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The farfalle mystery
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Abstract. In 2017, for the �-day, Mickaël Launay described a remarkable property of the
Fibonacci sequence, which he called “le mystère de la farfalle”. The name “farfalle” refers to a
shape of pasta that is famous in France, a butterfly-shaped one, in connection with a likewise
shape appearing in the numerical experiments. In these experiments, the Fibonacci numbers are
put on the circle modulo N , and the segments joining consecutive elements of the sequence are
drawn. Launay proposed a prize of 3:14 Euros to whom will explain the phenomenon he had
discovered. We provide such an explanation, which illustrates recent works by Kurlberg and
Rudnick and by Bourgain and Glibichuk.
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1. Le mystère de la Farfalle, according to Mickaël Launay

The Fibonacci sequence .Fn/ is the bi-infinite sequence defined by the initial values
F0 D 0, F1 D 1 and the linear recursion Fn D Fn�1 C Fn�2: It can also be calculated
via the recursion  
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!
:

We will call A the Fibonacci matrix. Its determinant is �1 and its eigenvalues are the
golden mean and its Galois conjugate:
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If N is a positive integer, then GL2.Z=NZ/ is a finite group, the order ordA.N / of A
in this group is finite, and the Fibonacci sequence is periodic modulo N . Its period
and ordA.N / are equal, called the Pisano period. We refer to Sections 3.3 and 4 below
for the study of ordA.�/.

Denote by S1 the unit circle:

S1 D ¹z 2 CI jzj D 1º D ¹e2i��
I � 2 R=ZºI

it is a multiplicative subgroup of C�. The map

a 2 Z=NZ 7! e2i�a=N
2 S1

provides an isomorphism from the additive group Z=NZ to the multiplicative group of
roots of unity of order dividingN . Two points z and z0 of S1 determine a chord, namely,
the segment Œz; z0� � C joining them. Thus, a finite sequence .zi /`iD0 determines a
finite set of chords Œz0; z1�; : : : ; Œz`�1; z`� that form a continuous piecewise linear curve
in the closed unit disk. Similarly, a periodic sequence .zi /i2Z, of period q, determines
a finite set of (at most) q successive chords Œzi ; ziC1�. Mickaël Launay applied this
construction to the sequence

zi D exp.2i�Fi=N/;

which depends only on Fi modulo N . Figures 1 and 2 provide a sample of images. As
one can see, for some specific values of N , the chords cluster to a farfalle (or butterfly)
shape made of four chords. Our first result will, indeed, show that the farfalle’s shape
occurs when N is of type 5Fk for some k � 2. Then, we will explain why such a
specific shape does not occur for random, or general, values of N .

2. The farfalle mystery and Anosov dynamics on the torus

This section describes another viewpoint on Launay’s question and states our main
results.

2.1. The space of chords. To a pair of points .z; z0/ 2 S1 � S1 corresponds a unique
(oriented) chord Œz; z0�, and vice versa; the diagonal corresponds to chords Œz; z� of
length 0. Thus, the space of chords is a 2-dimensional torus

S1 � S1 ' R=Z � R=Z D R2=L;

whereL� R2 is the square lattice Z2. LetO denote the image of .0; 0/ in R2=L. Then,
R2=L is a 2-dimensional, additive Lie group with neutral element O . The natural
projection

� WR2 ! R2=L

is a group homomorphism, with kernel L, and is the universal cover of R2=L.
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Figure 1
The Fibonacci sequence modulo 10 in Launay’s representation.

2.2. Linear transformations of the torus. Let B be a 2-by-2 matrix with integer
coefficients. It acts linearly on R2, preserving the lattice L, and induces a smooth
homomorphism fB WR2=L! R2=L. When B has determinant 1 or �1, its inverse has
integer coefficients too and fB is an isomorphism, the inverse of which is fB�1 . We
will say that fB is the linear transformation (or linear diffeomorphism if det.B/D˙1)
induced by B . In this way, we obtain a homomorphism B 7! fB from GL2.Z/ to the
group of linear diffeomorphisms of R2=L. When B 2 GL2.Z/ has two eigenvalues
such that j�j > 1 > j�0j, then fB is a (linear) Anosov diffeomorphism. For instance,
the Fibonacci matrix A induces such a linear Anosov diffeomorphism

fAWR2=L! R2=L:

2.3. Small orbits. If N is a positive integer, the map �N WZ=NZ � Z=NZ! R2=L
defined by �N .a;b/D .a=N;b=N / is a homomorphism of additive groups. It conjugates
� the action of fA on the finite set 1

N
Z2=L � R2=L,

� the action of A, via its reduction in GL2.Z=NZ/, on Z=NZ � Z=NZ.
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p D 23 p D 41 p D 67 p D 103 p D 167

k D 5 k D 6 k D 7 k D 8 k D 9

Figure 2
Ten examples of Launay’s chord representation of the Fibonacci sequence modulo N . On the
top, N is a prime. On the bottom, N is equal to 5Fk for k D 5; 6; 7; 8; 9; the farfalle shows up
progressively. Each figure on top corresponds to the nearest prime approximation to 5Fk for the
figure below it.

We will identify these two actions without further notice. The fA-orbit of .a=N; b=N /
is finite and its period divides ordA.N /. Conversely, if P 2 R2=L is fA-periodic,
of period q, then Aq.P / D P C V for some V 2 L. From this, one easily gets the
following: a point P 2 R2=L is fA-periodic if and only if P 2 Q2=L, if and only if P
is in the image of �N for some N .

Coming back to Launay’s modular representation of the Fibonacci sequence, the
chord Œe2i�Fn=N ; e2i�FnC1=N � corresponds to the point .Fn=N; FnC1=N/ 2 R2=L.
SinceA.Fn=N;FnC1=N/D .FnC1=N;FnC2=N/, the finite sequence of chords drawn
by Launay corresponds exactly to the finite orbit of

PN WD .F0=N; F1=N/ D .0=N; 1=N /

under the action of fA on R2=L.

Proposition 2.1 (Periodic orbits of small order). The linear diffeomorphism

fAWR2=L! R2=L

has exactly one fixed point, namely, the origin O D .0; 0/ mod .L/, no periodic orbit
of period 2, and
� a unique orbit of period 3, namely, ¹.0; 1=2/; .1=2; 1=2/; .1=2; 0/º;
� a unique orbit of period 4,

¹.2=5; 1=5/; .1=5; 3=5/; .3=5; 4=5/; .4=5; 2=5/ºI
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Orbit of period 4 on circle Orbit on torus Orbit view mod 65 on circle

Figure 3
In the middle, one sees the orbit of PN on the torus, for N D 65 D 5F7, as well as a square
showing the orbit ¹.2=5;1=5/; .1=5;3=5/; .3=5;4=5/; .4=5;2=5/º. On the left, one sees Launay’s
representation of this orbit of period 4 and on the right, Launay’s representation of the Fibonacci
sequence modulo 65.

� two orbits of period 5, namely, ¹.3k=11; k=11/I k D 1; 4; 5; 9; 3º and

¹.3k=11; k=11/I k D 2; 8; 10; 7; 6º:

The proof is straightforward. Figure 3 shows the orbit of period 4; it suggests that
the shape of the farfalle is given by the orbit of period 4.

Comparing this picture with Launay’s approximate farfalles (Figure 2), one may
ask “for which values of N does the fA-orbit of PN in R2=L spend a large part
of its time near the orbit of period 4 of fA?” This is not the right question. Indeed,
since PN is close to the origin O when N is large and fA is continuous, the orbit
f nA .PN / stays close to O when n is small; these points correspond to the short chords
Œe2i�Fn=N ; e2i�FnC1=N �, with Fn � N 1. Adding the origin to the orbit of period 4,
one gets a set G of 5 elements:

(2.1) G D ¹O; .2=5; 1=5/; .1=5; 3=5/; .3=5; 4=5/; .4=5; 2=5/º � R2=LI

as we will see in Section 3.1, G is a subgroup of R2=L. Now, the question raised by
Mickaël Launay becomes as follows.

Question 2.1 (Launay’s question on R2=L). For which values of N does the fA-orbit
of the point PN in R2=L spend a large part of its time near G?

1Given two sequences .an/ and .bn/ of positive numbers, we write an D o.bn/ or an � bn if an
becomes negligible with respect to bn as n goes toC1; we write an . bn if an � Cbn for some constant
C > 0 and large enough n.
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This question includes two distinct problems.

(1) We will exhibit specific values ofN for which most of the points in the orbit of PN
are located near G. Of course, these special values need to match the ones found
by Mickaël Launay! This is not hard, but somewhat surprising. See Theorem A
below.

(2) For most values of N , we will show that the orbit of PN does not cluster near G.
Two strategies will be applied. The first one is based on entropy estimates and
holds for a set of integers N 2 N of density 1. See Theorem B below. The second
one relies on Fourier analysis, exponential sums, and sum-product estimates. It
gives a better result, namely, an equidistribution of the orbit of PN towards the
Haar measure on R2=L, but it is much harder. See Theorems C and D below.

2.4. Approximate farfalles. For N in N�, we denote by �N the probability measure
given by averaging on the orbit of PN :

(2.2) �N D
1

perA.PN /

perA.PN /X
nD1

ıf n
A
.PN /;

where perA.PN / is the period of PN . We will see in Lemma 3.2 that ordA.N / D
perA.PN / is the Pisano period. If � is a probability measure on R2=L and .Nj / is an
increasing sequence of positive integers, recall that �Nj converges towards � if, for
every continuous function �WR2=L! R,Z

R2=L
� d�Nj D

1

perA.PNj /

perA.PNj /X
nD1

�.f nA .PNj //!

Z
R2=L

� d�

as Nj goes toC1.

Theorem A. Set N.k/ D 5Fk . Let " be a positive real number. Then,
(1) the orbit of PN.k/ under fA is periodic of period 10k if k is even, and 20k if k is

odd;
(2) the proportion of points in this orbit at distance less than " from G is larger than

1 � d1 �
log."=

p
2/

log.'/ ek
�1; in particular, the number of points in this orbit outside

an "-neighbourhood of G is bounded by a function of ", independent of k;
(3) the probability measures �N.k/ converge towards the probability measure �G WD

1
5

P
g2G ıg as k goes toC1.

The first values of N for which Launay observed the farfalle are exactly the 5Fk
for small values of k. Thus, one can say that Theorem A explains the farfalle mystery,
both from a topological and from a stochastic viewpoint. Figure 4 (left) illustrates this
phenomenon.
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Orbit for 143285 Orbit for 143287

Figure 4
On the left, the orbit of PN on the torus, with N D 5F23 D 143285. On the right, the orbit of
PN , with N equal to the prime number 143287. The first orbit contains only 460 points, while
the second contains 286576 points (see Example 4.1).

2.5. Equidistribution. In the opposite direction, we will show that, for most values
of N , it is unlikely to witness a farfalle shape in Launay’s construction. Recall that a
subset K of N has positive (lower) density if there is a ı > 0 such that

(2.3)
1

x
j¹N 2 KI N � xºj � ı

for all large enough values of x 2 R�C. If the proportion 1
x
j¹N 2KI N � xºj converges

as x goes to C1, the limit is called the density of K. In particular, K has density
1 if and only if one can take ı arbitrary close to 1 in inequality (2.3). By the prime
number theorem, the number of primes p � x grows like x= log.x/ as x goes toC1.
Thus, for subsets K of the set of prime numbers, the right notion is the relative density
(among all primes), in which the proportion 1

x
j¹N 2 KI N � xº is replaced by

1

x= log.x/
j¹N 2 KI N � xº:

The first result that we will prove relies on basic ideas from the ergodic theory.

