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Crossed products and C�-covers of semi-Dirichlet
operator algebras

Adam Humeniuk, Elias G. Katsoulis, and Christopher Ramsey

Abstract. In this paper, we show that the semi-Dirichlet C�-covers of a semi-Dirichlet operator
algebra form a complete lattice, establishing that there is a maximal semi-Dirichlet C�-cover. Given
an operator algebra dynamical system we prove a dilation theory that shows that the full crossed
product is isomorphic to the relative full crossed product with respect to this maximal semi-Dirichlet
cover. In this way, we can show that every semi-Dirichlet dynamical system has a semi-Dirichlet full
crossed product.

1. Introduction

Dirichlet algebras were first introduced by Gleason in 1957 [7]. The name was given
because “[a] Dirichlet algebra is a function algebra for which the boundary fits smoothly
into the [character space], in such a way that we can solve the analogue of the Dirich-
let problem in harmonic functions” [7, Section 3]. Interestingly, this is the same paper
where he introduces the concept of parts (later called Gleason parts). Arveson [1] gener-
alized this notion of the closed selfadjoint operator space generated by an algebra being
equal to a selfadjoint algebra to the non-commutative operator setting in his definition of
subdiagonal algebras though this was in the context of von Neumann algebras. This was
later generalized to say that an operator algebra A is Dirichlet if and only if ACA� is
a C�-algebra in the appropriate context (everything will be defined precisely in the next
section).

Davidson and the second author defined semi-Dirichlet algebras in [5] to denote those
operator algebras A where the selfadjoint operator space generated by A is well behaved
with respect to one of the two orders of multiplication, that is, A�A � ACA�, but
perhaps not the other order. In particular, Dirichlet algebras are semi-Dirichlet. One of the
main points of [5] was that semi-Dirichlet operator algebras enjoy a rather well-behaved
representation theory. This theme will be continued throughout this paper.

One particularly nice class of semi-Dirichlet algebras is the tensor algebras of C�-
correspondences. At the time of writing [5] it was unknown whether this described all
semi-Dirichlet algebras. The first Dirichlet algebra that is not completely isometrically
isomorphic to a tensor algebra was described by Kakariadis [12]. The pursuit of finding
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non-tensor semi-Dirichlet examples was the initial driving force behind the joint work of
the second and third authors [13,14]. All of this is carefully described in detail in Section 2
along with all the necessary background, definitions and theory pertaining to Dirichlet and
semi-Dirichlet algebras and C�-correspondences. As well, possibly the simplest example
of a non-tensor Dirichlet algebra is given (Proposition 2.16), and this operator algebra first
appeared in the work of Hartz [10]:"

A.D/ 0

C.T / A.D/�

#
;

where A.D/ is the disc algebra and C.T / is the algebra of continuous functions on the
unit circle T .

A standard method for understanding the structure of an operator algebra has been
to consider the C�-algebras that are generated by its completely isometric representa-
tions, namely its C�-covers. This began with Arveson’s conjecture in 1969 that there
is always a smallest C�-cover, called the C�-envelope, which he was able to prove in
many examples [2]. This conjecture was proven to be true by Hamana [8]. The comple-
mentary maximal C�-cover was first investigated in depth by Blecher in 1999 [3]. Under
direct sums and boundary ideal quotients the collection of C�-covers of an operator alge-
bra, modulo C�-cover isomorphism, was shown to be a complete lattice by Hamidi and
Thompson [9, 21]. The first and third authors defined equivalences of two operator alge-
bras based on their complete lattices of C�-covers to study how much information about
the operator algebra is retained in its C�-covers [11]. In particular, it was found that the
complete lattice of C�-covers cannot distinguish operator algebras up to completely iso-
metric isomorphism.

In Section 3, we study the C�-covers of semi-Dirichlet operator algebras. A C�-cover
is called semi-Dirichlet if the operator algebra enjoys the semi-Dirichlet property in that
cover. These covers turn out to be very nicely behaved as they arise from Shilov repre-
sentations, which are compressions to an invariant subspace of a �-homomorphism of the
C�-envelope, Proposition 3.5. Theorem 3.6 establishes that the subset of semi-Dirichlet
C�-covers forms a complete sublattice, implying that there is a maximal semi-Dirichlet
C�-cover. Most significantly, this maximal semi-Dirichlet C�-cover corresponds to the
Cuntz–Pimsner–Toeplitz algebra in the case of a tensor algebra of a C�-correspondence,
Theorem 3.10.

With all of this theory, Section 4 studies the crossed products of semi-Dirichlet oper-
ator algebras. Crossed products of operator algebra dynamical systems were defined and
studied by the second and third authors in [14]. Their study is deeply connected to the C�-
covers of the operator algebra and so the more information we have about these covers the
more tractable the crossed products will be. Theorem 4.2 shows that every covariant repre-
sentation of a semi-Dirichlet operator algebra dynamical system dilates to a semi-Dirichlet
covariant representation. This allows us to prove that the full crossed product is the same
as the relative crossed product with the maximal semi-Dirichlet cover, Theorem 4.6, with
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the consequence that the full crossed product is semi-Dirichlet. Lastly, Theorem 4.7 shows
that in the case when the group is abelian then the dynamical system is semi-Dirichlet if
and only if the full crossed product is semi-Dirichlet, using Takai duality.

2. Semi-Dirichlet operator algebras

As promised, we start with the careful definitions of Dirichlet and semi-Dirichlet.

Definition 2.1. Let A be an operator algebra with " W A! C �e .A/ the completely iso-
metric embedding of A into its C�-envelope.

• A is called semi-Dirichlet if ".A/�".A/ � ".A/C ".A/�.

• A is called Dirichlet if ".A/C ".A/� D C �e .A/.

For an operator algebra A all completely isometric representations � W A ! B.H/

yield completely isometrically isomorphic copies of the operator algebra �.A/�. So it is
entirely justified to refer to A� abstractly. In particular, every such � uniquely determines
a completely isometric representation z� W A� ! B.H/ by z�.b/ D �.b�/� for all b 2 A�.

There is a complementary property to semi-Dirichlet using the other order, namely

".A/".A/� � ".A/C ".A/�:

One could be tempted to call this the “co-semi-Dirchlet property” (in the manner of isome-
try and co-isometry) or perhaps the “semi-Dirichlet-� property”. To avoid these somewhat
cumbersome names this is usually referred to as A� is semi-Dirichlet since the above
statement becomes

z".A�/�z".A�/ � z".A�/� C z".A�/:

Lemma 2.2. Suppose A and B are completely isometrically isomorphic operator alge-
bras. Then A is semi-Dirichlet if and only if B is semi-Dirichlet.

Proof. Suppose � WA!B is a completely isometric isomorphism and A is semi-Dirichlet.
This induces a �-isomorphism z� W C �e .A/! C �e .B/ where

z�
�
"A.a/

�
D "B

�
�.a/

�
for every a 2 A. Thus,

"B.B/
�"B.B/ D z�

�
"A.A/

�"A.A/
�

� z�
�
"A.A/C "A.A/�

�
D "B.B/C "B.B/�:

Definition 2.3. A completely contractive representation ' WA! B.H/ is semi-Dirichlet
if

'.A/�'.A/ � '.A/C '.A/�:
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Proposition 2.4 ([5, Proposition 4.2 (i) & (ii)]). Let A be an operator algebra.

