
the restriction of Qg to Exc � must consist of the disjoint union of #G copies of Exc �.3

However, such a disjoint union is the exceptional locus of  . This means that over x there
must lie #G many points in Y . That is, #G D #Yx.k/ and so g is étale.

2Indeed, let M be a finitely generated module over a local excellent normal domain .R;m/ of generic
rank r . Write a short exact sequence 0! R˚r ! M ! T ! 0 where T is torsion; such a sequence is
obtained by choosing a basis of M.0/ over R.0/ consisting of elements in the image of M ! M.0/. Base
changing the sequence by the flat extension yR=R and noting that T ˝R yR is torsion gives the desired result.
Note that yR is necessarily a domain [49, Tag 0C23].

3Alternatively, one may use that Exc � is a tree of P1’s to show that Qg induces a local isomorphism
over the corresponding dual graph, which is contractible and so simply connected.

https://stacks.math.columbia.edu/tag/0C23
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The following lemma and corollary should be thought of as a strengthening of results
of Kato and Kerz–Schmidt; see [33, Lemma 3.5] which is based on [36, Lemma 2.4].
Our proofs of these results were inspired by arguments in the recent paper of Nakamura–
Shibata [42]. In the proof of this lemma, we use the untwisting technique, which we briefly
recall next. For details of this technique, we refer the reader to [54, Sections 4 and 7] or to
[59, Section 6] for the stacky formulation.

Consider a G-cover gW Y ! X between normal varieties and let gDW YD ! XD be
its base change to D. By an arc of XD , we mean a section D ! XD . We denote by
J1XD the space of arcs of XD . We have the obvious identification J1X D J1XD . To
each G-cover E! D, we can associate a separated and flat D-scheme Y jEjD of finite type
called the untwisting scheme [54, Definition 7.2]. It comes with a natural D-morphism
g
jEj
D WY

jEj
D ! XD . The morphisms at the generic fiber

gD;�WYD;� ! XD;� and g
jEj
D;�WY

jEj
D;� ! XD;�

are twisted forms of each other. That is, letting x� denote the geometric generic point of D,
there exists an isomorphism YD;x� ! Y

jEj
D;x� over XD;x� . It follows that these two morphisms

have the same branch locus in XD;� . It also follows that if Y=k is smooth then Y jEjD;� is
smooth over D�. The key property of the untwisting scheme is that there is a one-to-one
correspondence

JE;G
1 YD

1W1
 ! J1Y

jEj
D

ı
Aut.E/

which is compatible with the maps to J1XD; see [54, the last display of p. 140].
Let .JE;G

1 YD/
\ � JE;G

1 YD be the locus of those E-twisted G-arcs that map some
(and hence every) generic point into the étale locus of gDWYD! XD and let .J1Y

jEj
D /\ �

J1Y
jEj

D and .J1XD/
\ � J1XD be the loci of arcs of Y jEjD and XD mapping � into the

étale loci of gjEjD WY
jEj

D ! XD , respectively. Note that all of these loci have a complement
of measure zero. The above correspondence restricts to

.JE;G
1 YD/

\ 1W1
 ! .J1Y

jEj
D /\

ı
Aut.E/;

since these are preimages of
�
J1XD

�\
� J1XD . Maps

.JE;G
1 YD/

\
! .J1XD/

\ and .J1Y
jEj

D /\
ı

Aut.E/! .J1XD/
\

are injective (cf. [56, Proposition 6.16]).

Remark 3.5. By [59, Section 6.3 and Remark 14.5], the untwisting scheme Y jEjD is the
irreducible component (with the reduced structure) of the G-fixed locus of the Hom
scheme HomD.E; YD/ (i.e., the Hom scheme parametrizing G-equivariant morphisms
E! YD) that dominates D. In the stacky language, this corresponds to the irreducible
component of the Hom stack Homrep

D .E; ŒYD=G�/ of representable morphisms. The generic
fiber of the latter Hom stack, which is defined over D, is

Homrep
D�
�
D�; ŒYD=G��

�
D ŒYD=G��:
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See [53, Remark 6.23]. Thus, in the stacky setting, untwisting leaves the generic fiber
unchanged.

Lemma 3.6. Let gW Y ! X be a G-cover between normal varieties. Suppose that Y is
smooth and that JE;G

1 YD is nonempty. Then, the subset

gD;1

�
.JE;G
1 YD/

\
�
D g

jEj
D;1

�
.J1Y

jEj
D /\

�
� J1XD D J1X

is a measurable subset of positive measure.

Proof. Since the generic fiber Y jEjD;� is smooth, there exists a Néron smoothening hWW !
Y
jEj

D ; see [9, Section 3.1]. We have the following properties: W is smooth over D, the
induced morphism W� ! Y

jEj
D;� of generic fibers is an isomorphism, and h1W J1W !

J1Y
jEj

D is bijective. Since J1Y
jEj

D is non-empty, then so is J1W . Since W is smooth,
the total space J1W is a cylinder of measure ¹W �D kº ¤ 0. Let jh be the Jacobian order
function of h. This function is bounded above as h is an isomorphism on generic fibers.
Thus, J1W D

Fn
iD0 j�1

h
.i/ for all n� 0. For some i , �W

�
j�1
h
.i/
�
> 0. By the change

of variables formula [45, Theorem 8.0.5], it follows that

�
Y
jEj
D

�
h1

�
j�1h .i/

��
D L�i�W

�
j�1h .i/

�
> 0

for any such i . This shows that

�
Y
jEj
D

�
.J1Y

jEj
D /\

�
D �

Y
jEj
D
.J1Y

jEj
D / > 0:

To deduce the desired positivity from this, we apply a similar argument as above to
g
jEj
D WY

jEj
D ! XD . However, we need a result on motivic integration in the equivariant sit-

uation. In characteristic zero, such a theory was developed in [20]. We will use the stacky
formulation developed in [59] as an available theory having the necessary generality.

