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Enriched Koszul duality for dg categories

Julian Holstein and Andrey Lazarev

Abstract. It is well known that the category of small dg categories dgCat, though it is monoidal,
does not form a monoidal model category. In this paper we construct a monoidal model structure
on the category of pointed curved coalgebras ptdCoa� over a field k and show that the Quillen
equivalence relating it to dgCat is monoidal. We also show that dgCat is a ptdCoa�-enriched model
category. As a consequence, the homotopy category of dgCat is closed monoidal and is equivalent
as a closed monoidal category to the homotopy category of ptdCoa�. In particular, this gives a con-
ceptual construction of a derived internal hom in dgCat which we establish over a general PID. This
proves Kontsevich’s characterization of the internal hom in terms ofA1-functors. As an application
we obtain a new description of simplicial mapping spaces in dgCat (over a field) and a calculation
of their homotopy groups in terms of Hochschild cohomology groups, reproducing a well-known
result of Toën. Comparing our approach to Toën’s, we also obtain a description of the core of Lurie’s
dg nerve in terms of the ordinary nerve of a discrete category.

1. Introduction

The category dgCat of small differential graded (dg) categories has an internal homotopy
theory, underpinned by a Quillen model structure constructed by Tabuada [22] whose
weak equivalences are quasi-equivalences. There is also a closed monoidal structure on
dgCat, however since the tensor product of two dg categories is not a Quillen bifunctor, e.g.
the tensor product of two cofibrant dg categories is not itself cofibrant, the two structures
are not compatible. Thus, the internal hom in dgCat does not determine an internal hom in
the homotopy category Ho.dgCat/, even though the tensor product does lift to Ho.dgCat/.
Nevertheless, Toën showed in [24] that Ho.dgCat/ does have a closed monoidal structure,
cf. also [6] for an alternative approach. The resulting derived internal hom is constructed
using bimodules of special kind (‘quasi-representable functors’). Borrowing the terminol-
ogy of algebraic geometry, this result shows that all functors between dg-categories are
of Fourier–Mukai type, cf. [5] regarding this point of view. For the Morita model struc-
ture on dgCat Tabuada gave a construction of internal homs by considering a category of
localizing pairs [23].

Looking at this issue from a different angle, Kontsevich suggested that the category of
unital A1-functors between two dg categories can be taken as the derived internal hom
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between them. A complete proof of this statement was obtained only recently and only
when working over a field, in [4].

The purpose of this paper is to provide another, more structured version of the derived
hom for dg categories. Our starting point is categorical Koszul duality developed in [13]
and which states, roughly, that the category of (small) dg categories is Quillen equivalent
to the category of coalgebras of a special kind. At the same time it is known that the cat-
egory of coalgebras (unlike that of algebras) does possess an internal hom making it a
closed monoidal category (this point of view and its various ramifications are explained
in [1]). One can hope, therefore, that the internal hom in coalgebras is homotopically
better behaved than that in dg categories, and admits a straightforward lift to homotopy
categories. Provided that Koszul duality is compatible with monoidal structures on coal-
gebras, this would give a derived internal hom for dg categories.

The programme thus outlined is carried out in the present paper. More precisely, it
establishes a closed monoidal structure on the category ptdCoa� of pointed curved coal-
gebras and shows that this structure is compatible with the model structure on ptdCoa�

and the Koszul adjunction to dg categories. Kontsevich’s characterization of the derived
internal hom in dgCat is an immediate consequence of these results.

Note that there is a close analogy between dg-categories and1-categories: just like in
dg-categories, simplicial categories do not possess a well-behaved internal hom, and this
problem is resolved by replacing simplicial categories by simplicial sets with the Joyal
model structure which does possess a monoidal model structure and thus, a well-behaved
internal hom. In fact, this is more than an analogy; there exists a direct relationship
between the differential graded and simplicial pictures, it is explained in Remark 5.8.

Recall that a coalgebra C is pointed if its coradical is a direct sum of copies of the
ground field k that we fix throughout the paper. A pointed curved coalgebra is a curved
coalgebra that is pointed and has a splitting of the coradical satisfying some compatibilities
which we recall below, see Definition 1.3. We denote by ptdCoa� the category of pointed
curved coalgebras equipped with a final object.

According to [13] there is a natural model structure on ptdCoa� and a Quillen equiva-
lence�WptdCoa� � dgCat0WB between pointed curved coalgebras and dg categories (with
the Dwyer–Kan model structure). Here dgCat0 is an equivalent model for dgCat that will
be defined below. � and B are suitable versions of the cobar and bar construction.

In this setting we prove the following results:

Theorem 5.4. There is a closed monoidal model structure on ptdCoa�.

Moreover, the cobar construction is quasi-strong monoidal in the sense that it induces
a strong monoidal functor on homotopy categories (Lemma 5.1), and it induces an equiv-
alence of monoidal category Ho.ptdCoa�/ Š Ho.dgCat/ (Corollary 6.1).

The compatibility between ptdCoa� and dgCat goes beyond the homotopy categories.
While dgCat is not a monoidal model category, it is enriched, tensored and cotensored
(powered) over ptdCoa� and this structure is compatible with the model structures of
dgCat0 and ptdCoa�. We say for short dgCat is a ptdCoa�-enriched model category.
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Theorem 6.2. The category dgCat0 is a ptdCoa�-enriched model category.

Our results have immediate consequences for describing internal homs in Ho.dgCat/.

Corollary 6.5. The internal hom in Ho.dgCat/ may be computed as (a small modification
of) the Maurer–Cartan category of a convolution categoryRHom.D;D0/'MC¹BD;D0º.

In fact, this result still holds when we no longer work over a field but only assume that
k is a principal ideal domain. Unravelling definitions, this internal hom is identified with
the category of unital A1-functors, see Corollary 6.7. This was proposed by Kontsevich
and previously only shown rigorously over a field [4].

We also obtain (over a field) a new description of mapping spaces in dgCat, that differs
from the classical description in [24].

Theorem 6.9. Given two dg categories D;D0 the mapping space Map.D;D0/ is weakly
equivalent to the core of NdgRHom.D;D0/ where Ndg denotes Lurie’s dg nerve.

Combining this with Toën’s characterization of the mapping space, we obtain a new
description of the core of the dg nerve Ndg in terms of the ordinary nerve of the category
of weak equivalences (Corollary 6.11 below).

By defining a Morita model structure on ptdCoa� we may apply our techniques also
to the Morita model structure on dgCat and compute internal homs similarly.

As an application, we compute the homotopy groups of simplicial mapping spaces
between dg categories in terms of Hochschild cohomology, reproducing over a field the
well-known result of Toën [24] (which holds over an arbitrary commutative ring).

Theorem 7.4. LetGWD!D0 be a functor of dg categories. We then have HH0.D;D0/�Š
�1.Map.D;D0/; G/ and HHi .D;D0/ Š �1�i .Map.D;D0/; G/ for i < 0.

Finally, we mention that analogous results hold for ordinary dg Koszul duality (i.e. for
the Quillen equivalence between augmented dg algebras and conilpotent dg coalgebras).
In this context, the monoidal structure on coalgebras is given by a smash-product (as
opposed to a tensor product) and it lacks a monoidal unit, which brings about specific
subtleties. This theory is being developed in [12].

1.1. Outline

We first recall some concepts and definitions as well as the main result of [13] in the
remainder of this section. Then Section 2 provides some auxiliary results on resolving dg
categories by free dg categories and pointed curved coalgebras by cofree ones. In Section 3
we construct the convolution category structure on homs from a pointed curved coalgebra
to a dg category, see Definition 3.2. This is the main ingredient in constructing the MC
category MC¹C;Dº (Definition 4.2) and the closed monoidal structure on pointed curved
coalgebras in Section 4. The compatibility with the model structure on ptdCoa� is provided
in Section 5. Section 6 then compares the monoidal structures on ptdCoa� and dgCat0 and
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shows that dg categories form a ptdCoa�-enriched model category. We show the same is
true for the Morita model structure on dgCat0 if we adjust the model structure on ptdCoa�.
We conclude with applications to Hochschild cohomology in Section 7.

1.2. Definitions, notation and conventions

The symbol k stands for a fixed ground ring that is always assumed to be a principal ideal
domain. We will specify when k is assumed to be a field. In either case, k-linear Hom sets
and Hom complexes will be denoted by Hom while internal hom objects will be denoted
by Hom. The modifier ‘k-linear’ will usually be omitted later on as no other ground rings
or fields will be considered (e.g. an ‘algebra’ will stand for a ‘k-algebra’ etc.) Mapping
spaces in model categories will be denoted as Map.�;�/.

We refer to [13] for a more detailed overview of the background material described
below.

Let dgCat be the category of differential graded (dg) categories over k, considered as
a model category with its Dwyer–Kan(–Bergner–Tabuada) model structure where weak
equivalences are given by quasi-equivalences [22]. (When considering the Morita model
structure on dgCat at the end of Section 6 we will make this explicit.)

We will mainly consider dgCat0, the full subcategory of dgCat consisting of dg cate-
gories without zero objects together with the dg category 0 with one object and a single
zero morphism. The reason for this minor modification is that dgCat0 fits better with cat-
egorical Koszul duality of [13] than dgCat. The category dgCat0 inherits the Dwyer–Kan
model structure and the associated1-categories of dgCat and dgCat0 are equivalent.

There is a natural right Quillen functor from dgCat to1-categories. We write qCat for
simplicial sets with the Joyal model structure, then the dg nerve NdgWdgCat! qCat is con-
structed [18, Section 1.3.1]; it was further analyzed in [20, Section 4] and [13, Section 4].
It may be restricted to dgCat0.

The monoidal structure on dgCat may easily be extended to dgCat0 with one adjust-
ment: We need to define 0˝D to be 0 for all dg categories D (the standard definition
would be a dg category with the same objects asD but only zero morphisms and this is not
an object of dgCat0). The inclusion dgCat0 ! dgCat is lax monoidal and induces a strong
monoidal functor on homotopy categories. We call such functors quasi-strong monoidal.

