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1. Introduction

In this paper, we present effective ways of representing sets of group elements in
finitely generated virtually abelian groups as formal languages. Given a finite set A,
any collection of words over A is a called a formal language and can be identified
with a subset of the free monoid A�. Formal languages are classified in the literature
in terms of their complexity, and our goal is to find the simplest possible classes of
languages that can encode the structure of sets of group elements: to this end, the main
protagonists of the paper will be “regular languages” and the related “rational sets”,
but other types of sets and languages will feature as well, such as semilinear, n-regular,
or EDT0L.

All groups in this paper are finitely generated. For a groupG with a finite generating
set S , let $ W S� 7! G be the natural projection which maps words to group elements.
A subset R � G is called rational if R D $.L/ for some regular language L over S ,
where by regular language we mean a set of words over S defined by some finite-state
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automaton (see Section 2.2). A useful feature here is that the rationality of a set is
independent of the generating set (see [20, Section 3]).

Rational sets have played an important role in group theory since the 1990s (see
[2]), especially in free and hyperbolic groups. The notions of “regular” and “rational”
coincide in free monoids by definition but are different otherwise. Rational sets in
groups consist of group elements, while regular sets consist of words in a free monoid.
Moreover, in general, there is no bijection between rational sets of elements and regular
languages of words because rational sets do not always have a regular language of
unique representatives in the group. Nevertheless, being able to produce a set in a
group via a finite-state automaton is useful for the design of algorithms [16], can help
compute the growth series of the set, or establish the series’ rationality. Another concept
related to rationality is semilinearity (see Section 3.2 for definitions and properties),
and for subsets of commutative monoids, semilinearity coincides with rationality
(Theorem 3.8 (1)). In the most basic and well-known setting, where the monoid is Np , a
linear set is of the form ¹vC k1u1C k2u2C � � �C kmum 2Np j ki 2N for 1� i �mº,
where m 2 N and v; ui are vectors in Np; a semilinear set is a finite union of linear
ones.

We focus in this paper on finitely generated virtually abelian groups and show
that a multitude of sets in these groups turn out to be rational (Theorem 1.1 (2)); as a
result, the sets have a nice characterisation as formal languages in terms of both natural
normal forms (Theorem 1.4 and paragraph above it) and geodesic representatives
(Theorem 1.3). That is, we show that rational sets can be expressed in terms of n-
regular and EDT0L languages and have rational weighted growth series with respect
to any generating set and any weight (Theorem 1.1 (2)). In fact, our results can be
extended to complete growth series that arise in the group ring ZŒG� (see [19]), but we
do not consider this generalisation in the paper.

A geodesic representative, or simply geodesic, for an element g in G over the finite
generating set S , is a word w such that the length of w is minimal among all words
v over S that represent g, that is, for which $.v/ D g. Geodesic representatives for
group elements are essential, since they provide the lengths of groups elements, which
are needed to compute growth. It is well known that the growth series of a regular
language is a rational function, and so, a standard technique in group theory is to exhibit
a regular language of unique geodesic representatives for a set of group elements in
order to compute its growth series and show this series is rational. However, the sets
studied in this paper are not always expressible as regular languages of geodesics, and
different approaches to growth are needed for virtually abelian groups; these go all
the way to Benson [3] and the unpublished thesis of Liardet [19], where polyhedral
and semilinear sets, respectively, are used to establish rationality of the growth series.



Rational sets in virtually abelian groups: Languages and growth 233

While Benson and Liardet’s proofs have a common thread, the structures they rely on
appear to be different at first.

We show here that the types of sets used in [3,19] are in fact identical and coincide
with the coset-wise polyhedral sets in the work of the second author and Levine on
algebraic sets in virtually abelian groups. Furthermore, there is yet another connection
between the various types of sets studied here and one more kind of sets: the subsets
of Nk defined by Presburger formulas and called Presburger sets. From [14, pp. 297–
298], it follows that any polyhedral set of Nk is in fact a Presburger set, and from
[14, Theorem 1.3], one can see that the class of Presburger sets is in fact the same as
the class of semilinear sets of Nk . It was shown in [25, Theorem 1.5] that a subset
U � Nk has rational multivariate generating function (of a particular kind) if and only
if U is a Presburger set. This shows how natural Presburger, and therefore semilinear,
sets are in the study of rational generating functions.

Besides unifying the approaches of Benson [3], Liardet [19], Evetts [12], and
Evetts–Levine [13] for studying the growth of sets in virtually abelian groups, we add
to the list of rational sets further important classes: definable (by first-order theory) sets,
algebraic sets (that is, solution sets to system of equations), conjugacy representatives,
and coset representatives of any given subgroup. Definable sets are rational because
they are Boolean combinations of cosets of definable subgroups of virtually abelian
groups [17, Theorems 4.1 and 3.2]. All algebraic sets are definable since they are
determined by existential first-order formulas, but we mention them separately as they
are important on their own and because they were the object of study in [13] while
definable sets were not.

Conjugacy and coset representatives were studied extensively in the work of the
second author [12], where an approach to choosing one shortest element and an appro-
priate geodesic representative per conjugacy class or coset was given, and where it was
shown that the conjugacy growth series and the growth series of coset representatives
(of any fixed subgroup) are rational. Based on the work of the second author in [12],
we are able to show here that a set of conjugacy representatives can be chosen to form
a rational set, and similarly for a set of coset representatives for any fixed subgroup.

We summarise the results in this paper, which include the ones mentioned above
due to several authors, in Theorems 1.1 and 1.2. Our results for growth hold for any
(positive integer) weight we assign to the group generators (see Section 2.1); when
each generator has weight equal to 1, we obtain the standard growth series.

Theorem 1.1 (Theorems 6.10, 6.12, 6.15, Corollary 6.16). LetG be a finitely generated
virtually abelian group.
(1) A rational set in G has rational weighted growth series with respect to any gener-

ating set of G and any weight on G.
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(2) The following types of sets are rational and therefore have rational weighted growth
series with respect to any generating set of G and any weight on G:
(a) elements of any fixed subgroup,
(b) coset representatives of a fixed subgroup,
(c) algebraic sets,
(d) definable sets,
(e) conjugacy representatives (as in Theorem 6.12).

Theorem 1.1 follows largely from Theorem 1.2, which explains the connections
between the types of sets studied in the literature in order to establish rationality (see
Section 3 for the definitions of “polyhedral”, “coset-wise polyhedral”, and “semilin-
ear”).

Theorem 1.2. (1) The following implication holds for subsets of Zn, n � 1:

polyhedral
Proposition 3.11
(HHHHHH) semilinear :

(2) The following implications hold for subsets of virtually abelian groups:

(i) coset-wise polyhedral
Proposition 3.19
(HHHHHH) rational

[19, Theorem 4.1.5]
(HHHHHHHH) Zk-semilinear,

(ii) definable
Corollary 4.4
HHHHHHH) rational.

The rationality of the growth series in Theorem 1.1, starting with Benson’s result
about the rationality of the group growth series, is remarkable because it holds for all
generating sets, which is a rare behaviour for groups in general. The proofs showing
rationality rely on the existence of geodesic representatives (with respect to any gen-
erating set) with rational growth series, which we establish in Section 6. Moreover,
these representatives have a nice structure from a language theoretic point of view, as
in Theorem 1.3. Here, n-regular languages (Definition 2.2) are a “higher-dimensional”
version of standard regular languages; they are sets of tuples that we call n-variable
languages, and they exhibit a lot of the properties of standard regular languages, but
not all (see Remark 2.4 (2)). Most importantly for this paper, they can be easily viewed
as EDT0L languages by converting tuples of words into words (as in Proposition 2.10).
EDT0L languages (see Section 2.2.2) have proved to be a natural class of languages to
represent, as words, important classes of sets in groups [6,7,10], and we recommend [8]
for background and motivation on these languages and their applications to group
theory.

