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Constructing and calculating Adams operations
on dualisable topological modular forms

Jack Morgan Davies

Abstract. We construct Adams operations  k on the cohomology theory Tmf of dualisable topolo-
gical modular forms after inverting k; the first such multiplicative stable operations on this cohomo-
logy theory. These Adams operations are then calculated on the homotopy groups of Tmf using a
combination of descent spectral sequences and Anderson duality. Applications of these operations
are then given, including constructions of connective height 2 analogues of Adams summands and
image-of-J spectra.

1. Introduction

In this article, the extraordinary cohomology theory Tmf of topological modular forms
is equipped with Adams operations, compatible with the classical Adams operations on
topological K-theory (Theorems A and B). These are the first nonidentity multiplicative
operations on Tmf. This is made possible using a combination of a powerful theorem of
Lurie in spectral algebraic geometry and a careful application of Goerss–Hopkins obstruc-
tion theory. These Adams operations are then calculated on the homotopy groups of Tmf
(Theorem C). Finally, we make use of the relationship between Tmf and topological K-
theory to construct height 2 analogues of the connective Adams summand and connective
image-of-J spectrum and prove some basic facts about these spectra (Theorems D and E).

Motivation

Adams operations are some of the most utilised power operations in homotopy theory. This
is exemplified by the work of Adams counting the number of vector fields on spheres [1],
by Adams–Atiyah giving a “postcard-sized” proof of the Hopf invariant one theorem [3],
and by Quillen calculating the algebraic K-theory of finite fields [51]. In these three
examples, Adams operations arise as operators on topological K-theory KU. In this art-
icle, we study Adams operations on another extraordinary cohomology theory Tmf, called
topological modular forms, which has received much attention in recent years. Many view
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Tmf as a natural higher height analogue of topological K-theory, due to its relationships
with number theory (through its connection to modular forms) as well as differential geo-
metry and physics (through the string orientation � WMString! Tmf), and its ability to
help with computations in stable homotopy theory; see [11] for more details and refer-
ences.

The construction of Tmf arises from the study of elliptic cohomology theories and
generalised elliptic curves. To motivate our study of Adams operations on Tmf, let us first
reimagine the classical Adams operations on KU through an algebro-geometric lens.

One can recover complex topological K-theory KU using only the multiplicative
group scheme Gm D Spec ZŒt˙�. In fact, one can recover the multiplicative stable homo-
topy type, also known as the E1-ring, which represents the cohomology theory KU.
There is a moduli stack MGm of forms of Gm upon which there exists an étale sheaf
Omult of E1-rings, constructed using spectral algebraic geometry. When evaluated on the
étale open Spec Z ! MGm defined by the multiplicative group Gm over Z, we obtain
K-theory Omult.Gm=Spec Z/D KU. Moreover, the functoriality of Omult means that auto-
morphisms of Gm over Spec Z induce automorphisms of KU. For example, the inversion
isomorphism Œ�1�WGm ! Gm (defined by sending t to t�1) produces the Adams oper-
ation  �1W KU ! KU on K-theory; this is the familiar C2-action sending a complex
vector bundle to its conjugate. To obtain more Adams operations on KU, say  k for each
integer k, one might try to extend Omult to be functorial with respect to more endomorph-
isms of Gm. This is not an unreasonable request, as the cohomology theory KU only
really depends on the formal group yGm associated with Gm, by the classical Landweber
exact functor theorem, and many endomorphisms of Gm produce automorphisms on yGm.
Once this extended functoriality is achieved, the Adams operations1  k on KUŒ 1

k
� can

be obtained by applying Omult to the k-fold multiplication map on Gm. This blueprint is
carried out and discussed in detail in [27, §6.4] for KU completed at a prime.

