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t-motivic interpretations for special values of Thakur
hypergeometric functions and Kochubei multiple

polylogarithms

Ryotaro Harada

Abstract. In 1995, Thakur invented and studied positive characteristic analogues of hypergeomet-
ric functions. In this paper, we interpret the special values of those functions by rigid analytic
trivializations for some pre-t -motives. As a consequence, we show their transcendence and linear
independence results by using Chang’s refined version of the Anderson–Brownawell–Papanikolas
criterion. Furthermore, we show some linear independence results among the special values of
Kochubei multiple polylogarithms according to our t -motivic interpretation and the corresponding
refined criterion.

1. Introduction

1.1. Thakur hypergeometric functions

LetN be a set of positive integers. Let Fq be a fixed finite field with q elements, where q is
a power of a prime number p. Let P1 be a projective line defined over Fq with a fixed point
at infinity12 P1.Fq/. LetA be the ring of regular functions on P1 away from1, with k
as its fraction field. Let k1 be the completion of k at1, and let C1 be the completion of a
fixed algebraic closure of k1. With the variable � , we can identify A with the polynomial
ring FqŒ� � and k with the rational function field Fq.�/. Thakur defined and studied the
positive characteristic analogues of the classical hypergeometric functions (HGFs) in [26].
His definition is motivated by Barns integral representation [26, Section 3.4] of the HGFs.
For Di WD

Qi
jD1.�

qj � �/q
i�j

.D0 WD 1/ and Li WD
Qi
jD1.� � �

qj / .L0 WD 1/ with
i 2 Z�0, he found the following analogue of the Pochhammer symbols:

.a/n WD

8̂̂<̂
:̂
D
q�.a�1/

nCa�1 if a � 1;

1=L
qn

�a�n if 0 � a and �a � n;

0 if n > �a � 0:
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Then, based on the characteristic 0 case, he defined the following analogue of HGFs by
using the above symbols: for a1; : : : ; ar 2 Z and b1; : : : ; bs 2 N,

rFs.z/ WD rFs.a1; : : : ; ar I b1; : : : ; bs/.z/ WD
X
n�0

.a1/n � � � .ar /n

.b1/n � � � .bs/nDn
zq

n

2C1JzK: (1.1)

Throughout this paper, we call these analogues of HGFs the Thakur hypergeometric func-
tions (THGFs) and without loss of generality, we assume that ai � aj and bi � bj for
i � j . The THGFs rFs.z/ have three cases of the convergence domain as follows:

rFs.z/ are defined for

8̂̂<̂
:̂
zD0 if r >sC1;

z2C1 if r <sC1;

z2C1 with jzj1<q
Ps
jD1.bj�1/�

Pr
jD1.aj�1/ if rDsC1:

(1.2)

Here, j � j1 is the absolute value on C1 such that j� j1 D q. Thakur also showed that
THGFs satisfy an analogue of the hypergeometric differential equation by using the Car-
litz differential operator �a and the Carlitz derivative dF . The case of �0 is originated
in [5]. They are Fq-linear operators defined on Fq-linear functions f .z/ by

�a
�
f .z/

�
WD f .�z/ � �q

�a

f .z/ for a 2 Z; dF
�
f .z/

�
WD �0

�
f .z/

�1=q
:

We can consider operator �a and dF to be the positive characteristic analogue of
z.d=dz/C a and d=dz respectively. For more details and studies, see [26, Section 3.1]
and [27].

Then, Thakur demonstrated the following differential equation [26, (10)] which is seen
to be an analogue of the hypergeometric differential equation:

dF ı�a1 ı � � � ı�ar
�
rFs.z/

�
D �b1�1 ı � � � ı�bs�1

�
rFs.z/

�
:

Furthermore, he discovered several properties of rFs.z/, including the analogue of con-
tiguous relations, the summation formula, specializations to exponential functions as well
as the Bessel functions, the Jacobi/Legendre polynomials in positive characteristic, and
the connection to the tensor powers of the Carlitz modules in [26].

The second analogue of the HGF is also defined in [26] by using the positive char-
acteristic analogue of the binomial coefficients. In this paper, we discuss only the first
analogue recalled in (1.1).

Later, Thakur, Wen, Yao, and Zhao [28] obtained a sufficient condition for the special
values of rFs.z/ (r < s C 1) and an equivalent condition for the special values of rFs.z/
(rDsC1) to be transcendental over k. These transcendence results were the consequence
of their Diophantine criterion for transcendence in positive characteristic, which general-
ized [31, Theorem 1]. Moreover, there are some approaches for solving transcendence/
linear independence problems via certain pre-t -motives (see Definition 2.4), as developed
by Anderson, Brownawell, and Papanikolas [1], namely, the so-called ABP criterion. For
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example, Carlitz multiple polylogarithms are firstly defined in [7] as follows: for s D

.s1; : : : ; sr /2Nr and zD.z1; : : : ; zr /2¹.z1; : : : ; zr /2Cr
1 j jz1=�

qs1
q�1 j

qi1
1 � � � jzr=�

qsr
q�1 j

qir
1 !

0 as 0 � ir < � � � < i1 !1º,

LiC;s.z/ WD
X

i1>���>ir�0

z
qi1

1 � � � z
qir
r

L
s1
i1
� � �L

sr
ir

2 C1;

and we can have a t -motivic interpretation of their special values at algebraic points by
[7, 23], that is, the values appear in entries of a matrix so-called rigid analytic trivializa-
tion (see Definition 2.5) associated to certain pre-t -motives after specialization t D � . For
each index s 2 Nr (r > 0), we set the weight as wt.s/ WD s1 C � � � C sr and the depth as
dep.s/ WD r . Analogous to the classical case, the Carlitz multiple polylogarithm LiC;s.z/
includes the Carlitz polylogarithm introduced in [2] and the Carlitz logarithm introduced
in [5] as dep.s/ D 1 case and dep.s/ D wt.s/ D 1 case respectively. The ABP criterion
is applied to the linear independence of the Carlitz multiple polylogarithms at algebraic
points with different weights in [7], and the criterion for Eulerian Carlitz multiple poly-
logarithms at algebraic points in [11].

Our motivation in this paper is to develop a t -motivic interpretation for the special
values of sC1Fs.z/ with some q-th powers and to provide linear independence results
among these values by using Chang’s refined version of ABP criterion (see Theorem 4.2).
Moreover, we present a t -motivic interpretation and the linear independence results for
the special values of Kochubei multiple polylogarithms (KMPLs).

1.2. Main results

In the characteristic 0 case, it is known that the HGFs can be given by periods of algebraic
varieties in some cases, particularly with rational parameters. For example, the special val-
ues of �2F1.1=2; 1=2I 1/.z/ and �

p
�12F1.1=2; 1=2I 1/.1 � z/ are known to be periods

related to the elliptic curve y2 D x.x � 1/.x � z/ (cf. [20, Section 2.2]). These observa-
tions give rise to the connection between HGFs of sC1Fs case and certain pure motives
over Q which are called hypergeometric motives. For the details, see the survey [24].
There is also the study about the transcendence of special values of HGFs. For exam-
ple, Schwarz determined the list of HGFs of 2F1 cases, which are algebraic functions in
[25] later generalized to the sC1Fs case by Beukers and Heckman [4]. Furthermore, there
are studies about the linear independence of the special values of HGFs. For the recent
works, Fischler, Rivoal [14] and David, Hirata-Kohno, Kawashima [13] proved the linear
independence among the values of HGFs with some different algebraic points or some
different rational parameters.

Our main results include a t -motivic interpretation of the special values of the THGFs
(Theorem 3.4), the transcendence and linear independence results of some special val-
ues of the THGFs (Theorems 4.6, 4.7 and 4.9) and the linear independence results of
the KMPLs at algebraic points (Theorems 4.11–4.12). These independence results are
addressed by using Chang’s remarkable works, in particular, the refined ABP criterion
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(Theorem 4.2) invented in [6] and the techniques of computing Frobenius difference equa-
tions described in [7, Sections 4.1 and 4.2]. We note that our Theorem 4.6 gives equivalent
conditions for the special values of sC1Fs.z/ to be transcendental over k, and it is also
proved by [28, Theorem 4] but proofs are different. Indeed we use a t -motivic interpre-
tation for the special values of the THGFs. About our linear independence results among
the special values of sC1Fs.z/, which are not discussed in [28].

We can show that the q-th power of the THGFs at algebraic points are related to a
rigid analytic trivialization coming from a specific pre-t -motive Ma;b;d defined by (3.8).
We set

� WD .��/
�q
q�1

1Y
iD1

�
1 �

t

�q
i

�
2 k1.�

1
q�1 /JtK

where we fix a .q � 1/-th root of �� . The Carlitz period z� is defined by .�jtD� /�1.
Let d �max¹b1; b2; : : : ; bsº for given b1; b2; : : : ; bs 2N. We further set the following

power series:

Pb;d WD.��/
�
Ps
jD1

.bj �1/q
d�1

q�1

1Y
lD1

sY
jD1
bj�2

²�
1�

t

�q
l

�qbj �2�
1�

t

�q
lC1

�qbj �3
� � �

�
1�

t

�q
lCbj �2

�³qd�bj

D

sY
jD1

Qbj�2

iD1

Qbj�2

hDi
�q

d�2�hCi

.Dbj�2 � � �D2D1/
q
d�bj

bjY
iD2

�q
d�i

2 k1.�
1
q�1 /JtK:

(1.3)

Here, we set Dn WD
Qn
iD1.�

qi � t /q
n�i

for n > 0 and Dn WD 1 for n � 0.

Remark 1.1. When all bi (i D 1; 2; : : : ; s) and d are equal to 2, we obtain Pb;d D �
s .

Then, our t -motivic interpretation for the special values of the THGFs is stated as
follows (stated again as Theorem 3.4).

Theorem 1.2. Let ai ; bj 2 N .1 � i � s C 1; 1 � j � s/. Then, for ˛ 2 Nk with j˛j1 <

q
Ps
jD1.bj�1/�

PsC1
iD1 .ai�1/ and d 2 Z with d � maxi;j ¹ai ; bj º, the special value of THGF

sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/
qd�1 multiplied by

Pb;d jtD� D

sY
jD1

Qbj�2

iD1

Qbj�2

hDi
�q

d�2�hCi

.Dbj�2 � � �D2D1/
q
d�bj

bjY
iD2

z��q
d�i

is an entry of a rigid analytic trivialization at t D � , which is related to the pre-t -motive
Ma;b;d .