(1) A is Dirichlet if and only if A and A� are semi-Dirichlet.

(2) A is semi-Dirichlet if and only if A has a completely isometric semi-Dirichlet
representation.

Proposition 2.5 ([14, Lemma 5.2]). Let A be an operator algebra. If � W A ! B.H/

is a completely isometric representation with �.A/C �.A/� a C�-algebra, then A is
Dirichlet and there is a completely isometric isomorphism ˆ W C �.�.A//! C �e .A/ such
that ˆ� D ".

This result is particularly useful in identifying the C�-envelope, for example consider
C �e .A.D// D A.D/C A.D/

� D C.T /.
As mentioned, Davidson and the second author introduced the definition of semi-

Dirichlet in [5] because it encapsulated the nice dilation properties of tensor algebras of
C�-correspondences. Much effort has been expended in showing that the class of semi-
Dirichlet algebras is far broader than tensor algebras. To begin we need to remind the
reader of some definitions.

A C�-correspondence is a triple .X; C ; 'X / (but often just denoted .X; C/) con-
sisting of a C�-algebra C , a right Hilbert C -module .X; h�; �i/, and a non-degenerate
�-homomorphism 'X W C ! L.X/ into the C�-algebra of adjointable operators on X .
The point being that this is a generalization of a Hilbert space with

• hx; yi 2 C

• hx; yi D hy; xi�

• hx; xi � 0 with equality if and only if x D 0

• hx; yci D hx; yic

• hx; 'X .c/yi D h'X .c
�/x; yi

for all x; y 2 X and c 2 C .
The tensor product C�-correspondence .X ˝X;C ; 'X˝X / satisfies the following

• xc ˝ y D x ˝ 'X .c/y

• .x ˝ y/c D x ˝ .yc/

• hx1 ˝ x2; y1 ˝ y2i D hy1; 'X .hx1; x2i/y2i

• 'X˝X .c/.x ˝ y/ D .'X .c/˝ idX /.x ˝ y/ D .'X .c/x/˝ y

for all x; y 2 X and c 2 C . From repeated uses of this one forms the Fock space

FX D C ˚X ˚X˝2 ˚X˝3 ˚ � � �

where X˝n D X˝n�1 ˝X , which gives .FX ;C/ as a C�-correspondence.

Definition 2.6. Consider the linear map t1 W X ! L.FX /

t1.x/.c; x11; x21 ˝ x22; : : :/ D .xc; x ˝ x11; x ˝ x21 ˝ x22; : : :/
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and the �-homomorphism �1 W C ! L.FX /

�1.d/.c; x11; x21 ˝ x22; : : : / D .dc; 'X .d/x11; 'X .d/x21 ˝ x22; : : : /:

Then T.X;C/ D C
�.t1.X/; �1.C// is called the Cuntz-Pimsner-Toeplitz algebra and

T C
.X;C/

D alg
�
t1.X/; �1.C/

�
is called the tensor algebra.

It should be noted that these are often denoted TX and T CX . Both of these algebras
enjoy universal properties. A completely contractive representation .t; �; H/ of .X; C/
consists of a completely contractive linear map t W X ! B.H/ and a �-homomorphism
� W C ! B.H/ such that

t .'X .c/xd/ D �.c/t.x/�.d/;

for all x 2X and c;d 2C . This representation is called isometric if it additionally satisfies

t .x/�t .y/ D �.hx; yi/

for all x; y 2 X . Note that .t1; �1/ above is an isometric representation of .X;C/.

Proposition 2.7 (Muhly–Solel [18]). If .t; �;H/ is a completely contractive representa-
tion of .X;C/ then there exists a completely contractive homomorphism � Ì t W T C

.X;C/
!

alg.t.X/; �.C//, called the integrated form such that

.� Ì t /t1 D t and .� Ì t /�1 D �:

If the representation is isometric then � Ì t extends to a �-homomorphism of T.X;C/ onto
C �.t.X/; �.C//.

Moreover, every completely contractive representation of T C
.X;C/

is the integrated form
of a completely contractive representation of .X;C/.

All of this technology can be simplified in the following realization theorem.

Theorem 2.8 (Katsoulis–Ramsey [14, Theorem 7.5]). Let C � B.H/ be a C�-algebra
and X � B.H/ a closed C -bimodule such that X�X � C . Then alg.X;C/ is completely
isometrically isomorphic to T C

.X;C/
if and only if the map

C 3 c 7! c ˝ I and X 3 x 7! x ˝ U;

where U is the bilateral or unilateral shift, extends to a well-defined, completely contrac-
tive homomorphism of alg.X;C/.

Corollary 2.9. Let C � B.H/ be a C�-algebra and X � B.H/ a closed C -bimodule
such that X�X � C . Then

T C
.X;C/

' T C
.X˝U;C˝I/

' alg.X ˝ U;C ˝ I /:
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The upshot of this is that if you have a concrete C�-correspondence then it is very easy
to find its tensor algebra, and then to show the tensor algebra is semi-Dirichlet.

Proposition 2.10 (Davidson–Katsoulis [5]). The tensor algebra of a C�-correspondence
is semi-Dirichlet.

Proof. Let C � B.H/ be a C�-algebra and X � B.H/ a closed C -bimodule such that
X�X � C . Then

.X�/jXk �

8̂̂<̂
:̂

C j D k;

Xk�j k > j;

.X�/j�k j > k:

By the previous corollary, it is easy now to obtain the desired result since

alg.X ˝ U;C ˝ I /�alg.X ˝ U;C ˝ I /

� alg.X ˝ U;C ˝ I /C alg.X ˝ U;C ˝ I /�:

A C�-correspondence .X;C/ is called a Hilbert bimodule if it has a right C -valued
inner product Œ�; �� that has the following compatibility with the original structure:

'X
�
Œx; y�

�
z D xhy; zi

for all x; y; z 2 X .

Theorem 2.11 (Kakariadis [12, Theorem 2.2]). The tensor algebra of a C�-correspon-
dence is Dirichlet if and only if the C�-correspondence is a Hilbert bimodule.

This second inner product is akin to finding a concrete realization X;C � B.H/ such
that XX� and X�X � C .

Example 2.12. Many nice operator algebras are tensor algebras of C�-correspondences
and so are semi-Dirichlet or Dirichlet:

(1) The disc algebra A.D/ ' T C
.C;C/ is Dirichlet.

(2) The non-commutative disc algebra Ad ' T C
.Cd ;C/

[19] is semi-Dirichlet, but not
Dirichlet for d � 2.

(3) The algebra of upper triangular matrices Tn ' T C
.Cn�1;Cn/

, where X is the super-
diagonal and C is the diagonal of Tn, is Dirichlet.

(4)
°h

a b
c d
e

i
W a; b; c; d; e 2 C

±
' T C

.C2;C3/
where C is the diagonal and X are the

matrices with 0 diagonal, is semi-Dirichlet but not Dirichlet.

(5) Every C�-algebra C is a C -bimodule over itself and thus .C ; C/ is a Hilbert
bimodule. Thus,

T C
.C ;C/

' alg.C ˝ U;C ˝ I /

is Dirichlet, for U the bilateral shift.
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(6) Suppose .C ; ˛/ is a C�-dynamical system, ˛ W C ! C is a �-homomorphism. The
semicrossed product algebra C �˛ ZC0 is completely isometrically isomorphic to
the tensor algebra of .C ;C ; '/ where '.c/d D ˛.c/d .