For the following result, Proposition 2.10 explains how representatives of group
elements, given as tuples of words, project to words that form EDT0L languages.



Rational sets in virtually abelian groups: Languages and growth 235

Theorem 1.3 (Theorem 6.14). In a virtually abelian group G, with respect to any
finite setX of generators, the following hold: (i) each of the sets .1/–.6/ can be seen as
a set of tuples that form an n-regular language, for some n depending on the generating
set, (ii) each tuple corresponds to a geodesic representative of a group element (as
in Notation 6.11), and (iii) each set projects (as in Proposition 2.10) to an EDT0L
language:
(1) rational sets,
(2) subgroups,
(3) coset representatives of a fixed subgroup,
(4) algebraic sets,
(5) definable sets,
(6) conjugacy representatives.

However, the geodesic representatives above (in tuple or EDT0L form) are com-
plicated to describe and impractical, so the second theme of the paper is to consider
the natural normal forms over standard generating sets: words of the form wt , where w
represents an element in the finite index abelian subgroup and t is one of finitely many
coset representatives. We show that if we choose to work with the natural normal form
(which might not be geodesic) of a virtually abelian group, then any set in Theorem 1.1
will have an EDT0L representation as words over the generating set.

Theorem 1.4 (Theorem 5.2, Corollary 6.18). Let G be a virtually abelian group with
set of generators X D † [ T , where † is a symmetric set of generators for a finite
index free abelian subgroup of G and T is a finite transversal set for this subgroup.

The following have an n-regular natural normal form when viewed as tuples of
words, and therefore project to EDT0L languages, with respect to X :
(1) rational sets,
(2) subgroups,
(3) coset representatives of a fixed subgroup,
(4) algebraic sets,
(5) definable sets,
(6) conjugacy representatives.

We note that Bishop [4] has investigated both the formal language properties and
the growth series of the set of all geodesic words in a virtually abelian group, showing
amongst other results that this set forms a blind multicounter language. Although it
seems unlikely that the language is also EDT0L, it is not impossible, and we do not
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have enough evidence to put forward a conjecture in either direction. Furthermore,
Bishop [5] recently studied the coword problem in virtually abelian groups, that is, the
set of words representing the trivial element, and showed that the cogrowth series of a
virtually abelian group is the diagonal of an N-rational series for every finite monoid
generating set.

2. Preliminaries

2.1. Growth of sets and groups. We will work with the basis ¹e1; : : : ; erº of Zr ,
where ei denotes the standard basis vector with 1 in the i th entry and zeros elsewhere.

Let U � Zr be a set. Given some choice of weight function keik 2 Z>0 (typic-
ally keik D 1 for all i) for the basis vectors ¹eiºriD1, we assign the `1 norm kpk DPr
iD1 aikeik to the element p D .a1; : : : ; ar/ 2 U . We define the spherical growth

function counting elements of specified weights as

�U .n/ D #¹p 2 U j kpk D nº;

and the resulting weighted growth series as

SU .z/ D
1X
nD0

�U .n/z
n:

More generally, suppose that G is a group generated by a finite set X , with weights
kxk for each generator (equal to 1 in the usual case). If w D x1 � � � xk 2 X� is a word
in the generators, we write Nw 2 G for the group element that the word w represents
instead of the more cumbersome projection notation$.w/ (as in the second paragraph
of the paper) and define the weight of w in the natural way as kwk D

P
i kxik. Let

kgkX D min¹kwk j w 2 X�; Nw D gº be the weight of g with respect to X . When all
the weights are equal to 1, this is the familiar notion of word length. The (relative)
weighted growth function of any set U � G is �U;X .n/ D #¹g 2 U j kgkX D nº; and
the (relative) weighted growth series is given by

SU;X .z/ D
1X
nD0

�U;X .n/z
n:

We will frequently be interested in proving that the various growth series are
rational; that is, there exist polynomials p; q 2 ZŒz� such that S.z/ D p.z/

q.z/
. Moreover,

the growth series will frequently lie in the following more restrictive class of N-rational
functions, which have attracted recent attention in relation to growth of groups (see [1]).

Definition 2.1. The set of N-rational functions is the smallest set of functions f .z/
containing the polynomials NŒz� and closed under addition, multiplication, and quasi-
inverse (that is, if f .0/ D 0, then the quasi-inverse of f .z/ is defined as 1

1�f .z/
).
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2.2. Preliminaries on formal languages. We start by introducing n-regular languages,
n � 1, which are a generalisation of standard regular languages; that is, for n D 1, we
get exactly the regular languages defined by finite-state automata (fsa).

2.2.1. n-regular languages. Here, we take the approach from [16, Section 2.10] but
slightly change the terminology to simplify the wording in this paper. Let A be a set.
We write An for the cartesian product A � � � � � A of n copies of A and write " for the
empty word.

Definition 2.2. An asynchronous, n-variable finite-state automaton (n-variable fsa)
A is a tuple .†; �; s0; F /, where

(1) † is a finite alphabet,

(2) � is a finite directed graph with edges labelled by elements of .† [ ¹"º/n which
have at most one non-" entry,

(3) s0 2 V.�/ is a chosen start vertex/state,

(4) F � V.�/ is a set of accept or final vertices/states.

An n-tuple w 2 .†�/n is accepted by A if there is a directed path in � from s0 to some
s 2 F such that w is obtained by concatenating the labels on the path and deleting all
occurrences of " in each coordinate. A set of tuples like w will be called an n-variable
language. An n-variable language that is accepted by an asynchronous n-variable fsa
will be called n-regular for short.

Example 2.3. The 2-variable language

L D ¹.u; v/ j u; v 2 ¹a; bº�; u; v have the same number of aº

is 2-regular and given by the 2-variable fsa in Figure 1. Here and later in the paper, we
indicate the states by circles, the transitions by arrows, and distinguish the start state
with an arrow, and the accept state(s) with a double circle.

Remark 2.4. (1) Definition 2.2 gives a non-deterministic asynchronous fsa (see [16,
Section 2.5.1]) such that (i) edges labelled by tuples consisting entirely of "-coordi-
nates are allowed, as are (ii) two edges with the same label starting at a single
vertex. If we do not allow (i) and (ii), we have a deterministic asynchronous n-fsa.

(2) Definition 2.2 coincides with the usual definition of a regular language when
nD 1. However, for n > 1, the classes of n-variable languages accepted by determ-
inistic and non-deterministic asynchronous n-variable fsa do not coincide. See
[16, Exercise 2.10.3] for an example.

Since n-variable fsa are not as common as 1-variable fsa, we state and prove the
following basic lemmas.
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.b; "/

."; b/

.b; "/

."; b/

.a; "/

."; a/

Figure 1
2-variable automaton for Example 2.3.

Lemma 2.5. The class of n-regular languages is closed under substitution and con-
catenation.

Proof. Suppose that f W †! †� is a substitution and L is an n-regular language on
alphabet † recognised by n-variable fsa A. To obtain an n-variable fsa for f .L/, we
replace each edge e.";:::;x;:::;"/, where x 2 †, by jf .x/j edges, each labelled with the
appropriate letter from f .x/ in the same coordinate as x in e.";:::;x;:::;"/, while also
inserting jf .x/j � 1 vertices/states connecting the new edges. It is immediate to see
that this new fsa accepts f .L/.