Set Y WD ŒY
jEj

D =Aut.E/�. The morphism g
jDj
E WY

jEj
D !XD factors through Y and hence

the map gjEjD;1 factors as

J1Y
jEj

D ! J1Y
jEj

D

ı
Aut.E/ D J1Y ! J1XD:

The right map is injective outside a subset of measure zero. Further, we have

�Y.J1Y/ D �
Y
jEj
D

�
J1Y

jEj
D

�ı
Aut.E/ > 0:

Let j be the Jacobian order function of Y ! XD . We have the partition

J1Y D
G

i2N[¹1º

j�1.i/

by countably many measurable subsets. Since j�1.1/ has measure zero, there exists i ¤
1 such that j�1.i/ has positive measure. For this i , from the change of variables ([59,
Theorem 10.26 or 11.13]), we have

�XD

�
g
jEj
D;1

�
j�1.i/

��
D L�i�Y

�
j�1.i/

�
> 0:
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The subset of the statement has the same measure as gD;1.J1Y/, which further contains
g
jEj
D;1

�
j�1.i/

�
. This proves the lemma.

Corollary 3.7. Let G be a finite group and H � G be a subgroup. Let gW Y ! X be
a G-cover such that Y is smooth and there is y 2 Y.k/ being fixed by H . Let E! D
be another G-cover such that H fixes a connected component E0 of E (i.e., E0 ! E is
H -equivariant). Let N � J1X be the subset of arcs 
 WD ! X such that: 
.ı/ D g.y/,
g is étale over 
.�/, and the pullback of 
 along g induces the given G-cover E! D.
Then, N has positive measure.

Proof. First of all, note that N is none other than gD;1

�
.JE;G
1 YD/

\
�
. Thus, in order to

apply Lemma 3.6, it suffices to show that JE;G
1 Y ¤ ;; which we do next. The D-scheme

YD has the H -invariant section

D
'
�! ¹yº �D � YD:

The composition E0 ! D ! YD is clearly an H -equivariant D-morphism. There exists
a unique extension of this morphism to a G-equivariant morphism E! YD , i.e., an E-
twisted G-arc (a corresponding arc D ! Y

jEj
D , which is unique up to the Aut.E/-action,

corresponds to the “trivial arc” by Nakamura–Shibata; see Remark 3.8 below.)

Remark 3.8. Nakamura–Shibata work over A1, following the setting in [20]. In [42,
Claim 5.2], they use a result of Hacon–McKernan [29] about rational chain connected-
ness, which is based on a result by Graber–Harris–Starr [25], to show that the “trivial
arc” deforms. We work instead over the formal disk D and use the Néron smoothening to
deform the “trivial arc.”

Proposition 3.9 (Abundance of non-liftable arcs). Work in Setup 3.1 with d � 3. If d D 3
and 0 < p � 5, further assume that G is a p-group. If g is not étale then there is an arc

 WD ! X that does not lift to Y and so g1W J1Y ! J1X is not surjective. Moreover,
J1X n g1.J1Y / has positive measure. Similarly, if G fixes y 2 Y.k/ and x D g.y/,
then .J1X/x n g1..J1Y /y/ has positive measure.

Proof. Since g is not étale, neither is QgW zY ! zX by Lemma 3.4. The map �1W J1 zX !
J1X is almost bijective and the subsets g1.J1Y / and Qg1.J1 zY / correspond to each
other through this almost bijection (outside subsets of measure zero). Moreover, the map
sends a subset of positive measure of J1 zX to such of J1X . Therefore, it suffices to show
the proposition for Qg in place of g. Now, there exists a point y 2 zY .k/ fixed by a non-
trivial cyclic subgroup 1 ¤ H � G of prime order. In particular, there exists a connected
H -cover E0 ! D. Indeed, if the order of H is a prime ` ¤ p, we can then take the cover
Spec kJt1=`K! Spec kJtK. If the order is p, we can take, for example, the Artin–Schreier
extension kLtMŒu�=.up � u � t�1/ of kLtM and the corresponding cover of D. We can
extend E0 ! D to a G-cover E! D. We now just apply Corollary 3.7 to the above y
and E to obtain the result.
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Remark 3.10. In proving Proposition 3.9, we did not use Corollary 3.7 to its full power.
The authors believe a sharper analysis may give a stronger version of Proposition 3.9
which may help in showing the DCC property by providing a stronger descent. See Ques-
tion 4.7 below.

3.2. On the proof of Lemma 3.4

We come back now to the proof of Lemma 3.4. We concentrate now on the case of three-
folds. The substantial difference is that in the 2-dimensional case we can rely on rationality
whereas in the 3-dimensional case only on WO-rationality, which is much less elemen-
tary than rationality. Recall that KLT threefold singularities areWO-rational; see [24,28].
However, these are rational in characteristics p � 7; see [5,27]. It is then far from obvious
how what we wrote above in the proof of Lemma 3.4 can be generalized to threefolds and
beyond.

The key idea, however, was to exploit the topological simplicity of Exc � granted by
the rationality of X . Due to the low dimensions involved, the theorem of formal functions
can be utilized to prove thatH 1. zXx ;O zXx /D 0 from the vanishing OX

'
�! R��O zX (where

“'” means a quasi-isomorphism in the appropriate derived category); see [3]. Moreover,
one may “thicken” zXx if necessary to ensure that H 0. zXx ;O zXx / D k. More precisely,
there is a minimal effective divisor D D

P
i niEi on zX such that the ¹Eiº are the irre-

ducible components of zXx , ni � 1 for all i , and O zX .�D/ is relatively nef over an open
neighborhood of x (i.e., D �Ei � 0 for all i ). It then follows that �. zXx ; xO zXx / D 1 where

xO zXx WD O zX=O zX .�D/:

See [3] for details; where Artin referred to D as the fundamental cycle.4 This can be
further exploited to prove that Exc � D . zXx/red is a tree of P1’s; see [22, 41], which is
what we had used above.

We start by reproving Lemma 3.4 only knowing that �. zXx ; xO zXx / D 1.