Similar constructions can also be considered for Tmf. Indeed, the definition of Tmf
is as the global sections of the celebrated étale sheaf Otop of E1-rings on the moduli
stack of generalised elliptic curves MEll. This sheaf was originally constructed by Goerss–
Hopkins–Miller [34] and takes values in elliptic cohomology theories. This means that for
each affine étale mapEWSpecR!MEll, the cohomology theory Otop.E=SpecR/ remem-
bers the formal group of the generalised elliptic curve E. The E1-ring Tmf is the global
sections of Otop on MEll, so we say Tmf is the universal elliptic cohomology theory as it
maps to all other elliptic cohomology theories given as sections of Otop. One can now ask
if we can use the “multiplication map” on generalised elliptic curves to construct Adams
operations on Tmf using Otop. Just as for topological K-theory, there is a construction of
Adams operations on periodic topological modular forms TMF by following the above
blueprint applied to the moduli stack of smooth elliptic curves; see [27, §6.4] and [25, §2].

1These operations are often called stable Adams operations, as they are defined as maps of spectra.
As these are the only kind of Adams operations we will consider in this article, let us forgo the adjective
stable.
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One might then suspect that Tmf also has Adams operations  k after inverting k, as this
cohomology theory can be constructed using TMF and KU. There are many subtleties to
consider though, such as the lack of an honest multiplication map or group structure on
generalised elliptic curves. The first goal of this article is to confirm this suspicion and
show that Tmf does admit Adams operations.

Main results

It is well known that to define multiplicative maps  k on topological K-theory, one must
invert k [2, §II.13], as k.u/D ku for the generator u2 �2KU, so k.u�1/D 1

k
u�1. The

same is true for periodic topological modular forms TMF, as discussed in [25, Thm. F].
For this reason, we are content with constructing Adams operation  k only after invert-
ing k.

Theorem A. For every integer k, there is a morphism of E1-rings k WTmfŒ 1
k
�! TmfŒ 1

k
�

and a commutative diagram of E1-rings

TmfŒ 1
k
� TmfŒ 1

k
�

KUŒ 1
k
� KUŒ 1

k
�:

 k

 k

One can also replace KUŒ 1
k
� above with KOŒ 1

k
� or KOJqKŒ 1

k
�.

The morphism TmfŒ 1
k
�! KUŒ 1

k
� is the evaluation at the cusp map which on rational

homotopy groups sends a modular form to the linear term in its q-expansion. The construc-
tion of the operations  k above will come from the more general p-complete statement.

Theorem B. For every prime p and every p-adic unit k 2 Z�p , in particular for every
integer k not divisible by p, there is a morphism of E1-rings  k W Tmfp ! Tmfp and a
commutative diagram of E1-rings

KUp Tmfp TMFp

KUp Tmfp TMFp

 k  k  k

where  k WTMFp ! TMFp are the Adams operations of [27, Thm. 6.9 and Def. 6.16]. In
particular, if k is an integer not divisible by p, then k WTmfp! Tmfp is the p-completion
of the operation  k W TmfŒ 1

k
� ! TmfŒ 1

k
� of Theorem A. Furthermore, if p is odd, then

restricting to the maximal finite subgroup of Z�p yields an action of F�p on Tmfp such
that the maps of E1-rings Tmfp ! KUp , Tmfp ! TMFp , and  k W Tmfp ! Tmfp are
F�p -equivariant. One can also replace KUp above with KOp or KOJqKp .

These Adams operations above on TmfŒ 1
k
� and Tmfp are (to the best of the author’s

knowledge) the first nonidentity stable multiplicative operations on these cohomology
theories.
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These theorems come with a warning: there is no obvious compatibility between vari-
ous Adams operations  k from Theorem A or Theorem B. This means that we do not
claim to have homotopies  k ı  ` '  k`, for example. Homotopies of this kind and
more are further explored in [26] away from the prime 2 and in [25, Thms. C–D] away
from �24, so on TMF.

The proof of Theorems A and B involves much more work than the construction of
Adams operations on topological K-theory KU and periodic topological modular forms
TMF, as generalised elliptic curves do not always admit a multiplication map. It is only
with a combination of the ideas used in the KU- and TMF-cases together with Goerss–
Hopkins obstruction theory that we can prove Theorems A and B.