Theorem B. There is a subsetK of N of density 1 with the following property. If .Nj /
is any increasing sequence of integers contained in K and if �Nj converges towards a
measure �, then the Hausdorff dimension of the support of � is larger than or equal
to 1=2.
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In particular, since any finite (or countable) set has dimension 0 (see [4]), the
measures�N , forN inK, cannot cluster toG. Theorem B will be proved in Section 5.4.

However, with a finer technique of Fourier analysis, a much stronger statement can
be proven; namely, we will obtain the following theorem.

Theorem C. There is a subsetK of N of density 1 with the following property. If .Nj /
is any increasing sequence of integers contained in K, then �Nj converges towards
the Haar measure on R2=L as j goes toC1.

This will be our main result in the direction opposite to Launay’s observation. It is
obtained in Section 8.3; the proof relies on Fourier analysis, the main computation being
described in Section 7. As stated, Theorem C does not say anything of the measures
�Nj when the Nj are prime numbers, but its proof provides also the following result.

Theorem D. There exists a subsetK of the prime numbers, of positive relative density,
such that if p` is any increasing sequence with p` 2 K, then �p` converges towards
the Haar measure on R2=L as k goes toC1.

In fact, one can say more. It is natural in this setting to distinguish between the
primes p such that 5 is a square mod p or not, i.e., p � 1 or 4 mod .5/ or p � 2 or
3 mod .5/, respectively. Among the primes congruent to 2, 3 mod .5/, one can take a
subset K of full density so that the conclusion of Theorem D holds (Theorem 8.3);
this is a direct corollary of a highly non-trivial theorem of Bourgain and Glibichuk [1]
and a simple inequality by Erdös and Murty [3]. The set of primes congruent to 1,
4 mod .5/ also contains a set of positive density such that the analog of Theorem D
holds (Theorem 8.2). Moreover, if one assumes the Generalized Riemann Hypothesis
(GRH), a result of Kurlberg [7] shows that the subset K in Theorem D can be chosen
of full relative density (Theorem 8.4).

Remark 2.2. The Haar measure is an fA-invariant probability measure on R2=L.
Fourier analysis shows that a function � 2 L1.R2=L; dxdy/ which is fA-invariant is
almost everywhere constant. By the Birkhoff ergodic theorem, almost every trajectory
converges towards the Haar measure; this means that for every continuous function �
and almost every starting point Q

1

m

m�1X
nD0

�.f nA .Q//!

Z
R2=L

� dxdy

as m goes to C1. When such a convergence holds, one says that the orbit of Q is
equidistributed with respect to the Haar measure. Of course, if Q is periodic, for
instance, Q D PN for some N , then its orbit is not equidistributed. But still, we
will see in Section 8.1 that, in their vast majority, long periodic orbits provide good
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approximation to the Haar measure. Launay’s question is to determine for which values
of N the orbit of PN clusters on a small set (namely, the group G) instead of being
well distributed; thus, Launay’s question concerns a rare and unusual phenomenon.

3. When the farfalle appears

We explain Launay’s observation for the sequence N.k/ D 5Fk . In Section 3.5, we
describe a few variations on Launay’s observation.

3.1. The orbit of period 4 and the group G . Consider the set G defined in equa-
tion (2.1). It is the union of the origin O and the orbit of period 4. The map �G W a 2
Z=5Z 7! .2a=5; a=5/ 2 R2=L is an injective homomorphism of additive groups and
its image coincides withG, soG is a cyclic subgroup of R2=L of order 5. It is invariant
under the action of fAWR2=L! R2=L and �G conjugates fA to the multiplication by
3: �G.3a/ D fA.�G.a// for all a 2 Z=5Z.

3.2. The “small” torus R2=LG . The pre-image of G in R2 under the projection
� WR2 ! R2=L is the lattice LG of R2 generated by .2=5; 1=5/ and .1=5; 3=5/; it
is also generated by .2=5; 1=5/ and .�1=5; 2=5/. The quotient R2=LG is equal to
.R2=L/=G. We will denote by �G WR2! R2=LG and �WR2=L! R2=LG the natural
projections; then, ��1.0/ D G.

Since fA preserves G, A preserves LG and A induces a linear diffeomorphism
gAWR2=LG ! R2=LG such that

fA ı � D � ı A; gA ı �G D �G ı A; and gA ı � D � ı fA:

To study the orbit of PN under the action of fA and how this orbit approaches G,
one may first study the orbit of �.PN / in R2=LG under the action of gA and how it
approaches the origin.

Consider the matrix C that maps the basis ..1; 0/; .0; 1// of the lattice L to the
basis ..2=5; 1=5/; .1=5; 3=5// of LG . We have

C D
1

5

 
2 1

1 3

!
; C�1 D

 
3 �1

�1 2

!
:

It induces a linear isomorphism hC WR2=L! R2=LG . Since 5C D 2IdC A, C com-
mutes to A. Thus, we get the following lemma.

Lemma 3.1. The linear isomorphismC WR2!R2 maps the latticeL to the latticeLG .
It induces a linear diffeomorphism hC WR2=L! R2=LG that conjugates the action of
fA on R2=L to the action of gA on R2=LG: hC ı fA D gA ı hC .
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Since we are interested in the orbit of �.PN / under gA, we are indeed interested in
the orbit of C�1.PN / D .�1=N; 2=N/ under fA. Since A.�1=N; 2=N/ D 1

N
.2; 1/,

the orbit of C�1.PN / is the same (after a shift of time n 7! nC 1) as the orbit of

QN WD .2=N; 1=N /

under fA. Note that An.QN / D 1
N
.Ln; LnC1/, where .Ln/ is the Lucas sequence,

defined by L0 D 2, L1 D 1, and the same recursion LnC1 D Ln C Ln�1 as the
Fibonacci sequence. To sum up, Launay’s initial question leads to the following.

Question 3.1 (Reduction of Launay’s question to R2=LG). For which values of N
does the fA-orbit of QN spend most of its time near the origin O of R2=L?

Warning. We will view the pointsPN andQN as points in R2=L or in R2 alternatively,
without further distinction. For instance, An.PN / will be a point of R2, while f nA .PN /
will be a point in R2=L.

3.3. Periods. Recall that ordA.N / is the order of A in GL2.Z=NZ/. For P 2 R2=L,
we denote by OrbA.P / its orbit under the action of fA and by perA.P / its period, with
perA.P / D C1 if P is not periodic. Thus, perA.P / D jOrbA.P /j.

Lemma 3.2. Let N be a positive integer. Then, Ak fixes .0; 1/ modulo N if and only
if Ak D Id in GL2.Z=NZ/. Thus, the Pisano period coincides with perA.PN / and
ordA.N /. Moreover, ordA.2/ D 3 and ordA.N / is even if N � 3.

The period ofFk divides the period ofA. Now, if .Fk/ has period q moduloN , then
.Fq; FqC1/ D .0; 1/; this implies Aq.0; 1/ D .0; 1/ modulo N . Then, AqA.0; 1/ D
A.0; 1/ D .1; 1/, and we conclude that AqA D A.

Proof. If Ak D Id in GL2.Z=NZ/, then, of course, Ak fixes .0; 1/ and .Fn/ is k-
periodic modulo N . For the converse, assume that modulo N we have

Ak

 
0

1

!
D

 
0

1

!
; i.e.,

 
Fk
FkC1

!
D

 
0

1

!
:

By definition of the Fibonacci sequence, AkC1 D A modulo N and thus Ak D Id.
The last assertion follows from det.A/ D �1, which forces ordA.N / to be even if
N � 3.

We have

perA.QN /j perA.PN / D ordA.N /:

Indeed, � projects the orbit of PN under fA to the orbit of �.PN / in R2=LG under gA,
and this second orbit is identified to the orbit of QN under fA by the conjugacy hC .
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Theorem 3.3. If N D 5Fk with k � 2, then

perA.QN / D 4k if k is odd;
perA.QN / D 2k if k is even:

Example 3.4. Take k D 2 so that 5Fk D 5. Then, perA.Q5/D 4; indeed, the fA-orbit
of period 4 is exactly the orbit ofQ5. More precisely, A has 3 orbits in Z=5Z � Z=5Z;
they correspond to the following orbits of fA in .1

5
Z2/=L: the fixed pointO; the orbit of

period 4, ¹f nA .Q5/In 2 Z=4Zº; an orbit of period 20, namely, ¹f nA .P5/In 2 Z=20Zº.
In particular, ordA.5/ D 20.

Example 3.5. For k D 3, 5F3 D 10, and one easily checks that perA.Q10/ D 12 and
ordA.10/ D perA.P10/ D 60. See Figure 1.

To prove Theorem 3.3, let us decompose the initial vectors .F0; F1/ D .0; 1/ and
.L0; L1/ D .2; 1/ in a basis of eigenvectors. The eigenlines of A are EC D RvC, with
eigenvalue ', and E� D Rv�, with eigenvalue '0, where

vC D

 
1

'

!
; v� D

 
1

'0

!
:

We obtain .0; 1/ D 1p
5
.vC � v�/, .2; 1/ D vC C v�, and then,

An

 
0

1

!
D

 
Fn

FnC1

!
D

1
p
5

 
'n � .'0/n

'nC1 � .'0/nC1

!
;

An

 
2

1

!
D

 
Ln

LnC1

!
D

 
'n C .'0/n

'nC1 C .'0/nC1

!
or equivalently Fn D 1p

5
.'n � .'0/n/ and Ln D 'n C .'0/n.

Proof of Theorem 3.3. From Example 3.4, we can and do assume k � 3.
Let N be a positive integer. Using '�1 D �'0, we get, for n 2 Z,

An.QN / D
1

N
.'nvC C .'

0/nv�/;

A�n.QN / D
.�1/n

N
..'0/nvC C '

nv�/:

Thus,

(3.1) An.QN / � .�1/
nA�n.QN / D

5Fn

N

 
0

1

!
for every n 2 Z.
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We first prove that ifN D 5Fk , the periodmD perA.QN / satisfiesm > k. Indeed,
we have by definitionAm.QN /�QN 2L so its first coordinate .Lm � 2/=.5Fk/must
be a positive integer. Notice that, for all n � 1, we have Ln < 5Fn; indeed, this is true
for n D 1; 2 and both sides satisfy the same recursion. Hence, 1 � .Lm � 2/=.5Fk/ <
Fm=Fk , so m > k.

Let us assume now that N D 5Fk for some even k > 2; write k D 2`. From equa-
tion (3.1), we obtainAk.QN /DA�k.QN /moduloL, which implies that f 2kA .QN /D

QN in R2=L and m divides 2k. Since m > k, m D 2k.
Now, suppose that N D 5Fk for some odd k > 2. From equation (3.1), we obtain

Ak.QN /C A
�k.QN / 2 L, which implies

f 2kA .QN / D �QN mod .L/I

thus, m divides 4k, and m > k, so the remaining possibilities for m are 2k, 4k=3, and
4k. The order is not equal to 2k because �QN ¤ QN . To conclude that m D 4k, it
remains to exclude the possibility k D 3`,mD 4` for some ` 2 N�. But in this case, k
and thus ` being odd, the equation f mA .QN / D QN implies that A2`QN � A�2`QN
is an integral point. We conclude from the fact that the second coordinate is F2`=F3`,
which is not an integer because ` > 0.

Theorem 3.6. If N D 5Fk with k � 2, then perA.PN / D 5 perA.QN /. Thus,

perA.PN / D ordA.N / D 20k if k is odd;
perA.PN / D ordA.N / D 10k if k is even:

Remark 3.7. Modulo 5, the Lucas sequence 2, 1, 3, 4, 2, 1, : : : is periodic of period 4
and does not vanish.