Over a ground ring k that is not a field we may also consider the category dgCatfr of k-
free dg categories, which are those whose hom spaces have k-free underlying graded mod-
ules. This is a relative category whose weak equivalences are given by quasi-equivalences.

A curved category is a graded category equipped with a degree 1 map d on all mor-
phism spaces satisfying the Leibniz rule, and a degree 2 curvature endomorphism hX for
each object X such that for f WX ! Y we have d2f D hY f � f hX .

LetD be a dg category with the set of objects ObD and consider the coalgebraD0WD
kŒObD� spanned by grouplike elements, one for every object inD. ThenD can be viewed
it as a monoid in bicomodules over the cosemisimple coalgebra D0. This is an example
of a semialgebra.
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In particular, the space of morphisms between two objects d; d 0 is given by the coten-
sor product kd�D0D�D0kd 0 where kd is the 1-dimensional comodule whose coaction
map is induced by the inclusion of d into ObD.

Let C be a coalgebra over k. If k is not a field we shall always assume that C is k-free,
i.e. the underlying k-module is free.

We denote by C0 is its coradical, i.e. its maximal cosemisimple subcoalgebra and set
xC WD C=C0. We say C is a pointed coalgebra if C0 is a direct sum of copies of the ground
field. Such coalgebras are also called cocomplete augmented cocategories. We then denote
the set of grouplike elements by ObC so that C0 Š kŒObC �.

A pointed coalgebra C is split if it is equipped with a section "WC ! C0 of the inclu-
sion C0 ! C .

We will now consider curved coalgebras.
As in [13] many statements become easier when moving from the category of coal-

gebras to the opposite category of pseudocompact algebras by taking continuous duals.
Recall that a pseudocompact algebra is a topological algebra that is the projective limit of
(discrete) finite-dimensional algebras.

Recall the following definition, analogous to [19, Section 3.1].

Definition 1.1. A curved pseudocompact algebra A D .A; d; h/ is a graded pseudocom-
pact algebra supplied with a derivation d W A ! A (a differential) of degree 1 and an
element h 2 A2 called the curvature of A, such that d2.x/ D Œh; x� and d.h/ D 0 for
any x 2 A.

A curved morphism between two curved pseudocompact algebras A ! B is a pair
.f; b/ where f WA! B is a map of graded algebras of degree zero and b 2 B1 so that:

(1) f .dAx/ D dBf .x/C Œb; f .x/�;

(2) f .hA/ D hB C dB.b/C b2.

Two such morphisms .f; b/ and .g; c/ are composed as .g; c/ ı .f; b/D .g ı f; cC g.b//.
In particular, every map .f; b/ can be decomposed .f; b/ D .id; b/ ı .f; 0/.

Definition 1.2. A curved coalgebra is a coalgebra C equipped with an odd coderivation
d and a homogeneous linear function hWC ! k of degree 2, called the curvature, such
that its dual .C �; d�; h�/ is a curved pseudocompact algebra.

A morphism of curved dg coalgebras from .C; dC ; hC / to .D; dD; hD/ is given by the
data .f; a/ where f WC !D is a morphism of graded coalgebras and aWC ! k is a linear
map of degree 1, such that .f �; a�/ is a curved morphisms D� ! C �. The composition
rule is .g; b/ ı .f; a/ D .g ı f; b ı f C a/.

Definition 1.3. A pointed curved coalgebra is a tuple .C;�k; "k; d; hk; "C / such that

• .C;�k; "k; d; hk/ is a curved coalgebra (over k)

• the restriction of d to the coradical C0 ,! C is zero,

• "C WC !C0 is a coalgebra map compatible with the differential d , which is left inverse
to i WC0 ,! C .
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We will often write simply C or .C; "C / for .C;�k; "k; d; hk; "C / when it does not cause
confusion.

The map " together with the comultiplication induce the structure of a C0-bicomodule

on C . It follows from coassociativity that �k factors as C
�
�! C�C0C ! C ˝ C . Thus,

�WC ! C�C0C and " exhibit C as a comonoid in C0-bicomodules. The inclusion C0 ,!
C provides a coaugmentation of this comonoid. The differential d is compatible with
the C0-bicomodule structure and the comonoid structure given by � and ". Note also
that there is automatically a curvature h with values in C0, obtained by factorizing the
curvature hkWC ! k as "k ı .hk ˝ idC0/ ı �C WC ! C ˝ C0 ! k˝ C0 ! k, where �C
is the right coaction. We define h as .hk ˝ idC0/ ı �C .

We note that in particular the zero vector space 0 with coradical 0 and all defining
maps equal to the zero map is a pointed curved coalgebra which we will also denote by 0.

Definition 1.4. A morphism .f;a/W .C; "/! .D; ı/ of pointed curved coalgebras consists
of

• a morphism .f; ak/ of curved coalgebras

• a factorization of ak as the composition C
a
�! D0 ! k

such that

• ı ı f D f ı ",

• f and a are D0-bicomodule maps,

where theD0-bicomodule structure onC is induced by the map f WC0!D0 on coradicals
induced by f (this is a slight abuse of notation, but it will be clear from context what the
domain of f is).

The composition is then defined as

.g; b/ ı .f; a/ D .g ı f; b ı f C g ı a/:

The category of pointed curved coalgebras will be denoted by ptdCoa. The same cate-
gory together with a final object � will be denoted by ptdCoa�.

Recall that when k is not a field the category ptdCoa� consists of k-free curved pointed
coalgebras.

Given a pair of grouplike elements x; y in a C 2 ptdCoa� we write C.x; y/ for the
complex kx�C0C�C0ky , analogous to the hom space in a category.

1.3. Recalling categorical Koszul duality

In [13], we proved there is a bar-cobar an adjunction � a B between pointed curved
coalgebras and k-free dg categories. Over a field k this induces a Quillen equivalence
between the categories ptdCoa� and dgCat0 or suitable model structures.

GivenC2ptdCoa� the cobar construction�C is defined to have underlying graded cat-
egory given by the tensor monoid TC0 xC Œ�1� in C0-bicomodules and differential induced
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by differential, comultiplication and curvature. A weak equivalence of pointed curved
coalgebras is a map f WC ! C 0 such that �.f / is a quasi-equivalence. This is part of a
model structure when k is a field. When k is a PID we will consider ptdCoa� with these
weak equivalences as a relative category.

Similarly, given a dg category D viewed as a monoid in D0-bicomodules the bar
construction is defined as the tensor coalgebra TD0 xDŒ1�whereDŠD0˚ xD is a choice of
splitting of D as a bicomodule. The differential and curvature are induced by differential
and composition in D. Note that the splitting is not canonical and this is a source of
substantial technical difficulties (also present in the one-object situation), for the details
we refer to [13, Section 3].

The adjunction is naturally written as

Hom.C;BD/ Š MC
�
¹ xC ;Dº

�
Š Hom.�C;D/

where the middle term is the set of Maurer–Cartan (MC) elements in the reduced convolu-
tion category ¹ xC;Dº which will be discussed in detail below, see Definitions 3.2 and 4.2.

We note the following special cases. Let 0 denote the dg category with one object
and only the zero morphism and ; the empty dg category. Recall furthermore the initial
object 0 and the final object � in ptdCoa�. Then B; D 0 and �0 D ; by unravelling the
definitions. Furthermore, we define B0 D � and �� D 0.

2. Quivers, bicomodules and resolutions

We recall the category of graded k-quivers following Keller [15]. A graded k-quiver V
consists of a set of vertices or objects ObV and a graded k-module V.x; y/ of arrows for
every pair of objects x; y. (We shall always assume V.x; y/ is k-free.)

A morphism V ! W consists of a map on objects f WOb V ! ObW and for each
pair x; y 2 ObV a morphism of arrows V.x; y/! W.f x; fy/.

The category of graded quivers will be denoted by grQuiv.
One sees that the data of a graded quiver is equivalent to a pair .N; C / where C is

a coalgebra of the form ˚k and N is a graded bicomodule N over it. One defines the
correspondence by N D

L
x;y V.x; y/ and C D kŒObV �.

Lemma 2.1. There is a closed monoidal structure on grQuiv, with

Ob.V ˝W / D Ob.V / � Ob.W / and .V ˝W /.x; y/ D V.x/˝ V.y/:

The internal hom is given by

Ob Hom.V;W / D Hom.ObV;ObW /

and
Hom.f; g/ D

M
x;y2ObV

Hom
�
V.x; y/;W.f x; gy/

�
:

Proof. Immediate from unravelling definitions.
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We also consider the category of augmented graded k-quivers grQuivaug whose objects
are graded quivers V together with a factorization kŒObV �

�
�! V

"
�! kŒObV � of the identity

on kŒObV �, which is defined as the quiver with V.x;y/D kıx;y . Morphisms of augmented
quivers are morphisms of quivers compatible with the augmentation maps � and ".

Remark 2.2. The tensor product defined as above of two augmented quivers is naturally
augmented and grQuivaug is a closed monoidal category. The internal hom is somewhat
delicate, it is described in detail in [15, Section 5.1].

We now show that arbitrary objects in ptdCoa� can be resolved by cofree coalgebras,
and in fact by bar constructions of dg categories. This will be important later.

Let ptdgrCo denote the category of pointed graded coalgebras, i.e. graded coalgebras
C with coradical C0 of the form˚k that are coaugmented comonoids over C0.

Lemma 2.3. There is a forgetful-cofree adjunction U WptdgrCo � grQuivaug
WG, where the

cofree functor sends a quiver Q to the tensor coalgebra over Q0 D kŒObQ�.

Proof. For any fixed pair of objects C;Q we have the cofree-forgetful adjunction of coal-
gebras in Q0-bicomodules, thus we find

Hom.UC;Q/ D
M

f WC0!Q0

HomQ0.f�UC;Q/

but as f commutes with U this isM
f WC0!Q0

HomQ0.Uf�C;Q/ Š
M

f WC0!Q0

HomQ0.f�C; TQ0Q/ Š Hom.C;GQ/

and this bijection is natural.