As fundamental operations on an important cohomology theory, we expect the Adams
operations of Theorems A and B to become useful tools in algebraic topology. With an
eye to these future applications, we proceed to calculate the effect of these operations on
homotopy groups—it suffices to state the p-complete calculations here.

Theorem C. For every odd prime p, every p-adic unit k 2 Z�p , and every x 2 �d Tmfp
with d positive, we have the equality

 k.x/ D

´
x x 2 Torsd
kd

d
2 ex x 2 Freed

where Torsd � �d Tmfp is the subgroup of torsion elements and Freed is the orthogonal
subgroup of Notation 3.3. At the prime p D 2, the above equalities hold for all d except
for those positive d congruent to 60 or 156 modulo 192.2

Despite the similarity to the calculations of Adams operations on �� KU and �� KO,
the above theorem requires a much more detailed analysis.

With the construction and calculation of Adams operations on Tmf in hand, we start to
imitate some of the classical constructions on topologicalK-theory and Adams operations
now using topological modular forms. For example, one can split p-complete connective
complex topological K-theory kup into Adams summands ` D kuhF�p using the F�p -action
from the p-adic Adams operations. One can also study the image-of-J by defining a con-
nective spectrum j1 as the further fixed points of Adams operations acting on `. One major
advantage of the Adams operations on tmf of Theorems A and B compared with those on
periodic TMF of [27, §6.4] (and [25, §2]) is the direct comparison to the Adams opera-
tions on topological K-theory and the ability for one to use an Fp-based Adams spectral
sequence. These computations of the Fp-ASS for j1 appear in [16] and a modified Fp-
ASS for j1 appears in [18]. The analogy to K-theory is then used to motivate the study of
connective Adams summands u D tmfhF�p

p and image-of-J -spectra j2 (again as a fibre of
an Adams operation acting on u) at the height 2. To highlight the simplicity and utility of
Theorems A to C, we prove the following two statements involving u and j2.

2As is made clear in Notation 3.3 when defining Freed , there is some ambiguity at the prime 2 and for
these d , where an explicit basis for Freed has not yet been found.
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The E1-ring u is always a summand of tmfp , however, unlike the height 1 case, the
u-module tmfp is not necessarily a sum of shifts of u. Our next theorem summarises at
which primes tmfp splits into copies of u.

Theorem D. The inclusion of fixed points u ! tmfp witnesses tmfp as a quasi-free u-
module if and only if p�1 divides 12. On the other hand, the map of E1-rings U!TMFp
always witnesses TMFp as a quasi-free U-module.

If p � 1 does not divide 12, so for primes p D 11 and p � 17, we believe the next best
thing to a splitting is true. More specifically, we conjecture (Conjecture 4.5) that there is
a cofibre sequence of u-modules of the formM

p�1
2

uŒ‹�! tmfp !
M

`Œ‹�

and provide such a cofibre sequence for the primes p D 11; 17; 19; 23, and 37.
Our final theorem takes advantage of the fact that the q-expansion map Tmfp ! KO

commutes with our Adams operations and is F�p -equivariant, which allows us to explicitly
compare j2 and j1.

Theorem E. Let p be a prime. Then the unit map Sp ! j2 detects all elements in ��Sp
in the p-primary image-of-J and all elements detected by S! tmfp .

At the prime p D 3, Carrick and the author have shown that the unit map S3 ! j2

detects more v2-periodic families from ��S3 than just those detected by tmf3; see [17].
These last two theorems highlight some of the immediate applications of Adams oper-

ations on Tmf, including their formal properties and computational power.