Proof. Let m be the period of QN under fA; this is also the period of �.PN / under
gA. Thus, f mA .PN / D PN CW for some W 2 G. Our first remark is that W ¤ 0 or,
equivalently, Am.PN / ¤ PN mod .L/. Indeed,

Am.PN / D
1

N

 
Fm

FmC1

!
:

If k is even, then m D 2k, and the first coordinate is

F2k

5Fk
D
1

5

'2k � .'0/2k

'k � .'0/k
D
Lk

5
;

but this is never an integer because Lk is never divisible by 5 (see Remark 3.7). Since
the first coordinate of PN is 0, this shows that

Am.PN / ¤ PN mod .L/:
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If k is odd, then m D 4k, and the first coordinate of Am.PN / is
F4k

5Fk
D
1

5

'4k � .'0/4k

'k � .'0/k
D
LkL2k

5
:

By Remark 3.7 again, LkL2k ¤ 0 mod .5/ and Am.PN / ¤ PN mod .L/.
Thus, perA.PN / > perA.QN /. Moreover, a simple recursion shows that

f mnA .PN / D PN CW C f
m
A .W /C � � � C f

m.n�1/
A .W /

for all n � 1. We know from Section 3.1 that if we identify G to Z=5Z, then fA acts
on G as multiplication by 3; since 4jm and 34 D 1 mod .5/, we get .f mA /jG D IdjG .
Thus, f 5mA D PN C 5W D PN and perA.PN /j5m. Since 5 is prime, mj perA.PN /,
and perA.PN / > m, we obtain perA.PN / D 5m.

Remark 3.8. Theorem 3.6 provides a sequence of integers N.`/ D 5F2`C1 for which
ordA.N.`// D 40`C 20; asymptotically,

ordA.N.`// '
20

log.'/
log.N.`// ' .95:7 : : :/ log.N.`//:

ForN.`/D 5F2`, we get ordA.N.`//' 10
log.'/ log.N.`//. As we will see in Section 4.2,

this is an unusually small order.

3.4. The farfalle. The proof of Theorem 3.3 contains all the necessary ingredients to
prove the following result.

Theorem 3.9. Fix a real number " 2 �0; 1Œ. If N D 5Fk for some k � 2, then
j¹P 2 OrbA.QN /I dist.O; P / � "ºj

jOrbA.QN /j
� 1 �

�
1 �

log."=
p
2/

log.'/

�
1

k
:

Thus, as k increases, most of the orbit of QN stays near the origin O .

Proof. The fA-orbit of QN corresponds to the sequence of points

An.QN / D
1

N
.'nvC C .'

0/nv�/ D
1

5Fk

 
Ln

LnC1

!
with n 2 Z; to describe the full orbit, we can restrict to n 2 ¹0; 1; 2; : : : ;perA.QN /� 1º
or to n 2 ¹� perA.QN /=2; : : : ; perA.QN /=2º (the period is always even). If n � 0,
then

Ln

5Fk
D

1
p
5

'n C .'0/n

'k � .'0/k

D
1

'k�n
1
p
5

1C .�.'0/2/n

1C .�.'0/2/k

�
1

'k�n
:
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Similarly,

jL�nj

5Fk
D
j'0j�n

'k
1
p
5

1C .�.'/2/�n

1C .�.'0/2/k
�

1

'k�n
:

If k is even, perA.QN / D 2k, and taking n in ¹�k; : : : ; kº, we cover the full orbit
of QN . If we restrict to n 2 ¹�k C `; : : : ; k � `º with ` 2 N such that

1

'`�1
�

"
p
2
;

then the corresponding points f nA .QN / are at (euclidean) distance � " from the origin
O in R2=L. This amounts to choosing

(3.2) ` � 1 �
log."=

p
2/

log.'/
:

Optimizing the choice of `, we obtain the result stated in the theorem.
If k is odd, then perA.QN / D 4k, and we know from the proof of Theorem 3.3

that f kA .QN / D �f
�k
A .QN /. Thus, the norm of f nA .QN / is in fact periodic of period

2k, and the same argument applies.

Corollary 3.10. Fix a real number " 2 �0; 1Œ. If N D 5Fk for some k � 2, then

j¹P 2 OrbA.PN /I dist.G; P / � "ºj
jOrbA.PN /j

� 1 �

�
1 �

log."=
p
2/

log.'/

�
1

k
:

This follows directly from the last theorem and the fact that the linear map C used
to conjugate the dynamics of fA to the dynamics of gA has norm � 1.

Proof of Theorem A. Set G� D G n ¹Oº. The last corollary shows that, for N D 5Fk ,
most of the orbit of PN stays close to G. And when a point P of the orbit is close to
some g 2 G�, then the next four points f iA.P /, 1 � i � 4, circle around G� in the
order of the farfalle.

To conclude, we have to show that, for any g 2 G, the proportion of points in
OrbA.PN / near g is close to 1=5, up to an error bounded by Œ1 � log."=

p
2/

log.'/ � 1
k

.
To explain this phenomenon, assume that k is even so that perA.QN /D 2k. Recall

from the proof of Theorem 3.6 that f 2kq.PN /D PN C qW for someW 2 G� and all
q 2 N. Then, choose an optimal ` that satisfies equation (3.2). For n between �k C `
and k � `, the points f nA .PN / are close to the origin. Then,

f 2kCnA .PN / D f
n
A .PN /C f

n
A .W /;

where f nA .W / describes G� periodically with period 4. Thus, for each g 2 G�, 1=4 of
these 2k � 2`C 1 points f 2kCnA .PN / are close to g. The same phenomenon occurs
when we apply f 4kA , f 6kA , f 8kA , so the amount of time spent by the orbit of PN near
g 2 G does not depend on g. The proof with odd k is similar.
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3.5. Variations and open questions. Fix a positive integer q. A point .x;y/2R2=L is
periodic with period dividing q if and only if f qA .x;y/D .x;y/. SettingBq D Aq � Id,
this is equivalent to .x; y/ being an element of the group Gq D .B�1q L/=L; one has

jGqj D j det.Bq/j D j1C .�1/q C Lqj:

Since Bq commutes to A, Bq semi-conjugates the dynamics of fA on R2=L to the
dynamics of fA on R2=LGq , where LGq D B�1q L; to understand the orbit of PN , one
can then start by looking at the orbit of Bq.PN / under fA. For Launay’s question, we
take q D 4; then, G4 D G, which is made of the unique orbit of length 4 and the fixed
point .0; 0/. Here are two more examples.

Example 3.11. For q D 8, the group G8 has 45 elements: it is the union of the fixed
point .0; 0/, the orbit G4 of period 4, and 5 orbits of length 8; one of them is the set of
non-zero elements Tor.3/� in the torsion group

Tor.3/ D ¹.x; y/ 2 R2=LI 3.x; y/ D .0; 0/ mod .L/º;

and the other four are the translates Tor.3/� C .s; t/ for .s; t/ 2 G4 n ¹.0; 0/º. If one
follows the proof of Theorem A and copy it for Tor.3/ in place of G, one proves that,
for Nk D 3Fk , the orbit of PNk has length 9k (if k � 6), �Nk converges towards
the probability measure that is equidistributed on Tor.3/, and if we fix a small " > 0,
then the set of points in this orbit which are at distance > " from Tor.3/ is uniformly
bounded. In Launay’s representation, one observes a concentration near an equilateral
triangle.

Example 3.12. With q D 18, one obtains B D 22 � 19 � A9, and G18 is the kernel
of multiplication by 4 � 19. (It has 24 � 192 elements.) So, by the Chinese remainder
theorem, to understand orbits of period dividing 18, one needs to understand the action
of A modulo 4 and modulo 19. Modulo 4, there is one fixed point, one orbit of period
3, and 2 orbits of period 6. (Multiplication by 3 permutes these orbits.) To describe the
dynamics of A modulo 19, one can observe, first, that A has 3 orbits in P1.F19/: one
of period 18 and 2 fixed points. The orbit of period 18 in P1.F19/ lifts to 18 orbits of
period 18 in .F19/2 (permuted by multiplication by invertible elements of F19), the
fixed point Œ1 W 15� lifts to a unique orbit of period 18, and the fixed point Œ1 W 5� lifts
to two orbits of period 9. Then, one can check that, for Nk D 19 � Fk and k D 6 or
12 mod .18/, the orbit of PNk concentrates on the set S made of the origin .0; 0/ and
two orbits of period 18, namely, the orbit of .0; 9=19/ and the orbit of .0; 10=19/. Note
that, in this example, we have to impose the congruence k D 6; 12 mod .18/, and the
set S � G18 is not a subgroup of R2=L.

These examples illustrate the fact that Launay’s pictures have many interesting
siblings.



S. Cantat, F. Maucourant and Y. Moreno Alonso 380

Question 3.2. What is the closure of the set of probability measures ¹�N I N � 1º
(see equation (2.2))? Is every fA-invariant probability measure � on R2=L a cluster
value of this set?

If � is an fA-invariant probability measure on R2=L, there is a sequence zk D
.xk; yk/ of periodic points of fA such that the measures

(3.3) �zk D
1

perA.zk/

perA.zk/X
nD1

ıf n
A
.zk/

converge towards � as k goes toC1. Thus, Question 3.2 is equivalent to the following:
is every ergodic atomic probability measure � as in equation (3.3) a cluster value of
¹�N I N � 1º? The difficulty is to approximate, in the sense of probability measures, any
finite orbit by the orbit of PN for some well-chosen N . While the above constructions
hint that there are many purely atomic probability measures in the closure of ¹�N I N �
1º, the only ergodic one (i.e., supported on a single orbit) we know of is the Dirac mass
at the origin. We do not know whether other ergodic atomic measures can be found in
¹�N I N � 1º n ¹�N I N � 1º.

In a slightly simpler setting, changing R2=L into the circle R=Z, fA into the
endomorphism of R=Z defined by g2.x/ D 2x mod .1/, and PN into 1=N , one can
ask a similar question. We do not know the answer in this case either.

4. Intermezzo I: Periods of the Fibonacci sequence

We collect a few basic facts on the period of the Fibonacci matrix modulo N and
state some advanced results due to Kurlberg and Rudnick.

4.1. The golden mean and quadratic extensions. The (complex) eigenvalues of A
are ' and its Galois conjugate '0 D �1='; they are roots of

(4.1) t2 D t C 1:

They live in the quadratic extension QŒ
p
5�, ZŒ'� is the ring of integers of QŒ

p
5�, and

�1 and ' generate the (multiplicative) group of units. Now, fix a prime p ¤ 2; 5, and
consider the equation (4.1) over the finite field Fp , keeping the same notation ¹'; '0º
for its roots. The quadratic reciprocity says that
� ¹'; '0º � Fp if and only if 5 is a square modulo p, if and only if p is a square

modulo 5 and if and only if p D 1 or 4 mod .5/;
� otherwise, ', '0 live in the quadratic extension FpŒt �=.t2 � t � 1/ ' Fp2 .
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When 5 is a square modulo p, then A is diagonalizable over Fp , and the orders of
A in GL2.Fp/ and of ' in F�p satisfy

ordA.p/ D 2 ord'.p/ if ord'.p/ D 1 mod .2/;
ordA.p/ D ord'.p/ if ord'.p/ D 0 mod .2/:

When 5 is not a square modulo p, ordA.p/ equals the order of ' in F�
p2

.

Example 4.1 (See Figure 4). Consider the prime p D 143287. It is equal to 2 modulo
5. The order of A modulo p divides p2 � 1 and is in fact equal to 2.pC 1/ D 286576.

4.2. Pisano sequence, Artin’s conjecture, and lower estimates of the periods. By
definition, the period of the Fibonacci sequence taken modulo N , for N 2 N�, is the
N -th Pisano period and is often denoted by �.N/; it is equal to the order ordA.N /
(see Lemma 3.2). Not much is known on .�.N //, even when one restricts to prime
values of N . Here is a sample of the results.

(1) One always has �.N/ � 6N , with equality if and only if

N D 2 � 5k

for some k � 1 (see [5]).

(2) If p is a prime, then ordA.pk/' cppk for large values of k and a fixed cp . (To see
this, write Ar D IdC p`B , where r is the order of A modulo p and B is not zero
modulo p; then expand .Ar/k D IdC kp`B C p2` � � � I see [11, Theorem 5].)