Let ptdCoastr denote the category of strict pointed curved coalgebras, with the same
objects as ptdCoa� but morphisms only the strict, i.e. uncurved, morphisms f W .C;d;h/!
.C 0; d 0; h0/ given by f WC ! C 0 compatible with differential and curvature.

Lemma 2.4. There is a comonadic adjunction V WptdCoastr � ptdgrCoWH with left adjoint
V given by the functor forgetting differential and curvature.

Proof. For simplicity we formulate the proof for k-free pseudocompact algebras, which is
contravariantly equivalent by dualizing. Thus we claim that there is a monadic adjunction
H�W ptdgrpcAlg � ptdcupcAlgstrWV � with the right adjoint V � forgetting differential and
curvature.

Given a pointed graded pseudocompact algebra A we define H�A to be freely gener-
ated by an element h in degree 2 as well as differentials da in degree jaj C 1 for every
a 2 A satisfying the rules for derivations and compatibility with the bimodule structure.
Then d2.a/ WD Œh; a� and this is easily seen to be a left adjoint of V �.

It is clear that V � reflects isomorphisms, thus the adjunction is monadic by the Barr–
Beck theorem if we can show that ptdcupcAlgstr has andV �preservesV �-split coequalizers.
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In fact, V � preserves all coequalizers that exist as coequalizers in the strict curved category
are given by coequalizers in the graded category equipped with the induced differential
and curvature. The existence of coequalizers amounts to the existence of equalizers in the
category of pointed curved coalgebras. The only concern is k-freeness, but submodules of
free k-modules are free as k is a PID.

Dualizing we see that V a H is comonadic.

Lemma 2.5. Any pointed curved coalgebra C is the equalizer of a diagram of cofree
pointed curved coalgebras, i.e. pointed curved coalgebras of the formHGV for a graded
augmented quiver V .

Proof. We consider C as an object in ptdCoastr. From the composition of the comonadic
adjunctions ptdCoastr � ptdgrCo from Lemma 2.4 and ptdgrCo� grQuiv from Lemma 2.3
we obtain a comonad K D HGUV on ptdCoastr and C D eq.KC � KKC/.

Note that a composition of comonadic functors is not necessarily comonadic, but it is
if the first functor (V in our case) satisfies the crude monadicity theorem (which is true
as V preserves all equalizers), see [2, Theorem 3.5.1]. We conclude by noting that this
diagram is also an equalizer diagram in ptdCoa�, which follows from the construction of
equalizers in curved coalgebras (or equivalently coequalizers in curved pseudocompact
algebras) in the proof of [13, Lemma 3.30].

Lemma 2.6. Any cofree coalgebra arises as the bar construction of a dg category.

Proof. Let V be a graded augmented quiver and write V0 D kŒObV � for the quiver given
by a copy of the ground field at every object and xV D V=V0 where Ob xV D ObV and the
quotient is taken for each pair of objects (it is free as V is augmented).

Then we define a differential graded quiver V 0 D V0 ˚ xV Œ�1�˚ xV ˚ V0Œ1� with dif-
ferential given by the identity on V0Œ1� and xV respectively. We note that there is a map of
quivers V0 ! V 0, but the natural projection is not compatible with the differential, so this
is not an augmentation.

Then define the dg categoryD by setting all composition zero except that each V0.x;x/
Š k is the unit at x 2 ObV 0.

It now follows from the definitions that BD Š HGV .

Corollary 2.7. Every object of ptdCoa� is of the form eq.BD1 � BD2/ for suitable dg
categories D1 and D2.

Proof. For a pointed curved coalgebra this is immediate from combining Lemma 2.5 and
Lemma 2.6. The final object � is by definition the bar construction of the dg category with
one object and only the zero morphism.

A similar result holds for dg categories:

Lemma 2.8. Any small dg category D is of the form coeq.�C1 � �C2/ for pointed
curved coalgebras C1; C2.
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Proof. We again construct a composition of monadic adjunctions. Forgetting the differ-
ential provides an adjunction U W dgCat � grCatWD, which satisfies the crude monadicity
theorem, as U preserves all coequalizers. (Coequalizers of differential graded categories
can be computed on the underlying graded category and then equipped with a suitable
differential.)

There is also a monadic adjunction from graded categories to graded reflexive quivers
(quivers V equipped with a unit kŒObV �! V ), see [26].

Together these give a monad T on dgCat and thus any dg category is the coequalizer
of free dg categories.

It remains to observe that any free dg category on a reflexive quiver V is the cobar
construction of a coalgebra C obtained by equipping V with the zero comultiplication on
V=V0.

3. Convolution

We now introduce a convolution structure on the maps between a pointed curved coalgebra
and a dg category. We will need the construction for not necessarily counital coalgebras,
so let us define a non-counital pointed graded coalgebra to be a pair .C0; C / where C0 is
a coalgebra of the form ˚k and C is a graded C0 bicomodule which has a coassociative
comultiplication C ! C�C0C , which is not necessarily counital.

Definition 3.1. A non-counital pointed curved coalgebra is a non-counital pointed graded
coalgebra that moreover has a differential d and a curvature hW C ! C0 such that the
square of the differential is given by the coaction of the curvature.

In particular, any pointed curved coalgebraC is non-counital pointed curved coalgebra
by forgetting the counit, and the quotient C=C0 is also a non-counital pointed curved
coalgebra (which is k-free as C0 ! C has a section).

Given a dg category D and a possibly non-counital pointed curved coalgebra C we
will now construct a convolution category ¹C;Dº as follows. Note that unless C is couni-
tal this is a non-unital category, i.e. a category without units.

The set of objects of ¹C;Dº is given by Hom.C0;D0/Š HomSet.ObC;ObD/. Given
two objects f; g in Hom.D0; C0/ we make C into a D0-bicomodule .f; g/�C via the
composition

C ! C0 ˝ C ˝ C0
f˝idC˝g
�������! D0 ˝ C ˝D0:

Note that for .f; f /�C we will write f�C .
Then we define

Hom¹C;Dº.f; g/ D HomD0
�
.f; g/�C;D

�
:

We note this agrees with the internal hom of quivers from Lemma 2.1.
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To define the composition note that for fixed f;h the comultiplication�WC!C�C0C

induces a map .f; h/�C ! .f; g/�C�D0.g; h/�C of D0-bicomodules for each g, put
differently .f;h/�.C�C0C/� .f;g/�C�D0.g;h/�C (by definition of the cotensor prod-
uct).

The composition Hom¹C;Dº.f; g/˝ Hom¹C;Dº.g; h/! Hom¹C;Dº.f; h/, spelled out
HomD0..f;g/�C;D/˝HomD0..g;h/�C;D/!HomD0..f;h/�C;D/ is then defined by
convolution:

� ı  WC
�
�! C�C0C ,! C�D0C

�˝ 
���! D�D0D

�
�! D

or, spelling out the D0-bicomodule structures:

.f; h/�C
�
�! .f; h/�.C�C0C/ ,! .f; g/�C�D0.g; h/�C

�˝ 
���! D�D0D

�
�! D

The composition is associative as� and � are (co)associative. Thus ¹C;Dº is a (non-
unital) monoid in kŒHom.C0;D0/�-bicomodules.

The differential on C and D induces a natural differential on ¹C; Dº. Let C have
curvature hC W C ! C0 and let �WD0 ! D be the unit map of D. Then at an object
f 7! � ı f ı hC WHom.C0; D0/! Hom.C; D/ defines a curvature on the convolution
category, compatible with the differential.

Definition 3.2. Given a dg category D and a possibly non-counital pointed curved coal-
gebra C the convolution category ¹C; Dº is the possibly non-unital curved category of
maps from C to D, with objects Hom.C0;D0/, morphisms

Hom¹C;Dº.f; g/ D HomD0
�
.f; g/�C;D

�
and composition given by the convolution product as defined above.

If C has a counit "WC ! C0 andD has a unitD0!D then every object f has a unit
� ı f ı " and ¹C;Dº is a (unital) curved category.

We note that we may also define a curved convolution monoid ifD is a curved category
as long as C is counital, then the curvature will acquire an additional summand f 7!
hD ı f ı "C .

Lemma 3.3. Let C; C 0 be (possibly non-counital) pointed graded coalgebras and D a
graded category. Then there is an isomorphism of (possibly non-unital) graded convolu-
tion categories ¹C; ¹C 0;Dºº Š ¹C ˝ C 0;Dº.

Proof. The statement is true on the underlying bicomodules by Lemma 2.1. Next we com-
pare the convolution products, which essentially follows by naturality of the coproduct: If
f #;g#WC !Hom.C 0;D/ are adjoint to f;gWC ˝C 0!D we apply the two compositions
to c ˝ c0. We obtain f #.c.1//.c0.1//:g#.c.2//.c0.2// and f .c.1/ ˝ c0.1//:g.c.2/ ˝ c0.2// in
Sweedler notation, which of course agree.

The curved version of the lemma needs an extra assumption as ¹C 0;Dº will be curved
in general.
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Corollary 3.4. Let C;C 0 be (possibly non-counital) pointed curved coalgebras and D a
curved category. Then there is an isomorphism of (possibly non-unital) curved convolution
categories ¹C; ¹C 0;Dºº Š ¹C ˝ C 0;Dº in either of the following three cases:

• C is counital, D has no curvature,

• C 0 and D have no curvature,

• C and C 0 are both counital.

Proof. The conditions of the corollary are exactly those needed to define the curvature on
both sides. It is then straightforward to check that the induced differential and curvature
are compatible with the adjunction and agree on both sides.

4. Closed monoidal structure on coalgebras

In order to define a closed monoidal structure on coalgebras we need to introduce the
Maurer–Cartan (MC) category of a curved category.

Definition 4.1. Given a curved category D we construct its dg MC category MCdg.D/
whose objects are pairs .X; �/ with X an object of D and � an MC element in End.X/,
i.e. � satisfies d� C �2 C hX D 0 where hX is the curvature of D at X .