Outline

The sections of this article Sections 2 to 4 can be read independently, assuming the main
results of the previous sections. In Section 2, we use many tools surrounding Tmf such as
(spectral) algebraic geometry, elliptic cohomology theories, and Goerss–Hopkins obstruc-
tion theory; in Section 3, we use some formal computational aspects in stable homotopy
theory, including some synthetic spectra, and Anderson duality; in Section 4, we use some
stable homotopy theory surrounding the image-of-J and elementary notions in the theory
of modular forms. In some more detail:

• In Section 2, we prove Theorems A and B and construct the titular Adams oper-
ations on Tmf. This opens with an outline of the algebraic geometry Section 2.1
used in this article. Next is a construction of Adams operations on sections of the
sheaf Otop over open substack Msm

Ell of smooth elliptic curves and its complement
MGm using Lurie’s theorem and spectral algebraic geometry Section 2.2. In Sec-
tion 2.3, we prove Theorem B by gluing together our operations on KOJqKp and
TMFp using Goerss–Hopkins obstruction theory. Finally, we prove Theorem A in Sec-
tion 2.4 by gluing together the p-complete Adams operations at different primes with
some rational datum.
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• In Section 3, we prove Theorem C and calculate our Adams operations on the homo-
topy groups of Tmf. First, we define an explicit basis for our summands Free and
Tors in Section 3.1 using the computations from [16]. Next, in Section 3.2 we discuss
the Anderson self-duality of Tmf (as proven by Stojanoska) and the formal ramifica-
tions this self-duality implies. Finally, in Section 3.3, we prove Theorem C using some
formal stable homotopy theory and the Anderson self-duality of Tmf.

• In Section 4, we prove Theorems D and E using the connections between Tmf and
topological K-theory. We start Section 4.1 with a proof of Theorem D, which follows
from our calculations of Adams operations on Tmf and some basic facts about spaces
of modular forms. In Section 4.2, we discuss evidence for a conjecture explaining the
negative cases of Theorem D. In Section 4.3, we prove Theorem E, which is a purely
formal consequence of Theorem B and the classical study of the image-of-J .

Past and future work

Operations on elliptic cohomology theories have been constructed by Baker [6, 7] and
Ando [5], and these include Adams operations. The Adams operations in this article can be
seen as global stable E1-versions of those previously studied. As mentioned by Baker [6,
p. 6], the Adams operations  k are determined as a multiplicative natural transformation
of homology theories on TMFŒ 1

6k
� (which is the modern notation for classical elliptic

cohomology) by the formula

 k.x/ D kdx for x 2 �2d TMF
�
1

6k

�
:

By Theorem C, we see that our operations  k are homotopic to those classical stable
Adams operations on TMFŒ 1

6k
�. We have also explored other operations on Tmf and

related spectra. In [25], we discuss Adams operations, Hecke operators, and Atkin–Lehner
involutions on TMF as well as periodic topological modular forms with level structure.
The structural results for operations on TMF are much stronger than those shown here
for Tmf, as we have a spectral algebro-geometric description of the former. The Adams
operations on Tmf in this article are constructed from those on TMF from [25] or equi-
valently [27]. In [26], we prove that away from the prime 2 the Adams operations on Tmf
in this article compose as expected  k ı  ` '  k` up to homotopy. This begins to show
that operations on Tmf ought to behave as those on TMF, but so far these methods are
rather ad hoc. As alluded to in [26] and implied by this article, there are also morphisms
of E1-rings Tmf! Tmf0.n/ (and not of Tmf-modules) critical to defining Hecke opera-
tions as well as connective forms of Behrens’ Q.N/ spectra of [9]. We will return to such
constructions in future work. Finally, a further study of Adams operations on tmf3 leads
to detection statements for products within the divided ˇ-family in ��S3; see [17].

Conventions

The language of 1-categories will be used throughout, so all categorical constructions
and considerations will be of the1-categorical flavour. In particular, for a scheme X and
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a finite group acting on X , we will write X=G for what is sometimes called the stacky
quotient. In general, we consider our algebraic geometry as occurring in the1-category
Fun.CRing; �/ where CRing is the 1-category of commutative (discrete) rings. Given a
prime p, we will also write yM for M� SpfZp , where M is any presheaf in Fun.CRing;�/.
We will denote the p-completion of E1-rings with a subscript .�/p . All of our discrete
rings will be commutative. For an E1-ring R and R-modules M;N , we write FR.M;N /
for the internal function R-module in ModR. For an integer n, we will write XŒn� for the
nth suspension of a spectrum X .