(7) The tensor algebra of a multivariable commutative C�-dynamical system [6, Sec-
tion 5].

(8) Tensor algebras arising from directed graphs. These are Dirichlet if and only if
every vertex is the source and range of at most one edge [12, Example 3.2].

As mentioned before, when Davidson and the second author introduced the definition
of semi-Dirichlet they did not know of any examples that were not tensor algebras. The
above list shows that there are a large variety of these algebras which can hide their tensor
nature.

The previous theorem was used to produce the first example of a Dirichlet (or semi-
Dirichlet) algebra that is not a tensor algebra.

Example 2.13 (Kakariadis [12, Proposition 3.10]). If K D ¹z 2 C W jz � 1j � 1 or
jz C 1j � 1º, then P.K/, the closure of the polynomials over K, is a Dirichlet algebra
since

P.@K/C P.@K/� D C.@K/:

Moreover, P.K/ is not completely isometrically isomorphic to a tensor algebra of a C�-
correspondence. The proof uses the fact that there is only one way to construct a Hilbert
bimodule of the form .X;C/.

Direct limits of Dirichlet or semi-Dirichlet operator algebras are Dirichlet or semi-
Dirichlet, respectively. Triangular limit algebras [20] then are a great source of Dirichlet
or semi-Dirichlet operator algebras. These operator algebras are studied in the paper [13]
where isometric isomorphism to a tensor algebra of a C�-correspondence is character-
ized by the fundamental relation being a tree structure with a well-behaved ZC0 -cocycle.
The nicest type of triangular limit algebras are the so-called TUHF algebras (Triangular
UHF or Triangular Uniformly Hyperfinite). Suppose C D lim

�!
.Mkn ; 'n/ is a UHF algebra,

meaning 'n WMkn!MknC1 is a unital, injective �-homomorphism, then if '.Tkn/�TknC1
the algebra A D lim

�!
.Tkn ; 'kn/ is called TUHF.

Example 2.14 (Katsoulis–Ramsey [13]). Recall, the standard embedding of Mn into
Mk.Mn/ is

Mn 3 A 7! Ik ˝ A D A˚ A˚ � � � ˚ A 2Mk.Mn/

whereas the refinement embedding of Mn into Mk.Mn/ is tensoring in the other order

Mn 3 A 7! A˝ Ik 2Mk.Mn/:

For instance, the refinement embedding of M2 into M4 is�
a b

c d

�
7!

264a b
a b

c d
c d

375 :
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Any standard embedding TUHF algebra is completely isometrically isomorphic to a tensor
algebra of a C�-correspondence whereas any refinement embedding TUHF algebra is not
isometrically isomorphic to a tensor algebra. In fact, one of the main heuristics of the
paper [13] is that if it is not standard then it is not tensor.

In [14] it was shown that the Dirichlet and semi-Dirichlet properties make the study of
crossed product operator algebras much more tractable. This will be covered in detail later
in the paper. For now, it is good to point out that there are examples of crossed product
operator algebras that are Dirichlet (or semi-Dirichlet and not Dirichlet) that are not tensor
algebras [14, Theorems 5.2, 5.4, and surrounding discussion].

Lastly in this section, we turn to an interesting class of Dirichlet operator algebras.

Proposition 2.15. Suppose A is an operator algebra. Define the operator space

B D

"
A 0

ACA� A�

#
:

Then A is semi-Dirichlet if and only if B is an operator algebra. Moreover, the following
are equivalent:

(1) A is Dirichlet

(2) B is a semi-Dirichlet operator algebra

(3) B� is a semi-Dirichlet operator algebra

(4) B is a Dirichlet operator algebra.

Proof. The first result is due to the fact that A being semi-Dirichlet is equivalent to

A�.ACA�/A � ACA�:

For the second result, if A is Dirichlet, then by Proposition 2.4,

B CB� DM2

�
C �e .A/

�
;

which by Proposition 2.5 implies that B is Dirichlet.
On the other hand, if B or B� is semi-Dirichlet then B�B or BB� is in B CB�.

Either one of these implies that .ACA�/2 � ACA�, which implies that A and A� are
semi-Dirichlet. Therefore, A is Dirichlet by Proposition 2.4.

Hartz used this algebra B in the case for AD A.D/ to give an example of a residually
finite-dimensional (RFD) operator algebra where the maximal C�-cover is not RFD [10].

Proposition 2.16. The Dirichlet operator algebra of Hartz

B D

"
A.D/ 0

C.T / A.D/�

#
is not completely isometrically isomorphic to a tensor algebra of a C�-correspondence.
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Proof. For the sake of contradiction suppose B is completely isometrically isomorphic to
the tensor algebra T C

.X;C/
of the C�-correspondence .X;C/. In particular, embedX;C �B

so that
B D alg.X;C/ ' T C

.X;C/
:

By Theorem 2.8 the map

C 3 c 7! c ˝ I and X 3 x 7! x ˝ U;

extends to a well-defined, completely contractive homomorphism on B.
We know that C DB \B� D CE11˚CE22. And so, for i D 1; 2, .Ei iXEi i ;CEi i /

is a C�-correspondence. Thus, from above this still implies

CEi i 3 c 7! c ˝ I and Ei iXEi i 3 x 7! x ˝ U;

extends to a well-defined, completely contractive homomorphism. Hence,

T C
.E11XE11;CE11/

' alg.E11XE11;CE11/ D A.D/;

T C
.E22XE22;CE22/

' alg.E22XE22;CE22/ D A.D/�:

This implies that there are unitaries u; v 2 A.D/, with spectrum T , such that E11XE11 D
CuE11 and E22XE22 D Cv�E22. In fact, it is shown in [16, Corollary 2.7] that two
semicrossed product algebras of C�-dynamical systems are isometrically isomorphic if
and only if the two systems are outer conjugate.

Now there must be something else inX , specifically inE22XE11, otherwise the tensor
algebra is just A.D/˚ A.D/�. Let 0 ¤ fE21 2 E22XE11 for f 2 C.T /.

Now u�1 D Nu 2 A.D/�. Thus,

X 3 fE21 D NuE22fE21uE11 2 T C
.X;C/

X2;

and X \ T C
.X;C/

X2 D ¹0º, a contradiction. Therefore, B is not completely isometrically
isomorphic to a tensor algebra of a C�-correspondence.

Most of the time this B algebra will not be a tensor algebra. One exception is when
dealing with finite algebras.

Example 2.17. Consider the B algebra above for A D Tn. Define

Jn D

264 1

: :
:

1

375 2Mn:

Then

B D

�
Jn 0

0 In

� �
Tn 0

Mn T �n

� �
Jn 0

0 In

�
D

�
T �n 0

Mn T �n

�
D T �2n D J2nT2nJ2n

is a tensor algebra of a C�-correspondence.
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3. Semi-Dirichlet C�-covers

We move now to considering representation theory. However, the collection of all semi-
Dirichlet representations may be ill-behaved. Instead, we will focus on the completely
isometric semi-Dirichlet representations.