Remark 1.3. We also give a t -motivic interpretation of the special values of the THGFs
without Pb;d jtD� in Remark 3.7.

According to Theorem 1.2 and the refined ABP criterion, we obtain the following
linear independence results, each of which is restated later in Theorems 4.6, 4.7 and 4.9.
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For the definition of c.�/ and the necessity of its conditions in Theorem 1.4, we explain
later by Proposition 4.3 and Remark 4.5 respectively.

Theorem 1.4. We denote all m satisfying d � m � 0 by mi .i D 1; : : : ; n/ where d D
max1�i�sC1

1�j�s
¹ai ; bj º.

(i) We set a D .a1; : : : ; asC1/ 2 NsC1, b D .b1; : : : ; bs/ 2 Ns and ˛ 2 Nk� with
j˛j1 < q

Ps
jD1.bj�1/�

PsC1
iD1 .ai�1/. Then, sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/ is

transcendental over k if and only if bj > ajC1 for some j .

(ii) Fix as D .a1; : : : ; asC1/ 2 NsC1, bs D .b1; : : : ; bs/ 2 Ns such that b1 > asC1.
We takemr satisfying b1 � 1 �mr . Let ah D .a1; : : : ; ahC1/, bh D .b1; : : : ; bh/
.h D 1; : : : ; s/ and ˛h 2 Nk� with j˛hj1 < q

Ph
jD1.bj�1/�

PhC1
iD1 .ai�1/. Then, if

min1�i�n; i¤r¹c.mi /qd�mi º > c.mr /q
d�mr , hC1Fh.ahI bh/.˛h/ .1 � h � s/

are Nk-linearly independent.

(iii) For any aD .a1; : : : ;asC1/2NsC1 and bD.b1; : : : ;bs/2Ns such that bj >ajC1
for some j and that min1�i�n; i¤u¹c.mi /qd�mi º>c.mu/qd�mu for some u, let

˛i 2 Nk
� .i D 1; : : : ; r/with j˛i j1 <q

Ps
jD1.bj�1/�

PsC1
iD1 .ai�1/. If ˛1; : : : ;˛r are k-

linearly independent, then sC1Fs.aIb/.˛1/; : : : ;sC1 Fs.aIb/.˛r / are Nk-linearly
independent.

The first result (Theorem 4.6) is already proved in [28, Theorem 4]. However, in this
paper, we prove it by different tools, pre-t -motive and refined ABP criterion, while [28]
use Diophantus approximation.

One may think that the conditions of Theorem 1.4 are restrictive due to c.�/. These
are required to complete our computations in the proofs, as explained in Remark 4.5. We
will try to weaken them in the future. Moreover, several analogues of HGFs are developed
after THGFs [26]. For example, the definition (1.1) of THGF is extended by using frac-
tional parameters in Q [28]. Later, Yao [32] proved that transcendence results of THGFs
in [28] are generalized to the case of these fractional THGFs. On the other hand, gen-
eralizing Theorems 1.2 and 1.4 to the fractional THGFs is an open problem. Also, HGF
with characteristic p parameters [19, 26] and Hasegawa’s exponential (logarithmic) type
HGFs [17] are invented as positive characteristic analogues of HGFs. One can consider
the transcendence/linear independence problems about special values of these analogues
via t -motivic interpretations. We hope to address these issues in the future.

By Propositions 2.2 and 2.3, the above results can be applied to the case of Kochubei
polylogarithms (KPLs), which were defined and studied by Kochubei [18] as follows:

LiK;.s/.z/ WD
X
i�1

zq
i

.�q
i
� �/s

2 C1

for z 2 C1 with jzj1 < qs . The case of s D z D 1 was discussed by Wade [29], who
found that

P
i�1 1=.�

qi � �/ is transcendental over k. The KPLs are considered to be
another positive characteristic analogue of the polylogarithms, with a different motivation
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from that of the Carlitz polylogarithms. On the one hand, the Carlitz polylogarithms are
generalizations of the Carlitz logarithm which is defined by the formal inverse of the
Carlitz exponential; on the other hand, Kochubei’s idea was to obtain the analogue of the
classical polylogarithm Lis.z/ WD

P
n>0 z

n=ns by finding a function that satisfies the
analogue of the differential equation zd=dzLis.z/D Lis�1.z/. Notably, our definition of
the KPLs is given in the1-adic case, while Kochubei [18] defined them in the v-adic case
(v is a monic irreducible polynomial in FqŒ� �). In [18], he also defined the analogues of
the Riemann zeta values by �K.��n/ WD LiK;n.1/ which we call the Kochubei zeta values
in this paper.

Based on the following setting, we can define the KMPLs as s WD .s1; : : : ; sr / 2 Nr

and z WD .z1; : : : ; zr / 2 Cr
1 such that jzi j1 < qsi :

LiK;s.z/ WD
X

i1>���>ir>0

z
qi1

1 � � � z
qir
r

.�q
i1
� �/s1 � � � .�q

ir
� �/sr

2 C1:

In this paper, we denote the 1-variable case by

LiK;s.z/ D
X

i1>���>ir>0

zq
i1

.�q
i1
� �/s1 � � � .�q

ir
� �/sr

:

Similar to the cases of classical multiple polylogarithm [30] and the Carlitz multiple poly-
logarithm [7, Section 5.2], the KMPLs also satisfy the sum-shuffle relation by their series
expressions. We can describe the relation in the same way of the Carlitz case [7, Sec-
tion 5.2]. For a given s1 2 Nr1 and s2 2 Nr2 it is described by

LiK;s1.z1/LiK;s2.z2/ D
X
.v1;v2/

LiK;v1Cv2.z3/: (1.4)

Here, v1; v2 2 Zr3�0 satisfying v1 C v2 2 Nr3 with max¹r1; r2º � r3 � r1 C r2 and vi
(i D 1; 2) is obtained by inserting .r3 � ri / zeros into si in all possible ways, including
in front and the end of si . The pair .v1; v2/ runs over all such expressions for all r3 with
max¹r1; r2º � r3 � r1 C r2. For every such v1 C v2 2 Nr3 , the m-th component z3m of
z3 is zin if the m-th component of vi is sin, while the m-th component of vj (i ¤ j ) is 0
or z3m is z1nz2l if the m-th component of both v1 and v2 are z1n and z2l . For example,
we have

LiK;.s1/.z1/LiK;.s2/.z2/ D LiK;.s1Cs2/.z1z2/C LiK;.s1;s2/.z1; z2/C LiK;.s2;s1/.z2; z1/:

While there is an algebraic dependence result of the special values of KMPLs such
as the sum-shuffle relation, in this paper we will also obtain linear independence results
among them. Precisely, those results are stated as follows (each of them is described again
later in Theorems 4.11–4.14).

Theorem 1.5. The following statements (i)–(iv) hold:

(i) For indices s D .s1; s2/ 2 N2 with wt.s/ D w and ˛ 2 Nk� with j˛j1 < qs1 ,
LiK;s.˛/ are Nk-linearly independent.
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(ii) For given n 2 N, let ˛; ˇ 2 Nk� such that j˛j1 < qn, jˇj1 2 qnq=.q�1/. Then,
LiK;.n/.˛/, LiC;.n/.ˇ/ are Nk-linearly independent.

(iii) Let s D .s1; : : : ; sr / 2 Nr with wt.s/ D w and ˛ D .˛1; : : : ; ˛r / 2 . Nk�/r with
j˛i j1 < q

si .i D 1; : : : ; r/, such that LiK;s.˛/¤ 0. Then LiK;s.˛/ and z�w are
Nk-linearly independent.

(iv) For s D .s1; : : : ; sr / 2 Nr such that wt.s/ D w, let ˛ D .˛1; : : : ; ˛r / 2 . Nk�/r

with j˛i j1 < qsi .i D 1; : : : ; r/ and ˇ 2 Nk� with jˇj1 < qw . Then, LiK;s.˛/
and LiK;w.ˇ/ are Nk-linearly independent.

As noted before, there are Carlitz’ analogue of polylogarithms. Theorem 1.5 (i) implies
that KMPLs may not satisfy Nk-linear relations as much as Carlitz multiple polylogarithms
case, in particular, comparing to the results of [8] and [22]. Theorem 1.5 (ii) says that
we may not easily apply the linear/algebraic independence results of Carlitz polylog-
arithms to KPLs. We can define Kochubei multizeta values by �K.��s1 ; : : : ; ��sr / WD
LiK;s1;:::;sr .1; : : : ; 1/, as generalizations of Kochubei zeta values. According to the Thakur
multizeta values case [21], we can also define Eulerian/zeta-like indices for Kochubei mul-
tizeta values, but Theorem 1.5 (iii) and (iv) imply the non-existence of such indices.

As a future project, we can study linear/algebraic independence among KMPLs in
more generality, based on previous studies of Carlitz multiple polylogarithms. For instance,
we can try to prove that non-zero values as specializations of KMPLs at algebraic points
with distinct weights are Nk-linearly independent. This is already proven in the Carlitz
multiple polylogarithm case by [7, Theorem 5.4.3]. Also, we can try to prove that if KPLs
at algebraic points are k-linearly independent, then they are algebraically independent
over Nk. This is also already shown in the Carlitz polylogarithm case by [12, Corollary 3.2].

Finally, this paper is organized as follows. In Section 2, we recall fundamental nota-
tions and the definition of rigid analytic trivializations together with pre-t -motives. We
also present the relation which shows that s are q-th power of HGFs with certain param-
eters. In Section 3, we consider the deformation of THGFs and KMPLs to obtain The-
orem 1.2 and (3.15), the t -motivic interpretation of the values of THGFs and KMPLs.
In Section 4, we recall the refined ABP criterion and present .�q

i
� t /-expansion of the

deformation of THGFs. These enable us to prove Theorem 1.4 which is explained in Sec-
tion 4.1. Further, in Section 4.2, we deal with linear independence problems among the
special values of KMPLs and conclude the section with our proof of Theorem 1.5.

2. Preliminaries

2.1. Notations

We fix the following symbols.

N WD the set of positive integers.
q WD a power of a prime number p.
Fq WD a finite field with q elements.
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�; t WD independent variables.
A WD the polynomial ring FqŒ� �.
AC WD the set of monic polynomials in A.
k WD the rational function field Fq.�/.
k1 WD Fq..