2. Constructions

In this section, we will prove Theorems A and B and construct Adams operations  k on
TmfŒ 1

k
� and Tmfp as morphisms of E1-rings. In the p-complete case, we will use the

Cartesian diagram of E1-rings

Tmfp KOJqKp

TMFp KOLqMp

by taking global section of [38, Def. 5.10]. In particular, we will use spectral algebraic
geometry to construct Adams operations on TMFp and KOJqKp and then Goerss–Hopkins
obstruction theory (à la Behrens [32, §12] and Hill–Lawson [38]) to glue these operations
together on KOLqMp . Some rational stable homotopy theory is needed at the end to patch
together the various p-complete pieces. In fact, this sketch is an outline for this whole
section.

In Section 2.1, we discuss the necessary algebraic geometry to define our tools. In
Section 2.2, we construct a version of Otop for TMFp and KOJqKp using Lurie’s theorem
(which originally appeared in [12, Thm. 8.1.4] and is proven in [27] with extensive dis-
cussion). In Section 2.3, we define Adams operations on Tmfp in an ad hoc manner by
gluing together these operations on sections of TMFp and KOJqKp using Goerss–Hopkins
obstruction theory, thus proving Theorem B. Finally, in Section 2.4, we prove Theorem A
using Theorem B and some rational arguments.

2.1. Algebro-geometric background

As our main algebro-geometric object of interest is the moduli of generalised elliptic
curves, we will freely speak of stacks and Deligne–Mumford stacks; see [57, 0ELS &
03YO]. We will also need to consider formal Deligne–Mumford stacks, all of which we
assume to be locally Noetherian; see [45, §8.1] or [27, §A]. We will not use formal geo-
metry in any depth and one should keep in mind that classical Deligne–Mumford stacks
also define formal Deligne–Mumford stacks whose topology on each étale open is dis-
crete.

https://stacks.math.columbia.edu/tag/0ELS
https://stacks.math.columbia.edu/tag/03YO
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Write Msm
Ell for the moduli stack of smooth elliptic curves, and MEll for its compac-

tification, which has a moduli interpretation as the moduli stack of generalised elliptic
curves; see [23, 29, 30], or [21] for more on such objects. Our generalised elliptic curves
will always have irreducible geometric fibres, so either elliptic curves or Néron 1-gons.

Definition 2.1. The moduli stack of forms of Gm is defined as the quotient stack

MGm D .Spec Z/=C2 D BC2:

A form of Gm over a ringR is an abelian group schemeG overR which under a faithfully
flat base change is equivalent to Gm; see [42, Prop. A.4] for a proof that MGm classifies
such objects. This comes with a natural closed immersion MGm!MTateD SpecZJqK=C2
defined by setting q D 0; this map plays an important role in [38], but it will not appear in
this paper again.

To study the formal groups associated with generalised elliptic curves in a p-complete
setting, we will use p-divisible groups also known as Barsotti–Tate groups. For a fixed
prime p, write MBTp for the moduli stack of p-divisible groups and MBTpn for the substack
of p-divisible groups of height n. These are related to smooth elliptic curves and forms of
Gm through the following construction of Tate [56, §2].