Definition 3.1. Suppose A is an operator algebra. A C�-cover of A is .C ; �/ where � W
A! C is a completely isometric homomorphism and C D C �.�.A//.

Suppose .Cj ; �j /, j D 1; 2 are C�-covers of an operator algebra A. A morphism of
C�-covers is a �-homomorphism � W C2 ! C1 such that ��1 D �2. If this happens, � is
unique and it is denoted .C1; �1/ � .C2; �2/. Thus, if .C1; �1/ � .C2; �2/ � .C1; �1/ then �
is a �-isomorphism. This is denoted .C1; �1/ � .C2; �2/ and is an equivalence relation. For
every C�-cover .C ; �/ we have�

C �e .A/; "
�
� .C ; �/ �

�
C�max.A/; �

�
:

The collection of equivalence classes ŒC ; �� under� is denoted C�-Lat.A/. This is a set
since it is in one-to-one correspondence with the boundary ideals for A in C�max.A/. The
induced partial order under � is in fact a complete lattice order. The join of an arbitrary
collection ŒC�; ��� 2 C�-Lat.A/, � 2 ƒ is given by the direct sum of the representations_

�

ŒC�; ��� D
h
C �
��M

�

��

�
.A/

�
;
M
�

��

i
while the meet is obtained by taking the quotient by the ideal of the join that is generated
by all of the individual ideals:^

�

ŒC�; ��� D
�_
�

ŒC�; ���
�.X

�

ker
�_
�

ŒC�; ���! ŒC�; ���
�
:

This theory was developed in [4, Chapter 2], [9, 21].

Remark 3.2. The first and third authors write extensively about the lattice of C�-covers
and its equivalences in [11]. We note here that the semi-Dirichlet property is not preserved
by any of these equivalences. In particular, [11, Proposition 2.8] gives that A and A� are
lattice intertwined, the strongest of the equivalences, but A can be semi-Dirichlet while
A� is not, e.g. (iv) in Example 2.12.

Definition 3.3. A C�-cover .C ; �/ will be called semi-Dirichlet if � is a semi-Dirichlet
completely isometric representation of A.

By Proposition 2.4 an operator algebra is semi-Dirichlet if and only if it has a semi-
Dirichlet C�-cover.

Definition 3.4. A representation � WA! B.H/ of an operator algebra A is called Shilov
if there is a �-homomorphism � W C �e .A/! B.K/whereH �K is an invariant subspace
of �.A/ such that �.a/ D �.a/jH for all a 2 A.
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Davidson and the second author used Shilov representations in [5] but this idea is
older, cf. [18, Definition 4.1].

Proposition 3.5. Suppose � is a completely isometric representation of a semi-Dirichlet
operator algebra. Then � is a semi-Dirichlet representation if and only if it is a Shilov
representation.

Proof. It is known that every Shilov representation of a semi-Dirichlet operator algebra is
semi-Dirichlet [5, Lemma 4.2].

Conversely, suppose � W A ! B.H/ is a completely isometric, semi-Dirichlet rep-
resentation. If the representation is not cyclic, meaning �.A/H D H , then compress to
the reducing subspace �.A/H . The compression will still be completely isometric and
semi-Dirichlet. So without loss of generality, assume that � is cyclic.

By [5, Theorem 4.6] and its proof � has a unique minimal extremal coextension � W
A! B.K/

� D

�
� 0

� �

�
that is Shilov and cyclic,KD �.A/H . Continuing with their argument, let � be a maximal
dilation of � on B.L/ with K � L invariant and �.a/jK D �.a/ for all a 2 A. This
maximal dilation extends to a �-homomorphism of C �e .A/, actually a �-isomorphism
since � is completely isometric.

Now, suppose a1; a2 2A. Because � is semi-Dirichlet there exist bn; cn 2A such that

�.a2/
��.a1/ D lim

n!1
�.bn/C �.cn/

�:

Suppose q W C �.�.A//! C �e .A/ is the canonical quotient �-homomorphism such that
q.�.a// D ".a/ for all a 2 A, or in other words, the unique morphism of C�-covers
.C �.�.A//; �/ to .C �e .A/; "/. This implies that by applying q to the equation above we
get that

".a2/
�".a1/ D lim

n!1
".bn/C ".cn/

�:

Hence, by similar calculations found in [5, Lemma 4.8], for h1; h2 2 H and omitting the
use of ", ˝

�.a1/h1; �.a2/h2
˛
D
˝
�.a1/h1; �.a2/h2

˛
D
˝
�.a�2a1/h1; h2

˛
D lim
n!1

˝�
�.bn/C �.cn/

�
�
h1; h2

˛
D lim
n!1

˝�
�.bn/C �.cn/

�
�
h1; h2

˛
D
˝
�.a2/

��.a1/h1; h2
˛

D
˝
�.a1/h1; �.a2/h2

˛
;
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where the middle step happens since the compression of �.A C A�/ to H is �.A/ C
�.A/�. This implies that

� D

�
� 0

0 �

�
:

Therefore, � D � since � is minimal. Therefore, � is Shilov.

We say a subset S of a lattice .L;�/ is downward-closed if whenever a 2 L, b 2 S
and a � b then a 2 S .

Theorem 3.6. The semi-Dirichlet C�-covers of an operator algebra A form a, possibly
empty, downward-closed complete sublattice of C�-Lat.A/.

Proof. Assume that A is semi-Dirichlet, otherwise there are no semi-Dirichlet C�-covers.
Suppose .C1; �1/ � .C2; �2/ are in C�-Lat.A/ with .C2; �2/ a semi-Dirichlet C�-cover.

Let � be the unique morphism of C�-covers. Then

�1.A/
��1.A/ D ��2.A/

���2.A/

D �
�
�2.A/

��2.A/
�

� �
�
�2.A/C �2.A/�

�
D �1.A/C �1.A/�

and so .C1; �1/ is also a semi-Dirichlet C�-cover. This implies closure under arbitrary
meets and downward-closedness.

For arbitrary joins, suppose .C�; ��/ is a semi-Dirichlet C�-cover of A with � W A!
B.H�/ for every � 2 ƒ. By Proposition 3.5 these are all Shilov representations, meaning
there exist Hilbert spaces K� and �-homomorphisms �� W C �e .A/ ! B.K�/ such that
H� � K� is an invariant subspace of ��.A/ with

��.a/ D ��.a/jH� for all a 2 A:

Define the Hilbert space K D
L
�2ƒK� and the �-homomorphism

� D
M
�2ƒ

�� W C
�
e .A/ �! B.K/:

Notice that everyH� is an invariant subspace of �.A/, becauseK� is a reducing subspace.
Thus, H D

L
�2ƒH� � K is an invariant subspace of �.A/ with

�.a/jH D
M
�2ƒ

��.a/jH� D
M
�2ƒ

��.a/ D
� _
�2ƒ

��

�
.a/:

Therefore, the join is a Shilov representation that is completely isometric and so by Propo-
sition 3.5 the join is semi-Dirichlet.

Definition 3.7. From the previous theorem, a semi-Dirichlet operator algebra A has a
maximal semi-Dirichlet C�-cover in C�-Lat.A/. This will be denoted .C�sD-max.A/; �/.
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The minimal element of this complete sublattice is quite naturally the C�-envelope
.C �e .A/; "/. Do note that we already have the previous result for Dirichlet operator alge-
bras by Proposition 2.5, which says that the complete lattice of Dirichlet C�-covers is just
the one point set ¹ŒC �e .A/; "�º.