(3) More generally, by the Chinese remainder theorem, ordA.N k/ & N k for large
values of k if N � 2.

(4) For every N , ordA.N / � log.N /= log.2/, because the norm of A with respect
to the `1-norm is equal to 2, so all coefficients of Ak are positive integers in
¹1; : : : ; N � 1º if 1 < k log.2/ < log.N /.

Of interest to us is the question of determining integers N for which ordA.N / is of the
order of magnitude of N , as in the first three assertions. This is a delicate question,
similar to the following famous conjecture of Artin: let a be an integer which is not a
perfect square nor �1; then, the multiplicative order of a modulo p is equal to p � 1
(equivalently, a generates the multiplicative group F�p ) for a set of primes of positive
relative density. The following elementary lemma will be too weak for our main results,
but it applies to most primes. We include a short proof for completeness (see [3] and
[8, Lemma 15]).

Lemma 4.2. The set of primes p such that ordA.p/ � p1=2= log.p/ is of full relative
density among all primes.
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Proof. Consider the set P .x/ of primes p � x such that Fk D 0 mod .p/ for some
0 < k � p1=2= log.p/. Then,

jP .x/j �

x1=2= log.x/X
kD1

!.Fk/;

where !.N/ denotes the number of distinct prime factors ofN . Since !.N/ � log.N /
for N � 7 and

p
5Fk � '

k , one easily gets

jP .x/j �
log.'/
2

x

.log.x//2
:

The prime number theorem shows that the proportion of primes� x in P .x/ converges
towards 0 as x goes toC1.

Theorem 4.3 (Kurlberg–Rudnick, [8, Theorem 17]). There is a positive constant ı
and a subset K of N� of density 1 such that

ordA.N / &
p
N exp.log.N /ı/

for all N in K.

The first step in the proof of this result states that, for each 1=2 < � < 3=5, there is
a set of primes K� of relative density

c.�/ D
1

2
.3 � 5�/=.1 � �/

such that ordA.p/ & p� for all p in K� . If one adds the constraint p D a mod .5/ for
some invertible a 2 Z=5Z, then the proof provides a set of primes K�.a/ of density
c.�/=4 among all primes (here, 4 is the number of invertible elements in Z=5Z): see
equation (6.2) at the beginning of Section 6.1 in [8].

Corollary 4.4 (of the proof of Theorem 4.3). For any " > 0, the set of primes p such
that 5 is not a square modulo p (resp., is a square modulo p) and ordA.p/ � p

3
5�"

has positive relative density among all primes.

Remark 4.5. Assuming the generalized Riemann hypothesis (GRH), Kurlberg proved
the following result in [7]: if � WRC ! RC is an increasing function tending to infinity
more quickly than the logarithm, the set of primes p such ordB.p/ � p=�.p/ has
density 1. Since roughly 1=2 of the primes are equal to 2 or 3 modulo 5, Corollary 4.4
holds (under GRH) for a set of primes of relative density 1=2, the maximum one can
hope for. Kurlberg also obtains the following improvement of Theorem 4.3: assuming
GRH, there is a set K 0 � N� of density 1 such that ordA.N / & N 1�" for N in K".
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5. When the farfalle disappears: Entropy estimate

In this section, following [2], ideas from ergodic theory are used to control the
complexity of periodic orbits of the Fibonacci transformation fA. The main ingredients
are metric entropy and uniform hyperbolicity.

5.1. Entropy. LetX be a compact, metric space, and let f be a homeomorphism ofX .
Let � be a probability measure on X . Recall that � is f -invariant if �.f �1.B// D
�.B/ for every Borel set B � X .

5.1.1. Metric entropy. Let P D ¹Ai I i D 1; : : : ; `.P /º be a partition of X into
finitely many Borel subsets Ai � X , called the atoms of P . The pullback of P by f
is the partition f �1P D ¹f �1.Ai /I Ai 2 P º. By definition, the entropy H�.P / of
P for � is

H�.P / D
X
Ai2P

��.Ai / log.�.Ai //:

If � is f -invariant, then H�.f �1P / D H�.P /.
The join of two finite partitions P and P 0 is the partition obtained by intersecting the

atoms of P and P 0: P _P 0D¹Ai \A
0
j I 1� i � `.P /;1� j � `.P

0/; Ai \A
0
j ¤;º.

The join of finitely many partitions is defined similarly. There is a sub-additivity
property of the entropy, namely,

(5.1) H�.P _P 0/ � H�.P /CH�.P
0/;

as well as a monotony property, which means that

(5.2) H�.P / � H�.P
0/

if the partition P 0 is finer than P .
Now, assume that the measure � is f -invariant. The entropy of � with respect to

f and to the starting partition P is

h�.f IP / D lim
n!C1

1

n
H�

 
n�1_
iD0

f �iP

!
;

where the existence of the limit follows from the sub-additivity (5.1); moreover, this
limit is in fact an infimum. The entropy of � is h�.f / D supP h�.f IP /, where the
supremum is taken over all such finite partitions. Note that, from the invariance of �,
we can replace

Wn�1
iD0 f

�iP with
Wn�k�1
iD�k f �iP in the definition of h�.f IP /; this

applies to any k (depending on n or not).
If the limit of

Wn
iD�n f

�iP , as n goes toC1, is the partition into points, one says
that P is a generating partition for the dynamics of f . In that case, the Kolmogorov–
Sinai theorem tells us that h�.f / D h�.f IP /.
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5.1.2. Entropy, dimension comparison. Let Y � X be compact. Fix an " > 0, and
consider the minimal number Cov".Y / of subsets of X of diameter � " needed to
cover Y . Typically, Cov."/ grows like a power of 1="; thus, one sets

dim�B.Y / D lim inf
"!0

log.Cov".Y //
log.1="/

:

This is the lower box dimension of Y . The following result is well known.

Theorem 5.1 (see [9]). Assume that f WX ! X is Lipschitz, with Lipschitz constant
Lip.f /. Then,

h�.f / � dim�B.Supp.�// � log.Lip.f //;

where Supp.�/ is the support of �.

5.2. Automorphisms of the torus. Endow R2=Z2 with the euclidean distance dist.
Let

fB WR2=Z2 ! R2=Z2

be a linear Anosov diffeomorphism, induced by an element B of GL2.Z/ whose
eigenvalues � and �0 satisfy j�j > 1 > j�0j. (Note that �0 D det.B/��1 D ˙��1.) Fix
a basis of unit eigenvectors wC and w� for B , with BwC D �wC, Bw� D �0w�. If
Q is a point of Q2=Z2, we denote by perB.Q/ the period of Q under the action of fB .
Let � be any fB -invariant probability measure.

(1) If P is a partition of R2=Z2 which is made of rectangles, the sides of which are
parallel to wC and w�, and if the rectangles are small enough, then P is a generating
partition for fB . Thus,

h�.fB/ D h�.fB IP /:

(2) fB is j�j-Lipschitz; thus, h�.f / � dim�B.Supp.�// � log.j�j/. In fact, in this
setting, the Hausdorff dimension, lower box dimension, and upper box dimension of
Supp.�/ coincide (see [12, Section 4]).

5.3. Entropy estimate from arithmetic dispersion. In the following theorem, which
is directly inspired by the work of Einsiedler, Lindenstrauss, Michel, and Venkatesh
(see [2, Section 4.2]), B is as in the previous paragraph.

Theorem 5.2. Let " be a positive real number. Let .Qk/ be a sequence of rational
points in R2=Z2 such that
(i) limNk D C1, where Nk is the order of Qk in R2=Z2, i.e., Nk is the least

positive integer such that NkQk D 0 mod Z2;
(ii) perB.Qk/ � N "

k
;
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(iii) the sequence of probability measures

�k D
1

perB.Qk/

perB .Qk/�1X
iD0

ıf i
B
.Qk/

converges towards some measure �.
Then, the entropy of � is bounded from below by "

2
log.j�j/.

Remark 5.3. Note thatNk is the smallest integer such thatQk 2 1
Nk

Z2 mod Z2; thus,
Nk can be considered as the arithmetic complexity of Qk . (It is the multiplicative
height of the lift of Qk to R2 with coordinates between 0 and 1.)

Proof. Fix a basis of unit eigenvectors wC; w�, as in Section 5.2. In this proof, we use
the distance dist1 induced by the sup-norm with respect to this basis. Thus, a set has
diameter � D if it can be included in a parallelogram, the sides of which are parallel
to wC and w� and have length at most D. There is a constant C > 1 such that

C�1 dist1.q; q0/ � dist.q; q0/ � C dist1.q; q0/

for all pairs of points q, q0. Thus, a set of diameter < 1
CNk

for dist1 contains at most
one point with coordinates in 1

Nk
Z2.

Let P be a finite partition of the torus by atoms Ai of diameter diam.Ai / < R WD
C�1. Let m0 be a positive integer. Our ultimate goal is the inequality

(5.3)
1

2m0
H�

 
2m0_
iD0

f �iB P

!
�
"

2
log j�j:

Indeed, if we prove this inequality for every m0, then taking a limit as m0 increases
toC1, we obtain h�.fB IP / � "

2
log j�j and we deduce that h�.fB/ � "

2
log j�j, as

desired.
Note that, because � is fB -invariant, the entropy on the left of equation (5.3) is

equal to H�.
Wm0
iD�m0

f �iB P /.
Now, consider the partition P .m/ D

Wm
iD�m f

�i
B P for any m > 0. The atoms of

P .m/ have diameter bounded from above by Rj�j�m 2. Thus, we set

mk D

�
log.CR/C log.Nk/

log j�j

�
D

�
log.Nk/
log j�j

�

2Indeed, theAj are contained in parallelograms whose sides are parallel towC andw� and have length
� R. Since f iB multiplies lengths by j�ji in thewC (resp.,w�) direction if i � 0 (resp., i � 0), the atoms
of P .m/ are contained in parallelograms of sides � Rj�j�m.
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and obtain that the atoms of the partition P .mk/ have diameter at most 1
CNk

. In particu-
lar, each atom contains at most one point of R2=Z2 with coordinates in 1

Nk
Z2 mod Z2.

The measure�k is supported on the orbit ofQk ; each point of this orbit is contained
in 1

Nk
Z2 mod Z2, and the mass of each point is 1= perB.Qk/. Thus, for the atoms Ai

of P .mk/, we obtain
�k.Ai / D

1

perB.Qk/
if Ai contains one (and then a unique) point of the orbit, and �k.Ai / D 0 otherwise.
This gives

H�k .P
.mk// D

X
Ai2P .mk/

��k.Ai / log.�k.Ai //

D perB.Qk/
�
�

1

perB.Qk/
log

�
1

perB.Qk/

��
D log.perB.Qk//:

Since perB.Qk/ � N "
k
, we obtain

1

2.mk � 1/
H�k .P

.mk// �
1

2

" log j�j log.Nk/
log.Nk/

(5.4)

D
1

2
" log j�j:(5.5)

To conclude, we derive the lower bound (5.3) from this last inequality. Write the
euclidean division of mk by 2m0 as mk D qk2m0 C rk � 2.qk C 1/m0. Then,

P .mk/ �

qkC1_
jD�qk�1

f
�j2m0
B P .m0/:

By the monotonicity and sub-additivity of entropy (see equations (5.2) and (5.1)), we
obtain

H�k .P
.mk// � 2.qk C 1/H�k .P

.m0//:(5.6)

Equations (5.6) and (5.5) imply successively

1

2m0
H�k .P

.m0// �
1

4.qk C 1/m0
H�k .P

.mk//

�
2.mk � 1/

4.qk C 1/m0

1

2
" log j�j;

and letting mk D 2qkm0 C rk go toC1, we obtain the desired inequality (5.3). This
concludes the proof.
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Corollary 5.4. Under the hypotheses (i) and (ii) of Theorem 5.2, any cluster value �
of the sequence �k satisfies

dim.Supp.�// � ";

where dim.Supp.�// refers equivalently to the Hausdorff, lower box, or upper box
dimension of the support of �.