To obtain an n-variable fsa for the concatenation of two n-regular languages L1
and L2 recognised by A1 and A2, respectively, we simply connect each accepting state
in A1 to the start state of A2 by an edge with "-coordinates only.

When considering tuples in n-variable languages or operations with such languages,
it is a standard technique to “pad” shorter words so that all tuples have the same number
of coordinates (see [16, Section 2.10.1]). In our case, for tuple of words over an alphabet
†, we use the enlarged alphabet † [ ¹"º and extend any n-tuple to an m-tuple, for
m > n, bym� n coordinates that take the value ". Thus, to any n-variable language L
one can associate an m-variable padded version LP for m > n.

Lemma 2.6. If L1 � .†�1/n1 is n1-regular and L2 � .†�2/n2 is n2-regular, with
n1 < n2, then the padded LP

1 [ L2 � ..†1 [†2/
�/n2 is n2-regular.

Proof. Suppose that L1 and L2 are recognised by A1 and A2, respectively, and n D
n1 > n2. Then, as explained above the lemma, we pad all edges in A2 with " to have
n coordinates in both automata. We then add a new start state sn that connects to the
start states of A1 and A2 via fully "-edges with n coordinates, while also adding a new
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final state sf , to which all final states in A1 and A2 connect via fully "-edges with n
coordinates. This new automaton, with single start state sn and single final state sf ,
will accept L1 [ L2 � ..†1 [†2/�/n.

2.2.2. EDT0L languages. In the 1960s, Lindemayer introduced a collection of classes
of languages called L-systems, which were originally used for the study of growth
of organisms. EDT0L (Extended Deterministic Table 0-interaction Lindenmayer)
languages are one of the L-systems and were introduced by Rozenberg in 1973 (see [8]
for details).

L-systems, including EDT0L languages, were studied intensively in computer
science in the 1970s and early 1980s; L-systems are subclasses of indexed languages,
which although not historically part of the Chomsky hierarchy, fit nicely between
context-free and context-sensitive. Since the first author, Diekert and Elder’s use of
EDT0L languages to study equations in free groups, a number of other works have
used EDT0L languages (or a similar class called ET0L languages) [8] to describe a
variety of sets in many important classes of groups.

Definition 2.7. An EDT0L system is a tuple H D .†; C;w0;R/, where

(1) † is a finite alphabet, called the terminal alphabet;
(2) C is a finite set containing †, called the extended alphabet of H ;

(3) w0 2 C � is called the start word;

(4) R is a rational subset of the monoid End.C �/ of endomorphisms of C �; that is,
there is some finite set B � End.C �/ so that R can be obtained as the image of a
regular language over B . R is called the rational control of the EDT0L system.

The language accepted by H is

L.H / D ¹�.w0/ j � 2 Rº \†�:

A language accepted by an EDT0L system is called an EDT0L language.

We recommend the surveys [8, 9] on EDT0L languages and various aspects of
group theory for more details, as well as lots of examples.

Example 2.8 ([9, Example 3.3]). The language LD ¹an2 j n 2 NCº over the alphabet
†D¹aº is EDT0L. The extended alphabet isC D¹s; t;u;aº, the start word isw0D tsa,
and the finite set B D ¹�1; �2; �3 W C � ! C �º is given by

�1.s/ D su;

�2.t/ D at; �2.u/ D ua
2;

�3.s/ D �3.t/ D �3.u/ D ";
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q1start

q2

q3

�1 �2

�3

Figure 2
Finite state automaton defining the rational control for L D ¹an2º.

where we use the convention that �i fixes the elements in C not explicitly specified.
The rational control R is given by the automaton M in Figure 2, so

R D L.M/ D .�1�2/
��3:

One can check that .�1�2/i .tsa/D ai tsua2ua4u � � �ua2ia, which is sent to a.iC1/2 by
applying �3. It follows that the language of the EDT0L system above is ¹an2 j n 2NCº.

The language L is not context-free, which can be shown by applying the pumping
lemma for context-free languages (see [16, Theorem 2.6.17]).

EDT0L languages have a number of useful closure properties (see, for example,
[18, Lemma 2.15]). Here, we only need the following result.

Lemma 2.9 ([18, Lemma 2.15]). EDT0L languages are closed under concatenation
and finite union.

The following result is similar to [13, Lemma 2.20 (1)], and it provides a bridge
between n-regular and EDT0L languages via two natural maps.

Proposition 2.10. Let L � .†�/n be an n-variable language and suppose that L is
n-regular.
(i) If � W .†�/n ! †�I .w1; w2; : : : ; wn/ 7! w1w2 � � �wn is the map that “forgets”

the tuple structure, then �.L/ � †� is EDT0L.
(ii) Similarly, if �#W .†

�/n ! .† [ #/�I .w1; w2; : : : ; wn/ 7! w1#w2# � � � #wn is
the map that inserts # between the tuple coordinates, then �#.L/ � .† [ #/� is
EDT0L.

Proof. Let .†; �; s0; F / be an asynchronous n-variable fsa that accepts L (possibly
non-deterministic).

To prove (i), we construct an EDT0L system H that accepts �.L/ with terminal
alphabet†, extended alphabetC D†[¹?1;?2; : : : ;?nº, and start word?1?2 � � � ?n.
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For each w D .w1; : : : ; wn/ 2 .† [ ¹"º/n which is a label of an edge in � , define
�w 2 End.C �/ by?i 7! wi ?i for each i (and fixing all elements of†). Furthermore,
define $ 2 End.C �/ to be the map that sends each ?i to the empty word and fixes
each element of †.

Construct the rational control R of H from � as follows. Replace each edge label
w with the endomorphism �w. Add additional edges from F , each labelled by $ , to a
new vertex. Without loss of generality, one can assume that an fsa has a unique accept
state, and we will make this new vertex to be the unique accept state; s0 remains the
start state. The language accepted by this new (1-variable) fsa is a regular language
R � End.C �/.

For any element u 2L, the corresponding path in � is simulated in R by a sequence
of �ws which produce the components of the tuple u, followed by $ which removes
the ?i s, resulting in the element �.u/. Conversely, each element h of the language of
H arises from ��1.h/ in L. So, �.L/ is the language of the EDT0L system H .

For (ii), to obtain �#.L/ instead of �.L/, we proceed as above but apply the map
?i 7! # for each i 2 ¹1; : : : ; n � 1º in place of $ .

By considering the case nD 1, it is clear that the converse of Proposition 2.10 does
not hold since there are EDT0L languages which are not regular, such as Example 2.8.

3. Equivalences between types of sets in virtually abelian groups

In this section, we recall several important types of sets in virtually abelian groups:
polyhedral, coset-wise polyhedral, rational, and semilinear and establish equivalences
between them. In Proposition 3.14, we also prove the rationality of their growth series
with respect to the natural basis (and `1 norm) of the ambient group.

It is a standard fact that we may assume that any finitely generated virtually abelian
group is a finite extension of a finitely generated free abelian group. Throughout the
section, we letG be a finitely generated virtually abelian group with free abelian normal
subgroup Zk of finite index and use the short exact sequence

(1) 1! Zk ! G ! �! 1

for some finite group �.

3.1. Polyhedral sets. Polyhedral sets are subsets of free abelian groups of finite rank,
and play an important role in virtually abelian groups. Benson successfully translated
sets of geodesic representatives in virtually abelian groups into polyhedral sets, which
can be used to compute growth in effective ways.
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Definition 3.1 (Polyhedral sets [3]). Let r 2 N, and let � denote the Euclidean scalar
product.