The sublattice of semi-Dirichlet C�-covers is preserved by completely isometric iso-
morphism and so as a companion to Lemma 2.2 we have the following.

Corollary 3.8. Suppose A and B are semi-Dirichlet operator algebras. If � W A! B

is a completely isometric isomorphism then there is a �-isomorphism z� W C�sD-max.A/!

C�sD-max.B/ such that
z�
�
�A.a/

�
D �B

�
�.a/

�
for all a 2 A.

While Shilov implies semi-Dirichlet, the converse is not true as seen in the next exam-
ple.

Example 3.9. It is shown in [17] (cf. [3, Example 2.4]) that

C�max.T2/ D
®
f 2M2

�
C
�
Œ0; 1�

��
W f .0/ is diagonal

¯
where the completely isometric embedding is

�

��
a b

0 c

��
D

�
a1 b

p
x

0 c1

�
:

Note that .C�max.T2/; �/ is certainly not a semi-Dirichlet C�-cover:�
0
p
x

0 0

�� �
0
p
x

0 0

�
D

�
0 0

0 x

�
… �.T2/C �.T2/

�;

where the failure occurs in the .2;2/-entry. Intriguingly,� is a direct sum of semi-Dirichlet
representations: �

a b

0 c

�
7!

M
�2Œ0;1�

�
a b

p
�

0 c

�
:

This shows the necessity of staying within the completely isometric semi-Dirichlet repre-
sentations.

It will be established by the following proposition that .C�sD-max.T2/; �/ is given by
C�sD-max.T2/ D C ˚M2 and

�

��
a b

0 c

��
D

24a a b

0 c

35 :
In the case of the tensor algebra of a C�-correspondence the maximal semi-Dirichlet

C�-cover is well understood.



A. Humeniuk, E. G. Katsoulis, and C. Ramsey 922

Theorem 3.10. If .X;C/ is a C�-correspondence then C�sD-max.T
C

.X;C/
/' TX as C�-covers

of T C
.X;C/

.

Proof. In the same way as the proof of Proposition 2.10 we see that because

t1.x/
�t1.y/ D �1

�
hx; yi

�
for all x; y 2 X then T C

.X;C/
has the semi-Dirichlet property as a subalgebra of T.X;C/. In

fact, this is true for every isometric representation of .X;C/.
Conversely, if � is a completely isometric semi-Dirichlet representation of T C

.X;C/
,

then since it is completely contractive it is the integrated form of a completely contractive
representation of .X;C/, that is � D � Ì t by Proposition 2.7. By Muhly and Solel [18]
this coextends to an isometric representation .�0; t 0; H 0/ where �0 Ì t 0 coextends � Ì t .
However, by Proposition 3.5 � D � Ì t is Shilov which is the same thing as an extremal
coextension for a semi-Dirichlet algebra. Hence, �0 Ì t 0 D .� Ì t /˚ � 0 which implies that

t .x/�t .y/ D PH t
0.x/�t 0.y/PH D PH�

0
�
hx; yi

�
PH D �

�
hx; yi

�
:

Thus, � arises from an isometric representation of .X; C/. Therefore, by the universal
property of T.X;C/ we have C �.�.T C

.X;C/
// � T.X;C/ as C�-covers.

This result can be used to show that the lattice of semi-Dirichlet covers being one point
does not imply the operator algebra is Dirichlet.

Example 3.11. Consider the graph with one vertex and a countable infinite number of
loops. If the graph correspondence is .X;C/ then T C

.X;C/
is sometimes denoted A1, the

infinite version of the non-commutative disc algebra. By Example 2.12 part (viii) this
operator algebra is semi-Dirichlet but not Dirichlet. However, it is known that

C�sD-max

�
T C
.X;C/

�
' T.X;C/ ' O1 ' C

�
e

�
T C
.X;C/

�
;

via isomorphisms of C�-covers.

This does raise the following question.

Question 3.12. When is the lattice of semi-Dirichlet C�-covers a singleton? As men-
tioned, Dirichlet algebras and the previous example fall into this situation but is a general
description such operator algebras?

Complementary to this is the opposite situation.

Question 3.13. When is the lattice of semi-Dirichlet C�-covers the whole lattice of C�-
covers? Or equivalently, when is the maximal semi-Dirichlet C�-cover equal to the maxi-
mal C�-cover?

Apart from the trivial case of when A is a C�-algebra the authors are unaware of any
examples satisfying the previous question.
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4. Coextending semi-Dirichlet dynamics

A dynamical system .A; G; ˛/ is made up of an approximately unital operator algebra
A, a locally compact Hausdorff group G, and a representation ˛ W G ! Aut.A/ into the
completely isometric automorphisms of A that is continuous in the point-norm topology.
Note that if A is a C�-algebra then ˛ maps into the �-automorphisms of A. The theory of
these systems and their related crossed product operator algebras is thoroughly studied in
[14] and the interested reader should consult that monograph for further reading.

For a given dynamical system .A; G; ˛/ a C�-cover .C ; �/ is called ˛-admissible if
there is a C�-dynamical system .C ; G; ˇ/ such that

ˇg
�
�.a/

�
D �

�
˛g.a/

�
for all g 2G;a 2A. This ˇ is uniquely defined [15, Lemma 2.2] and so is often referred to
as ˛. The ˛-admissible C�-covers for .A; G; ˛/ form a complete sublattice of C�-Lat.A/
containing C �e .A/ and C�max.A/ [9], [14, Lemma 3.4]. However, not every C�-cover is
˛-admissible [9, 15].

Proposition 4.1. If .A;G;˛/ is a dynamical system, then .C�sD-max.A/;�/ is an ˛-admissi-
ble C�-cover.

Proof. The proof largely follows the argument of [14, Lemma 3.4]. First, let 
 2 Aut.A/.
Then .C �.�
.A//; �
/ is a C�-cover. It is easy to see that

C�sD-max.A/ D C
�
�
�.A/

�
D C �

�
�
.A/

�
but we need to prove that the two covers are equivalent. Now

�
.A/��
.A/ D �.A/��.A/ � �.A/C �.A/� D �
.A/C �
.A/�

since � is a semi-Dirichlet representation. Thus, by the maximal (or universal) property�
C �
�
�
.A/

�
; �


�
�
�
C�sD-max.A/; �

�
and so there exists a morphism of C�-covers, that is a surjective �-homomorphism ' W

C�sD-max.A/! C �.�
.A// such that '� D �
 . Do the same thing for 
�1, finding '0 W
C�sD-max.A/! C �.�
�1.A// such that '0� D �
�1. Thus,

''0� D '�
�1 D �

�1 D �

and '0'� D � similarly. This implies that ''0j�.A/ D idj�.A/ D '0'j�.A/ and so ''0 D
'0'D id since �.A/ generates C�sD-max.A/. Therefore, '2Aut.C�sD-max.A// with '�D�
 .