Definition 2.2. If E is a smooth elliptic curve or form of Gm define the associated p-
divisible group EŒp1� of E to have nth level the pn-torsion subgroup EŒp1�n D EŒpn�.
This operation is functorial, and we obtain the following morphisms of stacks:

Œp1�WMsm
Ell !MBTp2

; Œp1�WMGm !MBTp1
:

Let G be a p-divisible group over a ringR. IfR is p-complete, there is a formal group
Gı associated with G called its identity component; see [44, Thm. 2.0.8] for the construc-
tion of .�/ı in this generality, and [56, §2.2] for the inverse functor defined for connected
p-divisible groups. This assignment is also compatible with the formal completion b.�/ of
group schemes at their identity element, in the sense that after a base change over Spf Zp ,
there is a morphism .�/ıW yMBTp ! yMFG of stacks and diagrams

yMsm
Ell

yMBTp2
yMFG;

d.�/Œp1�

.�/ı

yMGm

yMBTp1
yMFG;

d.�/Œp1�

.�/ı

(2.3)

where MFG is the moduli stack of formal groups; see [49, §6]. The commutativity of the
above diagrams follows along the lines of [44, Prop. 7.4.1]; also see [44, §2.2.4].

2.2. Constructions using p-divisible groups

Fix a prime p, and let CBTpn be the subcategory of Fun.CRing; �/
= yMBTpn

spanned by those
objects GWX ! yMBTpn where X is represented by a formal Deligne–Mumford stack of
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finite presentation over Spf Zp and G is a formally étale morphism; see [27, Def. 2.1].
Equip this category with the étale topology by declaring a map to be an étale cover if the
underlying map of Deligne–Mumford stacks is such. This is a particular subsite of the
site CZp of [27, Def. 1.10]; see [27, Prop. 1.13]. The following is then a simplification of
Lurie’s theorem; see [27, Thm. 1.11].

Theorem 2.4. Let p be a prime and n a positive integer. Then there is an étale hypersheaf
of E1-rings Otop

BTpn
on CBTpn such that for each affine GWSpfR! yMBTpn in CBTpn , the E1-

ring O
top
BTpn
.G/ D E has the following properties:

(1) E is complex periodic

(2) The groups �kE vanish for all odd integers k.

(3) There is a chosen natural isomorphism of rings �0E ' R.

(4) There is a chosen natural isomorphism of formal groups Gı ' yGQ0

E
over SpfR,

between the identity component of G and the classical Quillen formal group of E .

This theorem can be applied in a few concrete cases of interest to us. The following is
due to Lurie, and proofs can be found in [27, §6].

Corollary 2.5. For every prime p, the morphisms of stacks

yMGm
Œp1�
���! yMBTp1

; yMsm
Ell

Œp1�
���! yMBTp2

lie in CBTpn , for n D 1 and 2, respectively. Moreover, we have an equivalence of E1-rings

O
top
BTp1
. yMGm/ ' KOp

and the diagram of1-categories�
DMét

=Msm
Ell

�op CAlg

�
fDMét

= yMsm
Ell

�op
.CBTp2

/op CAlg

�Spf Zp

Otop

.�/p

Œp1��
O

top

BTp2

commutes, where Otop is the Goerss–Hopkins–Miller sheaf of E1-rings of [32] or [44, §7].
In particular, there is the following equivalence of E1-rings:

O
top
BTp2
. yMsm

Ell/ ' TMFp

By reformulating the above results, we obtain a functorial description of Adams oper-
ations on KOp and TMFp . First, we need to define two sites.

Definition 2.6. Fix a prime p. Define the category Csm=BTp2
as follows:

• Objects are étale morphisms EW X! yMEll from a formal Deligne–Mumford stacks to
the moduli stack of smooth elliptic curves Msm

Ell � Spf Zp .
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• Morphisms .X;E/! .X0;E 0/ given by a pair .f;�/ of a morphism of formal Deligne–
Mumford stacks f W X ! X0 is a morphism of formal Deligne–Mumford stacks and
�WEŒp1� ' f �E 0Œp1� an isomorphism of p-divisible groups over X; where Œp1�
denotes the morphisms of Definition 2.2.

Similarly, define a category CGm=BTp1
to have an objects étale morphisms GW X! yMGm

defining G, a form of Gm, and morphisms are morphisms of stacks and isomorphism of
p-divisible groups associated with these forms of Gm. Equip both of these categories with
the étale topology through the forgetful functor to formal Deligne–Mumford stacks.

These sites mirror those defined in [25, Def. 1.5]; in fact, Csm=BTp2
D bIsog, using the

notation of loc. cit.