(i) Any subset of Zr of the form

(1) ¹z 2 Zr j u � z D aº,
(2) ¹z 2 Zr j u � z � a mod bº, or

(3) ¹z 2 Zr j u � z > aº
for u 2 Zr , a 2 Z, b 2 N, is an elementary region of type (1), (2), and (3),
respectively;

(ii) any finite intersection of elementary regions will be called a basic polyhedral
set;

(iii) any finite union of basic polyhedral sets will be called a polyhedral set.

Polyhedral sets are useful because they behave well under various set operations,
as below.

Proposition 3.2 ([3, Proposition 13.1 and Remark 13.2]). Let P;Q � Zr andR � Zs

be polyhedral sets for some positive integers r and s. Then, the following are also
polyhedral: P [Q � Zr , P \Q � Zr , Zr n P , P �R � ZrCs .

One important result, used to express sets in virtually abelian groups in terms of
polyhedral sets, is the invariance of polyhedral sets under affine maps, as stated in
Proposition 3.4.

Definition 3.3. We call a mapAWZr !Zs an integer affine map if there exists an s � r
matrix M with integer entries and some constant q 2 Zs such that A.p/ DMp C q
for p 2 Zr .

Proposition 3.4 ([3, Propositions 13.7 and 13.8]). Let A be an integer affine map. If
P � Zr is a polyhedral set, then the image A.P / � Zs is a polyhedral set. IfQ � Zs

is a polyhedral set, then the preimage A�1.Q/ � Zr is a polyhedral set.

Remark 3.5. (i) The projection of a polyhedral set onto any subset of its coordinates
is polyhedral (since such a projection is an integer affine map).

(ii) Any subgroup of Zr is polyhedral.

(iii) Elementary regions of type (1) and (2) are cosets of the subgroups ¹z 2 Zr j

u � z D 0º and ¹z 2 Zr j u � z � 0 mod bº of Zr , respectively.

3.2. Rational, semilinear, and N -semilinear sets. We start this section by defining
rational sets of elements in groups and monoids. An important feature of rational sets
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in groups is that the rationality of a set is independent of the choice of finite generating
set, since regular languages are closed under preimages of monoid homomorphisms.

Definition 3.6. Let G be a finitely generated monoid or group, with finite generating
set S . A subset R � G is called rational if there exists a regular language L � S�

whose image in G with respect to the natural projection$ W S� 7! G is the set R, that
is, $.L/ D R.

We next define semilinear and linear sets, which are widely used in computer
science, and which in fact coincide with rational sets in the context of commutative
monoids, as specified in Theorem 3.8 (1).

Definition 3.7. LetM be a commutative monoid (written additively). A subsetX �M
is linear if there exists some finite setB �M , acting as a basis, such thatX D aCB�

for some a 2M . A subset is semilinear if it is a finite union of linear sets.

The following theorem collects key results about semilinear subsets of commutative
monoids.

Theorem 3.8. Let M be a commutative monoid.
(1) A subset X �M is rational if and only if it is semilinear [11, Section 2].
(2) If X; Y �M are rational sets, then so is X \ Y [11, Theorem III].
(3) If M 0 is a finitely generated submonoid of a commutative monoid M , X �M 0 a

rational subset of M , then X is a rational subset of M 0 [11, Corollary III.3].

We will consider the commutative monoid Zk generated by ¹˙e1; : : : ;˙ekº, where
ei denotes the i th standard basis vector, and establish properties of semilinear sets
in Zk .

Lemma 3.9. The image of any semilinear set P � Zk under an integer affine map
Zk ! Zk is semilinear.

Proof. It is enough to prove this for an arbitrary linear set

L D aC ¹b1; b2; : : : ; brº
�
D aCNb1 C � � � CNbr :

Consider the integer affine map z 7! Cz C d , where C is an integer-valued k � k
matrix and d 2 Zk . We have

C.L/ D C.aCNb1 C � � � CNbr/C d D C.a/C d CNC.b1/C � � � CNC.br/;

which is a linear set. Since a finite union of linear sets is sent by C to a finite union of
images of those linear sets under C , we get that integer affine maps preserve semilinear
sets.
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From [11, Theorem IV], we have the following statement.

Lemma 3.10. Any semilinear subset of Zk can be expressed as a disjoint union of
linear sets

Sd
iD1.ci CD

�
i /, where the elements of each Di are linearly independent.

We can now show that semilinear sets are precisely the polyhedral sets of Defini-
tion 3.1.

Proposition 3.11. A subset of Zk is polyhedral if and only if it is semilinear.

Proof. First, we show that every elementary region is semilinear. Since finite unions
(by definition) and finite intersections (from Theorem 3.8 (2)) of semilinear sets are
semilinear, it follows that polyhedral sets are semilinear.

Elementary regions of types (1) and (2) are cosets of subgroups of Zk (see Remark
3.5 (iii)). Therefore, for any such elementary region E, there exists a constant c 2 Zk

(a coset representative) and a finite set of (monoid) generators ¹b1; : : : ; bsº � Zk (with
s � 2k) such that E D c C ¹b1; : : : ; bsº�.

Now, suppose that E is an elementary region of type (3), that is,

E D ¹z 2 Zk j za|
� mº

for some a 2 Zk andm 2 Z. Since translations of semilinear sets are clearly semilinear,
we assume without loss of generality that m D 0. It is standard linear algebra to find
an injective linear map AWQk ! Qk such that AW a| 7! e

|

1 . Let M 0 2 GLk.Q/ be a
matrix representation of A so that we have M 0a| D e

|

1 . If M 0 contains non-integer
entries, choose a positive integer � so thatM WD �M 0 has integer entries and therefore
defines an integer affine map from Zk to itself (where M acts on the left). Now, we
have Ma| D �e

|

1 (and detM ¤ 0). Consider the half-space

E0 D ¹z 2 Zk j ze|

1 � 0º D ¹e1;˙e2;˙e3; : : : ;˙ekº
�;

which is also a linear set. If z0 2 E0, then .z0M/a| D �z0e
|

1 � 0, and so, z0M 2 E,
i.e., E0M � E. (NB: we are using M to define two different integer affine maps, via
left action on column vectors and right action on row vectors.)

Now,
E D

[
v2PM

.E0 C v/M;

where PM is the preimage under M of the elements of the fundamental parallelepiped
of the lattice defined by M . Since E0 is semilinear and PM is finite (because M is
injective), Lemma 3.9 implies that E is also semilinear.

To show the converse, it is enough to prove that any linear set is polyhedral (since the
class of polyhedral sets is closed under translation and finite union). By Lemma 3.10,
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and the same closure properties of polyhedral sets again, it is then enough to prove
that D� is polyhedral, whenever the elements of D are linearly independent.

Linear independence implies that jDj � 2k, and therefore, we can find an integral
affine map Zk!Zk which takes each of the first jDj standard basis vectors to a unique
element of D. The preimage of D� under this affine map will be a union of orthants,
which is clearly polyhedral, and since the image of a polyhedral set is polyhedral, so
is D�.

We next consider the growth of semilinear sets, and to do so, we define monotone
sets.

Definition 3.12. For each I � ¹1; : : : ; kº, including I D ;, let

QI D ¹z 2 Zk j ei � z � 0 if i 2 I; ei � z < 0 if i … I º;

i.e., the orthant including the positive ei axis for each i 2 I and the negative ej axis
for each j … QI . A subset of Zk is said to be monotone if it is contained entirely in a
single orthant QI .

Lemma 3.13. Each set P � Zk can be written as the disjoint union P D
S2k

jD1 Pj

of monotone subsets Pj , where each Pj is in a different orthant Qj . Moreover, if P is
polyhedral, then each Pj is polyhedral. Equivalently, if P is semilinear, then each Pj
is semilinear, and if P is rational, then each Pj is rational.