The hom spaces are given by the complex of morphisms between twisted elements:

HomMC ..X; �/; .X 0; � 0// D HomD.X;X 0/Œ�;�
0�
WD .HomD.X;X 0/; d Œ�;�

0�/

where d Œ�;�
0�.f / D df C � 0f � .�1/jf jf �.

We also write EndD.X/� for HomD.X/Œ�;��.
Note that even ifD is curvedMCdg.D/ is naturally a dg category. We denote byMC.D/

the set of objects of MCdg.D/.

Definition 4.2. Given C 2 ptdCoa� andD 2 dgCatwe define the Maurer–Cartan category
MC¹C;Dº to be the full subcategory of MCdg.¹C;Dº/ whose objects are the objects of the
non-unital dg category MCdg.¹ xC ;Dº/.

Thus, an object of MC¹C; Dº consists of a map f WOb C ! ObD together with a
Maurer–Cartan element in � 2 EndMCdg .¹ xC;Dº/.f / D HomD0.f� xC ;D/.

Remark 4.3. Given a pointed curved coalgebra C and a dg category D Definition 4.2
categorifies the set of MC elements in maps from xC to D which mediates the Koszul
adjunction � a B. This leads naturally to consider the reduced convolution category
¹ xC ; Dº, however as this is a non-unital category we need to consider morphisms com-
ing from the larger (unital) category ¹C;Dº.

The category of pointed curved coalgebras admits a symmetric monoidal structure
given by the ordinary tensor product. Indeed, ifC;C 0 are objects in ptdCoa� with curvature
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functions hW C ! C0 and h0W C 0 ! C 00 and counits "W C ! C0 and "0W C 0 ! C 00 then
C ˝ C 0 is likewise pointed curved with the coradical kŒObC �˝ kŒObC 0� and curvature
h˝ "0 C "˝ h0WC ˝ C 0 ! C0 ˝ C

0
0. Furthermore, we define C ˝ � WD � ˝ C WD �.

We are now ready for our first main result.

Theorem 4.4. The tensor product defines a closed monoidal structure on ptdCoa� where
the internal hom Hom.C; C 0/ is defined as Hom.C;BD/ D BMC¹C;Dº whenever C 0 D
BD. We also define Hom.C;�/ D � and Hom.�; C / D 0 if C ¤ �.

Note that from this definition Hom.C;0/D BMC¹C;;º D B; D 0 and Hom.0;BD/D
BMC¹0; Dº D B0 D �. From the latter it follows (see the proof of Theorem 5.4 below)
that Hom.0; C / D � for all C .

Remark 4.5. It is easy to see that the tensor product makes ptdCoa� into a monoidal
category and one may check that ˝ commutes with all colimits. As ptdCoa� is locally
presentable, the existence of an internal hom as a right adjoint to the bifunctor ˝ then
follows. The explicit description that we give is more complicated but turns out to be very
fruitful.

We prove some lemmas before turning to the proof of Theorem 4.4.

Lemma 4.6. Given C;C 0 2 ptdCoa� and D 2 dgCat there is a decomposition

MC
�
¹C ˝ C 0;Dº

�
Š

a
f 2Hom.C0˝C 00;D/

a
�2MC.End

¹C0˝
xC 0;Dº

.f //

MC.End
¹ xC˝C 0;Dº.f /

�/

where .f;�/ is an object in MC.¹C0˝ xC 0;Dº/ and the twist by � is induced by the natural
action of ¹C0 ˝ xC 0;Dº on ¹ xC ˝ C 0;Dº.

Proof. The decomposition C ˝ C 0 Š C0 ˝ xC 0 ˚ xC ˝ C 0 induces a bicomodule decom-
position of ¹C ˝ C 0;Dº and the product decomposes as

.�;  /:.�0;  0/ D .�:�0; �: 0 C  :�0 C  : 0/;

i.e. ¹C0 ˝ xC 0; Dº is a subsemialgebra and ¹ xC ˝ C 0; Dº is an ideal of the convolution
category. In particular, the second summand has an action by the first.

Thus an MC element in ¹C ˝ C 0; Dº is given by an object f 2 Hom.C0 ˝ C 00; D0/
together with MC elements � 2 End

¹C0˝ xC 0;Dº
.f / and  2 End

¹ xC˝C 0;Dº.f /
� .

The following lemma is the heart of constructing the closed monoidal structure. The
proof looks quite complicated, but it consists mostly in unravelling notations and book-
keeping in order to reduce the result to the usual tensor hom adjunction.

Lemma 4.7. Given C; C 0 2 ptdCoa� and D 2 dgCat there is a natural isomorphism in
ptdCoa�:

Hom.C ˝ C 0;BD/ Š Hom
�
C;Hom.C 0;BD/

�
(4.1)
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Proof. To make the argument clearer we first consider the case where C; C 0 and D have
one object. In this case we may discard the object f W Ob C � Ob C 0 ! ObD in our
considerations.

By the Koszul adjunction the left-hand side of (4.1) is the set of MC elements in the
convolution algebra ¹C ˝ C 0;Dº. There is a decomposition of vector spaces

¹C ˝ C 0;Dº Š ¹ xC ˝ C 0;Dº � ¹k˝ C 0;Dº

with ¹k˝ C 0;Dº a subalgebra. From Lemma 4.6 we obtain

MC
�
¹C ˝ C 0;Dº

�
Š

a
�2MC.¹k˝ xC 0;Dº/

MC
�
¹ xC ˝ C 0;Dº�

�
Š

a
�2MC.¹k˝ xC 0;Dº/

MC
�®
xC ; ¹C 0;Dº�

0¯�
where the second line follows from Lemma 3.3. To be precise, Lemma 3.3 only identifies
the underlying graded algebras. It remains to compare the differential and curvature on
both sides. Here �0 is defined as the image of � in ¹C 0; Dº under the map induced by
C 0! xC 0. Then �0 is MC and thus the twisted convolution algebra ¹C 0;Dº�

0

is a dg algebra
and ¹ xC ; ¹C 0; Dº�

0

º is a well-defined curved algebra. Unravelling definitions matches up
differentials and curvatures in the two different convolution algebras and thus the MC
elements agree.

Thus we write an element of the left-hand side of (4.1) as a pair .�;  / with � 2
MC.¹k˝ xC 0;Dº/ and  2 MC.¹ xC ; ¹C 0;Dº�

0

º/.
On the right-hand side of (4.1) we have MC elements in ¹ xC ;MC¹C 0; Dºº, i.e. pairs

.X; �/ where X 2 Ob¹ xC ;MC¹C 0;Dºº and � 2 End.X/ is MC. Thus X is an MC element
of ¹ xC 0;Dº, equivalent to � on the LHS. The MC element � lives in

End.X/ Š Hom
�
xC ;Hom.C 0;D/X

0�
;

writing X 0 for the image of X . Thus after identifying X and � we may identify � with  .
We consider arbitrary objects next. Again we decompose the data of an element of

the left-hand side of (4.1) first. An object of Hom.C ˝ C 0; BD/ is an MC element of
¹C ˝ C 0; Dº, so it consists of an object f , given by a map f WObC � ObC 0 ! ObD,
and an MC element in the endomorphism algebra of f , i.e. ˆ 2 HomD0.f�C ˝ C 0; D/
satisfying dˆCˆ2ChD0where h is the curvature induced by the curvatures ofC andC 0.

As above, we use Lemma 4.6 to identify ˆ with a pair

� 2 MC
�

HomD0
�
f�.C0 ˝ xC 0/;D

��
;  2 MC

�
HomD0

�
f�. xC ˝ C

0/;D
���

and consider � and  separately. Here we spelled out the endomorphisms of f as bico-
module maps,

End
¹C0˝ xC 0;Dº

.f / WD HomD0
�
f�.C0 ˝ xC 0/;D

�
:
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Using the definition of comodule maps we find:

� 2 HomD0
�
f�.C0 ˝ xC 0/;D

�
Š

M
d1;d22ObD

M
c1;c

0
1

f .c1;c
0
1/Dd1

M
c2;c

0
2

f .c2;c
0
2/Dd2

Hom
�
C0.c1; c2/˝ xC 0.c

0
1; c
0
2/;D.d1; d2/

�

Š

M
c2ObC

M
d1;d22ObD

M
c01;c

0
22ObC 0

f .c;c01/Dd1; f .c;c
0
2/Dd2

Hom
�
xC 0.c01; c

0
2/;D.d1; d2/

�

where we used C0.c1; c2/ D k:ıc1;c2 . The MC condition says that each �.c/ is an MC
element in HomD0.f

].c/� xC 0;D/. We also have

 2 HomD0
�
f�. xC ˝ C

0/;D
��

D

M
d1;d22ObD

M
c1;c22ObC; c01;c

0
22ObC 0

f .c1;c
0
1/Dd1; f .c2;c

0
2/Dd2

Hom
�
xC.c1; c2/˝ C

0.c01; c
0
2/;D.d1; d2/

��
D

M
d1;d22ObD

M
c1;c22ObC; c01;c

0
22ObC 0

f .c1;c
0
1/Dd1; f .c2;c

0
2/Dd2

Hom
�
xC.c1; c2/;

Hom
�
C 0.c01; c

0
2/;D.d1; d2/

��.c1/;�.c2/�
where we used Lemmas 3.3 and 4.6 again to identify the last two lines as graded algebras
and then observe that differential and curvature also match up.

On the right-hand side of (4.1) we unravel similarly. By definition an MC element of
the internal hom Hom.C; BMC¹C 0; Dº/ is given by an MC element of the convolution
category ¹C;MC¹C 0;Dºº, i.e. an object „WObC ! Ob.MC¹C 0;Dº/ with an MC element
� in End.„/ D HomM0.„�C;MC¹C

0;Dº/ where M0 is the coalgebra kŒMC¹C 0;Dº�.
Thus „ sends any c 2 ObC to a pair .f ].c/; �.c// with f ].c/WObC 0 ! ObD an

object and �.c/ an MC element

�.c/ 2 EndMC¹C 0;Dº.f
]/ Š HomD0.f

]
�
xC 0;D/

Here we write f ]W Ob C ! Hom.Ob C 0; ObD/ as it may be seen as the adjoint of
f WObC � ObC 0 ! ObD from the LHS.