1
�
//, the completion of k at infinite place1.

k1 WD a fixed algebraic closure of k1.
C1 WD the completion of k1 at infinity1.
Nk WD a fixed algebraic closure of k in C1.
j � j1 WD a fixed absolute value for the completed field C1 such that j� j1 D q.
T WD the Tate algebra over C1, which is the subring of C1JtK that consists of

power series convergent on the closed unit disc jt j1 � 1.
L WD the fraction field of T .
k � k WD the norm on T defined as kf k WD maxi jai j1 for f D

P
i ai t

i 2 T .
E WD ¹

P1
iD0 ai t

i 2 C1JtK j limi!1 jai j
1=i
1 D 0; Œk1.a0; a1; : : :/ W k1� <1º.

Di WD
Qi�1
jD1.Œj �/

qi�j 2 AC where Œj � WD �q
j
� � and D0 WD 1.

Li WD
Qi
jD1.�Œj �/ 2 AC and L0 WD 1.

For n2Z, we define the following automorphism, which is known as the n-fold Frobe-
nius twist:

C1..t//! C1..t//

f WD
X
i

ai t
i
7!

X
i

a
qn

i t
i
DW f .n/:

Definition 2.1. For s � 0, we set z 2 C1 with jzj1 < qs and define the following power
series:

LK;.s/.z/ WD
X
i�1

zq
i

.�q
i
� t /s

2 C1JtK:

This series is specialized to LiK;s.˛/ with t D � and satisfies the following Frobenius
difference equation:

LK;.s/.z/
.�1/
D

z

.� � t /s
CLK;.s/.z/: (2.1)

We propose the following relation, inspired by the well-known relation for Lerch tran-
scendents and HGFs in the classical case.

Proposition 2.2. For m 2 N and z 2 C1 with jzj1 < qsCm�1, we have

�
sC1Fs.1;m; : : : ; mI 1Cm; : : : ; 1Cm/.z

q�mC1/
�qm
D

X
i�0

zq
iC1

Œi Cm�s
:
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Proof. By using the relation .1 C m/i D Œi C m�q
�m
.m/i introduced in [26, (12)], we

obtain �
sC1Fs.1;m; : : : ; mI 1Cm; : : : ; 1Cm/.z

q�mC1/
�qm

D

�X
i�0

Di .m/i � � � .m/i

.1Cm/i � � � .1Cm/iDi
zq

i�mC1
�qm

D

�X
i�0

1

Œi Cm�nq
�m z

qi�mC1
�qm

D

X
i�0

zq
iC1

Œi Cm�s
:

When m D 1, the above proof gives the relation for the KPLs and THGFs, which is
considered to be an analogue of the formula for the HGF sC1Fs.1; : : : ; 1I2; : : : ; 2/.z/ and
the classical polylogarithm Lis.z/ as follows:

z
�
sC1Fs.1; : : : ; 1I 2; : : : ; 2/.z/

�
D Lis.z/:

Restricting m D 1, Thakur et al. proved the s D 1; q � 1 cases of (2.2) in [28], and
later Nagoya University student Daichi Matsuzuki generalized them to the s > 0 case.

Proposition 2.3 (Matsuzuki and [28, p. 154]). For s > 0, we have

sC1Fs.1; : : : ; 1I 2; : : : ; 2/.z/
q
D LiK;.s/.z/:

2.2. Pre-t-motives and rigid analytic trivializations

We denote Nk.t/Œ�; ��1� by the non-commutative Nk.t/-algebra generated by � and ��1,
which is subject to the following relation:

�f D f .�1/�; f 2 Nk.t/:

Definition 2.4 ([23, Section 3.2.1]). A pre-t -motive is a left Nk.t/Œ�; ��1�-module that is
finite-dimensional over Nk.t/.

Once we fix a Nk.t/-vector spaceM of rank d with a fixed Nk.t/-basis mD.m1; : : : ;md/tr

andˆ2GLd . Nk.t//, we can uniquely determine the pre-t -motive structure onM by setting
�mDˆm (cf. [23, Section 3.2.3]). In this case, we callM the pre-t -motive defined byˆ.

The notion of rigid analytically trivial pre-t -motives is defined as follows.

Definition 2.5 ([23, Proposition 3.3.9 (a)]). Let M be a pre-t -motive defined by ˆ 2
GLd . Nk.t//. If there exists ‰ 2 GLd .L/ such that

‰.�1/ D ˆ‰;

‰ is called a rigid analytic trivialization of ˆ.
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3. t-motivic interpretations of the THGFs and the KMPLs

We set

Di WD
iY

jD1

.�q
j

� t /q
i�j

for i > 0 and Di WD 1 for i � 0;

Li WD
iY

jD1

.t � �q
j

/ for i > 0 and Li WD 1 for i � 0:

(3.1)

Further, we set the following symbols for n 2 Z�0:

hain WD

8̂̂̂<̂
ˆ̂:

Dq�.a�1/

nCa�1 if a � 1;

1=Lq
n

�a�n if 0 � a and � a � n;

0 if n > �a � 0:

These symbols are specialized to the Pochhammer–Thakur symbols, at t D � . By using
the above symbol, we can define the deformation series of rFs.z/ as follows.

Definition 3.1. For a1; : : : ; ar 2 Z and b1; : : : ; bs 2 N, we set

rFs.z/ WD rFs.a1; : : : ; ar I b1; : : : ; bs/.z/

WD

X
n�0

ha1in � � � harin

hb1in � � � hbsinDn
zq

n

2 C1Jtq
�dC1

; zK (3.2)

where d D max1�i�r
1�j�s

¹ai ; bj º.

We also assume throughout this paper that for a given rFs.a1; : : : ; ar I b1; : : : ; bs/.z/,
its parameters satisfy ai � aj and bi � bj for i � j without loss of generality.

The formal power series rFs.a1; : : : ; ar I b1; : : : ; bs/.z/ at t D � is equal to THGFs
rFs.a1; : : : ; ar I b1; : : : ; bs/.z/. Furthermore, we have

sC1Fs.1; : : : ; 1I 2; : : : ; 2/.˛/
q
D LK;.s/.˛/

�
˛ 2 Nk and j˛j1 < qs

�
: (3.3)

This can be solved in the same manner as the proof for Proposition 2.3 by using

h2in D h1in.�
qnC1
� t /1=q :

We can show that the q-th power of this power series is a non-zero element of T .

Proposition 3.2. Let ai ; bj 2 N .1 � i � s C 1; 1 � j � s/. Then, for ˛ 2 C�1 with

j˛j1 < q
Ps
jD1.bj�1/�

PsC1
jD1.aj�1/ and d 2 Z with d � maxi;j ¹ai ; bj º,

sC1Fs.˛/
qd�1
2 Tn¹0º: (3.4)
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Proof. Since khaiq
d�1

m k D kDqd�a

mCa�1k D q
.mCa�1/qmCd�1 , we can compute the value of

each term of sC1Fs.˛/q
d�1

as follows:ha1iqd�1m � � � hasC1i
qd�1

m

hb1iqd�1m � � � hbsi
qd�1

m Dqd�1

m

k˛qmCd�1k
D
�
q.a1Cm�1C���CasC1Cm�1/�.b1Cm�1C���CbsCm�1Cm/

�qmCd�1
j˛jq

mCd�1

1

D
�
q
PsC1
iD1 .ai�1/�

Ps
jD1.bj�1/j˛j1

�qmCd�1
: (3.5)

Therefore, sC1Fs.˛/q
d�1

converges on jt j1 � 1 since q
PsC1
jD1.aj�1/�

Ps
jD1.bj�1/j˛j1 < 1.

Furthermore, the above computation shows that the largest term of sC1Fs.˛/q
d�1

with
respect to k � k is

ha1i
qd�1

1 � � � hasC1i
qd�1

1

hb1i
qd�1

1 � � � hbsi
qd�1

1 Dqd�1

1

˛q
dC1�1

:

Thus, sC1Fs.˛/q
d�1

is not zero.

Since j.a/q
d�1

m j1D jD
qd�a

mCa�1j1D q
.mCa�1/qmCd�1 , we can show that the largest term

of sC1Fs.˛/q
d�1

is
.a1/

qd�1

1 � � � .asC1/
qd�1

1

.b1/
qd�1

1 � � � .bs/
qd�1

1 D
qd�1

1

˛q
d

for ˛ 2 C1 with j˛j1 < q
Ps
jD1.bj�1/�

PsC1
jD1.aj�1/ by the same calculation as in the above

proof. Then, we obtain

sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/ ¤ 0: (3.6)

Next we show that Pb;d defined by (1.3) is an entire function. Later, this helps us to
check that the matrix ‰ belongs to GL2.L/ and thus is the rigid analytic trivialization of
ˆa;b;d . We will see the details in the paragraph above Theorem 3.4, and in Theorem 3.4.

Proposition 3.3. For b D .b1; b2; : : : ; bs/ 2 Ns , we set d 2 Z such that

d � max¹b1; b2; : : : ; bsº:

Then Pb;d 2 E holds.

Proof. Because Œk1.�
1
q�1 / W k1� < 1, it is enough to prove that Pb;d 2 NkJtK and that

Pb;d is entire. Based on the definition (1.3), it follows that

P
.�1/

b;d D .�1/
Ps
jD1.bj�1/q

d�2
sY

jD1
bj�2

°
.� � t /q

d�2

Dq
d�bj

bj�2

±
Pb;d : (3.7)
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We can expand

.�1/
Ps
jD1.bj�1/q

d�2
sY

jD1
bj�2

°
.� � t /q

d�2

Dq
d�bj

bj�2

±

D .�1/
Ps
jD1.bj�1/q

d�2
sY

jD1
bj�2

°
.� � t /q

d�1�
.�q � t /q

bj �3

� � � .�q
bj �2

� t /
�qd�bj ±

D

NX
mD0

fmt
m
2 AŒt�

by some fm 2 A and someN � 0. We can also expand Pb;d D
P
l�0 gl t

l 2 k1.�
1
q�1 /JtK

by some gl 2 k1.�
1
q�1 /. Then, (3.7) can be written as

X
l�0

g
.�1/

l
t l D

NX
mD0

fmt
m
X
l�0

gl t
l :

By comparing the coefficients, we find that

g
.�1/

l
D

X
m1Cm2Dl

N�m1�0; m2�0

fm1gm2 :

Thus, gl 2 Nk holds by the induction on l and Pb;d 2 NkJtK. The entireness of Pb;d follows
from the Weierstrass factorization theorem introduced in [15, Theorem 2.14].