Proof. Theorem 5.2, Theorem 5.1, and the results of Section 5.2 give

"

2
� dim.Supp.�//:

To get the lower bound stated in the corollary, we refer to a theorem of Lai-Sang Young
(see [12, Main theorem]):

HD.�/ D
2h�.fB/

log j�j
;

where HD.�/ is the smallest Hausdorff dimension of a set of full measure.

5.4. Application. Consider a sequence of integers .Nk/ such that the orbit of Pk D
.0; 1=Nk/ in R2=L under fA satisfies

perA.Pk/ � N
"
k :

Corollary 5.4 provides the following estimate: if the probability measures

�k D
1

perA.Pk/

perA.Pk/�1X
nD0

ıf n
A
.Pk/

converge towards some measure � along a subsequence, the Hausdorff dimension of
the support of � is � ". In particular, � cannot be concentrated on a finite set, as in
Launay’s farfalle mystery.

5.4.1. Proof of Theorem B. According to Theorem 4.3, there is a subset K � N� of
density 1 and a constant ı > 0 such that

(5.7) ordA.N / &
p
N exp.log.N /ı/

for all N in K. Let .Nk/ be an increasing sequence of integers contained in K. From
Lemma 3.2 and inequality (5.7), the sequence .Pk/ satisfies the hypotheses (i) and (ii)
of Theorem 5.2 with " D 1=2. Thus, any cluster value � of .�k/ satisfies

dim.Supp.�// �
1

2
:

This completes the proof of Theorem B.
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5.4.2. Further consequences. If we consider the sequence Nk D N k for some fixed
N � 2, we obtain dim.Supp.�// � 1 for any cluster value of �k (see Section 4.2).

If we restrict to prime numbers, we can apply the lower estimates described at the
end of Section 4.2 to get the following: for each 1=2 < � < 3=5, there is a set of primes
of positive relative density such that if .Nk/ is an increasing sequence of such primes
and � is any cluster value of .�k/, then dim.Supp.�// � �.

Similarly, assuming the generalized Riemann hypothesis, there is a set of integers
K" (resp., of primes K 0) of (relative) density 1 such that if .Nk/ is an increasing
sequence of elements of K" (resp., of K 0) and � is any cluster value of .�k/, then
dim.Supp.�// � .1 � "/ (resp., dim.Supp.�// � 1).

6. Intermezzo II: Fourier analysis on finite abelian groups

This section introduces Fourier analysis on finite abelian groups, following the
presentation of Tao and Vu in [10].

6.1. Dual and bilinear forms. Let .Z;C/ be a finite abelian group, with neutral
element 0. The (Pontryagin) dual yZ ofZ is the group of all homomorphisms .Z;C/!
.R=Z;C/, the law being addition of homomorphisms; equivalently, this is the group of
all homomorphisms .Z;C/! .S1; �/, where the law is now provided by multiplication.
If Z is the cyclic group Z=NZ, every homomorphism �WZ ! R=Z is determined by
�.1/ 2 R=Z, with the unique constraint N�.1/ D 0 in R=Z. Thus, yZ is isomorphic to
the cyclic subgroup . 1

N
Z/=Z of R=Z, hence to Z.

A bilinear form onZ is a mapZ �Z!R=Z, .x;y/ 7! .x � y/which is a homomor-
phism of abelian groups with respect to each variable separately. It is non-degenerate if
for every z 2 Z n ¹0º there are elements x and y inZ with .x � z/¤ 0 and .z � y/¤ 0;
otherwise, it is degenerate. It is symmetric if .x � y/ D .y � x/ for all .x; y/ 2 Z2.

Consider the map .x;y/ 2Z2 7! .x � y/D 1
N
xy mod Z. Its value at .x;y/ depends

only on the classes of x and y modulo N ; this defines a non-degenerate, symmetric
bilinear form on Z=NZ. If Z1 and Z2 are finite abelian groups with symmetric, non-
degenerate bilinear forms . � /1 and . � /2, then ..x1; x2/ � .y1; y2//D .x1 � y1/1 C .x2 �
y2/2 is a symmetric, non-degenerate bilinear form on Z1 �Z2. Thus, by the structure
of finite abelian groups, each of them admits such a form.

The isomorphism 3Z1 �Z2 D yZ1 � yZ2 and the isomorphism yZ ' Z for cyclic
groups show that yZ ' Z for any finite abelian group. Now, if Z is endowed with a
symmetric, non-degenerate bilinear form, k 2 Z 7! .k� / is an isomorphism from Z

to yZ; indeed, the non-degeneracy says that this homomorphism is injective, and the
equality j yZj D jZj implies that it is bijective.
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In what follows, we endowZ with a symmetric, non-degenerate bilinear form . � /
and identify yZ with Z via the isomorphism k 2 Z 7! .k� /.

We use the letters x, y, or z for points in Z, and the letters k, ` for the dual (frequency)
variables.

6.2. Fourier transform. Denote by CZ the complex vector space of functionsZ!C;
its dimension is equal to jZj. For k 2 Z, let ek 2 CZ be the function x 2 Z 7!
exp.2i�.k � x//. For the cyclic group Z=NZ and the bilinear form described in Sec-
tion 6.1, we obtain ek.x/ D exp.2i�kx=N/.

We endow Z with the equidistributed (or Haar) probability measure d�Z D
1
jZj

P
z2Z ız . The corresponding `2-norm and scalar product are defined by

kf k2
`2
D

1

jZj

X
z2Z

jf .z/j2 and hf jgi D
1

jZj

X
z2Z

f .z/g.z/

for all f , g in CZ . Then, .ek/k2Z is an orthonormal basis of CZ whose elements are
characters Z ! S1. Thus, every function f can be written as f D

P
k
Of .k/ek in a

unique way; the Fourier coefficients Of .k/ are given by

Of .k/ D hf jeki D
1

jZj

X
z2Z

f .z/ek.z/ D
1

jZj

X
z2Z

f .z/e�k.z/:

The Fourier transform defines a linear map CZ ! CZ , f 7! Of , that satisfies
1

jZj

X
z2Z

f .z/g.z/ D
X
k2Z

Of .k/ Og.k/:

In other words, it is an isometry for two distinct hermitian products. (One does not
divide by jZj on the frequency—or dual—side.) Taking f D g, one gets Parseval’s
formula

(6.1)
1

jZj

X
z2Z

jf .z/j2 D
X
k

j Of .k/j2:

Even though the use of the bilinear form . � / makes it possible to take both the
space variable z and the frequency variable k in the same setZ, there is a dissymmetry
between them: the frequency k should really be considered as a point .k� / in the dual
group yZ. The natural measure on frequencies is just

P
k ık; it is not a probability

measure.3

3This is reflected also in the following remarks. Define � WCZ ! CZ by f � .z/ D f .�z/ for all
z 2 Z. Then, the Fourier transform commutes with � : cf � D . Of /� . Now, if we see Of as an element of CZ

and apply the Fourier transform to it, we obtainbOf D 1
jZj
f � . But if we see it as an element of C yZ and define

the Fourier transform on that space by Og.x/ D
P
k g.k/ex.k/, without division by j yZj, thenbOf D f � .
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6.3. Convolution. The convolution of f and g is the function f � gWZ ! C defined
by

f � g.z/ D
1

jZj

X
xCyDz

f .x/g.y/ D
1

jZj

X
x2Z

f .x/g.z � x/:

(We integrate with respect to the Haar measure on Z.) One easily shows that

1f � g D Of � Og:

6.4. Equivariance properties. Let hWZ!Z be an endomorphism ofZ. The dual h_

of h is the endomorphism of yZ such that �.h.x//D .h_.�//.x/ for all .�; x/ 2 yZ �Z;
its adjoint h� is the endomorphism of Z defined by .h�.k/ � x/ D .k � h.x// for all
.k; x/ 2 Z2. The isomorphism Z ! yZ, k 7! .k� /, provided by the bilinear form,
conjugates h� to h_. With these definitions in mind, one gets

1f ı h D Of ı h�

for every automorphism hWZ ! Z and every function f 2 CZ .
Now, consider the translation tz0 W x 2 Z 7! x C z0 for some z0 2 Z. Then,

2f ı tz0.k/ D ek.z0/ Of .k/

for all f 2 CZ and k 2 Z.

7. Fourier coefficients, following Kurlberg and Rudnick

In this section, following [8], we control (some of) the Fourier coefficients of the
measures supported on periodic orbits of a linear Anosov mapping of the torus R2=L.

7.1. The one-dimensional setting. As a warm-up and introduction to some of the
ideas, we first consider the one-dimensional case. Fix a positive integerN , and consider
the finite cyclic group Z D Z=NZ. Let H be a subgroup of .Z=NZ/�, the group of
invertible elements of Z=NZ. Then,H acts onZ by multiplication. For x in Z, we set

�x D
1

jH j

X
h2H

ıhxI

this probability measure is evenly distributed on Hx. We also use �x to denote the
function Z ! C which is equal to 1=jHxj on Hx and to 0 on its complement.
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By Parseval’s identity, the Fourier transform of �x (in the sense of finite abelian
groups) satisfies

(7.1)
N�1X
kD0

jb�x.k/j2 D 1

jZj

1

jHxj
:

By equivariance, b�x.hk/ D b�x.k/ for every h 2 H .
As in Section 6.1, consider the homomorphism �WZ ! R=Z, z 7! 1

N
z mod .Z/

and the bilinear form Z �Z ! R=Z, .x; y/ 7! 1
N
xy mod .Z/. Then, �x WD ���x is

a probability measure on R=Z whose Fourier coefficients

c�x.k/ D Z 1

0

e�2i�k�d�x.e
2i�� /

areN -periodic: c�x.k CN/Dc�x.k/. Thus, c�x can be considered as a function onZ;
moreover,

c�x.k/ D jZjb�x.k/
for all k 2 Z. From (7.1), we have that, for all .x; k/ 2 Z2,X

k02Hk

jc�x.k0/j2
jZj2

�
1

jZj � jHxj
:

By equivariance, we get

(7.2) jc�x.k/j � � jZj

jHxj � jHkj

�1=2
:

7.1.1. Prime moduli. Suppose that N is prime. Then, Z is field and the H -orbit of
any x ¤ 0 (resp., of any frequency k ¤ 0) has jH j elements. Inequality (7.2) with
jHxj D jH j D jHkj, together with Weyl’s criterion, implies directly the following
result.

Proposition 7.1. Let .Nm/m�1 be an increasing sequence of prime numbers. For each
m, let Hm be a subgroup of .Z=NmZ/�, and let xm be a non-zero element of Z=NmZ.
If Nm D o.jHmj2/, then the sequence of probability measures

�xm D
1

jHmj

X
h2Hm

ıhxm=Nm

converges to the Haar measure on R=Z as m goes toC1.
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7.1.2. Arbitrary moduli. Let us extend the last proposition to an arbitrary increasing
sequence .Nm/ of integers, and a sequence of orbits Hmxm of subgroups Hm �
.Z=NmZ/�, for some xm 2 Z=NmZ. If we fix a frequency k 2 Z n ¹0º, then its orbit
Hmk in Z=NmZ contains at least Hm=jkj elements; indeed, the multiplication by k is
at most jkj to 1. (Its kernel contains at most jkj elements.) Thus, we obtain

jb�xm.k/j �
�
jZmj � jkj

jHmj � jHmxmj

�1=2
:

This gives the following theorem.