Proof. We can decompose P as a disjoint union of 2k monotone sets as follows. Let

Q1 D ¹z 2 Zk j z � ei � 0; 1 � i � rº D
k\
iD1

¹z 2 Zk j z � ei � 0º

denote the non-negative orthant of Zk . LetQ2; : : : ;Q2k denote the remaining orthants
(in any order) obtained from Q1 by (compositions of) reflections along hyperplanes
perpendicular to the axes and passing through the origin. Let P1 D P \Q1, and for
each 2 � j � 2k , inductively define

Pj D
�
P n

[
i<j

Pi

�
\Qj :

Each Pj is clearly monotone, and we have a disjoint union P D
S2k

jD1 Pj .
By construction, each orthant Qj is polyhedral, and therefore, if P is polyhedral,

then every Pj is also polyhedral by Proposition 3.2.
The statement about semilinearity follows from Proposition 3.11, and the statement

about rationality from Theorem 3.8 (1).
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Proposition 3.14 is well known for polyhedral sets, but we provide here a much
simpler proof than that of [3]. Our proof relies entirely on the basic structure of
semilinear sets.

Proposition 3.14. Any semilinear subset (equivalently, any polyhedral subset) of Zk

has N-rational weighted growth series with respect to the `1 norm.

Proof. As in the proof of Lemma 3.13, we express our semilinear set as a disjoint union
of monotone semilinear sets Pi , each of which is in weight-preserving bijection with a
semilinear set XCi ; furthermore, Lemma 3.10 implies that XCi itself can be expressed
as a disjoint union of linear sets of the form ci CD

�
i for linearly independent sets

Di D ¹di;1; : : : ; di;nº
� � Zk . The weighted growth series of ci C ¹di;1; : : : ; di;nº�

will have the form

zkcik
nY

jD1

1

1 � zkdi;j k
;

where k � k denotes the weighted `1 norm. Since the union is disjoint, the growth series
of the whole subset is simply a sum of functions of this form and is therefore N-rational
as claimed (recalling Definition 2.1).

Note that this form of N-rational function is the same as that in [3, Proposition
14.1].

Finally, in his thesis, Liardet defined semilinear sets within non-commutative
monoids, provided these contain some abelian submonoid. That is, even though the
semilinear sets lie in a non-commutative monoid, as in Theorem 3.16, the basis of a
linear set is still required to generate an abelian monoid.

Definition 3.15 ([19, Definition 4.1.2]). LetM be a monoid andN a submonoid ofM .
A set X �M is N -linear if it can be written as X D aB�, where a 2M and B � N
is a finite basis for a free abelian submonoid B� of N , and for which the multiplication
with a is bijective (that is, there is a bijection between B� and aB�).

The set X is N -semilinear if it is the disjoint union of N -linear sets.

Using Liardet’s definition of semilinear sets within non-commutative monoids, we
can give the main theorem in Liardet’s thesis. In this result, the semilinear sets are in a
non-commutative monoid, the virtually abelian group viewed as a monoid.

Theorem 3.16 ([19, Theorem 4.1.5]). All rational sets of a virtually abelian group
with finite index subgroup Zk are Zk-semilinear.

3.3. Coset-wise polyhedral sets. The notion of a coset-wise polyhedral (CWP) set was
introduced by the second author and Levine in [13] as the natural setup for understanding
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solutions sets of equations in virtually abelian groups. Let G be a finitely generated
virtually abelian group with free abelian normal subgroup Zk of finite index, as in the
short exact sequence (1).

Definition 3.17. Let T be a choice of transversal for the finite index normal sub-
group Zk . A subset V � G will be called coset-wise polyhedral (CWP) if, for each
t 2 T , the set

Vt D
®
gt�1 j g 2 V \ Zkt

¯
� Zk

is polyhedral.

Note that being coset-wise polyhedral is independent of the choice of T . Indeed,
suppose that we chose a different transversal T 0 so that for each tj 2 T we have t 0j 2 T

0

with Zktj D Zkt 0j . Then, there exists yj 2 Zk with tj D yj t
0
j for each j , and so,

gt 0j
�1
D gj t

�1
j yi for any g 2 Zktj D Zkt 0j . So, changing the transversal changes the

set Vt by adding a constant element yj , and so, it remains polyhedral by Proposition 3.4.
It turns out that coset-wise polyhedral and rational sets coincide in virtually abelian

groups, as Proposition 3.19 shows; this relies on the following result of Grunschlag,
which relates the rational subsets of a finite index subgroup of a groupG to the rational
subsets of G itself.

Lemma 3.18 ([15, Corollary 2.3.8]). Let G be a group with finite generating set S
and H a finite index subgroup of G. Let † be a finite generating set for H and T a
right transversal for H in G. For each rational subset U � G, such that U � Ht for
some t 2 T , there exists a (computable) rational subset V � H (with respect to †)
such that U D V t .

Proposition 3.19. Let U be a subset of a virtually abelian group G. Then, U is a
rational set if and only if it is coset-wise polyhedral.

Proof. As above, we work with the generating set ¹˙e1; : : : ;˙ekº [ T for G, where
¹˙e1; : : : ;˙ekº generates Zk and T D ¹t1; : : : ; td º is a transversal. Firstly, suppose
that U is rational. Then, Lemma 3.18 gives a finite set of rational subsets of Zk , say,
V1; : : : ; Vd , such that U D

S
i Vi ti . Since rational subsets of Zk are polyhedral by

Theorem 3.8 (1) and Proposition 3.11, U is coset-wise polyhedral.
Conversely, suppose that U � G is coset-wise polyhedral. For each ti 2 T , the set

Ui WD ¹ut
�1
i j u 2 U \ Zktiº � Zk

is polyhedral and hence rational (by Proposition 3.11 and Theorem 3.8 (1)). So, there
exists a regular language Li � ¹˙e1; : : : ;˙ekº� which surjects to Ui . Then, regular
language

S
Li ti � .¹˙e1; : : : ;˙ekº [ T /

� surjects to U , which is thus rational.
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When dealing with sets of tuples of elements of a virtually abelian group G, we
can think of them as subsets of the direct product of finitely many copies of G. The
following lemma shows that any results about subsets of G will also hold for sets of
tuples.

Lemma 3.20. If G is virtually abelian, with index-d normal subgroup Zk and trans-
versal T as usual, then the direct product Gn is virtually Zkn, with transversal of size
dn, given by the set of products T n D ¹ti1 ti2 � � � tin 2 Gn j tik 2 T º, with the kth term
tik coming from the kth factor of T in Gn.

Proof. Any element of Gn can be put into the following form:

x1ti1 � x2ti2 � � � xntin D x1x2 � � � xn � ti1 ti2 � � � tin 2 Zknti1 ti2 � � � tin :

Since T n has exactly dn elements, we have ŒGnWZkn� D dn.

4. Definable sets in virtually abelian groups

We give here an overview of definable sets in virtually abelian groups and refer the
reader to the books [23, 24] for an in-depth account.

Let n be an integer with n � 1. A subset S of a group G is n-definable over
G if there is a first-order formula ˆ.x; y1; : : : ; yn/ and an n-tuple of parameters
Nm D .m1; : : : ; mn/, mi 2 G with 1 � i � n, such that ˆ.g; Nm/ is true if and only if
g 2 S . We say that a set is 0-definable if there are no parameters Nm in the formula ˆ
and say that it is definable if it is n-definable for some n � 1 as above. More generally,
if the formula ˆ is over a tuple Nx D .x1; : : : ; xr/ of r variables instead of a single one,
that is, it has the formˆ. Nx;y1; : : : ; yn/, then we have definable sets S �Gn consisting
of tuples of elements in G. If for a group G a subgroup H of the direct product Gn is
definable over G, then H is called a definable subgroup.