Let ai ; bj 2N (1�i�nC 1, 1�j �n) and ˛2 Nk with j˛j1 <q
Pn
jD1.bj�1/�

PnC1
iD1 .ai�1/.

We set Ma;b to be the pre-t -motive defined by

ˆa;b;d WD .�1/
Ps
jD1.bj�1/q

d�2

�

0BBBBBBBB@

sY
jD1
bj�2

�
.� � t /q

d�2

Dq
d�bj

bj�2

�
0

sC1Y
jD1
aj�2

�
.� � t /q

d�2

Dq
d�aj

aj�2

�
˛q

d�2
sY

jD1
bj�2

�
.� � t /q

d�2

Dq
d�bj

bj�2

�

1CCCCCCCCA
2 Mat2

�
NkŒt �
�
\ GL2

�
Nk.t/

�
: (3.8)

We also define the following matrix:

‰ WD

 
Pb;d 0

Pb;d sC1Fs.aIb/.˛/q
d�1

Pb;d

!
:

Clearly, ‰ 2 Mat2.T / by using (3.4) and Proposition 3.3.
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Furthermore, since
1

Dn
D

nY
iD1

�X
l�1

t l�1

� lq
i

�qn�i
;

one can show 1=.Dbj�2 � � �D2D1/ 2 Tn¹0º similarly to the proof of Proposition 3.2. Then
‰ 2 GL2.L/ since det‰ D P 2b;d 2 Tn¹0º by combining 1=.Dbj�2 � � �D2D1/ 2 Tn¹0º,
� 2 T� (cf. [23, Section 3.3.4]), and (1.3).

Theorem 3.4. Let ai ; bj 2 N .1 � i � nC 1; 1 � j � n/. Then, for ˛ 2 Nk with j˛j1 <

q
Pn
jD1.bj�1/�

PnC1
iD1 .ai�1/ and d 2 Z with d � maxi;j ¹ai ; bj º, ‰ is a rigid analytic trivial-

ization of ˆa;b;d .

Proof. According to the definition (3.1), each element of Di satisfies

D.�1/
i D

´
.� � t /q

i�1
Di�1 if i > 0;

1 if i � 0:
(3.9)

Then, we can obtain the Frobenius difference equation based on (3.9):�
sC1Fs.aIb/.˛/q

d�1�.�1/
D

 
ha1i

qd�1

0 � � � hasC1i
qd�1

0

hb1i
qd�1

0 � � � hbsi
qd�1

0 Dqd�1

0

˛q
d�1

C

X
m�1

ha1i
qd�1

m � � � hasC1i
qd�1

m

hb1i
qd�1

m � � � hbsi
qd�1

m Dqd�1

m

˛q
mCd�1

!.�1/

D

QsC1
iD1
ai�2

�
.� � t /q

d�2
Dqd�ai

ai�2

�
Qs
jD1
bj�2

�
.� � t /q

d�2Dq
d�bj

bj�2

�˛qd�2
C

X
m�1

QsC1
iD1

�
.� � t /q

mCai�2DmCai�2
�qd�ai®Qs

jD1

�
.� � t /q

mCbj �2DmCbj�2
�qd�bj ¯�

.� � t /q
m�1Dm�1

�qd�1 ˛qmCd�2

D

QsC1
iD1
bai�2

�
.� � t /q

d�2
Dqd�ai

ai�2

�
Qs
jD1
bj�2

�
.� � t /q

d�2Dq
d�bj

bj�2

� ˛qd�2 CX
m�1

Dqd�a1

mCa1�2
� � �Dqd�asC1

mCasC1�2

Dqd�b1

mCb1�2
� � �Dqd�bs

mCbs�2
Dqd�1

m�1

˛q
mCd�2

D

QsC1
iD1
ai�2

�
.� � t /q

d�2
Dqd�ai

ai�2

�
Qs
jD1
bj�2

�
.� � t /q

d�2Dq
d�bj

bj�2

�˛qd�2 C sC1Fs.aIb/.˛/q
d�1

:

Thus, we obtain�
sC1Fs.aIb/.˛/q

d�1�.�1/
D

QsC1
iD1
ai�2

�
.� � t /q

d�2
Dqd�ai

ai�2

�
Qs
jD1
bj�2

�
.� � t /q

d�2Dq
d�bj

bj�2

�˛qd�2 C sC1Fs.aIb/.˛/q
d�1

: (3.10)
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Finally, we have�
Pb;d sC1Fs.aIb/.˛/q

d�1�.�1/
D .�1/

Ps
jD1.bj�1/q

d�2
sC1Y
iD1
ai�2

.� � t /q
d�2

Dqd�ai

ai�2
˛q

d�2

Pb;d

C .�1/
Ps
jD1.bj�1/q

d�2
sY

jD1
bj�2

.� � t /q
d�2

Dq
d�bj

bj�2
Pb;d sC1Fs.aIb/.˛/q

d�1

: (3.11)

Therefore, ‰.�1/ D ˆa;b;d‰ follows from (3.10). Accordingly, we can obtain the rigid
analytic trivialization ‰ of ˆa;b;d so that

‰jtD� D

 
Pb;d jtD� 0

Pb;d jtD� sC1Fs.aIb/.˛/q
d�1

Pb;d jtD�

!
:

Remark 3.5. In the above theorem, ˆa;b;d 2 Mat2. NkŒt �/ and ‰ 2 Mat2.T / \ GL2.L/
such that det.ˆjtD0/¤ 0 and‰.�1/ Dˆa;b;d‰. Then, we get‰ 2Mat2.E/ by [1, Propo-
sition 3.1.3].

Theorem 3.4 also presents a t -motivic interpretation of the KPLs with z� .

Example 3.6. For a D .1; : : : ; 1/, b D .2; : : : ; 2/ and d D 2, the pre-t -motive Ma;b;d is
more precisely the dual t -motive introduced in [1] defined by the matrix

ˆa;b;d D

�
.t � �/s 0

.�1/s˛ .t � �/s

�
:

Then,ˆa;b;d satisfies the relation‰.�1/ D ˆa;b;d‰, where‰ WD . �s 0
�sLK;.s/.˛/ �

s/ by using
(2.1) and Theorem 3.4. Thus, ‰ is a rigid analytic trivialization of Ma;b;d whose entries
specialized to z��s and LK;.s/.˛/. We can also obtain the period matrix of Ma;b;d as
‰�1jtD� (see [9, p. 267]) described by

‰�1jtD� D

�
z�s 0

�z�sLiK;.s/.˛/ z�
s

�
:

Remark 3.7. As long as we focus on only the t -motivic interpretation of the THGFs, we
do not need to consider the power series Pb;d . Indeed,

ˆ0a;b;d WD

0BBBBBBBBBB@

1 0
sC1Y
jD1
aj�2

.� � t /q
d�1

Dq
d�aj

aj�2

sY
jD1
bi�2

.� � t /q
d�1

Dq
d�bj

bj�2

˛q
d�2

1

1CCCCCCCCCCA
2 GL2

�
Nk.t/

�
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defines a pre-t -motive. According to the equation (3.10), it satisfies ‰.�1/ D ˆ0a;b;d‰

with

‰ WD

 
1 0

sC1Fs.aIb/.˛/q
d�1

1

!
2 GL2.T /:

Thus, we can obtain a simpler t -motivic interpretation of the THGFs:

‰jtD� D

 
1 0

sC1Fs.aIb/.˛/q
d�1

1

!
:

However, for our proof of the transcendence/linear independence results, we should assign
the representation matrix to be in Matn. NkŒt �/ to apply Chang’s refined ABP criterion (The-
orem 4.2, [6, Theorem 1.2]). Thus, we modify the interpretation withPb;d as Theorem 3.4.

Remark 3.8. The pre-t -motive Ma;b;d in Example 3.6 was also considered by Taelman
and the group of Anglès, Ngo Dac, Tavares Ribeiro to develop a counterexample to Tael-
man’s conjecture. See [3] for more details.

We can extend Example 3.6 to the KMPL case as follows, which is similar to the
Carlitz multiple polylogarithm case.

Definition 3.9. Set sWD.s1; : : : ; sr /2Nr . Then, for zD.z1; : : : ; zr /2Cr
1 with jzi j1<qsi ,

we define the following power series:

LK;s.z/ WD
X

i1>i2>���>ir>0

z
qi1

1 z
qi2

2 � � � z
qir
r

.�q
i1
� t /s1.�q

i2
� t /s2 � � � .�q

ir
� t /sr

which belong to T since kzq
i1

1 z
qi2

2 � � �z
qir
r =.�q

i1
� t /s1.�q

i2
� t /s2 � � � .�q

ir
� t /sr k! 0 as

1 � ir < � � � < i1 !1. The following holds according to the definition of the Frobenius
.�1/-fold twist and the above series expression:

LK;s.z/.�1/ D
zr

.� � t /sr
LK;.s1;:::;sr�1/.z1; : : : ; zr�1/CLK;s.z/: (3.12)

We also define the series

L�K;s.z/ WD
X

i1�i2�����ir>0

z
qi1

1 z
qi2

2 � � � z
qir
r

.�q
i1
� t /s1.�q

i2
� t /s2 � � � .�q

ir
� t /sr

2 T

which is specialized to the star-version of the KMPLs at t D � . The star-version of the
KMPL is defined by

Li�K;s.z/ WD
X

i1�i2�����ir>0

z
qi1

1 z
qi2

2 � � � z
qir
r

Œi1�s1 Œi2�s2 � � � Œir �sr
:
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Then, in the same way as the proof for the star-versions of the Carlitz multiple poly-
logarithms by [10, 16], we obtain the following equations for 1 � l � j � r by the
inclusion–exclusion principle:

.�1/lL�K;.sj ;:::;sl /. j̨ ; : : : ; ˛l /

D

jX
iDlC1

.�1/i�1LK;.sl ;:::;si�1/.˛l ; : : : ; ˛i�1/L
�
K;.sj ;:::;si /

. j̨ ; : : : ; ˛i /

C .�1/jLK;.sl ;:::;sj /.˛l ; : : : ; j̨ /; (3.13)