Theorem 7.2. Let .Nm/m�1 be an increasing sequence of integers. For each m, let
Hm be a subgroup of .Z=NmZ/�, and let xm be a non-zero element of Z=NmZ. If

Nm D o.jHmj � jHmxmj/;

then the sequence of probability measures �xm converges to the Haar measure on R=Z
as m goes toC1.

Moreover, if xm is the reduction of a fixed integer x ¤ 0 modulo Nm, then Nm D
o.jHmjjHmxmj/ is equivalent to Nm D o.jHmj2/.

Example 7.3 (A case where the previous criterion does not apply). If we take Nm D
3pm for an increasing sequence .pm/ of prime numbers and xm D pm, then, given
any invertible h 2 Z, we have hxm D pm or 2pm, depending on whether h D 1 or
2 mod .3/. Thus, taking Hm D .Z=NmZ/�, �xm is 1

2
.ıe2i�=3 C ıe4i�=3/ and

jHmj � jHmxmj D 4.pm � 1/ ' 4Nm=3:

7.2. Brief outline of ideas for the two-dimensional case. Like in the previous section,
given a subgroup H � GL2.Z=NZ/, the goal is to obtain a bound on the Fourier
coefficients b�x0.k/ of the uniform measure on the orbit of a periodic point x0. To do
so, we consider a convolution operator Px0 whose eigenvalues are precisely the squares
j�x0.k/j

2 (Lemma 7.4). In the one-dimensional case, we computed their sum (here the
trace of Px0) and took advantage of the invariance of the Fourier coefficients for the
dual action ofH on the space of frequencies. Here, we work with P 2x0 rather than Px0 ,
the reason being that the trace of P 2x0 is closely related to what is called the additive
energy in additive combinatorics (Lemma 7.5), which can be precisely estimated in this
case (Lemma 7.8). It turns out that the resulting upper bound on Fourier coefficients is a
bit insufficient for our purposes, so we somehow use a second time the invariance under
H� and the precise additive structure (Lemma 7.12) to obtain the desired estimate
(Theorem 7.10). This is first done for prime moduli N in Section 7.5, and then for
general moduli in Section 7.6.
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7.3. The 2-dimensional setting. Consider a positive integer N ; set Z D .Z=NZ/2,
and 0 D .0; 0/ the neutral element of Z. Then, embed Z into R2=Z2 by

�N W .x1; x2/ 7! .x1=N; x2=N/ mod .Z2/:

Let H be a subgroup of GL2.Z=NZ/. If x D .x1; x2/ is a point of Z, then

�x D
1

jH j

X
h2H

ıh.x/ D
1

jH.x/j

X
y2H.x/

ıy

is a probability measure onZ; it will also be considered as a function equal to jH.x/j�1

on the orbit of x and to 0 on its complement. We set

�x D .�N /��x;

a probability measure on R2=Z2. The Fourier coefficients of �x and �x are related by

(7.3) c�x.k/ D jZjb�x.k/ D N 2b�x.k/:
They satisfy the following relations:

b�x.h�.k// D b�x.k/ for every k 2 Z; h 2 H;(7.4)

b��x.k/ D 1

jZj

1

jH j

X
h2H

ek.�h.x// D b�x.k/:(7.5)

Our goal, now, is to estimate the Fourier coefficients of �x and �x .

7.4. Convolutions. Fix x0 in Z, and consider the linear operator Px0 WCZ ! CZ
defined by

Px0 Wf 7! �x0 � ��x0 � f:

From Section 6.3 and equation (7.5), we obtain

2Px0.f / D c�x0 b��x0 Of D jc�x0 j2 Of :
Thus, if Of is supported on a level set ¹k 2 ZI jc�x0.k/j2 D �º for some � 2 C, the

formula bOf D jZj�1f � gives

Px0.f / D �f:

Since c�x0 is invariant under the action ofH on the space of frequencies, we obtain the
following lemma.
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Lemma 7.4. The spectrum of Px0 is the set of values � of k 7! jc�x0.k/j2. For such
a �, denote by V� � CZ the space of functions k 7! g.k/ which are supported on
¹k 2 ZI jc�x0.k/j2 D �º, and by W� � CZ the image of V� under the linear map
g 7! Og� . Then,

CZ D
M
�

W�;

where W� is the eigenspace of Px0 corresponding to the eigenvalue �. Moreover,

dimC.W�/ � jH
�.k/j

for every k such that jc�x0.k/j2 D �.

For k � 1, P kx0 corresponds to k successive convolutions with �x0 � ��x0 . The
following lemma computes the trace of this operator.

Lemma 7.5. Set Uk D ¹.p1; : : : ; pk; q1; : : : ; qk/ 2H.x0/2kI
P
i pi D

P
i qiº. Then,

the trace of P kx0 is given by

Tr.P kx0/ D
jUkj

jZj2k�1jH.x0/j2k
:

Proof. Consider the orthonormal basis of CZ defined by the functions jZj1=2ıx for x
in Z. The scalar product hP kx0.jZj

1=2ıx/ j jZj
1=2ıxi is equal to

jZjhP kx0.ıx/ j ıxi D
X
y2Z

.P kx0.ıx//.y/ıx.y/ D .P
k
x0
.ıx//.x/I

since P kx0 corresponds to k successive convolutions with �x0 � ��x0 , we obtain

D
1

jZj2k
1

jH.x0/j2k

X
p1;:::;pk ;q1;:::;qk

ıx

�
x C

X
i

pi �
X
i

qi

�
D

jUkj

.jZj � jH.x0/j/2k
;

where the pi and qj in the sum are elements ofH.x0/. The result follows by summation
over x.

7.5. Kurlberg–Rudnick upper bounds: Prime moduli. We follow first the argument
of [8] in the simplest case, namely, when N is a prime p. Let B be an element
of SL2.Fp/. We denote by �B D Tr.B/2 � 4 the discriminant of the characteristic
polynomial of B , and we assume that �B ¤ 0. In this case, the eigenvalues ˛, 1=˛ of
B live in Fp (resp., Fp2) if �B is a square modulo p (resp., is not a square modulo
p). In both cases, ˛ ¤ ˛�1 since �B ¤ 0 mod .p/; in particular, B is diagonalizable
over Fp2 .
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Lemma 7.6. Assume �B ¤ 0 mod .p/. If x 2 F2p n ¹0º is not an eigenvector of B ,
then

8M 2 FpŒB�; .Mx D 0/, .M D 0/:

Moreover, x 2 F2p n ¹0º is not an eigenvector if �B is not a square modulo p.

Proof. Fix x 2 F2p n ¹0º. By the Cayley–Hamilton theorem, we can write M D aB C
bId for some pair .a; b/ 2 F2p. Now, Mx D 0 if and only if aBx D �bx, if and only
if x is an eigenvector of B or .a; b/ D 0.

As above, setZ D Fp � Fp , and letH be the subgroup of SL2.Fp/ generated by B .

Lemma 7.7. All non-zero orbits of H (or H�) on Z have jH j elements.

Indeed, the order of B is the multiplicative order of ˛ which is the same as the
order of ˛�1.

Lemma 7.8 (Kurlberg–Rudnick, see [8, Lemma 5]). The equation h1C h2 D h3C h4
in H 4 has
� at most jH j2 solutions .h1; h2; h3; h4/ for which h1 C h2 D 0;
� at most 2jH j2 � jH j solutions .h1; h2; h3; h4/ for which h1 C h2 ¤ 0; for such a

solution, we have ¹h1; h2º D ¹h3; h4º.
Altogether, there are less than 3jH j2 solutions.

Proof. In the case of the first item, we have h2 D�h1, h4 D�h3, where .h1; h3/ is any
element ofH �H . For the second case, write B in diagonal form over Fp , and denote
by xi and x�1i the eigenvalues of hi . We obtain x1 C x2 D x3 C x4 and x�11 C x

�1
2 D

x�13 C x
�1
4 . The second equality implies .x1 C x2/=.x1x2/ D .x3 C x4/=.x3x4/, so

x1x2 D x3x4. In particular, ¹x1; x2º and ¹x3; x4º have the same sum and product. Both
couples are the two solutions of the same quadratic equation, so ¹x1; x2º D ¹x3; x4º.
This shows that ¹h1; h2º D ¹h3; h4º and gives at most 2jH j2 � jH j new solutions,
namely, 2.jH j2 � jH j/ choices where h1; h2 are distinct, and jH j choices where
h1 D h2 D h3 D h4.

Corollary 7.9 (Kurlberg–Rudnick). Assume that �B ¤ 0 mod .p/ and x0 2 Z n ¹0º
is not an eigenvector of B . Then, jU2j � 3jH j2 and

Tr.P 2x0/ �
3

jZj3jH j2
:

Proof. Consider the equation h1.x0/C h2.x0/ D h3.x0/C h4.x0/. By Lemma 7.6,
it is equivalent to the equation solved in the previous lemma. Thus, we have at most
3jH j2 solutions. The conclusion follows from Lemma 7.5.
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Under the above assumptions, for every k 2 Z, Lemma 7.4 gives

jc�x0.k/j4 � 3

jZj3jH j2
1

jH�.k/j
:

If k ¤ 0, Lemma 7.7 says that jH�.k/j D jH j, and from jb�x0.k/j D jZjjc�x0.k/j, we
derive

jb�x0.k/j4 � 3
p2

jH j3
.8k ¤ 0/

as jZj D p2. This would be sufficient to show that the Fourier coefficients were small if
we knew that jH j � p2=3, but Corollary 4.4 only gives at best an exponent 3=5 < 2=3.
Our next result improves upon this kind of inequality down to the exponent 1=2.

Theorem 7.10. Let B be an element of SL2.Fp/ with �B ¤ 0 mod .p/, and let H �
SL2.Fp/ be the subgroup generated by B . Let x0, k be non-zero elements of F2p . If x0
is not an eigenvector for B and k is not an eigenvector for B�, then the k-th Fourier
coefficient of �x0 satisfies

jb�x0.k/j4 � 2
p
3
p

jH j2
:

Example 7.11. For p D 1973, the order of A is 1316 and the order of B D A2 is 658.
Then, 2

p
3pjH j�2 ' 0:016.

Proof. We start with the following computation, in which Z D Fp � Fp:

jZj2jc�x0.k/j2 D 1

jH j2

X
g2H

X
g02H

e�k.g.x0//ek.g0.x0//

D
1

jH j2

X
g2H

X
g02H

e�g�k.x0/eg�k.g�1g0.x0//

D
1

jH j2

X
g2H

X
h2H

eg�k.�x0/eg�k.h.x0//

D
1

jH j2

X
g2H

X
h2H

eg�k..h � Id/.x0//

D
1

jH j

X
h2H

1

jH j

X
g2H

e.h�Id/�k.g.x0//

D
1

jH j

X
h2H

jZjc�x0..h� � Id/.k//:
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(The third equality is obtained by re-indexing the sum by setting h D g�1g0 and the
fifth equality uses the fact that .h � Id/ and g commute for all g, h in H .) Now, we
apply the Hölder inequality with weights 4=3 and 4; this gives

jb�x0.k/j2 �
jZj

jH j

� X
h2H

1
�3=4� X

h2H

jc�x0..h� � Id/.k//j4
�1=4

(7.6)

�
jZj

jH j1=4

� X
h2H

jc�x0..h� � Id/.k//j4
�1=4

:

Lemma 7.12. For k 2 Z n ¹0º which is not an eigenvector of B�, the set ¹.h� �
Id/.k/I h 2 H º intersects any H�-orbit in at most two points.

Proof of the lemma. Assume h1.k/ � k D h3.h2.k/ � k/ for some triple of elements
ofH� with h1¤ h2. We will show that the only possibility is h2D h�11 . By Lemma 7.6,
we obtain h1 C h3 D h3h2 C Id, and according to Lemma 7.8 only two cases may
occur. Either h1 C h3 D 0 and h3h2 C IdD 0, so h2 D h�11 , or h1 C h3 ¤ 0, but then,
¹h1; h3º D ¹h3h2; Idº in contradiction with h1 ¤ h2.