Summing over c we find that � is equivalent to an MC element inM
c2ObC

End
¹ xC 0;Dº

�
f ].c/

�
Š

M
c2ObC

HomD0
�
.f ]/� xC 0;D

�
Š

M
c2ObC

M
d1;d22ObD

M
c01;c

0
22ObC

f ].c/.c0i /Dd
0
i

Hom
�
xC 0.c01; c

0
2/;D.d1; d2/

�

which is exactly the same curved algebra that � lives in.
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For the final step we need to match up � with  . By definition � is an MC element in

HomD0
�
„� xC ;MC¹C 0;Dº

�
Š

M
�1;�22ObMC¹C 0;Dº

M
c1;c22ObC
„.ci /D�i

Hom
�
xC.c1; c2/;MC¹C 0;Dº.�1; �2/

�
Š

M
c1;c22ObC

Hom
�
xC.c1; c2/;Hom¹C 0;Dº

�
f ].c1/; f

].c2/
��.c1/;�.c2/�

Š

M
c1;c22ObC

Hom
�
xC.c1; c2/;HomD0

��
f ].c1/; f

].c2/
�
�
C 0;D

��.c1/;�.c2/�
Š

M
c1;c22ObC

M
d1;d22ObD
c01;c

0
22ObC 0

f ].ci /.c
0
i /Ddi

Hom
�
xC.c1; c2/;Hom

�
C 0.c01; c

0
2/;D.d1; d2/

��.c1/;�.c2/�

where we used that the hom spaces in MC¹C;Dº are defined in terms of the non-reduced
coalgebra C 0.

Matching � with � this shows that  and � are MC elements in isomorphic curved
algebras and the construction of the bijection is complete.

It remains to consider the special case that C is �. Then, the left-hand side is
Hom.�; BD/ which is 0 unless D D ; in which case it equals �. The right-hand side
Hom.�;Hom.C 0;BD// is 0 unless Hom.C 0;BD/ is �, which by definition is only possi-
ble if D D ;. A similar argument applies if C 0 D �. As all objects here are initial or final
naturality is immediate.

Proof of Theorem 4.4. We observe first that the construction in Lemma 4.7 is functorial
on the full subcategory whose objects are bar constructions of dg categories. This is imme-
diate for the first variable, for the second variable it follows from the Yoneda embedding:
it suffices to construct a map

Hom
�
C;Hom.C 0; BD/

�
! Hom

�
C;Hom.C 0; BD0/

�
for any map BD ! BD0. But such a map is equivalent to

Hom.C ˝ C 0; BD/! Hom.C ˝ C 0; BD0/;

induced by functoriality of the ordinary hom.
Thus the theorem follows from Lemma 4.7 as we are able to rewrite an arbitrary

pointed curved coalgebra in terms of bar constructions. Indeed, using Corollary 2.7 we
write C 0 D limi BDi and define

Hom.C; C 0/ WD lim
i

Hom.C;BDi / Š lim
i

�
BMC¹C;Diº

�
:

This satisfies the adjointness isomorphism for fixed C 0 and thus is functorial in maps
limi BDi ! limi BD0i by the Yoneda lemma again. Naturality of adjointness follows.
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Remark 4.8. Note that the compatibility with limits also holds for Hom.�;�/ since we
have

Hom.�; limCi / D lim Hom.�; Ci / D 0

unless all Ci equal *, in which case we get Hom.�;�/ D �.

Corollary 4.9. For C;C 0;C 00 2 ptdCoa� we have an isomorphism of pointed curved coal-
gebras Hom.C;Hom.C 0; C 00// Š Hom.C ˝ C 0; C 00/.

Proof. This follows from Theorem 4.4 using the Yoneda lemma.

Remark 4.10. Our construction may be compared to the internal hom of (cocomplete
augmented) cocategories in terms of the internal hom of augmented quivers that is con-
sidered by Keller, see [15, Theorem 5.3] and the following discussion. Note that [15]
considers uncurved cocategories and uses them to express functors of augmented A1 cat-
egories. As usual in curved Koszul duality the introduction of curved coalgebras allows
us to remove the augmentation.

5. A monoidal model category

We next show that ptdCoa� is in fact a monoidal model category with its model structure
defined in [13]. For this we will have to consider the case that k is a field, but first we
prove some preliminary results when k is a PID.

We will first compare the monoidal structure on ptdCoa� and dgCat0.
Let C and C 0 be pointed curved coalgebras. Consider the canonical MC elements

�C 2 MC¹C;�C º and �C 0 2 MC¹C 0;�C 0º corresponding to the identity maps�C !�C

and �C 0! �C 0. We take their images in the curved categories ¹C;�C º and ¹C 0;�C 0º
induced by C ! xC and C 0 ! xC 0. Then the element �C ˝ 1 C 1 ˝ �C 0 is an MC ele-
ment in the curved category ¹C;�C º ˝ ¹C 0; �C 0º. Consider the natural map of curved
semialgebras

mW ¹C;�C º ˝ ¹C 0; �C 0º ! ¹C ˝ C 0; �C ˝�C 0º ! ¹C ˝ C 0; �C ˝�C 0º

where the second map is induced by the inclusion of the kernel of the counit. Then,
m.�C ˝ 1C 1˝ �C 0/ is an MC element in Hom.C ˝ C 0;�C ˝�C 0/ and thus by Koszul
duality, it determines a map of dg categories

M W�.C ˝ C 0/! �.C/˝�.C 0/:

Lemma 5.1. The mapM defined above is a quasi-equivalence of dg categories. Thus the
cobar construction is a quasi-strong monoidal.

Proof. Viewing all categories as semialgebras it suffices to prove that M induces a quasi-
isomorphism.
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Assume first that the pointed curved coalgebras C;C 0 have no curvature. Consider the
cosimplicial complexes TC0C D ¹C

�C0
i
º1iD0 and TC 00C

0 D ¹C
0�C 00

i
º1iD0. The cosimpli-

cial structures comes from considering the standard cosimplicial resolution ¹C�C0
i
º1iD2

and cotensoring on the left and on the right with C0. Thus the coface map come from
the comultiplication on C (respectively C 0) and the comodule coaction C0 ! C . The
codegeneracy maps are induced by the counit.

Then�C and�C 0 are the totalizations of the normalized cochain complexes of these
cosimplicial complexes, we have�.C/ŠN.TC0C/,�.C

0/ŠN.TC 00C
0/ and�.C ˝C 0/

Š N.TC0˝C 00C ˝ C
0/. Next we observe that TC0˝C 00C ˝ C

0 Š TC0C ˝ TC 00C
0. We then

claim that we can identify the map M W�.C ˝ C 0/ ! �.C/ ˝ �.C 0/ with the dual
Eilenberg–Zilber map. As such it induces a quasi-isomorphism on total complexes, prov-
ing the lemma in this special case.

To prove this claim we recall the dual Eilenberg–Zilber map

EZ�WN.A˝ B/! N.A/˝N.B/

that sends a˝ b 2 An ˝ Bn toX
pCqDn

X
.�;�/2Sh.p;q/

".�; �/��.a/˝ ��.b/

where we sum over all shuffles and ".�;�/ denotes the sign. In the case at handAD TC0C
and B D TC 00C

0 and we can check that EZ� is an algebra map.
Indeed, unravelling definitions we just have to match up shuffles on n objects with

pairs of shuffles on k and on n � k objects (with the correct signs), but this is a classical
computation, see [11, Section 17].

Since M is an algebra map by construction and on generators C ˝ C 0 the maps EZ�

andM are easily seen to agree (both send c˝e to c˝1C1˝e) we have shown the claim.
We turn to the general case whereC;C 0 may have curvature. We note that the coradical

filtration on any pointed curved coalgebra has the property that its associated graded has
no curvature. Thus, consider the coradical filtrations onC ,C 0 andC ˝C 0 and the induced
filtrations on �C ˝�C 0 and �.C ˝ C 0/. The map M W�.C ˝ C 0/! �.C/˝�.C 0/

is compatible with these filtrations, and thus it induces a map on associated graded.
These are nothing but the cobar constructions of the associated graded coalgebras. By
the special case proved above, this induced map is a quasi-isomorphism and so, F is a
quasi-isomorphism to begin with.

As usual, we need to consider the special case � 2 ptdCoa�, but both � and �.�/ D 0
are absorbing for the respective tensor product.

Remark 5.2. The argument above using the Eilenberg–Zilber map (albeit in the dual
setting of bar-constructions of algebras over a field) goes back to Cartan and Eilenberg,
[7, Chapter XI, Section 6].

Corollary 5.3. The tensor product with a pointed curved coalgebra preserves all weak
equivalences of pointed curved coalgebras.
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Proof. Let E;C;C 0 be pointed curved coalgebras and C ! C 0 a weak equivalence. Then
we claim E ˝ C ! E ˝ C 0 is also a weak equivalence. By definition, we need to check
�.E ˝ C/ ' �.E ˝ C 0/, or, by Lemma 5.1, �.E/˝�.C/ ' �.E/˝�.C 0/.

Thus the result follows if tensoring with a cofibrant dg category preserves quasi-
equivalences. But this is readily verified, both quasi-full faithfulness and quasi-essential
surjectivity are easy to check.

Theorem 5.4. Let k be a field. The category ptdCoa� is a monoidal model category.

Proof. Recall the model structure on pointed curved coalgebras from [13]. The cofibra-
tions are given by injections and a map f WC ! C 0 is a weak equivalence exactly if�.f /
is a quasi-equivalence.

It remains to show that this is compatible with the closed monoidal structure from
Theorem 4.4. The unit axiom follows from Corollary 5.3 as tensor product preserves all
weak equivalences.