.�1/jL�K;.sj ;:::;sl /. j̨ ; : : : ; ˛l /

D

jX
iDlC1

.�1/iLK;.si ;:::;sj /.˛i ; : : : ; j̨ /L
�
K;.si�1;:::;sl /

.˛i�1; : : : ; ˛l /

C .�1/lLK;.sl ;:::;sj /.˛l ; : : : ; j̨ /: (3.14)

Based on (3.12), it follows that

‰.�1/s;˛ D ˆs;˛‰s;˛ (3.15)

where

ˆs;˛ D

0BBBBBBBBB@

.t � �/w 0 � � � 0 0

.�1/sr ˛r .t � �/
w�sr .t � �/w

: : :
:
:
:

:
:
:

0 .�1/sr�1˛r�1.t � �/
w�sr�1

: : :
:
:
:

:
:
:

:
:
: 0

: : : 0
:
:
:

:
:
:

:
:
: .t � �/w 0

0 0 .�1/s1˛1.t � �/
w�s1 .t � �/w

1CCCCCCCCCA
2 MatrC1. NkŒt �/ \ GLrC1

�
Nk.t/

�
and

‰s;˛ D

0BBBBBBBBB@

�w 0 � � � 0 0

�wLK;.sr /.˛r / �w
: : :

:
:
:

:
:
:

�wLK;.sr�1;sr /
.˛r�1; ˛r / �wLK;.sr�1/

.˛r�1/
: : :

:
:
:

:
:
:

:
:
:

:
:
:

: : : 0
:
:
:

:
:
:

:
:
: �w 0

�wLK;s.˛/ �wLK;.s1;:::;sr�1/
.˛1; : : : ; ˛r�1/ � � � �wLK;.s1/

.˛1/ �w

1CCCCCCCCCA
2 GLrC1.L/:

We remark that ‰s;˛ 2MatrC1.E/ by [1, Proposition 3.1.3], that is, ‰s;˛ 2 GLrC1.L/\
MatrC1.E/.
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Furthermore, by using (3.13) and (3.14), ‰�1s;˛ can be written as follows:

‰�1s;˛ D �
�wIrC1

�

0BBBBBBBBB@

1 0 � � � 0 0

�L�K;.sr /.˛r / 1
: : :

:
:
:

:
:
:

.�1/2L�K;.sr ;sr�1/
.˛r ; ˛r�1/ �L�K;.sr�1/

.˛r�1/
: : :

:
:
:

:
:
:

:
:
:

:
:
:

: : : 0
:
:
:

:
:
:

:
:
: 1 0

.�1/rL�
K;
 �
s
.
 �
˛ / .�1/r�1L�K;.sr�1;:::;s1/

.˛r�1; : : : ; ˛1/ � � � �L�K;.s1/
.˛1/ 1

1CCCCCCCCCA
2 GLrC1.L/:

Here, we set IrC1 the identity matrix of size r C 1, and set �s D .sr ; sr�1; : : : ; s1/,
 �
˛ D

.˛r ; ˛r�1; : : : ; ˛1/. The matrix ˆs;˛ defines a pre-t -motive M and thus ‰s;˛ is its rigid
analytic trivialization. Then‰�1s;˛jtD� is a period matrix ofM whose entries are expressed
by z�w and

.�1/dep.sj ;:::;sl /z�wLi�K;.sj ;:::;sl /. j̨ ; : : : ; ˛l / .1 � l � j � r/:

4. Linear independence results of the THGFs and the KMPLs

In this section, we discuss the transcendence and linear independence results derived by
using a refined version of the Anderson–Brownawell–Papanikolas’ linear independence
criterion. The original version is given in the following statement.

Theorem 4.1 ([1, Theorem 3.1.1]). Fix ˆ 2 Matd . NkŒt �/ such that detˆ D c.t � �/s for
some c 2 Nk� and some s 2 Z�0. Suppose that there exists a vector  2 Matd�1.E/ that
satisfies

 .�1/ D ˆ :

For every � 2Mat1�d . Nk/ such that � .�/D 0, there exists a P 2Mat1�d . NkŒt �/ such that
P.�/ D � and P D 0.

By the definition, det.ˆa;b;d / is a polynomial in NkŒt � but generally it cannot be written
by some powers of .t � �/ multiplied with a non-zero constant in Nk. Therefore, we need
to employ the following refined version of Theorem 4.1.

Theorem 4.2 ([6, Theorem 1.2]). We fix a matrix ˆ D ˆ.t/ 2Matl . NkŒt �/ such that detˆ
is a polynomial in t that satisfies detˆ.0/ ¤ 0. Fix a vector  D Œ 1.t/; : : : ;  l .t/�tr 2
Matl�1.E/ that satisfies the functional equation  .�1/ D ˆ . Let � 2 Nk�nFq

�
satisfy

detˆ.�.�i// ¤ 0 for all i D 1; 2; : : : :

Then the following properties hold.
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(1) For every vector � 2 Mat1�l . Nk/ such that � .�/ D 0, there exists a vector P D
P.t/ 2 Mat1�l . NkŒt �/ such that P.�/ D � and P D 0,

(2) tr:deg Nk.t/ Nk.t/. 1.t/; : : : ;  l .t// D tr:deg Nk Nk. 1.�/; : : : ;  l .�//.

Furthermore, for our proof, we use the following .�q
i
� t /-expansion of rFs.˛/, which

follows from the method described in [28, p. 143]. We again remark that for a given
rFs.a1; : : : ; ar Ib1; : : : ; bs/.˛/, we assume throughout this paper that its parameters satisfy
ai � aj and bi � bj for i � j without loss of generality.

Proposition 4.3. For a given rFs.˛/ D rFs.a1; : : : ; ar I b1; : : : ; bs/.˛/ with ˛ 2 Nk satis-
fying (1.2) and for j 2 Z, we define

a.j / D r � uC 1 if au�1 � j � au � 1;

b.j / D s � v C 1 if bv�1 � j � bv � 1;

c.j / D a.j / � b.j /

by setting b0 D 1, a0 D b�1 D �1 and arC1 D bsC1 D C1. Then, we have

�
rFs.˛/

�qd
D

1X
nD0

 
nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

!
˛q

nCd

(4.1)

where d D max¹a1; : : : ; ar ; b1; : : : ; bsº.

Remark 4.4. For l � max1�i�r
1�j�s

¹ai ; bj º,

c.l/ D a.l/ � b.l/ D 0 � 0 D 0

holds according to the definition. Especially when r D s C 1, for l � 0, we again obtain
c.l/ D a.l/ � b.l/ D s C 1 � .s C 1/ D 0.

Later, in our proofs of Theorems 4.7 and 4.9, we need to assume some conditions for
c.j / due to the following observation.

Remark 4.5. Let N > 0. For each ˛q
nCd

(N > n � N � d C 1) in (4.1), the coefficient

nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

of ˛q
nCd

has a pole or zero at t D �q
N

with order jc.N � n/jqnCd�N . By the definition,
the range of the quantity c.j / depends on the parameters a1; : : : ; ar and b1; : : : ; bs and we
do not have c.j1/ > c.j2/ for j1 > j2 or j2 > j1 in general. Thus for some large enough
r and s, there may exist distinct n1; n2; : : : ; nl with N > n1; n2; : : : ; nl � N � d C 1 so
that

c.N � n1/q
n1Cd�N D � � � D c.N � nl /q

nlCd�N :
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By the expression (4.1),

�
rFs.˛/

�qd
D

1X
nDN

 
nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

!
˛q

nCd

C

N�1X
nDN�dC1

 
nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

!
˛q

nCd

C

N�dX
nD0

 
nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

!
˛q

nCd

: (4.2)

By multiplying .�q
N
� t /c.N�n1/q

n1Cd�N on both side of (4.2) and substituting t D �q
N

,
we get �

.�q
N

� t /c.N�n1/q
n1Cd�N

�
rFs.˛/

�qd �
j
tD�q

N

D

lX
iD1

niCd�1Y
mD1
m¤N

.�q
m

� �q
N

/c.m�ni /q
niCd�m

˛q
niCd

:

Thus we obtain the k-linear combination of ˛ with some distinct powers. If we do not
assign the conditions to c.j /, l may not be equal to 1 in general. Then the right-hand side
of the above equation cause problems in our proofs of Theorems 4.7 and 4.9, in showing
contradictions to k-linear independence of ˛1; : : : ; ˛r 2 Nk and non-vanishing of ˛ 2 Nk.

4.1. Applications to the special values of the THGFs

In this section, we describe the equivalent conditions for the transcendence of the THGFs,
which is already given by Thakur et al. in [28]. We reprove it via the t -motivic interpre-
tation of the values of the THGFs and Chang’s refined ABP criterion. Furthermore, we
show the linear independence of some THGFs at algebraic points, which are specialized
to the results of the KPLs.

Here we again recall our assumptions in Sections 1.1 and 2.1. We assume through-
out this paper that for a given THGF rFs.a1; : : : ; ar I b1; : : : ; bs/.z/ (resp. rFs case), its
parameters satisfy ai � aj and bi � bj for i � j without loss of generality.

Theorem 4.6. Let ai ; bj 2 N (1 � i � s C 1, 1 � j � s) and let ˛ 2 Nk� satisfying that

j˛j1 < q
Ps
jD1.bj�1/�

PsC1
iD1 .ai�1/:

Then, sC1Fs.a1; : : : ; asC1Ib1; : : : ; bs/.˛/ is transcendental over k if and only if bj > ajC1
for some j .

Proof. First, we prove the transcendence of sC1Fs.a1; : : : ; asC1Ib1; : : : ; bs/.˛/with bj >
ajC1 for some j . Suppose on the contrary that

f C sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/ D 0
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for some f 2 Nk�. This is equivalent to saying

Pb;d jtD�f
qd
C Pb;d jtD� sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/

qd
D 0:

Then, by Theorem 3.4 and 4.2, we can lift this to the relation

.g1; g2/

 
Pb;d

Pb;d sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/
qd

!
D 0 (4.3)

where gi .t/ 2 NkŒt � (i D 1;2) such that g1.�/D f q
d

and g2.�/D 1. This is written without
Pd;b as

g1.t/C g2.t/sC1Fs.a1; : : : ; asC1I b1; : : : ; bs/.˛/
qd
D 0: (4.4)

Let N 2 N such that g2.�q
N
/ ¤ 0. With the expansion (4.1), Remark 4.4 and changing a

variable from m to l C n, we have

�
sC1Fs.˛/

�qd
D

1X
nD0

 
nCd�1Y
mD1

.�q
m

� t /c.m�n/q
nCd�m

˛q
nCd

!