Proof of Lemma 3.4: Surface case. Since Qg is étale,  is a resolution of singularities. In
particular, OY

'
�! R �O zY as Y also has rational singularities. Now, let us consider the

fiber of (3.1.1) at a point x 2 X.k/,

zXx

�x

��

zYx

 x
��

Qgxoo

x Yx :
gxoo

(3.10.1)

Let D be the fundamental cycle of x and define xO zXx as before. By the Hirzebruch–
Riemann–Roch theorem:

�. zYx ; Qg
�
x
xO zXx / D #G � �. zXx ; xO zXx / D #G

4We may always replace D for any larger divisor and obtain the same Euler characteristic; the funda-
mental cycle is just minimal with that property.
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as Qgx is finite étale of degree #G; see [23, Example 18.3.9]. However, since g is étale, it
also follows that

Qg�x
xO zXx D O zY =O zY .�g

�D/;

where �g�D is relatively nef over a neighborhood of x 2 X . In particular, �g�D is rela-
tively nef over an open neighborhood of each y 2 Y.k/ lying over x. Therefore, arguing
à la Artin, we conclude that

�. zYx ; Qg
�
x
xO zXx / D dimkH

0. zYx ; Qg
�
x
xO zXx / D #g�1.x/ � dimk OYx :

Since H 0. zYx ; Qg
�
x
xO zXx / is an OYx -algebra, this lets us conclude that it must be trivial and

so #G D dimk OYx . Thus, g�OY is locally free; say by [30, II, Exercise 5.8 (c)]. Since
g is further quasi-étale, we conclude that g is étale by the purity of the branch locus for
faithfully flat finite covers [1, VI, Theorem 6.8].

Next, we remark that the above proof can be carried out without passing to the fibers by
means of the Grothendieck–Riemann–Roch theorem (GRR). This has the salient feature
of letting us extend our proof to higher dimensions yet still assuming rationality.

Proof of Lemma 3.4: General rational case. Here, we may assume that d is arbitrary but
that X and Y have rational singularities (e.g., KLT surface singularities or KLT three-
fold singularities in characteristic p ¤ 2; 3; 5 [5, 27]). As before, we consider the proper
morphism 
 W zY ! X where � ı Qg D 
 D g ı  . We use the rationality of X to say that
�ŠO zX DOX . Similarly, since Qg is étale and so  is a resolution, we may say  ŠO zY DOY .
Now, being g and Qg affine morphisms, we have gŠOY D g�OY and likewise for Qg.

The point now is that we may compute ch.
ŠO zY / in two different ways. First,

ch.
ŠO zY / D ch.�� Qg�O zY / D ��
�

ch. Qg�O zY / � td.T�/
�
D ��

�
Qg�
�

td.T Qg/
�
� td.T�/

�
;

where we used GRR in the last two equalities. Next, we use that Qg is a finite étale map of
degree #G to say Qg�.td.T Qg// D #G as T Qg D 0. This lets us conclude that,

ch.
ŠO zY / D #G � ��
�

td.T�/
�
D #G � ch.�ŠO zX / D #G � ch.OX / D #G;

where the second equality uses GRR. On the other hand, we may compute ch.
ŠO zY / as
follows:

ch.
ŠO zY / D ch.g� �O zY / D ch.g�OY /:

In this manner, we conclude,
ch.g�OY / D #G:

Next, we recall that Chern characters commute with pullbacks. Then,

#G D ch
�
g�OY ˝OX �.x/

�
D dim�.x/

�
g�OY ˝OX �.x/

�
for all x 2 X . Using [30, II, Exercise 5.8 (c)] gives that g�OY is locally free, i.e., g is
faithfully flat. We conclude as before that g is étale by purity [1, VI, Theorem 6.8].
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As mentioned in Section 1, in studying Question 1.1 in dimensions � 3, the most
important case is the purely wild one (i.e., when all the Galois groups are p-groups) as it
is the one left unsolved by the minimal model program. Under such hypotheses, it turns
out that one can give simpler proofs for Lemma 3.4. Let us start with the rational case.

Proof of Lemma 3.4: Rational and purely wild case. Say #GDpe and bothX and Y have
rational singularities of any dimension. There is a short exact sequence 0! Z=p!G!

H ! 1 where #H D pe�1. Thus, by induction on e, we may assumeG D Z=p. Consider
the following diagram induced from the Artin–Schreier theory,

H 0. zX;O zX /
// H 1

ét.
zX;Z=p/ // H 1. zX;O zX /:

H 0.X;OX / // H 1
ét.X;Z=p/

//

OO

H 1.X;OX /

OO

Since our problem is local, we may assume that X is affine and soH 1.X;OX /D 0. Since
X has rational singularities, thenH 1. zX;O zX /D 0. Therefore, the cover QgW zY ! zX , which
can be regarded as an element of the upper middle group H 1

ét.
zX;Z=p/, is realized as the

normalized pullback of a Z=p-torsor over X . Namely, the original cover gW Y ! X is
étale.

There is the notion ofWO-rationality, which is weaker than rationality. There are KLT
singularities which are not rational but WO-rational. Therefore, it is natural to look for
a generalization of the above arguments using WO-cohomology. We invite the reader to
consult [44, Section 3] for an excellent account on Witt vector and p-adic étale cohomol-
ogy as well as WO-rationality. Also see [7, 16, 18, 24, 40]. This approach works well at
least in the case where the Galois group is a p-group, as in the proof below.

Proof of Lemma 3.4: WO-rational and purely wild case. Suppose that #G is a p-group,
both X and Y have WO-rational singularities (e.g., KLT singularities in dimension � 3
[24, 28]), and their dimension d is arbitrary. In particular, � is WO-rational:

WOX;Q
'
�! ��WO zX;Q and Ri��WO zX;Q D 0 for all i > 0:

According to [44, Lemma 3.19], � is further Qp-rational which means that ��Qp D Qp

and Ri��Qp D 0 for all i > 0.
Now, let x 2 X.k/ be arbitrary and consider the fiber diagram (3.10.1); where zXx

is a proper connected k-scheme. Using proper base change for p-adic étale cohomol-
ogy [44, Proposition 3.16] (cf. [32, Exposé VI, Section 2.2.3 (B)]), we conclude that
H 0

ét.
zXx ;Qp/DQp andH i

ét.
zXx ;Qp/D 0 if i > 0. In particular, the p-adic Euler–Poincaré

characteristic of the fiber is �ét. zXx ;Qp/ D 1. Now, since Qgx is a G-torsor with G a p-
group, we may use Crew’s formula; see [19], [16, Lemma 8.5], to get that

�ét. zYx ;Qp/ D #G � �ét. zXx ;Qp/ D #G:
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Next, since Qg is étale,  is a resolution and so it is Qp-rational. Hence, by proper base
change for p-adic étale cohomology once again, we get that

�ét. zYx ;Qp/ D H
0.Yx ;Qp/ D #Yx.k/:

Putting these two observations together, #G D #Yx.k/ for all x 2 X.k/. We finish by
using Claim 3.3.