Thus, if we partition the frequency planeZ D F2p intoH�-orbits, and if we remem-
ber that each H�-orbit has jH j elements except for H.0/, we obtain

jb�x0.k/j2 �
jZj

jH j1=4

�
jc�x0.0/j4 C X

h2H;h¤Id

jc�x0..h� � Id/.k//j4
�1=4

�
jZj

jH j1=4

�
1

jZj4
C

2

jH j

X
`2Z;`¤0

jc�x0.`/j4�1=4
�
jZj

jH j1=4

�
1

jZj4
C

2

jH j
Tr.P 2x0/

�1=4
:

If Tr.P 2x0/ �
jH j

2jZj4
, we obtain

jb�x0.k/j2 �
jZj

jH j1=4

�
4

jH j
Tr.P 2x0/

�1=4
:

Thus, by Corollary 7.9, we conclude that

jb�x0.k/j2 �
�
12
jZj

jH j4

�1=4
D

�
12

p2

jH j4

�1=4
:

And if the opposite inequality Tr.P 2x0/ �
jH j

2jZj4
is satisfied, we already knew that

jc�x0.k/j2 � 2jZj�4 for all non-zero frequency.
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7.6. Kurlberg–Rudnick upper bounds: Composite moduli. While necessary for
Theorem C, this section may be skipped in a first reading. For instance, Section 8.2
shows how Theorem D can be derived directly from Theorem 7.10.

We now consider a matrix B 2 SL2.Z/, with discriminant �B D Tr.B/2 � 4 ¤ 0.
LetN be a positive integer, and setZ D .Z=NZ/2. Let x0 and k be non-zero elements
of Z. Let H be the subgroup of SL2.Z=NZ/ generated by the class of B modulo N .
For any divisor d of N , we denote with an index d the image of any object by the
induced morphism Z=NZ! Z=dZ; for example, Hd is the group generated by the
class Bd of B in SL2.Z=dZ/.

Our goal is to extend the inequalities obtained in the previous section to the case of
arbitrary moduli N instead of prime moduli. For this, we consider a parameter D > 0

and assume that N can be written as

N DMq;

where, roughly speaking, the numberM will act as a bounded “dump” where we throw
all the factors we do not want to know about and will be much smaller than q. More
precisely, we will assume that

(�1) M and q are coprime integers,

(�2) q is square-free and q D
Q
p2I p for a set I of primes p � D,

(�3) �B < D, hence for all p 2 I , �B ¤ 0 mod .p/,

(�4) for all p 2 I , .x0/p is non-zero and not an eigenvector forBp , and kp is non-zero
and not an eigenvector for B�p .

This set of hypotheses on B;N;M;D; q; x0; k will be denoted by .�/. We denote by
! D jI j the number of prime factors of q. Similar to [8, Lemma 7], we first note the
following lemma.

Lemma 7.13. Under the hypotheses .�/, we have the following properties.
(1) jHqj � jH j �M 3jHqj.
(2) If x 2 Z is non-zero modulo every p 2 I , then jH.x/j � jH j=M 3.
(3) The equation h1 C h2 D h3 C h4 in H 4

q has at most 3! jHqj2 solutions.
(4) The trace of P 2x0 satisfies

Tr.P 2x0/ �
3!M 24

jZj3jH j2
:

Proof. SinceM and q are coprime, the mapH!HM �Hq , h 7! .hM ;hq/ is injective.
Therefore, the kernel of the surjective homomorphism H ! Hq , h 7! hq is at most
of size jHM j � jSL2.Z=MZ/j �M 3. This proves (1).
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Let us check (2). Let h 2 H be in the stabilizer of x. By assumption, the image
xp of x modulo p is non-zero for every p 2 I , so hp.xp/ D xp implies hp D Id for
all p 2 I , and hq D Id. Therefore, the stabilizer of x in H is in the kernel of h 7! hq ,
which in turn is of cardinality bounded by M 3.

For (3), observe that, for every prime p, jHpj D ordB.p/ is the order of B modulo
p; thus, jHqj is the least common multiple of the jHpj, p 2 I . In particular, if we
decompose jHqj D u

˛1
1 � � � u

˛r
r as a product of distinct prime powers, then for any

i D 1; : : : ; r we can choose a p.i/ 2 I such that u˛ii divides jHp.i/j. By grouping the
u
˛i
i according to the value of p.i/, we obtain

jHqj D
Y
p2I

np with np D
Y

j Wp.j /Dp

u j̨

j I

the np are coprime to each other, and np divides jHpj. By Lemma 7.8, if .a; b; c; d/ is
a solution to the equation

Ba C Bb D Bc C Bd mod .p/

for some p 2 I , then
� either Ba C Bb D 0 mod .p/, so a D b C tp mod .jHpj/ and c D d C tp mod

.jHpj/, where tp is an exponent such that B tp D �Id mod .p/,
� or ¹a; bº D ¹c; dº mod .jHpj/.

These congruences for the exponents are still true modulo np; this gives at most
3n2p possibilities for .a; b; c; d/ modulo np. Since the np are coprime to each other,
the Chinese remainder theorem shows that there are at most 3jI j

Q
p n

2
p D 3

! jHqj
2

solutions to the equation Ba C Bb D Bc C Bd mod .q/.
Now, assertion (4) is shown in the same way as Corollary 7.9. By Lemma 7.5, we

have

Tr.P 2x0/ D
jU2j

jZj3jH.x0/j4
;

where jU2j is the number of solutions modulo N to

h1.x0/C h2.x0/ D h3.x0/C h4.x0/:

Consider this equation modulo p for p 2 I . By (�4), .x0/p is not an eigenvector of
Bp , so Lemma 7.6 applies and we get

h1 C h2 D h3 C h4 mod .p/I

by the Chinese remainder theorem, this equation is still satisfied in Hq . This gives at
most 3! jHqj2 possibilities for .h1; h2; h3; h4/ modulo q, hence at most M 123! jHqj

2

possibilities moduloN . Since jH.x0/j � jH j=M 3, we get the desired upper bound.
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To control the size of the Fourier coefficients of �x0 , we will use the following
notations:

� D inf
p2I

ordB.p/ D inf
p2I
jHpj

and

{H D ¹h 2 H W 8p 2 I; hp ¤ Idº:

The complement H n {H is the union of ! subgroups of index at least �, so

(7.7) jH � {H j � !
jH j

�
:

Here is the analog of Lemma 7.12.

Lemma 7.14. Under the hypotheses .�/, the family ¹.h� � Id/.k/I h 2 {H º

(1) intersects each H�-orbit in at most 2!M 3 points (counted with multiplicities,
since it may happen that h 7! .h� � Id/.k/ is not injective),

(2) does not intersect any H�-orbits of cardinality � jH j=M 3.

Proof. Given h1 2 H�, the equation

.h1 � Id/.k/ D h3.h2 � Id/.k/

in the variables h2; h3 2 H� can be reduced modulo p for p 2 I . By (�4), kp is
non-zero and is not an eigenvector of B�p . By (�3), we can apply Lemma 7.6 and we
obtain

.h1 � Id/ D h3.h2 � Id/ mod .p/:

As in the proof of Lemma 7.12, the only solutions are .h2/p D .h1/˙1p . Thus, given
h1, there are only 2! possibilities for .h2/q 2 Hq , hence at most 2!M 3 possibilities
for h2 2 H (see Lemma 7.13 (1)).

Let us now check the second claim. If h 2 {H , then, for all p 2 I , we can apply again
(�3), (�4), and Lemma 7.6 to get h�pkp ¤ kp . So, the vector .h� � Id/.k/ satisfies the
assumption of Lemma 7.13, and Lemma 7.13 (2) gives the result.

Theorem 7.15. Under the set of assumptions .�/, we have

jb�x0.k/j4 �
r
!

�
C
6!=2M 15N

jH j2
:
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Proof. Equation (7.6) (and its proof) is still valid for the composite moduli N :

jb�x0.k/j2 �
jZj

jH j1=4

� X
h2H

jc�x0..h� � Id/.k//j4
�1=4
I

cutting the sum in two, and using the trivial bound jc�x0 j � 1=jZj, we get

jb�x0.k/j2 �
jZj

jH j1=4

� X
h2H� {H

1

jZj4
C

X
h2 {H

jc�x0..h� � Id/.k//j4
�1=4

:

By the bound (7.7), H�-invariance of c�x0 , and Lemma 7.14,

jb�x0.k/j4 �
jZj2

jH j1=2

�
!jH j

�jZj4
C
2!M 6

jH j

X
`2Z

jc�x0.`/j4�1=2;
and since

p
aC b �

p
aC
p
b for all positive a; b, Lemma 7.4 gives

jb�x0.k/j4 �
!1=2

�1=2
C
2!=2M 3jZj2

jH j
Tr.P 2x0/

1=2;

Applying Lemma 7.13 (4), we obtain

jb�x0.k/j4 �
!1=2

�1=2
C
6!=2M 15jZj1=2

jH j2
;

as required.

8. When the Farfalle disappears: Equidistribution

We collect all previous results to prove Theorems C and D. To warm up, we start
with a remark on the distribution of “random” periodic orbits.

8.1. Random periodic orbits. Say that a probability measure � on R2=L is "-well
distributed if its Fourier coefficients satisfy jy�.k/j < " for every k ¤ 0 such that
kkk < 1=". A sequence of probability measures .�n/ on R2=L converges towards the
Haar measure of the torus if and only if, for every " > 0, �n becomes "-well distributed
as n goes to1. Similarly, a non-empty, finite set S � R2=L is "-well distributed if
the average measure

�S WD
1

jS j

X
s2S

ıs

is as well. We will apply these definitions for the empirical measures �S , when S
is the A-orbit of a point �N .x/, for x 2 .Z=NZ/2 (see the notation of Section 7.3);
equivalently, S is the A-orbit of a point in . 1

N
Z2/=L.
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Theorem 8.1. Given any positive ", the proportion of points in . 1
N

Z2/=L with an
"-well distributed A-orbit converges towards 1 as N goes toC1.

Thus, for N large, if we pick a point x at random among all periodic points in
. 1
N

Z2/=L, then, with a high probability, the measure �x is well distributed.

Proof. We identify . 1
N

Z2/=L with .Z=NZ/2 via the homomorphism �N . If x is an
element of .Z=NZ/2 (resp., of Z2), we denote by perx.N / its period under the action
of A (resp., its period modulo N ). Fix a frequency k D .k1; k2/ in Z2 n ¹0º and set

BadN .k/ D ¹x 2 .Z=NZ/2I jc�x.k/j � "º:
Since A is symmetric, c�x.k/ Dc�k.x/; thus, by Parseval’s formula (see equation (6.1)
and the relation c�x.k/ D N 2b�x.k/ from equation (7.3)), we getX

x

jc�x.k/j2 DX
x

jc�k.x/j2 D 1

N 2

X
`

j�k.`/j
2
D

N 2

perk.N /
:

The period of k modulo N satisfies perk.N / � log.N kkk�11 /, where

kkk1 D max.jk1j; jk2j/:

Indeed, the integral vector Am.k/ � k is non-zero in Z2, and its norm satisfies

kAm.k/ � kk1 � kAk
mC1
1 kkk1I

thus, to get Amk D k mod .N /, we must have

.mC 1/ log.kAk1/ � log.N kkk�11 /;

which gives the result as kAk1 D 2. Altogether, we obtain the following upper bound
on the proportion of bad points:

jBadN .k/j
N 2

�
1

"2 log.N kkk�11 /
:

Considering only frequencies k ¤ 0 in Z2 with kkk1 < 1=", we get

jBadN .k/j
N 2

�
1

"2 log.N"/
:

Since there are at most .2"�1 C 1/2 integer points in Z2 with `1-norm < 1=", the
proportion of starting points x for which �x has a Fourier coefficient > " for some
frequency k ¤ 0 of norm < 1=" is at most .2"�1 C 1/2"�2.log.N"//�1. Since " is
fixed, this proportion goes to 0 as N goes toC1.
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8.2. Prime moduli: Proof of Theorem D. In this section, we will prove the following
results, the first two being stronger forms of Theorem D. Recall that Chebotarev’s
density theorem implies that the relative density of primes congruent to 1; 4 mod .5/
is 1=2, and the same holds for p � 2; 3 mod .5/.