It remains to check the pushout-product axiom, i.e. let E ! E 0 and C ! C 0 be cofi-
brations in ptdCoa�. We first check that .E ˝ C 0/ qE˝C .E 0 ˝ C/ ! E 0 ˝ C 0 is a
cofibration. Indeed, rewriting the pushout as a coequalizer it follows from the description
of coequalizers in [13, Lemma 3.30] that the coequalizer of any two parallel arrows with
a cone has underlying space the coequalizer in graded augmented quivers. This suffices to
show that the canonical map to E 0 ˝ C 0 is injective, and thus a cofibration.

Next we assume that C ! C 0 is, moreover, a weak equivalence. By the first part (or
by inspection)E ˝C !E ˝C 0 andE ˝C !E 0˝C are cofibrations. As� preserves
cofibrations we see that �.E ˝ C 0/q�.E˝C/ �.E 0 ˝ C/ is in fact a homotopy colimit,
and weakly equivalent to the homotopy colimit .�C ˝ �E 0/qh�C˝�E .�C

0 ˝ �E/.
But the latter is weakly equivalent to �C ˝ �E 0 as �C ˝ �E ! �C 0 ˝ �E is a
weak equivalence. Thus the canonical map to �.C 0 ˝E 0/ ' �C 0 ˝�E 0 is also a weak
equivalence.

Remark 5.5. It is well known that dgCat is not a monoidal model category. As � is only
quasi-monoidal there is no contradiction to ptdCoa� being a monoidal model category.

In order to consider mapping spaces, we recall an adjunction between simplicial sets
with the Joyal model structure (which we denote qCat for quasi-categories) and pointed
curved coalgebras. Define F.C/ WD HomptdCoa�. zC�.�

�/; C / where C is a pointed curved
coalgebra,K is a simplicial set and zC.K/ is the twisted chain coalgebra ofK (the detailed
definition of is found in [13, Section 4]). Then there is a Quillen adjunction zC�W qCat �
ptdCoaWF .

To consider mapping spaces we will be interested in the ‘maximal subgroupoid’ of an
1-category.

Definition 5.6. We call the maximal Kan subset of a quasi-category K the core of K.

It is clear that the core is right adjoint to the inclusion of Kan complexes into quasi-
categories (weak Kan complexes).
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Corollary 5.7. Let C;C 0 be pointed curved coalgebras over a field k. Then their mapping
space Map.C; C 0/ in the model category ptdCoa� is weakly equivalent to the core of the
1-category F Hom.C; C 0/.

Proof. We define a cosimplicial simplicial set E� by letting En be the nerve of the
groupoid with object set Œn� and one arrow connecting each pair of objects. By [9, Sec-
tion 4.1], this is a Reedy cosimplicial resolution of the point in the Joyal model structure
i.e. a cosimplicial resolution of the trivial1-category.

We claim that tensoring with zC�.E�/ gives a cosimplicial resolution in ptdCoa�.
Indeed, as zC� and the tensor product are left Quillen, they preserve colimits (and thus
latching objects) and cofibrations, and thus Reedy cofibrant objects.

We compute

Map.C; C 0/ Š Hom�ptdCoa
�
C ˝ zC�.E

�/; C 0
�

Š Hom�ptdCoa
�
zC�.E

�/;Hom.C; C 0/
�

Š HomsSet
�
E�; F Hom.C; C 0/

�
by the closed monoidal structure of ptdCoa�. But the expression in the final line above is, by
construction, the core ofF Hom.C;C 0/. (We mayalso view it as MapqCat.�;F Hom.C;C 0//,
which is known to be the core.)

Remark 5.8. We recall from [13, Section 4.2] the relation of Koszul duality and the coher-
ent nerve Ncoh construction sending simplicial categories to quasi-categories. There is the
following diagram, where the inner and outer square commute up to homotopy.

qCat
C

//

zC�

��

sCat
Ncohoo

G�

��

ptdCoa�
�

//

F

OO

dgCat0
Boo

H

OO

Here the horizontal arrows are 1-equivalences and downward arrows are induced by
normalized chain functors, the upwards maps are right adjoints (on the level of homotopy
categories). We also showed in [13] that the dg nerve Ndg, the natural functor from dgCat0

to qCat which is equivalent to Ncoh ıH , factors through B.
On the left-hand side of the above diagram we have simplicial sets with the Joyal

model structure and pointed curved coalgebras, which both possess monoidal model struc-
tures. In contrast, simplicial categories or dg categories on the right-hand side do not have
monoidal model structures.

Note that, moreover, zC� has a lax monoidal structure given by the Eilenberg–Zilber
map together with the isomorphism zC�.K/ Š C�.K/ of curved coalgebras. Thus zC� also
has a lax closed structure. This closed structure is far from being quasi-strong. Indeed,
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restricting to the subcategory of spaces in qCat it is clear that the map

zC�Map.X; Y /! Hom. zC�X; zC�Y /

does not become an isomorphism in the homotopy category: Hom. zC�X; zC�Y / ignores
the homotopy cocommutative nature of chain coalgebras and so cannot faithfully reflect
maps between the corresponding spaces.

6. Coalgebras and dg categories

Corollary 6.1. There is an equivalence of closed monoidal categories Ho.ptdCoa�/ Š
Ho.dgCat/ (for k an arbitrary PID).

Proof. The equivalences are by [13, Theorem 3.40 and Corollary 3.41]. Note that we
replaced the subcategory of k-free dg categories in dgCat0 by the usual dgCat as the
two have equivalent homotopy categories (and the natural inclusions dgCat0fr! dgCat0!
dgCat are quasi-strong monoidal). The equivalences are strong monoidal by Lemma 5.1
and thus also closed by general principles.

In fact, before passing to homotopy categories there is a very strong relation between
the monoidal model category ptdCoa� and the model category dgCat.

Recall that given a model category M and a monoidal model category C we say M

is a C -enriched model category [17, Definition A.3.1.5] if M is enriched in C , tensored
and cotensored over C and moreover the tensor action z̋ WC �M !M is a left Quillen
bifunctor (which ensures that enrichment and cotensor are also compatible with the model
structures). This is a natural generalization of the notion of simplicial model category.

Theorem 6.2. Let k be a field. The category dgCat0 is a ptdCoa�-enriched model category.

Proof. We define the external hom of a coalgebra C and dg category D as

Hom.�C;D/ WD BMC¹C;Dº

and extend to all dg categories by writing a dg category as a colimit of cobar constructions
using Lemma 2.8.

We then define the cotensoring DC WD MC¹C;Dº and the tensoring by C z̋ �C 0 WD
�.C ˝ C 0/ for dg categories in the image of�, extended by colimits to all dg categories.

In both cases functoriality follows from the Yoneda lemma as in the proof of Theo-
rem 4.4. E.g. for fixed C;D any map �C 0 ! �C 00 induces a map

Hom
�
�C 00;MC¹C;Dº

�
! Hom

�
�C 0;MC¹C;Dº

�
and thus

Hom
�
�.C 00 ˝ C/;D

�
! Hom

�
�.C 0 ˝ C/;D

�
:
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To show compatibility for the cotensoring we need to check that Hom.D0; DC / Š

Hom.C;Hom.D0;D//. Assume first D0 D �C 0. We have

Hom
�
C;Hom.�C 0;D/

�
Š Hom

�
C;BMC¹C 0;Dº

�
Š Hom

�
C;Hom.C 0;BD/

�
Š Hom.C ˝ C 0;BD/

Š Hom
�
C 0;Hom.C;BD/

�
Š Hom

�
�C 0;MC¹C;Dº

�
and the last term is Hom.D; DC / by definition. The general case follows by applying
Lemma 2.8 and observing that the construction on both sides is compatible with colimits
as in the proof of Theorem 4.4.

The compatibility condition of the tensor product is

Hom.C z̋ D0;D/ Š Hom
�
C;Hom.D0;D/

�
:

Again it suffices to show this if D0 D �C 0. Then we have

Hom.C z̋ �C;D/ Š Hom
�
�.C ˝ C 0;D/

�
Š Hom.C ˝ C 0;BD/

Š Hom
�
C;Hom.C 0;BD/

�
Š Hom

�
C;Hom.�C 0;D/

�
completing the proof of compatibility. Here the second line follows as Hom.C;BD/ Š
BMC¹C;Dº Š Hom.�C;D/ as pointed curved coalgebras by definition.

It remains to show that the enrichment is compatible with the model structures, i.e.
that z̋ is a left Quillen bifunctor, associating to a pair of cofibrations f W C ! C 0 and
gWD ! D0 a cofibration

f�gW .C z̋ D0/qC z̋D .C
0 z̋ D/! C 0 z̋ D0

that is acyclic if f or g is.
We show first that f�g is a cofibration. By [14, Corollary 4.25] it suffices to check

this only in the case that f and g are generating cofibrations. But the generating cofi-
brations in dgCat0 are images of cofibrations under �, as was shown in the proof of [13,
Proposition 3.33].

Thus we may assume D ! D0 is of the form �. Qg/ for a cofibration QgWE ! E 0 and
we consider

�.C ˝E 0/q�.C˝E/ �.C
0
˝E/! �.C 0 ˝E 0/

which is a cofibration as it is an image under � of f� Qg, which in turn is a cofibration by
Theorem 5.4.

Similarly, to check the case one of f , g is acyclic it suffices to check on generating
trivial cofibrations in dgCat. But these also lie in the image of �, so the same argument
applies.
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The following observation was used in the proof of Theorem 6.2, it is worth re-stating.

Corollary 6.3. The Koszul adjunction�WptdCoa�� dgCatWB is enriched in ptdCoa�, i.e.
there is a natural isomorphism Hom.C;BD/ Š Hom.�C;D/ of pointed curved coalge-
bras enhancing the adjunction isomorphism.

Remark 6.4. In particular, note that the MC elements constructed in an ad-hoc way to
prove categorical Koszul duality in [13] are just the objects of the MC category MC¹C;Dº.

We obtain the following corollary over an arbitrary PID.