We may wonder whetherWO-rationality and/or rationality are necessary for the state-
ment of Lemma 3.4 (and of Proposition 3.9). The following example shows this to be the
case.

Example 3.11 (cf. [42, Remark 5.3]). LetE be an ordinary elliptic curve andO ¤ P 2E
be a p-torsion point. The automorphism of E sending a point Q to Q C P defines an
action of Z=p on E. This action lifts to one on the ample invertible sheaf OE .P0 C � � � C

Pp�1/ with Pi the p-torsion points. We also have natural actions on the affine cone C
and the standard resolution zC over E associated to this invertible sheaf; the latter is a line
bundle overE. The action on C has the unique fixed point; namely, the vertex of the cone,
whereas the action on zC is free. The Galois cover C ! C=G with G D Z=p is ramified
while the Galois cover zC ! zC=G is étale. This shows that every arc on C=G lifts to C
unless it maps � 2 D to the branch point. Observe that C is not KLT nor (WO-)rational.

3.3. Main result

We are now ready to establish our main result:

Theorem 3.12 (Strict descent). Work in Setup 2.10. Suppose that .X0; �0/ is KLT of
dimension d � 3. Assume that g1 and g2 are quasi-étale. In the case d D 3 and 0 < p � 5,
further assume that G1 and G2 are p-groups. If f is not étale, then

Mst.X1; �1/=G1 > Mst.X2; �2/=G2:

Similarly, if xi 2 Xi is the preimage of x0 then

Mst.X1; �1/x1=G1 > Mst.X2; �2/x2=G2:

Proof. Put together Corollary 2.12 and Proposition 3.9.

4. DCC for stringy motives of log terminal surface singularities
In this section, we discuss the Descending Chain Condition (DCC) for stringy motives of
log terminal surface singularities. We work in the setup of Section 2.3. We commence by
using the formula (2.16.1) to see that, as a Laurent power series in L�1=r , the invariant
Mst.X/x=G can be expressed asX

�2I=G

.LCm�/.L � 1/.L
�a� C L�2a� C � � � /

C

X
Œ�;��2H=G

.L � 1/2.L�a� C L�2a� C � � � /.L�a� C L�2a� C � � � /;
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which has degree 2 � min¹a�º, where we set deg L1=r D 1=r . Modulo terms of degrees
< 1, the above series becomesX

�2I=G

L2.L�a� C L�2a� C � � � /

C

X
Œ�;��2H=G

L2.L�a� C L�2a� C � � � /.L�a� C L�2a� C � � � /: (4.0.1)

This shows thatMst.X/x=G has non-negative coefficients for the terms Lb with 1� b < 2,
which motivates the following definition.

Definition 4.1. With notation as above, we defineN.x;X;G/2NŒL1=r � to beMst.X/x=G

with all the terms of degree < 1 removed. We define C.x;X;G/ 2 N to be the sum of the
coefficients of N.x;X;G/.

Remark 4.2. Clearly, ifMst.X/x=G �Mst.X
0/x0=G

0 then N.x;X;G/ � N.x0; X 0;G0/.

Note that the expression (4.0.1) shows that each vertex of �=G with log discrepancy
� 1 contributes at least 1 to C.x;X;G/. From Lemma 2.16, we then obtain:

Lemma 4.3. The graph �=G has at most C.x; X; G/ non-special vertices (i.e., the ver-
tices coming from the minimal resolution) and at most C.x;X;G/C 1 vertices.

Definition 4.4. Let r be a positive integer. We define A2
r � ZLL�1=rM to be the subset of

elementsMst.X/x=G such thatX is a log terminal surface with an action of a finite group
G and such that rKX is Cartier and the G-action fixes a point x 2 X .

Lemma 4.5. Fix a positive integer r and a polynomial N 2 NŒL1=r �. Then, there exist
only finitely many elements ˛ 2 A2

r that are equal to a stringy motive Mst.X/x=G such
that N.x;X;G/ D N .

Proof. The invariant Mst.X/=G is determined by the data of the dual graph �=G asso-
ciated to the modified minimal resolution of X and the log discrepancies a� assigned to
their vertices. SinceN.x;X;G/ determines C.x;X;G/, the number of vertices of �=G is
bounded by Lemma 4.3. Thus, there are only finitely many possibilities for the graph �=G.
For each possibility, there are only finitely many ways to assign numbers a� to vertices as
these numbers must belong to the finite set 1

r
Z \ .0; 2�. The result then follows.

Proposition 4.6 (DCC for surface stringy motives). Fix a positive integer r . Then, A2
r

satisfies DCC: every descending chain

Mst.X0/x0=G0 �Mst.X1/x1=G1 �Mst.X2/x2=G2 � � � �

of elements in A2
r eventually stabilizes.

Proof. According to Remark 4.2, from the chain in the statement, we obtain the following
decreasing chain

N.x0; X0; G0/ � N.x1; X1; G1/ � N.x2; X2; G2/ � � � � :
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of polynomials in NŒL1=r �. Therefore, it must stabilize. By Lemma 4.5, the chain of the
statement stabilizes as well.

Question 4.7 (DCC for threefold stringy motives). Fix a positive integer r . Let A3
r �
yM0

k;r

be the subset of stringy motivesMst.X;�/x=G where .X;�/ is a KLT 3-dimensional log
pair such that r.KX C �/ is Cartier and G acts on X fixing the boundary � as well
as x 2 X . Does A3

r satisfy the DCC? If 0 < p � 5, does DCC hold when we consider
p-groups only? See Remark 3.10.

5. Applications to étale fundamental groups

We finish by establishing some consequences of the above results. The main consequence
is that Question 1.1 has an affirmative answer if .X;�/ is a KLT surface.

Theorem 5.1. Let
X0

f0
 � X1

f1
 � X2

f2
 � X3  � � �

be a tower of Galois quasi-étale covers of log terminal surfaces over an algebraically
closed field. Then, fi is étale for all i � 0.