Proposition 2.7. Fix a prime p and write C for either CGm=BTp1
or Csm=BTp2

. There exists
an étale hypersheaf of E1-rings OC on C such that for an affine EW SpfR! yMEll in C ,
the E1-ring OC .R/ D E defines an elliptic cohomology theory for E, natural in C .

Let us detail what we mean by the above elliptic cohomology theories being natural
in C—this is simply unravelling the naturality in Theorem 2.4. Fix C D Csm=BTp2

for def-
initeness. For a morphism .f; �/W .SpfR;E/!.SpfR0; E/ between affine objects in C ,
then E D Osm.R/ and E 0 D Osm.R0/ are natural elliptic cohomology theories, so the iso-
morphisms �0E ' R and �0E 0 ' R0 commute with the maps f �WR0 ! R and E 0 ! E .
Moreover, the map E 0 ! E induces a morphism of formal groups over SpfR

yGQ0

E
! f � yGQ0

E 0
: (2.8)

The naturality of the isomorphisms ˛W yE ' yGQ0

E
and ˛0W yE 0 ' yGQ0

E 0
in C means they

commute with (2.8) and the morphism that �WEŒp1�! f �E 0Œp1� induces on formal
groups by taking identity components.

Proof. There is a functor
Œp1�WC ! fDM

= yMBTpn

(2.9)

sending a pair .X; E/ to the pair .X; EŒp1�/, where n depends in an obvious way on the
choice of C . Now we consider our two cases.

• We claim that the morphism of formal Deligne–Mumford stacks yMGm !
yMBTp1

is
formally étale. It would suffice to check this on the 2-fold étale cover

Spf Zp ! yMGm ;

and the morphism Spf Zp ! yMBTp1
is formally étale as it classifies the universal

deformation of the multiplicative p-divisible group �p1 over Fp; just take �0 of
[44, Cor. 3.1.19]. The functor Œp1� then factors through CBTp1

. We can then define
Omult as the following composition:

Omult
WC

op
Gm=BTp1

Œp1�op

����! C
op
BTp1

O
top

BTp1
���! CAlg
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• By the Serre–Tate theorem, see [22] for the original source and [27, Ex. 2.6] for an
explanation in this context, the map yMEll ! yMBTp2

is formally étale. In particular, the
above functor (2.9) factors through CBTp2

. This then yields a functor Œp1�WCsm=BTp2
!

CBTp2
. Define Osm as the following composition:

Osm
WC

op
sm=BTp2

Œp1�op

����! C
op
BTp2

O
top

BTp2
���! CAlg

In either case, the first functor does not change the underlying formal Deligne–Mumford
stack, so étale hypercovers are sent to étale hypercovers, and O

top
BTpn

are étale hypersheaves,
so we have two étale hypersheaves OC for varying C . These sheaves OC satisfy the
desired properties by Theorem 2.4 and Corollary 2.5 together with the identification (2.3)
of the identity component of p-divisible groups with the associated formal groups of
smooth elliptic curves or forms of Gm.

In particular, we can now (re)define Adams operations on KOp and TMFp; see [27,
§6.4] for a previous formulation, more properties, and the relation to classical Adams
operations.

Definition 2.10. For each primep and eachp-adic unit k2Z�p , define the (auto)morphisms
of E1-rings

 k WKOp ! KOp;  k WTMFp ! TMFp

by applying OC of Proposition 2.7 to the k-fold multiplication map of p-divisible groups
associated with the universal group schemes over yMGm and yMsm

Ell , respectively—note this
k-fold multiplication is an equivalence of p-divisible groups as k 2 Z�p .

Remark 2.11. From knowledge about KUp as a Lubin–Tate theory of height 1 at the
prime p, we know that the above Adams operations on KOp are all such automorphisms
of this E1-ring; see [35, §7] or [44, §5]. There are no other obvious E1-automorphisms
of TMFp , at least to the author. After K.2/-localisation, there is also much of a height 2-
Morava stabiliser group action on TMFp , and perhaps some of these automorphisms can
be lifted to the E2-local TMFp . The reader interested in initiating such lifts should start
with p D 3 and the K.2/-local discussions of TMFp found in [9, 33].