Corollary 6.5. Let D and D0 be k-free dg categories over a PID k. Then the internal
hom in Ho.dgCat/ may be computed as

RHom.D;D0/ ' MC¹BD;D0º:

Proof. Let first k be a field. On the level of homotopy categories,L� is a strong monoidal
equivalence of categories by Corollary 6.1, thus it identifies internal homs. It follows that
L�.RHom.BD;BD0// is an internal hom in the homotopy category. Since BD0 is always
fibrant and all pointed curved coalgebras are cofibrant we may rewrite the internal hom
underived as �.Hom.BD;BD0// ' MC¹BD;D0º.

If k is only a PID we do not have the model structures available. We still have, for
any C in ptdCoa�, an adjunction between �˝ C and Hom.C;�/ as endofunctors of the
relative category .ptdCoa�;'/. Note that the weak equivalences of pointed curved coalge-
bars satisfy 2-out-of-6 as they are the preimage of weak equivalences in a model category.
Thus we may view .ptdCoa�;'/ as a homotopical category in the sense of [10]. More-
over, the adjunction is deformable in the sense of [10, Section 43.1]: By Corollary 5.3 the
left adjoint is homotopical (i.e. preserves weak equivalences), and the right adjoint is right
deformable, see [10, Section 40.1], i.e. the unit id! B� induces a natural transforma-
tion to the homotopical functor Hom.C;B��/. We have to check that Hom.C;B��/ is
indeed homotopical. For a weak equivalence f WC 0 ! C 00 in ptdCoa� the induced map
BMC¹C; �C 0º ' BMC¹C; �C 00º is a weak equivalence as MC¹C; �º preserves homo-
topy equivalences and thus quasi-equivalences of cofibrant dg categories. We prove this in
Lemma 6.6 below.

Lemma 6.6. For any C 2 ptdCoa� the functor MC¹C;�ºWdgCat! dgCat sends homotopy
equivalences of k-free dg categories to quasi-equivalences.

Proof. We fix two homotopy equivalent k-free dg categoriesD;D0. We will first show that
the homotopy equivalence identifies the isomorphism classes of objects in the homotopy
categories of MC¹C;Dº and MC¹C;D0º. We have the Koszul adjunction �W ptdCoa� �
dgCatfrW B mediated by the MC elements, see the proof of [13, Theorem 3.23] which
remains valid if k is not a field. This gives Hom.�C;D/ Š MC¹C;Dº and we also know
that HomHo.dgCat/.�C; D/ Š HomHo.dgCat/.�C; D

0/ as �C is cofibrant and D; D0 are
fibrant. Thus our claim about objects follows if we identify homotopy equivalences of
objects in MC¹C;Dº with homotopy equivalences of functors �C ! D.
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We define the simplicial set K � N.0 � 1/ consisting of 2 0-simplices ¹0; 1º, two
1-simplices ¹01; 10º, two 2-simplices ¹010; 101º and one 3-simplex ¹0101º. Then �.K/
is Drinfeld’s interval object in dg categories,

0 101

0101

010

10

101

which is easily seen to be quasi-equivalent to the one-object dg category k, thus K ' k.
It follows from Corollary 5.3 that �.C ˝ K/! �C is a weak equivalence. Moreover,
� takes injections to cofibrations, see the proof of Proposition 3.33, condition (4), in [13]
(the argument is unaffected by working over k not a field as C and K are k-free). Thus
�.C ˝K/ is indeed a cylinder object for �C .

Assume now we have a homotopyH W�.C ˝K/!D between functorsH0;H1. We
may representH by an MC element hD .h; �/ where hWObC � ¹0; 1º !D is a function
and � is an MC element in

L
.x;i/;.y;j / Hom.C.x; y/ ˝ K.i; j /;HomD.hi .x/; hj .y///

where i 2 ¹0; 1º, such that the restrictions h0 and h1 represent the functors H0 and H1.
(Here hi D .hi ; �i / are defined as the images under the map induced by the inclusions
i ! K.) Then the further components of � which we may denote �01; �10; �010; �101 and
�0101 provide exactly an isomorphism in the homotopy category of MC¹C;Dº between h0
and h1: By [21, Lemma 3.6] such a homotopy equivalence is given by 5-tuple of maps

f 2 Hom.h0;h1/ g 2 Hom.h1;h0/

r0 2 Hom.h0;h0/Œ1� r1 2 Hom.h1;h1/Œ1�

r01 2 Hom.h0;h1/Œ2�

with fg D id0 C dr0, fg D id1 C dr1 and f r0 � r1f D dr01. We identify

f $ �01 g$ �01

r0 $ �010 r1 $ �101

r01 $ �0101

and the conditions on the differential agree exactly with the MC condition. For example
f r0 � r1f D dr01 becomes

�01 � �010 � �101 � �01 D d
Œ�1;�0��0101 D �1�0101 � �0101�0 C d�0101

which is the 0101-component of the MC equation for �. Note that the curvature of C
appears only in the MC condition for �0 and �1.

It remains to show that any homotopy equivalence T WD ! D0 induces quasi-iso-
morphisms on hom spaces. Let K be an arbitrary field over k. Fix objects

.f; �/; .g;  / 2 MC¹C;Dº:
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Then T induces a natural map of hom spaces

HomMC¹C;Dº
�
.f; �/; .g;  /

�
HomMC¹C;D0º

�
.T ı f; T��/; .T ı g; T� /

�
M
x;y

Hom
�
C.x; y/;D.f x; gy/

�Œ ;�� M
x;y

Hom
�
C.x; y/;D0

�
T .f x/; T .gy/

��ŒT� ;T���
and T ˝k K induces a map between the hom spaces tensored with K. We claim now thatM

x;y

Hom
�
C.x; y/;D.f x; gy/

�Œ ;��
˝k K

Š

M
x;y

Hom
�
C.x; y/˝k K;D.f x; gy/˝k K

�Œ ˝kK;�˝kK�

which is immediate as C , D are k-free. But the right-hand side is a hom space in
MC¹C ˝k K; D ˝k Kº. We already established Corollary 6.5 over a ground field, thus
we have a quasi-equivalence MC¹C ˝k K; D ˝k Kº ' MC¹C ˝k K;0 D ˝k Kº. By [8,
Lemma 3.6] we can test quasi-isomorphisms for free dg modules over a PID k by tensor-
ing with all fields over k. The result follows.

Unravelling the definition of RHom.D;D0/ ' MC¹BD;D0º allows us to recover the
description of RHom.D;D0/ as the dg category of unital A1-functors. This description
was proposed by Kontsevich and has so far only been proved rigorously in [4] in the case
that k is a field.

Corollary 6.7. LetD;D0 be k-free dg categories over a PID k. The objects in the category
MC¹BD;D0º are unital A1 functors D ! D0. The morphisms in MC¹BD;D0º are unital
A1 transformations between the corresponding A1 functors.

Proof. Considering the definition of unital A1-functors from D to D0, as for example
in [4, Definitions 1.6, 1.8], we see that they are exactly given by maps from the bar con-
struction of D to D0 satisfying the MC condition: The degree n part of the map sends a
string of composable non-identity morphisms in D of length n, i.e. an object in T n xD to
a morphism in D0 shifted in degree by 1 � n. This is a degree 1 map from the underlying
graded of BD0 to D. The MC condition on differentials unravels exactly to the relation
satisfied by A1 functors between dg categories.

Similarly, the morphisms in MC¹BD;D0º are unital A1 transformations between the
functors.

Remark 6.8. Note that [4] considers not necessarily unital A1 transformations between
functors, but the two notions agree. This was shown in [16, Lemma 8.2.1.3], it also follows
from Lemma 7.2 below, the difference between unital and non-unital transformations cor-
responds exactly to the difference between reduced and non-reduced Hochschild cochains.
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While the embedding of dg categories into A1 categories thus computes the correct
internal hom object, it is worth recalling that the category of A1 categories does not have
a sensible monoidal structure.

Let now k be a field for the remainder of this section.

Theorem 6.9. Given two dg categories D;D0 the mapping space Map.D;D0/ is weakly
equivalent to the core of NdgRHom.D;D0/.

Proof. By the main results of [13] we may compute Map.D;D0/ as Map.BD;BD0/ in
ptdCoa�. By Theorem 4.4 and Corollary 5.7 this is given by the core of

FBMC¹BD;D0º ' Ndg MC¹BD;D0º ' NdgRHom.D;D0/;

where we used Ndg ' FB from [13, Theorem 4.16] as well as Corollary 6.5.

Remark 6.10. The theorem may also be deduced directly from the existence of an internal
hom in Ho.dgCat/ and some other standard results. We denote the left adjoint of the dg
nerve by L and note that L.�/ D k (considered as a dg category with one object). Then
the core of Ndg.RHom.D;D0// may be computed as

MapqCat
�
�;Ndg

�
RHom.D;D0/

��
'MapdgCat

�
L�;RHom.D;D0/

�
'MapdgCat.k˝D;D

0/:

Here we use that the closed structure dgCat induces a weak equivalence of mapping spaces
even though it is not Quillen. This follows from the Yoneda lemma by taking hom out an
arbitrary simplicial set and using the simplicial enrichment on dgCat [24, Section 5].

We may compare Theorem 6.9 with Toën’s characterization of Map.D; D0/ as the
(classical) nerve of the category of weak equivalences in the category of right quasi-
representable cofibrant D ˝D0op-modules [24, Theorem 1.1]. In the special case of the
mapping space Map.k;D/ this gives the following corollary:

Corollary 6.11. For a dg category D the core of Ndg.D/ is equivalent to the nerve of the
1-category of quasi-isomorphisms between cofibrant quasi-representable Dop-modules.

This corollary is already interesting in the case that the dg category has one object.
Then it says that the core of the simplicial Maurer–Cartan set of a dg algebra A (as con-
sidered in [13, Section 4.1]) is given by the A-component of the nerve of the category of
quasi-isomorphisms between cofibrant A-modules.

We have considered the Dwyer–Kan model structure on dgCat so far, but similar results
apply for the Morita model structure. We denote by dgCat0Mor the left Bousfield localiza-
tion of dgCat0 at all Morita equivalences, i.e. functors inducing equivalences of derived
categories.