D

1X
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
: (4.5)

Because bj > ajC1 for some sC 1 > j > 0, there exists d � 1 � l � 1 such that bj > l �
ajC1. Then au � 1 � m � au�1 for some s C 3 > u � j C 2 and bv � 1 � l � bv�1 for
some j � v � 1. Here, we assume that b0 D 1, a0 D b�1 D�1 and asC2 D bsC1 DC1
as in Proposition 4.3. Thus, we obtain c.l/ < 0 for these j . Indeed, c.l/ D a.l/� b.l/ D
.s � uC 2/ � .s � v C 1/ D v C 1 � u � j C 1 � u � �1. We decompose sC1Fs.˛/q

d

as follows:

�
sC1Fs.˛/

�qd
D

1X
nDN

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C

N�1X
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

D

1X
nDN

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C

N�dX
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C

N�1X
nDNC1�d

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
:
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Then, we denote all l 2 Z such that d � 1 � l � 1 and c.l/ < 0 by li .i D 1; : : : ; r/ and
decompose the above as

D

1X
nDN

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
C

N�dX
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C

N�1X
nDNC1�d

n¤N�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C

X
nDN�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
:

Thus, (4.4) can be rewritten as

g1.t/C g2.t/

1X
nDN

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C g2.t/

N�dX
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

C g2.t/

N�1X
nDNC1�d

n¤N�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

D g2.t/
X

nDN�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
:

At t D �q
N

, the left-hand side of the above equation is regular, whileX
nDN�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

(this sum is non-zero because the largest term with respect to k � k is
Qd�1
lD1 .�

qlCN�lh �

t /c.l/q
d�l
˛q

N�lhCd where lh D min¹l1; : : : ; lrº) on the right-hand side has a pole. Indeed,
on the left-hand side, the 1st term g1.t/ is a polynomial, the 2nd sum

1X
nDN

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!

is
�
sC1Fs.˛/

qd
�qN at t D �q

N
, and c.l/ for l D N � n are not negative in both the 3rd

sum
N�dX
nD0

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
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and 4th sum
N�1X

nDNC1�d
n¤N�l1;:::;N�lr

 
d�1Y
lD1

.�q
lCn

� t /c.l/q
d�l

˛q
nCd

!
:

Thus, g2.t/ must have a zero at t D �q
N

, so we obtain a contradiction.
Next, we prove that sC1Fs.˛/ is algebraic when bj � ajC1 for all j . Due to the former

part of the proof, in this case, c.l/ � 0 for any l . Indeed, if there exists i > 0 such that
c.i/ < 0, we obtain a.i/ � b.i/ D .s C 1 � uC 1/ � .s � v C 1/ D 1 � uC v < 0 for
some 1 � u � sC 1, 1 � v � s. Then, we have bv�1 � i � bv � 1 and au�1 � i � au � 1
thus, in particular we have au�1 < bv . However, this contradicts 1 � uC v < 0, that is,
bv � au�1.

By using the expression (4.5), we have

�
sC1Fs.aIb/.˛/q

d �.�1/
D

�X
n�0

d�1Y
lD1

.�q
nCd

� t /c.l/q
d�l

˛q
nCd

�.�1/
D

d�1Y
lD1

.�q
d�1

� t /c.l/q
d�l

˛q
d�1

C sC1Fs.aIb/.˛/q
d�1

:

Thus, by setting

ˆa;b;d D

0B@ 1 0
d�1Y
lD1

.�q
d�1

� t /c.l/q
d�l

˛q
d�1

1

1CA 2 Mat2
�
NkŒt �
�
;

 D

 
1

sC1Fs.aIb/.˛/q
d

!
2 Mat2�1.T /;

we have  .�1/ Dˆa;b;d and then,  2Mat2�1.E/ by [1, Proposition 3.1.3]. This allows
us to apply Theorem 4.2 without Pb;d .

By expanding
Qd�1
jD1 .�

qnCd � tq
d�j
/c.j /˛q

nCd
, we obtain the finite FqŒt �-linear com-

bination
P
H�h�1 fh.t/�

hqnCd˛q
nCd

with fh.t/2FqŒt �. Thus we can write sC1Fs.˛/q
d
2

Tn¹0º (see (3.4)) by

sC1Fs.˛/
qd
D

X
n�0

X
H�h�1

fh.t/�
hqnCd˛q

nCd

D

X
H�h�1

fh.t/
X
n�0

�hq
nCd

˛q
nCd

: (4.6)

Then we have the algebraic relation�X
n�0

�hq
nCd

˛q
nCd
�q
D

X
n�0

�hq
nCd

˛q
nCd

� �hq
d

˛q
d
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which implies that the sum
P
n�0 �

hqnCd˛q
nCd

is in Nk. Thus the expression (4.6) shows

that sC1Fs.˛/q
d
2 NkŒt � and Theorem 4.2 (2) yields

0 D tr:deg Nk.t/ Nk.t/
®
1; sC1Fs.aIb/.˛/q

d ¯
D tr:deg Nk Nk

®
1; sC1Fs.aIb/.˛/q

d ¯
:

Therefore, sC1Fs.aIb/.˛/ is algebraic over k.

In the following, we set

dh D max
1�i�hC1
1�j�h

¹ai ; bj º .h D 1; : : : ; s/

and we denote all m satisfying ds � m � 0 by mi (i D 1; : : : ; n) where n WD ds C 1.

Theorem 4.7. Fix as D .a1; : : : ; asC1/ 2 NsC1, bs D .b1; : : : ; bs/ 2 Ns such that b1 >
asC1. We take n� r � 1 such that b1 � 1�mr . Let ahD .a1; : : : ;ahC1/, bhD .b1; : : : ;bh/
(h D 1; : : : ; s) and let ˛h 2 Nk� with

j˛hj1 < q
Ph
jD1.bj�1/�

PhC1
iD1 .ai�1/:

If min1�i�n;i¤r¹c.mi /qd�mi º > c.mr /qd�mr , then hC1Fh.ahI bh/.˛h/ .1 � h � s/ are
Nk-linearly independent.

Proof. Suppose on the contrary that

f0 C f1 2F1.a1Ib1/.˛1/q
ds
C � � � C fs sC1Fs.asIbs/.˛s/q

ds
D 0

for some fi 2 Nk (i D 0; 1; : : : ; s) which are not all zero. Without loss of generality, we
assume that fs ¤ 0. We consider

ˆ D

0BBB@
ˆ1

ˆ2
: : :

ˆs

1CCCA and  D

0BBB@
 1
 2
:::

 s

1CCCA
where

ˆh D .�1/
Ps
jDhC1.bj�1/q

d�2
sY

jDhC1
bj�2

.� � t /q
ds�1

Dq
ds�bj

bj�2
ˆah;bh;ds

2 Mat2
�
NkŒt �
�
\ GL2

�
Nk.t/

�
and

 h D

 
Pbs ;ds

Pbs ;ds hC1Fh.ahIbh/.˛h/q
ds

!
2 Mat2�1.E/:
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According to Theorem 3.4,  .�1/
h
D ˆh h is true for each h; thus we have  .�1/ D ˆ .

Then, by using Theorem 4.2, we have the following NkŒt �-linear relation:

Pbs ;dsg0.t/C Pbs ;dsg1.t/ 2F1.a1Ib1/.˛1/
qd

C � � � C Pds ;bsgs.t/ sC1Fs.asIbs/.˛s/
qd
D 0 (4.7)

for gi .t/ 2 NkŒt � such that gi .�/D fi (i D 1; : : : ; s). In particular, gs.t/¤ 0 since gs.�/D
fs ¤ 0. We can rewrite the above as follows by using (4.1):

Pbs ;ds

´
g0.t/C g1.t/

 
1X
nD0

 
d1�1Y
lD1

.�q
lCn

� t /c1.l/q
d�l

˛
qnCd

1

!!

C � � � C gs.t/

 
1X
nD0

 
ds�1Y
lD1

.�q
lCn

� t /cs.l/q
d�l

˛q
nCd

s

!!µ
D 0:

Here each ch.�/ is associated to hC1Fh.ahIbh/.˛h/ and thus cs.�/ is nothing but c.�/.
We note that ch.mr /D�h for each hD 1; : : : ; s. Indeed, b1 � 1�mr � asC1 implies

b1 � 1 � mr � ahC1 and then,

ch.mr / D ah.mr / � bh.mr / D hC 1 � .hC 2/C 1 � .h � 1C 1/ D �h:

We set N to be a positive integer such that gs.�q
N
/ ¤ 0. Then, by multiplying�

Pbs ;ds .�
qN
� t /cs.mr /q

d�mr ��1
on both sides of (4.7) and we have

.�q
N

� t /�cs.mr /q
d�mr

g0.t/

C .�q
N

� t /�cs.mr /q
d�mr

g1.t/

 
1X
nD0

 
d1�1Y
lD1

.�q
lCn

� t /c1.l/q
d�l

˛
qnCd

1

!!
:::

C .�q
N

� t /�cs.mr /q
d�mr

gs�1.t/

 
1X
nD0

 
ds�1�1Y
lD1

.�q
lCn

� t /cs�1.l/q
d�l

˛
qnCd

s�1

!!

C .�q
N

� t /�cs.mr /q
d�mr

gs.t/

 
1X
nD0

n¤N�mr

 
ds�1Y
lD1

.�q
lCn

� t /cs.l/q
d�l

˛q
nCd

s

!!

C .�q
N

� t /�cs.mr /q
d�mr

gs.t/

ds�1Y
lD1

.�q
lCN�mr

� t /cs.l/q
d�l

˛q
N�mrCd

s D 0:
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Since we assume the condition min1�i�n;i¤r¹c.mi /qd�mi º > c.mr /qd�mr , by sub-
stituting t D �q

N
into the above equation, we obtain

.�q
N

� t /�cs.mr /q
d�mr

gs.t/

ds�1Y
lD1

.�q
lCN�mr

� t /cs.l/q
d�l

˛q
N�mrCd

s j
tD�q

N

D gs.t/

ds�1Y
lD1
l¤mr

.�q
lCN�mr

� t /cs.l/q
d�l

˛q
N�mrCd

s j
tD�q

N

D gs.�
qN /˛q

N

s D 0:

Therefore, we obtain a contradiction ˛s ¤ 0 and then, the desired result holds.