Proof. Suppose for the sake of contradiction that fi is not étale for infinitely many i . Let
Gi WD Gal.Xi=X0/. Since each fi is étale over the regular locus of X0, which has only
finitely many singular points, there exists a singular point x0 2 X0 such that for infinitely
many i , fi is not étale over x0. Shrinking X0 around this point, we may suppose that X0
has the unique singular point x0. Note that, if r is the Gorenstein index of X0, then r is
a multiple of the Gorenstein index of every Xi . By Theorem 3.12, we get a decreasing
sequence

Mst.X0/=G0 �Mst.X1/=G1 �Mst.X2/=G2 � � � �

such that infinitely many inequalities are strict. For each i , let us choose a point xi 2 Xi
lying over x0. Then,

Mst.Xi /=Gi D
®
X0 n ¹x0º

¯
CMst.Xi /xi =Stab.xi /

by using (2.12.2). Hence, by subtracting ¹X0 n ¹x0ºº from the above sequence, we obtain
a non-terminating decreasing sequence

Mst.X0/x0=Stab.x0/ �Mst.X1/x1=Stab.x1/ �Mst.X2/x2=Stab.x2/ � � � �

of elements in the set A2
r � ZLL�1=rM (which was defined in Section 4). This contradicts

Proposition 4.6.

Remark 5.2. A little more effort enables us to prove the above theorem by the DCC of
the sequence Mst.Xi /= Stab.xi / without shrinking X0 (but still reducing to the DCC of
the “local” stringy motives Mst.Xi /xi =Stab.xi /). This approach would be a more faithful
practice of the strategy explained in Section 1.
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A similar (but simpler) argument shows the following; see Corollary 6.4 and its proof.

Theorem 5.3. The local étale fundamental group of a log terminal surface germ is finite.

As an immediate consequence, we obtain:

Corollary 5.4. Big opens of weak del Pezzo surfaces have finite étale fundamental group.

Proof. See [15, Theorem 2.6] and its proof.

Remark 5.5. To the best of the author’s knowledge, the results of this section were
unknown at least in characteristics 2 and 3. In characteristic p > 5, one may use that
log terminal surfaces are strongly F -regular and use [8, 14]. In characteristic p D 5, one
may use that the canonical cover of log terminal surface singularities is a rational point;
see [2, 35], and then use Artin’s explicit description of them in [4] to conclude. In charac-
teristics p D 2; 3, we know the canonical cover trick fails by [35] hence a new, different
approach was needed. Our methods addressed these cases with the salient feature of pro-
viding a unified approach which is conceptual and independent of the characteristic of the
groundfield. For instance, it gives a conceptual proof for the finiteness of the étale local
fundamental group of rational double points in the low characteristics, which Artin had
accomplished only on a case-by-case classification analysis [4].

6. Mixed characteristic surface case

In this section, we aim to establish Theorem 5.3 in the mixed characteristic case as well.
We may use the exact same proof as long as we establish Theorem 3.12 in mixed charac-
teristics. The first problem we face with this is that there is no suitable theory of motivic
integration in mixed characteristic; see [58, Problem 10.1]. Therefore, we cannot see the
strict descent of stringy motives formally as the non-liftability of arcs as we did in Sec-
tion 3. However, the surface case is simple enough for this descent to be seen by direct
analysis, which is what we do in this section.

Let .R;m; k; K/ be a 2-dimensional complete normal integral domain with alge-
braically closed residue field k and field of fractions K. Suppose that it has mixed char-
acteristic .charK D 0; char kD p > 0/. In that case, R admits a canonical module which
is a reflexive module of rank 1 and unique up to isomorphism. For instance, we may use
that R is a finite extension over A D ƒJtK where .ƒ; .p/; k/ is a complete DVR (see
[49, Tag 032D]) to set !R WD !R=A WD HomA.R; A/. We let KX denote a corresponding
canonical divisor on X WD SpecR. The choice of KX is unique up to linear equivalence
and so the canonical class KX 2 ClX is well defined. Further, we write x WD Spec k and
identify it with the closed point of X .

We will assume that X is Q-Gorenstein, i.e., KX 2 ClX is torsion, and denote by
r � 1 the index ofKX in ClX . In particular, we may define log discrepancies with respect
to a minimal resolution and define .x; X/ as log terminal if these are positive. In doing
this, we are setting our base to be A D ƒJtK; with notation as in the previous paragraph.

https://stacks.math.columbia.edu/tag/032D
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Remark 6.1. Sometimes one considers a relative canonical module !R=B with respect
to a different base B . For example, one may consider a scheme Y of finite type over
a complete DVR B with an algebraically closed residue field and suppose that R is the
complete local ring yOY;y at a closed point y. Then, the relative canonical module is defined
as !R=B D !Y=B ˝ yOY;y . However, whether we use !R or !R=B does not make any
change to the following argument; for we get the same discrepancies in either way. See
“Comments” on pages 7 and 8 of [38]. In what follows, all canonical divisors are defined
with respect to A as above. However, as in [38], we will omit the base in our notation for
canonical divisors.

Suppose that .x;X/ is a log terminal singularity and let �W zX! .x;X/ be the minimal
resolution. Then, we define Mst.X/x by the explicit formula in Example 2.8. Namely,

Mst.X/x WD
X
i2I

.LC 1 �mi /
L � 1

Lai � 1

C

X
Œi;j �2H

.L � 1/2

.Lai � 1/.Laj � 1/
2 ZLL�1=rM � yM0k;r ;

where we use the exact same notation as in Example 2.8. Recall that ai 2 1
r
Z \ .0; 1� as

.x;X/ is log terminal with Gorenstein index r .
Likewise, if G is a finite (discrete) group acting on X and fixing x, we may further

define the quotient stringy invariant Mst.X/x=G using the modified minimal log resolu-
tion as explained in Section 2.3. That is, we take (2.16.1) as the definition of Mst.X/x=G

in mixed characteristics,

Mst.X/x=G WD
X
�2I=G

.LC1�m�/
L � 1

La��1
C

X
Œ�;��2H=G

.L � 1/2

.La��1/.La��1/
2ZLL�1=rM� yM0k;r :

For the sake of concreteness, we have used minimal resolutions and minimalG-normal
resolutions to define the stringy motives above. However, using strong factorization, we
may take any log resolution as the following lemma makes precise.