Lastly, from above and following in the same way as the proof of [14, Lemma 3.4] the
group representation

G 3 g 7! �˛g�
�1
j�.A/ 2 Aut

�
�.A/

�
extends uniquely to a group representation ˛ W G ! C�sD-max.A/.
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A covariant representation .�; u; H/ of .A; G; ˛/ is a strongly continuous unitary
representation u WG!B.H/ and a non-degenerate, completely contractive representation
� W A! B.H/ satisfying the covariance relation

u.g/�.a/ D �
�
˛g.a/

�
u.g/

for all g 2 G and a 2 A. Another covariant representation .�; v; K/ of .A; G; ˛/ with
H � K is said to extend .�; u;H/ if

� D

�
� �

0 �

�
and v D

�
u 0

0 �

�
;

coextend .�; u;H/ if

� D

�
� 0

� �

�
and v D

�
u 0

0 �

�
;

and dilate .�; u;H/ if

� D

24� � �

0 � �

0 0 �

35 and v D

24� 0 0

0 u 0

0 0 �

35 :
In [15, Theorem 4.6] it was proven that, for a C�-correspondence .X;C/, every covari-

ant representation of .T C
.X;C/

;G;˛/ coextends to a covariant representation .�;v;K/where
� is the integrated form of an isometric representation of the correspondence. In light
of Theorem 3.10 it turns out that this result is not specific to tensor algebras of C�-
correspondences but is true for dynamical systems of semi-Dirichlet operator algebras.

Theorem 4.2. Let .A; G; ˛/ be a dynamical system where A is semi-Dirichlet. Every
covariant representation .�;u;H/ coextends to a covariant representation .�;v;K/where
� is semi-Dirichlet.

Proof. Much of this follows similarly to the proof of Proposition 3.5. By [5, Theorem 4.6]
� has a unique cyclic extremal coextension � W A! B.K/ which in turn has a maximal
dilation (extension) � on B.L/. Thus � extends to a �-homomorphism of C �e .A/. Thus,
� is a Shilov representation of A and hence semi-Dirichlet by Proposition 3.5.

It is an important point to recall that ˛ extends uniquely to a continuous representation
of G on Aut.C �e .A// [14, Lemma 3.4], which we will call ˛ as well.

Since � is cyclic,K D �.A/H , we can show for every g 2 G that v.g/ 2 B.K/ given
by

v.g/�.a/h D �
�
˛g.a/

�
u.g/h;

for all a 2 A and h 2 H , is a well-defined unitary. To this end, for a1; a2 2 A we know
by the semi-Dirichlet property that there are bn; cn 2 A such that

a�2a1 D lim
n!1

bn C c
�
n :
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Hence, for h1; h2 2 H˝
�
�
˛g.a1/

�
u.g/h1; �

�
˛g.a2/

�
u.g/h2

˛
D
˝
�
�
˛g.a1/

�
u.g/h1; �

�
˛g.a2/

�
u.g/h2

˛
D
˝
�
�
˛g.a

�
2a1/

�
u.g/h1; u.g/h2

˛
D lim
n!1

˝
�
�
˛g.bn C c

�
n/
�
u.g/h1; u.g/h2

˛
D lim
n!1

˝�
�
�
˛g.bn/

�
C �

�
˛g.cn/

���
u.g/h1; u.g/h2

˛
D lim
n!1

˝�
�
�
˛g.bn/

�
C �

�
˛g.cn/

���
u.g/h1; u.g/h2

˛
D lim
n!1

˝
u.g/

�
�.bn/C �.cn/

�
�
h1; u.g/h2

˛
D lim
n!1

˝�
�.bn/C �.cn/

�
�
h1; h2

˛
:::

D
˝
�.a1/h1; �.a2/h2

˛
:

Note that in the third last step we are using that since u.g/�.a/ D �.˛g.a//u.g/ then
u.g/�.a/� D �.˛g.a//

�u.g/ by taking adjoints and moving the unitaries. All of this
implies that v.g/ is a well-defined isometry, in fact a unitary.

Now for every a 2 A and h 2 H

PHv.g/�.a/h D PH�
�
˛g.a/

�
u.g/h D PH�

�
˛g.a/

�
u.g/h D PHu.g/�.a/h:

Thus, PHv.g/PH D u.g/which means that there exists a unitary Qu.g/ 2B.K 	H/ such
that v.g/ D u.g/˚ Qu.g/, that is, v.g/ coextends u.g/.

As well, for g1; g2 2 G we have for every a 2 A and h 2 H

v.g1g2/�.a/h D �
�
˛g1g2.a/

�
u.g1g2/h

D �
�
˛g1

�
˛g2.a/

��
u.g1/u.g2/h

D v.g1/v.g2/�.a/h:

Hence, v.g1g2/ D v.g1/v.g2/ and v is a unitary representation of G. Strong continuity
follows from the complete contractivity of � , the point-norm continuity of ˛ and the strong
continuity of u.

Lastly, we should check the covariance relations. To this end, let a; b 2 A, h 2 H and
g 2 G

v.g/�.a/�.b/h D u.g/�.ab/h

D �
�
˛g.ab/

�
u.g/h

D �
�
˛g.a/

�
�.˛g.b//u.g/h

D �
�
˛g.a/

�
v.g/�.b/h:

By the cyclicity of K we then have v.g/�.a/ D �.˛g.a//v.g/.
Therefore, .�; v; K/ is a covariant representation of .A; G; ˛/ coextending .�; u;H/

where � is semi-Dirichlet.
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We now turn to semi-Dirichlet property and crossed product operator algebras. For a
C�-dynamical system .C ; G; ˛/ recall that the continuous compactly-supported functions
fromG into C is denoted Cc.G;C/ and is a �-algebra under the convolution product and a
compatible involution. The selfadjoint crossed products are completions of this �-algebra
under the integrated forms of various covariant representations of the systems. There is
a lot of theory here and the reader will have to consult [22, Chapter 2] for the necessary
crossed product background.

Definition 4.3 ([14]). Suppose .A;G;˛/ is a dynamical system and .C ; �/ is an ˛-admissi-
ble C�-cover. The relative full crossed product is defined to be

A Ì.C ;�/;˛ G WD Cc
�
G; �.A/

�
� C Ì˛ G;

and the full crossed product is

A Ì˛ G WD A Ì.C�max.A/;�/;˛
G:

In the same manner, one can define the relative reduced crossed product by taking the
closure of Cc.G; �.A// in the reduced crossed product C�-algebra C Ìr˛ G. It is proven in
[14, Theorem 3.12] that all of these algebras are completely isometrically isomorphic and
so we refer to these algebras as the reduced crossed product and denote it A Ìr˛ G. As well,
if G is amenable then the full and reduced crossed products are completely isometrically
isomorphic [14, Theorem 3.14].

Proposition 4.4. Let .A; G; ˛/ be a dynamical system and suppose .C1; �1/ and .C2; �2/
are ˛-admissible C�-covers. If .C1; �1/ � .C2; �2/ via a morphism ', then there exists a
completely contractive surjective homomorphism

q' W A Ì.C2;�2/;˛ G �! A Ì.C1;�1/;˛ G

such that q'.f / D 'f 2 Cc.G; �1.A// for all f 2 Cc.G; �2.A// (aka the identity map).
Moreover, equivalence of C�-covers implies that q' is a completely isometric isomor-
phism.