Example 4.1. (1) An algebraic set over a group G is the solution set to a system
of equations with coefficients in G. For a single equation E. Nx; Nm/ D 1 with
coefficients Nm in G, an algebraic set is given by an existential formula of the form
9 NxE. Nx; Nm/ D 1. For example, an equation x21x

2
2h D 1, where h 2 G, gives rise to

an algebraic set consisting of all pairs .g1; g2/ 2 G2, where g1; g2 are such that
g21g

2
2h D 1 in G.

(2) The conjugacy class of any elementm 2G is a definable set, with formulaˆ.x;m/
given by 9y; x D y�1my.

(3) The set of elements of order 2 in a group G is definable and satisfies the formula
ˆ.x/ (with no coefficients) given by x2 D 1 ^ x ¤ 1.



Rational sets in virtually abelian groups: Languages and growth 249

Virtually abelian groups have been studied in model theory primarily in a module
setup. Let G be a finitely generated virtually abelian group with free abelian normal
subgroup A D Zk of finite index, as in (1), and finite quotient � D G=A. Then, from
the sequence

1! A! G ! �! 1;

we can viewA as a right ZŒ��-module, where the action of the group algebra ZŒ�� onA
extends the conjugation action of� onA. That is, if a 2A and g 2G with NgD gA 2�
representing the g-coset of A in �, then Ng ı a D g�1ag. Then, for a module, such
as A, over a ring R (such as ZŒ��), every formula ˆ. Nx; y1; : : : ; yn/ is equivalent to a
Boolean combination of positive primitive formulas (see [24, Theorem 3.3.5]), defined
as follows.

Definition 4.2. (1) An equation over Nz D .z1; : : : ; zn/ in an R-module A is a formula
‰. Nz/ of the form

r1 ı z1 C � � � C rn ı zn D 0;

where ri 2 R.

(2) A positive primitive (pp) formula is of the form

9 Ny ‰1. Nx; Ny/ ^ � � � ^‰k. Nx; Ny/;

where all ‰j . Nz/ are equations over Nz D . Nx; Ny/ (and so, ‰1. Nx; Ny/ ^ � � � ^‰k. Nx; Ny/
is a system of equations).

That is, definable sets in virtually abelian groups are obtained from projecting
solution sets of systems of equations onto their first coordinates (j Nxj – many coordinates
according to our definition). It is easy to see that pp formulae define subgroups and
cosets of subgroups ofGn (see [24, Lemma 3.3.7]). In fact, all definable sets in virtually
abelian groups have such a characterisation, by the work of Hrushovski and Pillay.

Theorem 4.3 ([17, Theorems 4.1 and 3.2]). Given a virtually abelian group G, every
definable set X � Gn is a Boolean combination of cosets of definable subgroups of
Gn for any n � 1.

Corollary 4.4. Given a virtually abelian group G, every definable set X � Gn is a
rational subset of Gn for any n � 1.

Proof. We work within the direct product Gn, which by Lemma 3.20 is also virtually
abelian. Subgroups of finitely generated virtually abelian groups are finitely generated
and are therefore rational subsets. Furthermore, any coset of a finitely generated sub-
group is rational since it is just a translation of a rational set. The result follows from
Theorem 4.3 since rational sets are closed under Boolean combinations.
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5. Natural normal forms

Write†D ¹a1;A1; : : : ; ak;Akº for the set of positive and negative standard gener-
ators of Zk , that is, Ai D a�1i . For g 2 Zk , set NF.g/ to be the shortlex representative
of g with respect to † with the order given above. The set of all such representatives is
a regular language, denoted as follows:

NF.Zk/ D .a�1 [ A
�
1/.a

�
2 [ A

�
2/ � � � .a

�
k [ A

�
k/ � †

�;

where we write a�i instead of ¹aiº� for simplicity.
For a finitely generated virtually abelian groupG, with finite index normal subgroup

Zk , we use NF.Zk/, together with some choice of transversal T D ¹t1; : : : ; td º for the
cosets of Zk , to describe a normal form for G:

NF.G/ D .a�1 [ A
�
1/.a

�
2 [ A

�
2/ � � � .a

�
k [ A

�
k/.t1 [ t2 [ � � � [ td / D NF.Zk/T:

Furthermore, by Lemma 3.20, the direct product Gn is virtually abelian, and we define
the natural normal form as

NF.Gn/ D NF.G/nT n:

The normal form NF.G/ will not be geodesic, in general.
We can also see NF.Zk/ as a set of tuples, and then get a k-regular (k-variable)

language:

NFk.Zk/ D
�
.a�1 [ A

�
1/; .a

�
2 [ A

�
2/; : : : ; .a

�
k [ A

�
k/
�
� .†�/k :

We then have �.NFk.Zk// D NF.Zk/, where � is the “forgetful” morphism of Pro-
position 2.10.

In this section, we will study the formal language properties of

NF.U / D ¹w 2 NF.G/ j $.w/ 2 U º

(for the natural projection$ W†�!G) whenU is a rational subset of a virtually abelian
groupG. Firstly, we show that semilinear sets which are monotone (see Definition 3.12)
have k-regular normal forms.

Proposition 5.1. If X � Zk is monotone and semilinear, then NFk.X/ is k-regular.

Proof. By Lemma 2.6, we may assume without loss of generality that X is linear, say
of the form c C ¹d1; d2; : : : ; drº

�. So, each element of X has the form c Cm1d1 C

m2d2 C � � � Cmrdr for some mj 2 N. For any b 2 Zk , let pb denote a path of jbj`1
consecutive edges (with jbj`1 � 1 states), with each edge labelled by a k-tuple in
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Pd1 Pd2 Pdr

Pc " " "

Figure 3
The k-fsa for Proposition 5.1.

.¹a1; A1; "º; ¹a2; A2; "º; : : : ; ¹ak; Ak; "º/ with exactly one non-epsilon entry so that
the k-tuple obtained by reading along the path and deleting "s is equal to b.

By monotonicity, each dj lies in the same orthant, and therefore, a concatenation of
paths pdjpdjC1

can never result in a subword aiAi or Aiai and therefore produces an
element of NF.G/. The automaton given in Figure 3 then clearly produces the language
NFk.X/.

We are now able to put together Propositions 2.10 and 5.1 to set up a bridge from
virtually abelian groups to semilinear sets in free abelian groups and from k-regular
languages to EDT0L. We thus show that any rational set in a finitely generated virtually
abelian group has an EDT0L representation in terms of the most natural normal forms
for the group.

Theorem 5.2. Let U be a rational subset of a virtually abelian group. Then, NF.U /
is an EDT0L language.

Proof. By Proposition 3.19, we have a disjoint union

U D

d[
iD1

Ui ti ;

where each Ui D ¹ut�1i j u 2 U \ Zkº � Zk is a polyhedral subset. We now claim
that polyhedral sets have k-regular normal forms. More precisely, NFk.P / is k-regular
wheneverP �Zk is a polyhedral set. The result then follows from the fact that k-regular
languages are EDT0L (Proposition 2.10), and that the class of EDT0L languages is
closed under concatenation with a single letter ti and under finite unions (Lemma 2.9).

To prove the claim, consider a polyhedral set P � Zk . We can decompose P
as a disjoint union of 2k monotone polyhedral sets as in Lemma 3.13. Then, by
Proposition 5.1, NFk.P / is a finite union of k-regular languages and is therefore itself
k-regular.
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Finally, since definable sets in virtually abelian groups are rational sets in direct
products of virtually abelian groups and these products are again virtually abelian
(Lemma 3.20), we are able to use the rationality of definable sets and the representation
of rational sets in terms of EDT0L languages to get the following.