Lemma 6.2. With notation as above, let  WY ! .x;X/ be a log resolution and � be the
corresponding dual graph with set of vertices I and set of edges H . Further, assume that
Ei has log discrepancy ai for all i 2 I . Then,

Mst.X/x D
X
i2I

.LC 1 �mi /
L � 1

Lai � 1
C

X
Œi;j �2H

.L � 1/2

.Lai � 1/.Laj � 1/
;

where mi is the number of edges of � sticking out of i . Suppose further that  is a G-
normal log resolution, then

Mst.X/x=G D
X
�2I=G

.LC 1 �m�/
L � 1

La� � 1
C

X
Œ�;��2H=G

.L � 1/2

.La� � 1/.La� � 1/
;

where m� is the number of edges of �=G sticking out of � and a� D ai for all i 2 I .
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Proof. Any two log resolutions are related by a sequence of blowups at a point (strong
factorization). Thus, it suffices to consider � W Y 0 ! Y the blowup of Y at an edge of
� and prove that our formula remains invariant when computed using the log resolution
Y 0! Y ! .x;X/. Note that the dual graph of Y 0, say � 0, is obtained from � by replacing
the edge that is blown up, say Œi; j �, by Œi; k� [ Œk; j � where k is the new vertex of � 0

corresponding to the exceptional divisor of Y 0 ! Y , whose log discrepancy over X is
ak D ai C aj . All other discrepancies remain unchanged. In particular, it suffices to prove
that

.L � 1/
L � 1

Lak � 1
C

.L � 1/2

.Lai � 1/.Lak � 1/
C

.L � 1/2

.Lak � 1/.Laj � 1/
D

.L � 1/2

.Lai � 1/.Laj � 1/
;

which is a straightforward consequence of the equality ak D ai C aj .

We aim to prove the following.

Theorem 6.3. Let .x;X/ be a log terminal surface singularity as above and G be a non-
trivial finite group acting onX and fixing x. Let Nx be the image of x on the quotientX=G.
Assume that the quotient morphism f W .x;X/! . Nx;X=G/ is étale away from Nx. Then,

Mst.X=G/ Nx > Mst.X/x=G;

with respect to the lexicographic order in ZLL�1=rM.

As a corollary, we obtain the following.

Corollary 6.4. Let .x; X/ be a log terminal surface singularity as above. Then, the étale
fundamental group �ét

1 .X n ¹xº/ is finite.

Proof. The same arguments in Section 4 show that the set A2
k;r
� yM0

k;r
of stringy motives

Mst.X/x=G such that .X;x/ is a log terminal singularity with rKX D 0 2 ClX and admit-
ting an action of a finite group G fixing x D Spec k satisfies a descending chain condition
(DCC).

If �ét
1 .X n ¹xº/ were not finite, then there would be an infinite chain of finite Galois

local covers .x;X/ .x1; X1/ .x2; X2/ � � � such that XiC1 n ¹xiC1º ! Xi n ¹xiº

is étale but XiC1 ! Xi is not étale. In particular, the Galois group 1 ¤ Gal.Xi=X/ acts
on Xi fixing xi and the quotient is .x; X/. Further, every .xi ; Xi / is a log terminal sur-
face singularity with xi D Spec k and such that rKXi D 0 2 ClXi . Then, by applying
Theorem 6.3, we obtain a strictly ascending chain

Mst.X/x > Mst.X1/x1=G1 > Mst.X2/x2=G2 > � � �

violating the DCC on A2
k;r

.

The rest of this section is dedicated to the proof of Theorem 6.3. Since we cannot
use motivic integration to compareMst.X=G/ Nx andMst.X/x=G, we have to compare the
explicit formulas defining them. However, the main difficulty in making this comparison
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is that the G-quotient of a G-normal log resolution �W QX ! .x;X/ is not a log resolution
of X=G. Our strategy to bypass this issue is to compare stringy motives along some con-
structible subsets and then take limits. To this end, we shall need some auxiliary stringy
motives along closed subsets. First, we explain the setup in which discrepancies can be
compared directly.

6.1. Comparing discrepancies

Consider the following commutative square between normal integral schemes

QW

�

��

QX

 

��

Qf
oo

.w;W / .x;X/
f
oo

where .w; W / is a log terminal surface singularity, f is a quasi-étale cover of surface
singularity germs, and the vertical arrows are proper birational morphisms. When f is a
Galois cover, we also assume that the Galois action onX lifts to QX . Let F � QX be a prime
divisor over X and let E � QW be its image. Suppose that these divisors have (non-log)
discrepancies bF and bE over X and W ; respectively.

Proposition 6.5. With notation as above, suppose that either

(1) the free OO QW ;�E -module OO QX;�F has prime-to-p rank, or

(2) f is a Galois cover.

Then, bF � bE . Moreover, if Qf is ramified along F , then bF > bE .

Proof. Concerning the divisors appearing in this proof, we are mainly interested in the
coefficients of F and E so that we will omit other prime divisors by writing “� � � ”.

We can write
K QX D  

�KX C bF F C � � �

and
K QW D �

�KW C bEE C � � � :

Let e be the ramification index at F . Namely, the uniformizer of OO QW ;E has order e with
respect to the normalized valuation of OO QX;F . Let ı denote the different at F , which is
defined to be the length of the OO QX;F -module y� QX= QW ;F . Since f is quasi-étale, pulling
back the second equality gives

K QX D
Qf �K QW C ıF C � � � D  

�KX C .ebE C ı/F C � � � :

Comparing the coefficients of F , we get

bF D ebE C ı:
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Proof of case (1). In this tame case, it is well known that ı D e � 1. It follows that

bF C 1 D e.bE C 1/ � bE C 1:

Moreover, if Qf is ramified along F , then e > 1 and hence bF C 1 > bE C 1. The assertion
follows.

Proof of case (2). From Hyodo’s formula [31, (1)–(4)], we have

ı D e � 1C dL.M=L/;

where M and L are the fraction fields of OO QX;�F and OO QW ;�E , and dL.M=L/ 2 N is the
depth of ramification of the extension M=L. We have that dL.M=L/ D 0 if and only if Qf
is tamely ramified along F . Let G D Gal.L=K/ be the Galois group.

The case G Š Z=p. Let kF and kE be the residue fields at F and E respectively. This
case is further divided into three sub-cases according to ramification type: unramified
(e D 1 and kF =kE is separable), wildly ramified (e D p and ŒkF W kE � D 1), and fiercely
ramified (eD 1 and kF =kE is inseparable). The unramified case is contained in the tamely
ramified case (1). In the other two cases, from [50, Section 2.1], ı � p � 1. In the wildly
ramified case,

bF D pbE C ı � p.bE C 1/ � 1;

and
bF C 1 > bE C 1;

as bE C 1 > 0 from the log terminal condition. In the fiercely ramified case,

bF � bE D ı D dL.M=L/ > 0:

Thus we get the desired assertion in every sub-case.