Proof. This follows from similar reasoning as [15, Theorem 2.4]. By definition, the mor-
phism ' is a �-homomorphism ' WC2!C1 such that '�2D �1. As well, by the uniqueness
of the extension of the group homomorphism to the C�-covers we have '˛g D ˛g'

(abusing notation by calling all the group homomorphisms ˛). In other words, ker ' is
an ˛-invariant ideal (cf. [9, Chapter 2]).

Now [22, Proposition 3.19] states that full crossed products of C�-algebras preserve
exact sequences by ˛-invariant ideals. Hence,

' Ì id W C2 Ì˛ G �! C1 Ì˛ G

is a surjective �-homomorphism. In particular, q' WD ' Ì idjAÌ.C2;�2/;˛
G is the required

completely contractive surjective homomorphism.



Crossed products and C�-covers of semi-Dirichlet operator algebras 927

From the previous proposition we see that there is a complete lattice of relative full
crossed products indexed by the complete sublattice of C�-Lat.A/ of ˛-admissible C�-
covers. Of course, inequivalent C�-covers may lead to completely isometrically isomor-
phic relative full crossed products, perhaps even collapsing to a single unique algebra as
in the case when G is amenable.

By [14, Proposition 3.7-8] every non-degenerate completely contractive representation
of A Ì˛ G arises precisely as the integrated form

� Ì u W A Ì˛ G �! B.H/

of a covariant representation .�; u; H/ of .A; G; ˛/. Thus, the full crossed product is
characterized as the universal operator algebra over all such covariant representations [14,
Theorem 3.10].

In [14, Theorem 5.8] the second and third authors proved that given a dynamical sys-
tem .A; G; ˛/ where A is unital and semi-Dirichlet then the relative full and reduced
crossed products, relative to the C�-envelope, are semi-Dirichlet as well. This result was
what was needed to find the non-tensor algebra semi-Dirichlet examples mentioned in
Section 2. It turns out that this result is true using any semi-Dirichlet admissible C�-cover
and without the unital assumption.

First, we need a small discussion about unitization. Let .A; G; ˛/ be a dynamical
system and let .C ; j / be a C�-cover of A which is ˛-admissible. If A is non-unital, then
C is non-unital as well as a C�-algebra. Let C1 denote the unitization of C . We have a
natural inclusion C Ì˛ G � C1 Ì˛ G and under that inclusion, A ÌC ;j;˛ G is identified
with the (closed) subalgebra of C1 Ì˛ G generated by Cc.G;A/. By abusing notation, we
call this copy of A Ì.C ;j /;˛ G inside C1 Ì˛ G as A Ì.C1;j /;˛ G. Also the subalgebra of
C1 Ì˛ G generated by Cc.G;CI / will be denoted as CI Ì˛ G.

Theorem 4.5. Let .A; G; ˛/ be a dynamical system and let .C ; j / be a C�-cover of A

which is ˛-admissible. If .C ; j / is a semi-Dirichlet C�-cover of A, then

(i) A Ì.C ;j /;˛ G � C Ì˛ G is semi-Dirichlet, and

(ii) A Ìr˛ G � C Ìr˛ G is semi-Dirichlet.

Proof. If .A; G; ˛/ is a unital dynamical system then the same exact arguments as in the
proof of [14, Theorem 5.8] suffice to prove both (i) and (ii). So here we treat the case
where A is non-unital.

(i) Let .�; u;H/ be a covariant representation of .C ; G; ˛/ so that the representation
� Ì u is a faithful representation of C Ì˛ G.

Let H1 WD H ˚H and consider

C1 WD
®�
cC�I 0

0 �I

�
j c 2 C ; � 2 C

¯
� B.H1/;

A1 WD
®�
aC�I 0

0 �I

�
j a 2 A; � 2 C

¯
� C1:

Note that A1 � C1 is semi-Dirichlet and so by the unital case

A1 Ì.C1;j /;˛ G � C1 Ì˛ G
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is semi-Dirichlet. Let
�1 W C1 �! B.H1/

be the inclusion map and consider the unitary representation

G 3 s 7�! v.s/ WD u.s/˚ u.s/ 2 B.H1/:

The pair .�1; v; H1/ forms a covariant representation of .C1; G; ˛/. Let � WD �1 Ì v be
the integrated form representation of C Ì˛ G.

LetM;N �H1, withM WDH ˚ 0 andN WDM?. For an elementary function �˝ z 2
Cc.G;CI /, with � 2 C and z 2 Cc.G/, we have

�.�˝ z/ D �

Z
G

z.r/v.r/d�.r/

D �

Z
G

z.r/
�
u.r/˚ u.r/

�
d�.r/

D

�
�

Z
G

z.r/u.r/d�.r/
�
˚

�
�

Z
G

z.r/u.r/d�.r/
�

D
�
�.�˝ z/jN

�
˚
�
�.�˝ z/jN

�
:

Therefore the restriction of elements from �.CI Ì˛ G/ onto N is norm preserving.
On the other hand, N is reducing for �1.C1/ and in addition �1.C/jN D ¹0º. This

situation persists for elements of �.C Ì˛ G/, when we view C Ì˛ G as a subset of C1 Ì˛
G. Indeed, ifP is the orthogonal projection toN , then for any elementary function c˝ z 2
Cc.C ; G/ with c 2 C and z 2 Cc.G/, we have

�.c ˝ z/P D

Z
G

�1
�
˛�1r .c/

�
z.r/v.r/Pd�.r/

D

Z
G

�1
�
˛�1r .c/

�
Pz.r/v.r/d�.r/

D 0 D P�.c ˝ z/:

In addition, similar arguments show that the restriction of � on C Ì˛G is a �-isomorphism.
For the proof, note that

A1 Ì.C1;j /;˛ G D span.A Ì.C ;j /;˛ G CCI Ì˛ G/

and so
�.A1 Ì.C1;j /;˛ G/ � span

�
�.A Ì.C ;j /;˛ G/CCI Ì˛ G

�
; (4.1)

where
�.B/ D B CB�

is a shorthand for the operator system generated by B. Let x 2 .A Ì.C ;j /;˛ G/�.A Ì.C ;j /;˛
G/. Since A1 Ì.C1;j /;˛ G is semi-Dirichlet, we obtain from (4.1) sequences ¹ynº1nD1 and
¹wnº

1
nD1 in �

�
A Ì.C ;j /;˛ G

�
and CI Ì˛ G respectively, so that

x D lim
n
.yn C wn/:
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By compressing to N , which annihilates �.C Ì˛ G/, the above equation implies that
limn �.wn/jN D 0. As we have seen however, the compression on N is norm preserv-
ing for elements of �

�
CI Ì˛ G

�
and so limn �.wn/ D 0. Therefore,

�.x/ D lim
n
�.yn/ 2 �

�
�.A Ì.C ;j /;˛ G/

�
� �

�
�.A Ì.C ;j /;˛ G/

�
and so �.A Ì.C ;j /;˛ G/ is semi-Dirichlet. However, � is a �-isomorphism on C Ì˛ G �
C1 Ì˛ G and so A Ì.C ;j /;˛ G is semi-Dirichlet.