Lemma 6.12. There is a model structure on ptdCoa� whose weak equivalences are maps
C ! C 0 inducing equivalences of coderived categories Dco.C / Š Dco.C 0/ and whose
cofibrations are injections.
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Proof. By [13, Proposition 3.33], ptdCoa� is a left proper combinatorial model category,
thus the left Bousfield localization at Morita equivalences exists.

We call this the Morita model structure and the weak equivalences Morita equiva-
lences of pointed curved coalgebras. We denote pointed curved coalgebras with the Morita
model structure by ptdCoa�Mor.

Proposition 6.13. The model category ptdCoa�Mor is Quillen equivalent to dgCat0Mor.

Proof. By [13, Theorem 3.43], a map f WC ! C 0 of coalgebras is a Morita equivalence
if and only if �f is a Morita equivalence, and similarly a functor between dg categories
is a Morita equivalence if and only if its bar construction is a Morita equivalence.

As the cobar construction on ptdCoa�Mor preserves cofibrations and all weak equiv-
alences it defines a left Quillen functor to dgCat0Mor. As it induces an equivalence on
homotopy categories this is a Quillen equivalence

Lemma 6.14. The tensor product makesptdCoa�Mor into a monoidal model category whose
homotopy category is monoidally equivalent to Ho.dgCat0Mor/.

Proof. The closed monoidal structure is the one considered in Theorem 5.4.
We first note that Lemma 5.1 implies that � is quasi-strong monoidal also for the

Morita model structures. We then observe that tensor product of dg categories preserves
Morita equivalences. This is well known, see [25, Exercise 32].

Proposition 6.15. The category dgCat0Mor is a ptdCoa�Mor-enriched model category.

Proof. Given f WC ! C 0 in ptdCoa�Mor and gWD ! D0 in dgCat0Mor we consider

f�gW .C z̋ D0/qC z̋D .C
0 z̋ D/! C 0 z̋ D0

As the cofibrations in dgCat and dgCat0Mor agree we see that f�g is a cofibration if f and
g are, by the proof of Theorem 6.2.

We now have to check that f�g is a Morita equivalence if f or a g is a (Morita)
acyclic cofibration. It would suffice to show that all generating acyclic cofibrations in
dgCat0Mor lie in the image of �. We expect this to be true, but to avoid excessive computa-
tions we use another argument.

By imitating the proof of Theorem 5.4, it suffices to show that the action z̋ preserves
Morita equivalences in ptdCoa�Mor and dgCat0Mor. Morita equivalences will be denoted by
' in the following.

The proof uses the simple observation that for any dg category D we have a natural
quasi-equivalence �BD

�
�! D, thus by Theorem 6.2 we have C z̋ �BD ' C z̋ D for

any C 2 ptdCoa�.
Let C

�
�! C 0 be an acyclic cofibration in ptdCoa�Mor. As � is quasi-strong monoidal

and ˝ preserves Morita equivalences, see Lemma 6.14, we have the following zig-zag of
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Morita equivalences:

C z̋ D
�
 � C z̋ �BD

�
 � �C ˝�BD

�
�! �C 0 ˝�BD

�
�! C 0 ˝�BD

�
�! C 0 z̋ D0

and thus C z̋ D ' C 0 z̋ D.
Similarly, let D! D0 be a Morita equivalence. As �BD ' D it follows from 2-out-

of-3 that �BD ' �BD0. Putting this together with the previous observations we get the
following Morita equivalences

C z̋ D
�
 � C z̋ �BD

�
 � �C ˝�BD

�
�! �C ˝�BD0

�
�! C z̋ �BD0

�
�! C z̋ D0:

Thus C z̋ D ' C z̋ D0 and the proposition follows.

Corollary 6.16. The internal hom in Ho.dgCat0Mor/ is computed by

RHom.D;D0/ ' MC¹BD;D0º

whenever D0 is Morita fibrant.

Proof. As for Corollary 6.5, except that in order to ensure BD0 is fibrant we need to
assume D0 is fibrant in dgCat0Mor.

We may use this to obtain an alternative description of the internal hom between
derived categories of perfect complexes on schemes with very mild assumptions.

Example 6.17. Assume we are given two schemes and their dg categories Perf.X/ and
Perf.Y / enhancing the derived category of perfect complexes. Assume that X is quasi-
separated and quasi-compact, so that it has a compact generator Q with endomorphism
dg algebra E such that Perf.X/ is Morita equivalent to E, see [3].

Then RHom.Perf.X/; Perf.Y // (computed with respect to the DK or Morita model
structure) has as objects pairs .F ; �/ where F 2 Perf.Y / and � is an MC element in
Hom.BE; R End.F //. Morphisms from .F ; �/ to .G ;  / are given by two-sided twist-
ings: Hom.BE;RHom.F ;G //Œ ;��.

Equivalently � can be viewed as an A1-morphism between the dg algebras E and
R End.F /, and morphisms are A1-natural transformations.

This follows from Corollary 6.16 using that Perf.X/ is Morita equivalent toE and that
Perf.Y / is Morita fibrant.

7. Hochschild cohomology

One key application of the construction of the derived internal hom of dg categories is the
computation of homotopy groups in terms of Hochschild cohomology by Toën [24]. We
recreate this computation in our setting in somewhat greater generality.

Definition 7.1. The Hochschild cochain complex of a dg category D with coefficients in
a bimodule M WD ˝Dop ! dgVect is defined as

C �HH.D;M/ WD RHomD˝Dop.D;M/:
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It is well known that C �HH.D;M/ may be computed by the Hochschild complex of the
dg category D with coefficients in M . Writing D.d0; d1/ for HomD.d0; d1/ for better
legibility this complex isY

M.d0; d1/!
Y

Hom
�
D.d0; d1/;M.d0; d1/

�
!

Y
Hom

�
D.d1; d2/˝D.d0; d1/;M.d0; d2/

�
! � � �

with a differential induced by the internal differentials, composition inD and the action of
D on M . One may equivalently compute with the reduced Hochschild complex replacing
D by xD everywhere.

We specialize now to the case whereM is given by another dg categoryD0 with a pair
of functors F;GWD ! D0, i.e. we consider the bimodule FD0G , or by abuse of notation
just D0, sending d1 ˝ d0 to HomD0.F.d0/; G.d1//.

Any dg functor F WD! D0 gives rise to an object in RHom.D;D0/ in a natural way.
We use this to state the following lemma.

Lemma 7.2. LetF;GWD!D0 be functors of dg categories, then Hochschild cohomology
of D with coefficients in D0 is given by

C �HH.D; FD
0
G/ Š HomRHom.D;D0/.F;G/:

Proof. By definition HomRHom.D;D0/.F; G/ Š HomMC¹BD;D0º.F; G/ is the twisted hom
space HomHom.BD;D0/.F;G/

Œ�F ;�G � where �F ; �G are the MC elements in the convolution
category corresponding to F; GWD ! D0. Unravelling definitions, we recognize this as
the reduced Hochschild complex which we may write as

D0 ! HomD00.
xD;D0/! HomD00.

xD�D0
xD;D0/! � � �

with differential induced by internal differentials, the composition in D and action of D
on D0 (the latter corresponding to the twist by �F and �G).

If F D G D idD this specializes to the well-known equivalence

C �HH.D/ Š EndRHom.D;D/.id/:

Remark 7.3. One can also compare HomRHom.D;D0/.F; G/ to RHomD˝Dop.D; FD
0
G/

without reference to any resolutions, as follows.
We use that the functor F WD ! D0 gives rise to a D ˝D0op-bimodule D0F sending

d;d 0 7!HomD0.d 0;F .d//. The functor yF D id˝F opWD˝Dop!D˝D0
op induces an

adjunction on module categories. Considering theD˝Dop-moduleD and theD˝D0op-
module D0G W d ˝ d

0 7! Hom.d 0; d / we have

RHomD˝Dop
�
D; yF �.D0G/

�
Š RHomD˝D0op. yFŠD;D

0
G/

By definition yF �.GD0/ is FD0G and moreover one may check yFŠD D D0F , for example
by rewriting yFŠ, which by definition is a left Kan extension, as a coend and computing it.
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The proof is completed by recalling from [24] that the functor categoryRHom.D;D0/
is weakly equivalent to a full subcategory of (fibrant cofibrant)D˝D0op-modules, and in
particular the map F 7! D0F induces weak equivalences of hom spaces. Thus we have

HomRHom.D;D0/.F;G/ ' RHomD˝D0op.D0F ;D
0
G/ ' RHomD;D.D; FD0G/:

This is just a categorical version of the classical formula HH�.A; B/ Š Ext�A˝Bop.B; B/

for algebras A and B .

We now specialize to F D G and consider the bimodule D0 D GD
0
G .

Theorem 7.4. LetGWD!D0 be a functor of dg categories. We then have HH0.D;D0/�Š
�1.Map.D;D0/; G/ and HHi .D;D0/ Š �1�i .Map.D;D0/; G/ for i < 0.

Proof. By Theorem 6.9, the space Map.D; D0/ is weakly equivalent to the core of
NdgRHom.D;D0/.

It now follows, cf. [18, Remark 1.3.1.12], that the image of HomRHom.D;D0/.G; G/

under Dold–Kan is the infinity categorical mapping space fromG toG inFBMC¹BD;D0º.
Taking homotopy groups and using Lemma 7.2 we have

HHi .D;D0/ D ��i .�Map.D;D0/; G/

for i > 1 as the higher homotopy groups of mapping spaces are unaffected by taking the
core. Finally, HH0.D;G/ is given by �0 MapF�MC¹BD;Dº0.G;G/ and taking units on both
sides we obtain HH0.D;D0/� Š �0 MapMap.D;D0/.G;G/ D �1.Map.D;D0/; G/.

Corollary 7.5 ([24, Corollary 8.2]). We have HHi .D/ Š �1�i .Map.D;D/; id/ for i < 0
and HH0.D/� Š �1.Map.D;D/; idD/.
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