The case G is a p-group. Suppose that G has order pa with a > 0. Let C � G be a
central group of order p. It is well known that every p-group admits such a subgroup.
Suppose that the assertion holds when the Galois group is a p-group of order � pa�1. Let
F 0 be the image of F in QX=C . From the degree-p case and the induction hypothesis, we
get

bE � bF 0 � bF :

If QX ! QW is ramified along F , then either QX ! QX=C is ramified along F or QX=C ! QW

is ramified along F 0. Thus, at least one of the above intermediate inequalities is strict, and
hence bE < bF , if QX ! QW is ramified along F . We have proved the assertion in the case
of p-groups.

The general Galois case. Let H � G be the stabilizer of F and S � H be a Sylow
p-subgroup. Let F 0 be the image of F in QX=S . From the p-group case and the tame
(non-Galois) case, we get

bE � bF 0 � bF :



J. Carvajal-Rojas and T. Yasuda 744

In the ramified case, we get the strict inequality bE < bF as in the last case. We have
completed the proof of (2).

This concludes the proof of Proposition 6.5.

6.2. Tweak by constructible subsets

In this subsection, we define a version of stringy motives, denoted by Mst.X/x;C =G, in
the following situation. We consider a G-equivariant proper birational morphism

�W QX ! .x;X/

and a G-invariant constructible subset C � ��1.x/ such that . QX; ��1.x// is a G-normal
SNC pair in a neighborhood of C . We write ��1.x/ D

S
i2I Ei as usual, where Ei are

prime divisors. Following the notation in Lemma 2.14 and the paragraph before it, we
define

Mst.X/x;C =G WD
X
�2I=G

®
.C \Eı� /=G

¯ L � 1

La� � 1

C

X
¹�;�º�I=G

®
.C \E� \E�/=G

¯ .L � 1/2

.La� � 1/.La� � 1/
: (6.5.1)

Note that curves Ei as well as their quotients by finite group actions are all rational. Thus,
their classes in our Grothendieck ring are of the form LC n with n an integer. Therefore,
the above invariant belongs to ZLL�1=rM with r the Gorenstein index ofX or any multiple
of it. It should be noted that if � is a G-normal log resolution, then

Mst.X/x=G DMst.X/x;��1.x/=G:

As a special case, we define Mst.X/x;C WDMst.X/x;C =¹eº where ¹eº is the trivial group.
Thus, we may readily generalize Lemma 6.2 as follows.

Lemma 6.6. Consider the following commutative diagram of G-equivariant proper bira-
tional morphisms:

QX

�
""

QX 0

�0
||

 
oo

.x;X/

:

Let C � ��1.x/ be a G-invariant constructible subset. Suppose that . QX; ��1.x// is a
G-normal SNC pair in a neighborhood of C and . QX 0; �0�1.x// is a G-normal SNC pair
in a neighborhood of  �1.C /. Then, the following equality holds:

Mst.X/x;C =G DMst.X/x; �1.C/=G:

The following lemma is a direct consequence of the definition.
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Lemma 6.7. Let �W QX ! .x; G/ be a G-equivariant proper birational morphism and
let C� � ��1.x/ be pairwise disjoint G-invariant constructible subsets. Suppose that
. QX; ��1.x// is a G-normal SNC pair in a neighborhood of

F
� C�. Then

Mst.X/x;
F
� C�

=G D
X
�

Mst.X/x;C�=G:

6.3. Approximation by constructible subsets

The following construction will let us approximateMst.X=G/ Nx andMst.X/x=G by stringy
motives of the form Mst.X=G/ Nx; xC and Mst.X/x;C =G where the inequality

Mst.X=G/ Nx; xC �Mst.X/x;C =G

holds. We first construct the following diagram in a way explained below:

X D X0

f

��

Xi

��

oo Yi

��

oo XiC1

��

oo oo

X=G D X0=G Xi=Goo Yi=Goo XiC1=Goo oo

(6.7.1)

Suppose that we have constructed up to Xi and Xi=G. We then take a log resolution
Yi=G ! Xi=G and define Yi as the normalization of the fiber product Xi �Xi=G Yi=G
so that Yi=G is the quotient of Yi by the induced G-action as the notation suggests. Then,
we take a G-normal log resolution XiC1 ! Yi and define XiC1=G to be its quotient. We
suppose that the log resolutions Yi=G ! Xi=G and XiC1 ! Yi are isomorphisms over
the SNC loci of the targets paired with the exceptional loci ofXi=G!X=G and Yi !X ;
respectively. Repeating this procedure produces a diagram as above.

Let Bi � Xi be the exceptional locus ofXi ! X and let xBi � Xi=G be its image. Let
xCi � xBi be the largest open subset along which the pair .Xi=G; xBi / is SNC. Let Ci be the
preimage of xCi inXi , which is an open subset ofBi . From the construction,XiC1!Xi is
an isomorphism over Ci . Observe that xBi n xCi and Bi n Ci are finite sets of closed points.

Lemma 6.8. With the above notation, the following statements hold:

(1) Mst.X=G/ Nx; xCi �Mst.X/x;Ci =G.

(2) Mst.X=G/ Nx D limi!1Mst.X=G/ Nx; xCi .

(3) Mst.X/x=G D limi!1Mst.X/x;Ci =G.

(4) Mst.X=G/ Nx �Mst.X/x=G.