Remark 4.8. For a given s > 0, if we specialize as D .1; : : : ; 1/ 2 NsC1 and bs D
.2; : : : ; 2/ 2 Ns in the above theorem, it shows that 1, LiK;s.˛s/, LiK;s�1.˛s�1/; : : : ;
LiK;1.˛1/ are Nk-linearly independent. Accordingly, there are no Nk-linear relations among
1 and the KPLs at algebraic points with different weights.

In the following, we denote all m satisfying d � m � 0 by mi (i D 1; : : : ; n) where
n WD d C 1.

Theorem 4.9. For any a D .a1; : : : ; asC1/ 2 NsC1 and b D .b1; : : : ; bs/ 2 Ns satisfy-
ing that bj > ajC1 for some j , and that min1�i�n; i¤u¹c.mi /qd�mi º > c.mu/qd�mu for

some u, let ˛i 2 Nk� (i D 1; : : : ; r) with j˛i j1 < q
Ps
jD1.bj�1/�

PsC1
iD1 .ai�1/. If ˛1; : : : ; ˛r are

k-linearly independent, then sC1Fs.aI b/.˛1/; : : : ; sC1Fs.aI b/.˛r / are Nk-linearly inde-
pendent.

Proof. We assume on the contrary that there exists a non-trivial Nk-linear relation:

f1 sC1Fs.aIb/.˛1/q
d

C � � � C fr sC1Fs.aIb/.˛r /q
d

D 0:

We define the matrices ˆ and  as

ˆ D

0BBBBBBBBBBBBBB@

sY
jD1

.� � t /q
d�1

Dq
d�bj

bj�2

sC1Y
jD1

.� � t /q
d�1

Dq
d�aj

ai�2
˛
qd�2

1

sY
jD1

.� � t /q
d�1

Dq
d�bj

bj�2

:::
: : :

sC1Y
jD1

.� � t /q
d�1

Dq
d�aj

aj�2
˛q

d�2

r

sY
jD1

.� � t /q
d�1

Dq
d�bj

bj�2

1CCCCCCCCCCCCCCA
2 MatrC1

�
NkŒt �
�
\ GLrC1

�
Nk.t/

�
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and

 D

0BBBB@
Pb;d

Pb;d sC1Fs.aIb/.˛1/q
d

:::

Pb;d sC1Fs.aIb/.˛r /q
d

1CCCCA 2 Mat.rC1/�1.E/:

According to Theorem 3.4,  .�1/ D ˆ ; then, we can apply Theorem 4.2 and obtain the
following:

g1.t/ sC1Fs.aIb/.˛1/q
d

C � � � C gr .t/ sC1Fs.aIb/.˛r /q
d

D 0 (4.8)

where gi .t/ 2 NkŒt � with gi .�/ D fi . We assume gr .t/ ¤ 0 without loss of generality and
set g0i .t/ D gi .t/=gr .t/. Next, we transform (4.8). We divide both sides of (4.8) by gr .t/
and obtain

g01.t/ sC1Fs.aIb/.˛1/
qd
C � � � C g0r .t/ sC1Fs.aIb/.˛r /

qd
D 0: (4.9)

Then, based on Theorem 3.10 and (4.5), the .�1/-fold Frobenius twist of (4.9) is

g01.t/
.�1/

sC1Fs.aIb/.˛1/q
d

C � � � C g0r .t/
.�1/

sC1Fs.aIb/.˛r /q
d

Cg01.t/
.�1/

d�1Y
jD1

.�q
j

� t /c.j /q
d�j

˛
qd

1 C � � � Cg
0
r .t/

.�1/

d�1Y
jD1

.�q
j

� t /c.j /q
d�j

˛q
d

r D0: (4.10)

According to (4.9) and (4.10), we have the following:

h1.t/ sC1Fs.aIb/.˛1/q
d

C � � � C hr�1.t/ sC1Fs.aIb/.˛r�1/q
d

CR D 0

where

hi .t/ WD g
0
i .t/ � g

0
i .t/

.�1/;

R WD �

d�1Y
mD1

.�q
m

� t /c.m/q
d�m�

g01.t/
.�1/˛

qd

1 C � � � C g
0
r�1.t/

.�1/˛
qd

r�1 C ˛
qd

r

�
:

The j -th repetition of this transformation gives the following equation:

h1;j .t/ sC1Fs.aIb/.˛1/q
d

C � � � C hr�j;j .t/ sC1Fs.aIb/.˛r�j /q
d

CRj D 0

where

hi:jC1.t/ D
hi;j .t/

hr�j;j .t/
�

�
hi;j .t/

hr�j;j .t/

�.�1/
2 Nk.t/;

RjC1 D
Rj

hr�j;j .t/
�

�
Rj

hr�j;j .t/

�.�1/
2 Nk.t/
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with hi;1.t/D hi .t/, R1 D R. We repeat the above transformation until (i) j D r � 1 and
h1;r�1.t/ ¤ 0 or (ii) j is equal to some j 0 such that

h1;j 0 D � � � D hr�j 0;j 0 D 0:

For the case (i), we have

h1;r�1.t/ sC1Fs.aIb/.˛1/q
d

CRr�1 D 0: (4.11)

We set N > 0 such that h1;r�1.�q
N
/ ¤ 0 and Rr�1 is regular at t D �q

N
. Multiplying by

.� � t /�c.mu/q
qd�mu

and then substituting t D �q
N

on both sides of (4.11), we obtain the
equation

h1;r�1.�
qN /

Y
d�1�j�1
j¤mu

.�q
N�muCj

� �q
N

/c.j /q
d�j

˛
qN�muCd

1 D 0:

This contradicts to ˛1 ¤ 0. For the case (ii), first we set N > nC d such that

hr�j 0C1;j 0�1.�
qN / ¤ 0

is non-zero and Rj 0�1 is regular at t D �q
N

. Due to our assumption of the minimality of
c.mu/q

d�mu , multiplying by .�q
N
� t /c.mu/q

d�mu on both sides of

h1;j 0�1.t/ sC1Fs.aIb/.˛1/q
d

C � � �C hr�j 0C1;j 0�1.t/ sC1Fs.aIb/.˛r�j 0C1/q
d

CRj 0�1D0

gives the following at t D �q
N

:

h1;j 0�1.�
qN /

 
d�1Y
lD1
l¤mu

.�q
lCN�mu

� �q
N

/c.l/q
d�l

˛
qnCd

1

!

C � � � C hr�j 0C1;j 0�1.�
qN /

 
d�1Y
lD1
l¤mu

.�q
lCN�mu

� �q
N

/c.l/q
d�l

˛
qnCd

r�j 0C1

!
D 0: (4.12)

Since h1;j 0 D � � � D hr�j 0;j 0 D 0, we get

hi;j 0�1.t/=hr�j 0C1;j 0�1.t/ 2 Fq.t/ .1 � i � r � j 0/:

Thus they belong to Fq.�q
N
/ at t D �q

N
. Therefore by dividing with hr�j 0C1;j 0�1.�q

N
/

and taking qnCd -th root of both sides of the relation (4.12), it gives a k-linear relation
between ˛1; : : : ; ˛r , and we obtain a contradiction.

Remark 4.10. When a D .1; : : : ; 1/ and b D .2; : : : ; 2/, the above theorem shows that if
˛1; : : : ; ˛r 2 Nk

� with j˛i j1 < qs are k-linearly independent, LiK;s.˛1/; : : : ; LiK;s.˛r /
are Nk-linearly independent.
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4.2. Linear independence results of the KMPLs

As applications of Theorem 4.2 and our t -motivic interpretation of the KMPLs in (3.15),
we discuss a linear independence result among the depth 2 KMPLs. Furthermore, we
compare the KMPLs with other quantities and show that the Kochubei multizeta values
do not have Eulerian/zeta-like indices with Kochubei zeta values and Carlitz periods.

For the depth 2 KMPLs, we have the following linear independence result.

Theorem 4.11. For ˛ 2 Nk� with j˛j1 < q and w 2 N, the following set®
LiK;s.˛/ j s 2 N2 with wt.s/ D w

¯
is linearly independent over Nk.

Proof. We assume on the contrary that amongLiK;si .˛/ .i D 1; : : : ; r/with si D .si1; si2/

(si ¤ sj for i ¤ j ), there exists a Nk-linear relation:

f1LiK;s1.˛/C � � � C frLiK;sr .˛/ D 0 (4.13)

for some fi 2 Nk�. We define

ˆi D

0B@ .t � �/w 0 0

.�1/si2.t � �/si1 .t � �/w 0

0 .�1/si1˛.t � �/si2 .t � �/w

1CA 2 Mat3
�
NkŒt �
�
\ GL3

�
Nk.t/

�
and

 i D

0B@ �w

�wLK;.si1/.˛/

�wLK;si .˛/

1CA 2 Mat3�1.E/;

put

ˆ D

0BBB@
ˆ1

ˆ2
: : :

ˆr

1CCCA and  D

0BBB@
 1
 2
:::

 r

1CCCA :
Then, we can apply Theorem 4.2 (1) to (4.13) and obtain the following NkŒt �-linear relation

g1.t/LK;s1.˛/C � � � C gr .t/LK;sr .˛/ D 0

with gi .t/ 2 NkŒt � such that gi .�/ D fi . We set

s D max¹sij j i D 1; : : : ; r and j D 1; 2º:

For some i , there are indices si D .w� s; s/ or .s;w� s/with s �w� s. When sDw� s,
the equation (4.13) becomes fiLiK;si .˛/ D 0; however, this contradicts Theorem 4.6.
When s ¤ w � s, we have three cases and again get contradictions as follows.
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Case 1. If si D .w � s; s/ for some i and sj ¤ .s;w � s/ with j ¤ i , we set N > 0 such
that gi .�q

N
/ ¤ 0. Then, we can set i D 1 without loss of generality and obtain

.�q
N

� t /s
�
g1.t/LK;s1.˛/C � � � C gr .t/LK;sr .˛/

�
D .�q

N

� t /s
�
g1.t/

X
i1DN>i2>0

˛q
i1

.�q
i1
� t /s.�q

i2
� t /w�s

C g1.t/
X

i1>i2>0
i1¤N

˛q
i1

.�q
i1
� t /s.�q

i2
� t /w�s

C g2.t/LK;s2.˛/C � � � C gr .t/LK;sr .˛/

�
D 0:

By substituting t D �q
N

, we obtain g1.�q
N
/
P
N>i2>0

˛q
N
=.�q

i2
� �q

N
/w�s D 0. This

contradicts the assumption that g1.�q
N
/¤0 and that ˛ and

P
N>i2>0

˛q
N
=.�q

i2
��q

N
/w�s

are non-zero.