Theorem 8.2. There is a set K1 of prime numbers such that
(a) p D 1 or 4 mod .5/ for every p 2 K1;
(b) the relative density of K1 among all primes is positive;
(c) if pk is an increasing sequence of elements of K1, then the sequence of measures

.�pk / converges towards the Haar measure on R2=L.

Theorem 8.3. There is a set K2 of prime numbers such that
(a) p D 2 or 3 mod .5/ for every p 2 K2;
(b) the relative density of K2 among all primes is equal to 1=2;
(c) if pk is an increasing sequence of elements of K2, then the sequence of measures

.�pk / converges towards the Haar measure on R2=L.

Theorem 8.4. Assuming the generalized Riemann hypothesis, there is a set K3 of
prime numbers of full relative density among all primes such that if pk is an increasing
sequence of elements of K3, then the sequence of measures .�pk / converges towards
the Haar measure on R2=L.

8.2.1. Prime moduli, large order and equidistribution. Theorems 8.2 and 8.4 will
be derived from the following statement.

Proposition 8.5. If .p`/ is an increasing sequence of primes such that

lim
`!C1

p
p`

ordA.p`/
D 0;

then .�p`/ converges towards the Haar measure on R2=L

Proof. Set B D A2 2 SL2.Z/ and B` D A2 mod .p`/; let H` be the subgroup of
SL2.Fp`/ generated by B`. These B` satisfy the starting assumptions of Section 7.5.
Define x` D .0; 1/ 2 F2p` ; this point is mapped to the point Pp` D .0; 1=p`/ under the
homomorphism �p` that maps .a; b/ 2 F2p` to .a=p`; b=p`/ 2 R2=L. Notice that for
every prime p the measure

�p D
1

perA.Pp/

perA.Pp/X
nD1

ıf n
A
.Pp/
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can be written as the average of the atomic measure equidistributed on the fB -orbit of
�p..0; 1//, and the atomic measure equidistributed on the fB -orbit of �p..1; 1//, since
A.0; 1/ D .1; 1/. It is thus sufficient to prove the same statement for B and any fixed,
non-zero initial point x0 2 Z2.

We thus fix such an x0, and denote by �x0;` the atomic measure on the fB -orbit of
�p`.x0/. Fix a frequency k ¤ 0 in Z2, and remark the following lemma.

Lemma 8.6. There exists D > 0, which depends on x0 ¤ 0, such that, for all primes
p > D, .x0/p is non-zero and not an eigenvector of Bp .

Proof. Recall that �B denotes the discriminant, here equal to 5 since B D A2. Fix an
equation ax C by D 0 of one of the eigenlines of B with .a; b/ in Z.j�B j1=2/; the
second eigenline is determined by the equation a0x C b0y D 0, where a0 and b0 are
the Galois conjugates of a and b; the product Q.x; y/ D .ax C by/.a0x C b0y/ is a
B-invariant quadratic form and is defined over Z. By assumption, Q.x0/ is a non-zero
integer. If p > max.j det.Q/j; j�B j/, thenQp is non-degenerate and its isotropic cone
(computed in Fp � Fp) is the union of the two eigenlines of Bp. Now, if p is larger
than the maximum of j det.Q/j, j�B j, and jQ.x0/j, then .x0/p is non-zero and is not
an eigenvector of Bp .

According to Lemma 8.6, if ` is large enough, then the reduction of k and that
of x0 modulo p` are non-zero and are not eigenvectors of B� or B . Thus, we can
apply Theorem 7.10. The order of B` in SL2.Fp`/ is at least ordA.p`/=2; the Fourier
coefficient b�x0;`.k/ converges towards 0 as ` goes toC1.

Now, by Weyl’s criterion, �x0;` converges towards the Haar measure, as required.

8.2.2. The case p � 1; 4 mod .5/. Here, we prove Theorem 8.2. Fix some " in
�0; 1

10
Œ. According to Corollary 4.4, there is a set K1 of prime numbers such that K1

has positive relative density and the elements p of K1 satisfy p D 1; 4 mod .5/ and
ordA.p/ � p

3
5�". Thus, Proposition 8.5 applies.

8.2.3. Assuming GRH. Fix " > 0 small. If we assume the generalized Riemann
hypothesis, the result of Kurlberg described in Remark 4.5 provides a set K3 of full
density among the primes such that ordB.p/ > p1�" for all p 2 K3. This and Proposi-
tion 8.5 prove Theorem 8.4.

8.2.4. The case p � 2; 3 mod .5/. In this case, we do not use the estimate on the
Fourier coefficients given by Theorem 7.10, but a Theorem of Bourgain and Gli-
bichuk [1].
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Proof of Theorem 8.3. Fix ˛ D 1=2 � � for some small �, and consider the set K2 of
primes p such that (a) p D 2 or 3 mod .5/ and (b) ordA.p/ � p˛. By Chebotarev’s
theorem and Lemma 4.2, this set has density 1=2 among all primes. Fix p in K2 and
consider the Fibonacci matrix A modulo p. By definition of K2, its order in GL2.Fp/
is � p˛. Moreover, since 5 is not a square modulo p, the eigenvalues ' and '0 of A
live in a quadratic extension F of Fp . As an Fp-vector space, Fp � Fp can be identified
to F by the linear isomorphism .a; b/ 7! aC b': this conjugates the linear action of
A on Fp � Fp to the multiplication by ' on F.

Denote the trace by TrWF! Fp . By definition,

Tr.aC b'/ D 2aC b.' C '0/ D 2a � b;

or equivalently Tr.x/ D x C xp, since x 7! xp is the Galois automorphism. Every
linear map F! Fp can be written as x 7! Tr.�x/ for some � 2 F. With this notation
at hand, Theorem 5 of [1] says precisely that, for any non-zero frequencies

k D .k1; k2/;

the Fourier coefficients c�p.k/ converge towards 0 as p 2 K2 goes to1. Indeed, this
theorem can be applied to the cyclic group H generated by ' in F�q ; the hypothesis
jH \ Fpj < jH j1�� is satisfied for the following reason. Since the Galois conjugate
'0 of ' is �'�1, the conjugate of any element x 2 H is equal to ˙x�1; thus, the
elements ofH \ Fp are fourth roots of unity, so in fact jH \ Fpj � 4. This proves the
theorem.

8.3. Proof of Theorem C. The goal is to show that, along a set K � N of density
1, the measures .�N /N2K converge toward the Haar measure. Like in the proof of
Theorem 8.2, we set B D A2 and we fix a non-zero initial point x0 2 Z2; we denote
by �x0;N the atomic measure on the orbit of �N .x0/ and by HN the subgroup of
SL2.Z=NZ/ generated by B modulo N .

8.3.1. Step 1. We prove the following: given � 2 �0; 1Œ and k 2 Z2 n ¹0º, the set

X�;k D
®
N > 0I j1�x0;N .k/j4 � �

¯
is a subset of N of density 1.

We fix k ¤ 0. There exists an integer Dk such that Lemma 8.6 holds for both
.B; x0/ and .B�; k/. By the fourth assertion in Section 4.2, we obtain the following
lemma.

Lemma 8.7. There exists a constant C > 0 such that

ordB.p/ D jHpj � C log.p/

for every prime p; one can take C D .2 log.2//�1.
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Given N , we denote by !.N/ the number of distinct prime factors of N . We fix a
constant ı > 0 for which Theorem 4.3 holds, and we denote by X the set of integers
N that satisfy the inequalities´

!.N/ � 2 log logN;
ordB.N / D jHN j � N

1
2 exp.log.N /ı/:

By Theorem 4.3 and the fact that the normal order of the function ! is log logN (see
[6, Section 22.1 and Theorem 431]), the set X is a set of full density.

Given " > 0, let r D r";�;k > max.Dk; �B/ be such that

1

�.2/

rX
nD1

1

n2
� 1 � ":

Since the density of the set F of square-free integers is 1
�.2/

(see [6, Theorem 333])
and

N D
G
n�1

n2F

(a disjoint union of sets of respective density n�2

�.2/
), the set of integers for which the

largest square factor is smaller than r2 is of density at least 1 � ".
We define Y" as the intersection of X with the set of integers bigger than eDk ,

whose largest square factors are smaller than r2; the density of Y" is � 1 � ". We wish
to show that every large enough integer N 2 Y" is contained in X�;k .

Given N 2 Y", we can write N D s21q1, where q1 is square-free and s1 � r . We
will “dump” the smallest prime factors of q1 in the following way. Let I be the set of
prime factors p of q1 that satisfy

(8.1) p � .logN/
8

C�2 ;

where C is the constant from Lemma 8.7; then, let J be the set of prime factors of q1
strictly smaller than this bound. Set

q D
Y
p2I

p and M D s21

Y
p2J

p:

Thus, N D Mq, M , and q are coprime, and since N � eDk , every p 2 I satisfies
p �Dk (indeed, p �D8

k
since C and � are in �0; 1Œ). Thus, the chosen B , N ,M ,Dk ,

q, x0, k satisfy the conditions .�/.
We will need a bound on M , as follows. We have

M � r2
Y
p2J

p � r2.logN/
8

C�2
jJ j
;
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and from the bound jJ j � !.N/ � 2 log logN , we deduce

M � r2 exp
�

8

C�2
.log logN/2

�
:

By Theorem 7.15, we obtain

jb�x0.k/j4 �
r
!

�
C
6!=2M 15N

jHN j2
;

where

� D inf
p2I
jHpj � C log.logN/

8

C�2 D
8

�2
log logN

by Lemma 8.7 and equation (8.1), and

! � !.N/ � 2 log logN:

Thus, the first term
p
!=� is smaller than �=2. The second term satisfies

6!.N/=2M 15N

jHN j2
�

exp
�
.log 6/.log logN/C 30 log r C 120

C�2
.log logN/2

�
N

N exp.2.logN/ı/

by the bounds on jHN j, !.N/, and M . Since

.log logN/2 D o..logN/ı/;

the above quantity is smaller than �=2 for N sufficiently large, that is, N � N�;k;".
Thus,

Y" \ ŒN�;k;";C1/ � X�;k;

so X�;k contains a subset of density 1 � ", where " > 0 is arbitrary.

8.3.2. Step 2. We have shown that X�;k is a set of full density. The following is a
classical observation.

Lemma 8.8. Let .Kn/n�1 � N be a countable family of sets of full density. Then, there
exists a set K � N of full density such that, for all n, K nKn is finite.

Proof. ChangingKn into the intersection ofKn with allKm form� n, we can assume
that KnC1 � Kn for all n � 1. Define K to be equal to Kn in the interval Œan; anC1�,
where .an/n�1 is an increasing sequence of integers to be chosen soon; then, K nKn
is finite because it is contained in Œ0; anC1�. Thus, we only need to choose the an in
such a way that the density of K is 1. For this, we choose the an for n � 1 such that,
for all x � an, the density of Kn in Œa1; x� is larger than 1 � 2�n.
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We apply the previous lemma to the countable family .X1=n;k/. This provides a set
K � N of full density such that ¹N 2 K W j1�x0;N .k/j4 > �º is finite for any k ¤ 0,
� > 0; in other words, for any k ¤ 0, the k-th Fourier coefficient tends to zero as N
goes to infinity. By Weyl’s criterion, �x0;N equidistributes to the Haar measure when
N tends to infinity in K, as required.
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