(5) If Xi ! Xi=G is ramified along a prime divisor E � Xi , then Mst.X=G/ Nx; xCi >

Mst.X/x;Ci =G. Moreover, if E has log discrepancy a relative to X , then

dimMst.X=G/ Nx; xCi �Mst.X/x;Ci =G � 2 � a:

Proof. The statement (1) follows from the defining formula (6.5.1) of a stringy motive
and the comparison of discrepancies in Proposition 6.5.
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For (2), we first note that the ring yM0
k;r

, where our stringy motives live, is the com-
pletion of a ring denoted by M0

k;r
with respect to a descending filtration ¹Fmºm2.1=r/Z

[59, p. 222]. Hence, yM0
k;r

is complete with respect to the filtration ¹ yFmºm2.1=r/Z, where
yFm WD lim

 �m0�m
Fm=Fm0 . Thus, to show (2), it suffices to show that for any m, if i is

sufficiently large, then �
Mst.X=G/ Nx �Mst.X=G/ Nx; xCiC1

�
2 yFm:

In turn, proving it is reduced to proving that for each i ,

dim
�
Mst.X=G/ Nx �Mst.X=G/ Nx; xCiC1

�
< dim

�
Mst.X=G/ Nx �Mst.X=G/ Nx; xCi

�
: (6.8.1)

Since the preimage of xCi in XiC1=G is contained in xCiC1,

Mst.X=G/ Nx; xCiC1 �Mst.X=G/ Nx; xCi :

Let D � Yi=G be the preimage of xBi n xCi , which has pure dimension 1. We have

Mst.X=G/ Nx �Mst.X=G/ Nx; xCi DMst.X=G/ Nx;D :

Let Dı be the open dense subset of D obtained by removing the image of xBiC1 n xCiC1
from D. Since xCi and Dı are disjoint and the preimage of their union in XiC1=G is
contained in xCiC1, we have

Mst.X=G/ Nx; xCiC1 �Mst.X=G/ Nx; xCi CMst.X=G/ Nx;Dı :

Since the preimage of D nDı in XiC1=G contains xBiC1 n xCiC1, we have

Mst.X=G/ Nx �Mst.X=G/ Nx; xCiC1 DMst.X=G/ Nx; xBiC1n xCiC1 �Mst.X=G/ Nx;DnDı :

Note that for every y 2 D nDı, we have

dimMst.X=G/ Nx;y < dimMst.X=G/ Nx;D : (6.8.2)

If y is a smooth point of BiC1 and if a denotes the log discrepancy at the prime divisor
containing y, then for some integer n, we have

dimMst.X=G/ Nx;y D dim
L � 1

La � 1
< dim.LC n/

L � 1

La � 1
� dimMst.X=G/ Nx;D :

If y is a node of BiC1 and if a and b are the log discrepancies at the two prime divisors
containing y, then for some integer n, we have

dimMst.X=G/ Nx;y D dim
.L � 1/2

.La � 1/.Lb � 1/
< dim.LC n/

L � 1

La � 1
� dimMst.X=G/ Nx;D :

Thus, in either case, (6.8.2) is valid, and (6.8.1) follows as desired. Point (3) can be shown
as in (2).
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To show the statement (4), fixing i , we write Bi D
S
j2I Ej . Then, we have xBi DS

�2I=G
xE�, where xE� is the image ofE� inXi=G. Note that the natural morphismE�=G!

xE� is a universal homeomorphism. Let xEı� WD xE� n
S
�¤�
xE� and let a� (resp. Na�) be

the discrepancy at E� (resp. xE�) relative to X (resp. X=G). Then, from the definition,
Mst.X/x;Ci =G is written asX
�2I=G

®
.Ci\E

ı
� /=G

¯ L�1

La��1
C

X
¹�;�º�I=G

®
.Ci\E�\E�/=G

¯ .L � 1/2

.La��1/.La��1/
; (6.8.3)

while Mst.X=G/x; xCi is written asX
�2I=G

¹ xCi \ xE
ı
� º

L � 1

L Na� � 1
C

X
¹�;�º�I=G

¹ xCi \ xE� \ xE�º
.L � 1/2

.L Na� � 1/.L Na� � 1/

D

X
�2I=G

®
.Ci\E

ı
� /=G

¯ L � 1

LNa��1
C

X
¹�;�º�I=G

®
.Ci\E�\E�/=G

¯ .L�1/2

.LNa��1/.LNa��1/
: (6.8.4)

Here, the last equality holds, for the maps .Ci\Eı� /=G! xCi\ xE
ı
� are universal homeomor-

phisms. Thus, the only difference in these formulas forMst.X/x;Ci =G andMst.X=G/x; xCi
is the exponents a� and Na�. From Proposition 6.5, we have a� � Na�, which shows that
Mst.X=G/x; xCi �Mst.X/x;Ci =G. Taking limits as i !1, we get the statement (4).

As noted just before this lemma, Bi n Ci consists of finitely many points and hence
contains the generic point of every irreducible component of Bi , in particular, the generic
point of a prime divisor where Xi ! Xi=G is ramified. From Proposition 6.5, we have
strict inequality a D a� > Na� for � 2 I=G such that E � E�. From (6.8.3) and (6.8.4), we
have Mst.X=G/x; xCi > Mst.X/x;Ci =G and

dim
�
Mst.X=G/ Nx; xCi �Mst.X/x;Ci =G

�
� dim

®
.Ci \E

ı
� /=G

¯ L � 1

La � 1
D 2 � a:

We have proved the last statement (5).

6.4. Proof of Theorem 6.3

In this subsection, we prove Theorem 6.3. Let .x;X/! . Nx;X=G/ as in the theorem. We
then construct diagram (6.7.1) and follow the notation there.

Lemma 6.9. There exists a prime divisor F � xB1 � Y1=G along which Y1 ! Y1=G is
ramified.

Proof. This is basically Lemma 3.4 for surfaces in mixed characteristic. The same proof
as “Elementary proof of Lemma 3.4 for surfaces” shows the lemma.

We fix a divisor F as in the last lemma. Let a > 0 be its log discrepancy. For every i ,
the map Xi ! Xi=G is ramified along the strict transform of F . From (4) of Lemma 6.8,

dim
�
Mst.X=G/ Nx; xCi �Mst.X/x;Ci =G

�
� 2 � a:
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On the other hand, from (2) and (3) of Lemma 6.8, if we take sufficiently large i , then

2 � a > dim
�
Mst.X=G/ Nx �Mst.X=G/ Nx; xCi

�
;

2 � a > dim
�
Mst.X/x=G �Mst.X/x;Ci =G

�
:

These inequalities together with

Mst.X=G/ Nx �Mst.X/x=G D
�
Mst.X=G/ Nx; xCi �Mst.X/x;Ci =G

�
C
�
Mst.X=G/ Nx �Mst.X=G/ Nx; xCi

�
C
�
Mst.X/x=G �Mst.X/x;Ci =G

�
show thatMst.X=G/ Nx �Mst.X/x=G andMst.X=G/ Nx; xCi �Mst.X/x;Ci =G have the same
leading term, which has a positive coefficient. Thus,Mst.X=G/ Nx>Mst.X/x=G; as desired.
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