Corollary 5.3. Let G be a finitely generated virtually abelian group and U � Gn a
definable set. Then, NF.U / � NF.Gn/ is EDT0L.

Since NF.G/ is not a geodesic normal form, it cannot be used to compute the
growth series of U with respect to the word metric on the group. For that, we will need
a different normal form, which we study in the next section.

6. Geodesic normal forms

In [22], Neumann and Shapiro show that there is a virtually abelian group G with
fixed generating set X such that no regular (i.e., 1-regular) language of geodesics can
surject to the elements of G. So, in particular, there are virtually abelian groups with
generating sets for which no geodesic normal form is regular. This does not imply
that there is a virtually abelian group G for which one cannot obtain regular geodesic
normal forms irrespective of generating set: one can always get such a normal form
after possibly enlarging the generating set that was given, as shown in a different paper
by Neumann and Shapiro [21].

Here, we complete the picture to show that for any monoid generating set † of a
virtually abelian group G there always exists some geodesic normal form GF.G;†/,
which is the image under � (see Definition 6.7) of an m-regular language for an
appropriate value to m. We will use GF.G/ instead of GF.G;†/ in most cases since
† should be clear from the context (see Notation 6.11).

Furthermore, we show that there is a subset of GF.G/ consisting of geodesic
representatives for the conjugacy classes of the group; moreover, for any subgroup,
there is a subset of GF.G/ consisting of geodesic representatives for the cosets. For
any rational subset of the group, the normal form representatives (contained in GF.G/)
are also the image of an m-regular language. In particular, the GF.G/-representatives
of definable sets form EDT0L languages; that is, the same result as for the normal form
NF.G/ in the previous section holds for GF.G/.

Benson introduced a normal form for elements of virtually abelian groups in
1983 [3]. Unlike NF.G/, it consists of geodesic representatives. However, the construc-
tion is much more involved. We give a brief overview below.

LetG be virtually abelian with index-d subgroup Zk , and choose a finite generating
set † that generates G as a monoid. As in Section 2, for a word w 2 †�, we will write
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Nw for the element it represents in G. Similarly, the image of a subset W � †� in G
will be denoted by xW . A function k � kW†! NC will be called a weight function. We
extend this to k � kW†� ! N so that ks1s2 � � � slk D ks1k C ks2k C � � � C kslk for any
word s1s2 � � � sl . Define the weight of a group element as

kgk D min¹kwk j w 2 †�; Nw D gº:

If ksk D 1 for all s 2 †, this gives the usual notion of word length.

Definition 6.1. With † and d as above, define an extended generating set

(2) S D S† D ¹s1s2 � � � sk j si 2 †; 1 � k � dº � G:

The weight of a generator s1s2 � � � sk 2 S is defined with respect to our original weight
function: ks1s2 � � � skk D

P
i ksik.

Remark 6.2. The weight of an element with respect to the new weighted generating
set S is equal to its weight with respect to †, and so, the respective weighted growth
series are equal.

Moreover, any geodesic word (i.e., a weight-minimal representative for an element)
over S D S† is geodesic over the initial generating set †.

Definition 6.3. Write X WD S \ Zk D ¹x1; : : : ; xrº and Y WD S n .S \ Zk/ D

¹y1; : : : ; ysº, and call any word in Y � a pattern.

Definition 6.4. Let pWS ! Y be the map that records the generators not in Zk:

pW si 7!

´
" if si 2 X;
si if si 2 Y:

This extends to a monoid homomorphism pWS�! Y �, which ignores those generators
in a word that belong to Zk . For w 2 S�, we call p.w/ the pattern of w.

Definition 6.5. Let � D y1y2 � � �yl 2 Y � be some pattern. Then, we denote by W �

the subset of S� consisting of �-patterned words, that is, all words of the form

x
i1
1 x

i2
2 � � � x

ir
r y1x

irC1

1 x
irC2

2 � � � xi2rr y2x
i2rC1

1 x
i2rC2

2 � � � xi3rr

� � �ylx
ilrC1

1 x
ilrC2

2 � � � x
ilrCr
r ;

(3)

where ij 2 N.

Note that every group element has a geodesic representative in some W � (since
reordering the powers of x1; : : : ; xr does not change the element represented and
cannot increase the length of the word). This definition allows us to identify patterned
words with vectors of non-negative integers, by focusing on just the powers of the
generators in X as follows.
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Definition 6.6. Fix a pattern � of length l , and writem� D lr C r , where r D jX j as
above. Define the bijection �� WW � ! Nm� that records, for every patterned word,
the exponents of its Zk coordinates:

�� W x
i1
1 x

i2
2 � � � x

ir
r y1x

irC1

1 x
irC2

2 � � � xi2rr y2 � � �ylx
ilrC1

1 x
ilrC2

2 � � � x
ilrCr
r

7! .i1; i2; : : : ; ilrCr/:

It will also be useful to view elements of W � as tuples of powers of generators, as
follows.

Definition 6.7. Fix a pattern � . Let  � WW � ! .S�/m�Cj�j be the bijection between
words and tuples given by

 � W x
i1
1 x

i2
2 � � � x

ir
r y1x

irC1

1 x
irC2

2 � � � xi2rr y2 � � �ylx
ilrC1

1 x
ilrC2

2 � � � x
ilrCr
r

7!.x
i1
1 ; x

i2
2 ; : : : ; x

ir
r ; y1; x

irC1

1 ; x
irC2

2 ; : : : ; xi2rr ; : : : ; yl ; x
ilr
1 ; x

ilrC2

2 ; : : : ; x
ilrCr
r /:

Note that  � is precisely the inverse of the map � defined in Proposition 2.10.

Definition 6.6 will allow us to work with subsets of Zm� in place of sets of words.
We apply the weight function k � k to Zm� in the natural way, weighting each coordinate
with the weight of the corresponding x 2 X . More formally, we have

k.i1; : : : ; im� /k WD

m�X
jD1

ij kxj mod rk;

where we take kx0k D kxrk. Then, �� preserves the weight of words in W � , up to a
constant

k��.w/k D kwk � k�k:

Fix a transversal T for the cosets of Zk inG. Note that, since Zk is a normal subgroup,
we can move each yi in the word (3) to the right, modifying only the generators fromX ,
and we have Nw 2Zk x� for anyw 2 S� as in (3) and x� 2 T . Thus,W � �Zkt� for some
t� 2 T , where x� 2 Zkt� , i.e., the Zk-coset of Nw depends only on its pattern p.w/.

It turns out that we can pass from a word w 2 W � to the normal form NF. Nw/ of
Section 5 (with respect to T and the standard basis for Zk) using an integral affine
map.

Proposition 6.8 ([3, Section 12]). For each pattern � 2 Y �, there exists an integer
affine map A� WNm� ! Zk such that, for each w 2 W � ,

Nw D .A� ı ��.w//t� 2 NF.G/:
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One of the key ingredients in Benson’s work is to consider a certain finite set of
patterns, more specifically, the ones of length at most the index of the maximal normal
free abelian subgroup in G, as below. As the results in the remainder of the section
show, it is enough to consider this finite set of patterns to obtain representatives of
elements, conjugacy classes, cosets, etc., for the entire group.

Definition 6.9. Let P � Y � be the set of all patterns of length at most

d D ŒGWZk�:

The following result provides a set of geodesic representatives for the cosets of
a fixed subgroup H by picking out the coset representatives belonging to each W � ,
when � is one of the finitely many patterns in P .