(ii) Assume that A acts on a Hilbert space H0 so that A is semi-Dirichlet as a subal-
gebra of B.H0/ and C�.A/ � B.H0/ is an admissible C�-cover of A with respect to the
˛-action of G. Let H WD H0 ˚C and consider

A1 WD
®�
aC�I 0

0 �

�
j a 2 A; � 2 C

¯
be the unitization of A. Since A is semi-Dirichlet as a subalgebra of B.H0/, it is easy
to see that A1 is semi-Dirichlet as a subalgebra of B.H/. Furthermore, C�.A1/ is an
admissible C�-cover for the unitized ˛-action ofG. Therefore, A1 Ìr˛ G is semi-Dirichlet.
Lets look at the reduced crossed product A1 Ìr˛ G more carefully.

Let
� W A1 �! B.H/

be the inclusion map and define

z�.c/h.r/ WD �
�
˛�1r .c/

�
h.r/;

u.s/h.r/ WD h.s�1r/

for c 2C �.A1/, s; r 2G and h2H ˝L2.G/. Then, .z�;u;H/ forms a covariant represen-
tation of .C�.A1/; G; ˛/ and by definition the integrated form representation � WD z� Ì u
maps C�.A1/ Ì˛ G onto C�.A1/ Ìr˛ G. Consider the decomposition

zH WD H ˝ L2.G/ D
�
H0 ˝ L

2.G/
�
˚
�
C ˝ L2.G/

�
: (4.2)

Now u.r/ D I ˝ `.r/, r 2 G, where ` is the left regular representation of G, and the
restriction of u to N D C ˝ L2.G/ is unitarily equivalent to `. Because ` is faithful on
the reduced C�-algebra C �r .G/Š CI Ìr˛ G, the restriction of elements from CI Ìr˛ G �
A1 Ìr˛ G to N is norm preserving.

On the other hand, N is also reducing for z�.A1/ and in addition z�.A/jN D ¹0º.
This equality persists for elements of A Ìr˛ G � A1 Ìr˛ G. Indeed, if P is the orthogonal
projection on N , then for any elementary function a ˝ z 2 Cc.A; G/, with a 2 A and
z 2 Cc.G/, we have

�.a˝ z/P D

Z
G

˛�1r .a/z.r/u.r/Pd�.r/

D

Z
G

˛�1r .a/P z.r/u.r/d�.r/ D 0:
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To start with the proof, note that

A1 Ìr˛ G D span.A Ìr˛ G CCI Ìr˛ G/

and so
�.A1 Ìr˛ G/ D span

�
�.A Ìr˛ G/CCI Ìr˛ G

�
: (4.3)

Let x 2 .A Ìr˛ G/�.A Ìr˛ G/. Since A1 Ìr˛ G is semi-Dirichlet, we obtain from (4.3)
sequences ¹ynº1nD1 and ¹wnº1nD1 in �

�
A Ìr˛ G

�
and CI Ìr˛ G respectively, so that

x D lim
n
.yn C wn/:

By compressing to N , which annihilates A Ìr˛ G, the above equation implies that

lim
n
wnjN D 0:

As we have seen however, the compression on N is norm preserving for elements of
CI Ìr˛ G and so limn wn D 0. Therefore x D limn yn 2 �.A Ìr˛ G/ and so A Ìr˛ G is
semi-Dirichlet.

In [14, Theorem 5.5] it was proven that if A is Dirichlet then so is A Ì˛ G. We are
now in a position to prove this result in the semi-Dirichlet case.

Theorem 4.6. Suppose .A;G;˛/ is a dynamical system. If A is semi-Dirichlet, then A Ì˛
G is completely isometrically isomorphic to A Ì.C�sD-max.A/;�/;˛

G via the canonical map.
Moreover, A Ì˛ G is semi-Dirichlet.

Proof. Let � WA Ì˛ G!B.H/ be a completely isometric non-degenerate representation.
By [14, Proposition 3.8], � is the integrated form of a non-degenerate covariant represen-
tation .�;u;H/, � D �Ì u. Necessarily, � is completely isometric, too. Theorem 4.2 gives
that .�; u;H/ coextends to a covariant representation .�; v;K/ where � is semi-Dirichlet.
Moreover, since PH� jH D � then � is also completely isometric. Thus, by the universal
property of C�sD-max.A/ there exists a �-homomorphism z� W C�sD-max.A/! B.K/ such that
z�.�.a// D �.a/ for all a 2 A.

Now ˛ extends uniquely to C�sD-max.A/ by Proposition 4.1 and so

v.g/z�
�
�.a/

�
v.g/� D v.g/�.a/v.g/� D �

�
˛g.a/

�
D z�

�
�
�
˛g.a/

��
D z�

�
˛g
�
�.a/

��
for all a 2A. Hence, v.g/z�.c/D z�.˛g.c//v.g/ for all c 2 C�sD-max.A/ by the uniqueness
of the universal property of C�sD-max.A/. Thus, .z�; v; K/ is a covariant representation of
.C�sD-max.A/; G; ˛/.

To finish off the argument remember that H � K is coinvariant for z� and v. Then
compression to H is a completely contractive homomorphism of A Ì.C�sD-max.A/;�/;˛

G

onto A Ì˛ G. Therefore, by the universality of the full crossed product these two operator
algebras are completely isometrically isomorphic.

Lastly, by the previous theorem we have that A Ì˛ G is a semi-Dirichlet operator
algebra.
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We end this section with a nice application of Takai duality.

Theorem 4.7. Suppose .A; G; ˛/ is a unital dynamical system with G a locally compact
abelian group. Then A is semi-Dirichlet if and only if A Ì˛ G is semi-Dirichlet.

Proof. The previous theorem gives the forward direction. Assume then, that A Ì˛ G
is semi-Dirichlet. Thus, the full crossed product of the dual dynamical system .A Ì˛
G; yG; y̨/ [14, Chapter 4] is semi-Dirichlet by Theorem 4.6. The Takai duality of crossed
products of operator algebras [14, Theorem 4.4] then gives

.A Ì˛ G/ Ìy̨ yG ' A˝K
�
L2.G/

�
;

where the latter algebra is a subalgebra of C �e .A/ ˝ K.L2.G//. In particular, since
K.L2.G// is simple and nuclear then everything with the tensor product behaves nicely
and from [11, Proposition 4.4],

C �e .A/˝K
�
L2.G/

�
' C �e

�
A˝K

�
L2.G/

��
:

Thus, the semi-Dirichlet property gives�
A˝K

�
L2.G/

����
A˝K

�
L2.G/

��
� A˝K

�
L2.G/

�
C
�
A˝K

�
L2.G/

���
in C �e .A/˝K.L2.G// which can be treated as a subalgebra of C �e .A/1 ˝K.L2.G//

since the nuclearity of the second algebra makes everything work out nicely. So for a; b 2
A and a rank-one projection p 2 K.L2.G// there exist cn; dn 2 A˝K.L2.G// such
that

.a˝ p/�.b ˝ p/ D lim
n!1

cn C d
�
n :

But then

a�b ˝ p D .1˝ p/.a˝ p/�.b ˝ p/.1˝ p/

D .1˝ p/
�

lim
n!1

cn C d
�
n

�
.1˝ p/

D lim
n!1

.1˝ p/cn.1˝ p/C .1˝ p/d
�
n .1˝ p/:

This implies that
.A˝ p/�.A˝ p/ � .A˝ p/C .A˝ p/�:

Therefore, A is semi-Dirichlet.
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