Case 2. If si D .s; w � s/ for some i and sj ¤ .w � s; s/ with j ¤ i , in the same way
of Case 1, we obtain a contradiction from g1.�

qN /
P
N>i2>0

˛q
N
=.�q

i2
� �q

N
/w�s D 0.

Case 3. If si D .s;w � s/ and sj D .w � s; s/ for some i and j , we can set i D 1; j D 2
without loss of generality and set N > 0 such that both g1.�q

N
/; g2.�

qN / are non-zero.
We have

.�q
N

� t /s
�
g1.t/LK;s1.˛/C � � � C gr .t/LK;sr .˛/

�
D .�q

N

� t /s
�
g1.t/

X
i1DN>i2>0

˛q
i1

.�q
i1
� t /s.�q

i2
� t /w�s

C g1.t/
X

i1>i2>0
i1¤N

˛q
i1

.�q
i1
� t /s.�q

i2
� t /w�s

C g2.t/
X

i1>NDi2>0

˛q
i1

.�q
i1
� t /w�s.�q

i2
� t /s

C g2.t/
X

i1>i2>0
i2¤N

˛q
i1

.�q
i1
� t /w�s.�q

i2
� t /s

C g3.t/LK;s3.˛/C � � � C gr .t/LK;sr .˛/

�
D 0:

By substituting t D �q
N

into the above equation, we obtain

g1.�
qN /

X
N>i2>0

˛q
N

.�q
i2
� �q

N
/w�s

C g2.�
qN /LiK;.w�s/.˛/

qN
D 0:

This contradicts to the transcendence of LiK;.w�s/.˛/ shown by Theorem 4.6.
Thus, we obtain the desired result.
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By this theorem, the dimension of the Nk-linear space

Span Nk¹Lis.˛/ j dep.s/ D 2 and wt.s/ D wº

for fixed w 2 N and fixed ˛ 2 Nk with j˛j1 < qw , is 2w�1.
Furthermore, we can compare Carlitz polylogarithms and KPLs at algebraic points as

follows.

Theorem 4.12. Given n 2 N, let ˛; ˇ 2 Nk� such that j˛j1 < qn, jˇj1 < qnq=.q�1/ and
LiC;.n/.ˇ/ ¤ 0. Then LiK;.n/.˛/; LiC;.n/.ˇ/ are Nk-linearly independent.

Proof. For the pre-t -motive defined by

ˆ D

0B@ .t � �/n 0 0

.�1/n˛ .t � �/n 0

ˇ.�1/.t � �/n 0 1

1CA 2 Mat3
�
NkŒt �
�
\ GL3

�
Nk.t/

�
;

we have  .�1/ D ˆ for

 D

0B@ �n

�nLK;.n/.˛/

�nLC;.n/.ˇ/

1CA 2 Mat3�1.E/

where LC;.n/.ˇ/ D ˇ C
P
i>0 ˇ

qi =Lni that satisfies

LC;.n/.ˇ/
.�1/
D ˇ.�1/ C

LC;.n/.ˇ/

.t � �/n
:

We assume on the contrary that f1LiK;.n/.˛/ C f2LiC;.n/.ˇ/ D 0 for some fi 2 Nk�

(iD1; 2). Then, we have z��n.f1LiK;.n/.˛/Cf2LiC;.n/.ˇ//D0. Based on Theorem 4.1,
this relation can be extended as follows:

g1.t/�
nLK;.n/.˛/C g2.t/�

nLC;.n/.ˇ/ D 0 (4.14)

for some gi .t/ 2 NkŒt � with gi .�/ D fi (i D 1; 2). Let N 2 N such that g1.�q
N
/ ¤ 0. By

multiplying by LnN�
�n on both sides, we can rewrite (4.14) as follows:

g1.t/

´
LnN

N�1X
iD1

˛q
i

.�q
i
� t /n

C .�1/nLnN�1˛
qN
C LnN

X
i>N

˛q
i

.�q
i
� t /n

µ

C g2.t/

²
.t ��q/n � � � .t ��q

N

/nˇC.t ��q
2

/ � � � .t ��q
N

/nˇq C � � � C .t ��q
N

/nˇq
N�1

C

X
i>N

ˇq
i

.t � �q
NC1

/n � � � .t � �q
i
/n

³
D 0: (4.15)
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We have X
i>N

ˇq
i

.t � �q
NC1

/n � � � .t � �q
i
/n

ˇ̌̌
tD�q

N
D LiC;.n/.ˇ/

qN
� ˇq

N

:

Therefore, by substituting t D �q
N

, the equation (4.15) becomes

g1.�
qN /

�
.�q

N

��q/n � � � .�q
N

��q
N�1

/n
�
˛q

N

Cg2.�
qN /LiC;n.˛/

qN
�g2.�

qN /ˇq
N

D 0:

This forcesLiC;n.ˇ/D g2.�q
N
/�1=q

N
¹g1.�

qN /ˇq
N
� g2.�

qN /º1=q
N
2 Nk whileLiC;n.ˇ/

is transcendental over k by [7, Theorem 5.4.3]. Therefore, we obtain a contradiction and
the desired Nk-linear independence result is proven.

We conclude this section with the following two theorems and their proofs. Then we
get the linear independence results among the KMPLs, Carlitz period, and KPLs, as intro-
duced in Theorem 1.5 (iii)–(iv).

Theorem 4.13. Given w 2 N, let s D .s1; : : : ; sr / 2 Nr with wt.s/ D w and ˛ D
.˛1; : : : ; ˛r / 2 . Nk

�/r with j˛i j1 < qsi .i D 1; : : : ; r/. Then, LiK;s.˛/ and z�w are Nk-
linearly independent.

Proof. We assume on the contrary that there exists a non-trivial Nk-linear equation f1z�w C
f2LiK;s.˛/ D 0. With (3.15), we have  .�1/ D ˆ , where

ˆ D

�
ˆs;˛

1

�
2 MatrC2

�
NkŒt �
�
\ GLrC2

�
Nk.t/

�
;

and

 D

0BBBBBBBBBBBB@

�w

�wLK;.sr /.˛r /

�wLK;.sr�1;sr /.˛r�1; ˛r /
:::
:::

�wLK;s.˛/

1

1CCCCCCCCCCCCA
2 MatrC2�1.E/:

Then, by using Theorem 4.1, we can obtain the following NkŒt �-linear relation

g1.t/�
wLK;s.˛/C g2.t/ � 1 D 0 (4.16)

for some gi .t/ 2 NkŒt � (i D 1; 2) such that gi .�/ D fi . By taking the .�1/-fold Frobenius
twist of (4.16), we obtain

g1.t/
.�1/.�1/sr .t � �/w�sr�w˛rLK;.s1;:::;sr�1/.˛1; : : : ; ˛r�1/

C g1.t/
.�1/.t � �/w�wLK;s.˛/C g2.t/

.�1/
D 0: (4.17)
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We setN 2N such that g2.t/.�1/ is non-zero at tD�q
N

. By definition,�w has a zero at t D
�q

N
with an order w, while the terms of both LK;.s1;:::;sr�1/.z1; : : : ; zr�1/ and LK;s.z/

have poles at tD�q
N

with orders strictly less than w. Thus,�wLK;.s1;:::;sr�1/.z1; : : : ; zr�1/

and�wLK;s.z/ vanish at t D �q
N

. Then, by substituting t D �q
N

on both sides of (4.17),
we obtain the contradiction

g2.t/
.�1/
j
tD�q

N D 0:

Therefore, we obtain the desired result.

Theorem 4.14. Given w 2 N, let s D .s1; : : : ; sr / 2 Nr such that wt.s/ D w. For
˛ D .˛1; : : : ; ˛r / 2 . Nk

�/r and ˇ 2 Nk� with j˛i j1 < qsi and jˇj1 < qw , LiK;s.˛/ and
LiK;w.ˇ/ are Nk-linearly independent.

Proof. We assume on the contrary that there exists a non-trivial Nk-linear relation for some
fi 2 Nk (i D 1; 2):

f1LiK;s.˛/C f2LiK;.w/.ˇ/ D 0:

We define the matrices

ˆ D

 
ˆs;˛

ˇ .t � �/w

!
2 MatrC2

�
NkŒt �
�
\ GLrC2

�
Nk.t/

�
where ˇ D .ˇ; 0; : : : ; 0/ 2 Mat1�r . Nk/ and

 D

0BBBBBBBBBBBB@

�w

�wLK;.sr /.˛r /

�wLK;.sr�1;sr /.˛r�1; ˛r /
:::
:::

�wLK;s.˛/

�wLK;.w/.ˇ/

1CCCCCCCCCCCCA
2 MatrC2�1.E/:

By using Theorem 4.1, we obtain a Nk-linear equation

g1.t/�
wLK;s.˛/C g2.t/�

wLK;.w/.ˇ/ D 0;

and then we have
g1.t/LK;s.˛/C g2.t/LK;.w/.ˇ/ D 0:

By taking the .�1/-fold Frobenius twist, we obtain

g1.t/
.�1/.� � t /�sr˛rLK;.s1;:::;sr�1/.˛1; : : : ; ˛r�1/C g1.t/

.�1/LK;s.˛/

C g2.t/
.�1/.� � t /�wˇ C g2.t/

.�1/LK;.w/.ˇ/ D 0: (4.18)
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We set N > 0 such that g2.t/.�1/jtD�qN ¤ 0. After multiplying by .�q
N
� t /w on both

sides of (4.18), we obtain

.�q
N

� t /w
�
g1.t/

.�1/.� � t /�sr˛nLK;.s1;:::;sr�1/.˛1; : : : ; ˛r�1/C g1.t/
.�1/LK;s.˛/

�
C .�q

N

� t /wg2.t/
.�1/.� � t /�wˇ C .�q

N

� t /wg2.t/
.�1/

X
i>0
i¤N

ˇq
i

.�q
i
� t /w

C g2.t/
.�1/ˇq

N

D 0:

By substituting t D �q
N

, we obtain a relation g2.t/.�1/jtD�qN ˇ
qN D 0. This contradicts

g2.t/
.�1/j

tD�q
N ¤ 0 and ˇ ¤ 0. Therefore we obtain the desired result.
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