Theorem 6.10 ([3, 12]). Let G be a virtually abelian group with generating set † and
extended generating set S D S†. LetH be any subgroup of G. For each � 2 P , there
exists a set of words U �H � W

� � S� such that
(1) the disjoint union

S
�2P U

�
H consists of exactly one geodesic representative for

every coset in G=H ;
(2) for each � , ��.U �H / � Zm� is a polyhedral set.

Notation 6.11. (1) We use the notation

GF.G=H/ D
[
�2P

U �H

to capture the set of geodesic representatives for the cosets of H in G in The-
orem 6.10 (1). When H D ¹1º, Theorem 6.10 gives a geodesic normal form for
the elements of G with respect to the extended generating set S† (and therefore
with respect to †, see Remark 6.2), so

GF.G/ D GF.G=¹1º/

is the geodesic normal form mentioned at the beginning of the section to be
distinguished from the natural normal form NF.G/ of the previous section.

(2) In general, if V � G is a subset ofG or if V is a set of objects with representatives
in G (such as cosets, or conjugacy classes), we denote by GF.V / � GF.G/ the set
of geodesic representatives for elements in V , with one representative per element.

The following theorem about conjugacy representatives follows from [12] but is
not explicitly stated there. Note that, in that paper, the sets U �c are called L� .
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Theorem 6.12 ([12]). Let G be a virtually abelian group, and let C D C.G/ be the
set of conjugacy classes of G.

For each � 2 P , there exists a set of words U �c � W � such that
(1) the disjoint union

S
�2P U

�
c consists of exactly one geodesic representative for

every conjugacy class of G, that is,

GF.C/ D
[
�2P

U �c I

(2) for each � , ��.U �c / � Zm� is a polyhedral set.

Lemma 6.13 translates (patterned) words over the extended generating set S of G
into the corresponding tuples and thus connects semilinear sets and n-regular n-variable
sets.

Lemma 6.13. If V � W � � S� is a set of �-patterned words and ��.V / � Nm� is
semilinear, then the set of tuples

 �.V / � .S
�/m�Cj�j

corresponding to V is .m� C j�j/-regular.

Proof. By hypothesis,��.V /�Nm� is a union of linear subsets of Nm� . Since a union
of n-regular languages is n-regular (Lemma 2.6), it suffices to prove the lemma for the
case where ��.V / is linear, say of the form aC ¹b1; : : : ; bkº

� for a; b1; : : : ; bk 2Nm� .
We construct an .m� C j�j/-variable finite-state automaton that accepts  �.V /.

Given a vector i D .i1; i2; : : : ; im� /2Nm� , denote bypi a path of ji j`1 consecutive
edges, each labelled by an .m� C j�j/-tuple with an element of S in one component
and "’s elsewhere, such that the tuple obtained by reading along the path and then
deleting "’s is equal to

.x
i1
1 ; x

i2
2 ; : : : ; x

ir
r ; "; x

irC1

1 ; x
irC2

2 ; : : : ; xi2rr ; "; : : : ; "; x
ikrC1

1 ; x
ikrC2

2 ; : : : ; x
ikrCr
r /;

i.e., the tuple  � ı ��1� .i / with the yi s removed.
Our automaton has a single start state ss , a single accept state sa, and k marked

states, labelled s1; : : : ; sk . Between ss and s1, there is a path pa (with extra states added
as necessary). For each i 2 ¹1; : : : ; kº, there is a path pbi that starts and ends at state sk
(with extra states added as necessary). Between si and siC1 (for each i 2 ¹1; : : : ; k � 1º),
there is a single edge labelled with a vector of epsilons. Finally, from sk to sa, there is
a path p� . See Figure 4 for a schematic diagram.

Now, we can prove the existence of a geodesic normal form that is m-regular.
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Pb1 Pb2 Pbk

Pa " " " �

Figure 4
The .m� C j�j/-fsa of Lemma 6.13.

Theorem 6.14. The geodesic normal form GF.G/ has the property that  �.GF.G//
is an m-regular language for some m depending on the generating set (where  � is
the map from Definition 6.7).

Furthermore, the geodesic normal form representatives for cosets of any subgroup,
and for conjugacy classes, also form m-regular languages (in their image under  � ).

Proof. From Theorem 6.10, the set GF.G/ is a union of sets of the form U � , for some
pattern � in P , each with the property that ��.U �/ � Zm� is polyhedral, and hence
semilinear. Since each ��.U �/ is contained in Nm� , Theorem 3.8 (3) implies that they
are in fact semilinear subsets of Nm� . Lemmas 6.13 and 2.6 then finish the argument.

An analogous argument applies for the sets GF.G=H/ and for GF.C/, via The-
orem 6.12.

It follows as a corollary of Theorems 6.10 and 6.12 that the weighted standard,
coset, and conjugacy growth series of G are rational functions. See [12] for full details.
We now complete the picture by demonstrating that any rational subset of G also has
rational weighted growth series and is m-regular. The following is a special case of
[13, Theorem 4.15]. We include the proof here for completeness.

Theorem 6.15. Let G be a finitely generated virtually abelian group. If V � G is
coset-wise polyhedral, then it has N-rational (relative) weighted growth series.

Proof. Fix a transversal T . For each t 2 T , let Pt � P denote the set of patterns �
with x� 2 Zkt . The following subset of S� is a set of unique geodesics representatives
for the elements of V :

V WD
[
t2T

[
�2Pt

®
u 2 U � j A� ı ��.u/ 2 Vt

¯
D

[
t2T

[
�2Pt

U � \
�
��1� ıA�1� .Vt /

�
:

Applying �� to a component of this union yields a set ��.U �/ \A�1� .Vt /, which
is polyhedral (since Vt is polyhedral), and therefore has N-rational weighted growth
series (by Proposition 3.14). Since the bijection �� is length-preserving (up to addition
of a constant), each component of the union has N-rational weighted growth series,
and therefore so does V itself.
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In light of Proposition 3.19, which establishes the equivalence of coset-wise poly-
hedral and rational sets, Theorem 6.15 gives the following.

Corollary 6.16. Let G be a virtually abelian group. Rational subsets have N-rational
(relative) weighted growth series with respect to any generating set of G. The following
types of sets are rational and therefore have rational growth series with respect to any
set of generators of G:
(1) elements of any fixed subgroup,
(2) coset representatives of a fixed subgroup,
(3) algebraic sets,
(4) definable sets,
(5) conjugacy representatives.

We can easily generalise Theorem 6.14 and obtain geodesic normal form repres-
entatives for coset-wise polyhedral sets and therefore rational sets in general.

Theorem 6.17. Let G be a virtually abelian group and V a coset-wise polyhedral
subset of G. The geodesic normal form representatives given by GF.V / form an m-
regular language when viewed as tuples for some positive integer m.

Proof. Let V be coset-wise polyhedral. As in the above proof, the Benson normal
form (GF) representation of V is a finite union of sets of the form ��.U

�/\A�1� .Vt /,
which are polyhedral and hence semilinear. The result then follows from Lemma 6.13
and Lemma 2.6.

Finally, Proposition 2.10, which shows how the forgetful map takes n-regular n-
variable language to EDT0L ones, implies that any rational set has unique geodesic
representatives that form an EDT0L language.

Corollary 6.18. Let G be a virtually abelian group with finite monoid generating set
†, and let R � G be a rational set. There exists some positive integer m such that the
geodesic normal form representatives GF.R/, written asm-tuples, form anm-variable
language that is m-regular.

Hence, the image of GF.R/ via the forgetful map � (respectively, �#) is as an
EDT0L language over † (respectively, † [ ¹#º).
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