From these operations, we also obtain Adams operations on TateK-theory; an explora-
tion of TateK-theory through the lens of spectral algebraic geometry can be found in [28].

Definition 2.12. For an E1-ringA, we defineAJqK as the completion ofA˝†1CN at the
element q 2 �0A˝ †1CN ' �0AŒq�; the isomorphism here comes from a degenerating
Tor-SS from the flatness of †1CN over S. Notice that the natural map of E1-rings

KOJqKp
'
�! KOpJqKp

is an equivalence. Indeed, using standard facts about p-completion and computing the



J. M. Davies 946

homotopy groups of each side, this boils down to the classical fact that ZJqK! ZpJqK
induces an isomorphism on classical p-completions; a fact that is obvious as we have
natural identifications

ZJqK=pnZJqK ' .Z=pn/JqK ' ZpJqK=pnZpJqK: (2.13)

In particular, KOJqKp comes equipped with Adams operations  k for each k 2 Z�p from
those on KOp from Definition 2.10. Similarly, the natural map of E1-rings

KOLqMp
'
�! KOpLqMp

is also an equivalence, as the quotients of (2.13) commute with inverting q, a type of
colimit. In particular, the E1-ring KOLqMp can be equipped with Adams operations  k

for each k 2 Z�p from those on KOp .

It is clear from the above definitions that all of the maps of E1-rings

KOp ! KOJqKp ! KOp; KOp ! KOLqMp ! KOJqKp;

where the second coming from setting q D 0, all naturally commute with each Adams
operation  k .

2.3. Proof of Theorem B

To glue together our Adams operations on TMFp with those on KOJqKp will use Goerss–
Hopkins obstruction theory. This will destroy much of our functoriality, only allowing us
to construct each Adams operation  k WTmfp ! Tmfp for each k 2 Z�p in isolation. We
encourage the reader to remind themselves of the K.1/-local stable homotopy theory of
[32, §12.6–7]. We would again like to thank an anonymous referee for suggestions to
simplify this section.

For this subsection, fix a prime p and a p-adic unit k 2 Z�p .

Proposition 2.14. There is a morphism of E1-rings ƒWTMFp ! KOLqMp such that the
diagram of E1-rings

TMFp TMFp

KOLqMp KOLqMp

ƒ

 k

ƒ

 k

(2.15)

commutes up to homotopy, where the horizontal maps are the Adams operations from
Definitions 2.10 and 2.12.

Of course, this morphism ƒ is (up to homotopy) the “evaluation at the cusp” map
Tmf! KOJqK with�24 inverted and p-completed; see [38, §A] for an obstruction theor-
etic approach to this map and [28] for a spectral algebro-geometric approach. This follows
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from the uniqueness of this map up to 1-homotopy, a consequence of the methods of
[38, Prop. A.6] or the proof below.

Proof. First, note that KOLqMp is K.1/-local, as it is a p-complete KO-module (see [38,
Rem. A.2]), so we may K.1/-localise TMFp and work in CAlgK.1/. We will now use
K.1/-local Goerss–Hopkins obstruction theory, as found in [32, §12.7], [38, §A], or [41,
§5.4], for example. The following arguments depend on the parity of p.

(For p ¤ 2). Recall that one defines the p-adic K-theory of an E1-ring R as K^�R D
��LK.1/.KU˝R/, and comes equipped with the structure of a � -algebra; see [32, §12.6]
or [35]. It follows from the arguments of [38, Prop. A.6] that the p-adic K-theory functor
induces the following bijection of sets:

�0 MapCAlgK.1/

�
LK.1/ TMF;KOLqMp

� '
�! Hom�Alg.KUp/�

�
K^� TMF;K^� KOLqM

�
: (2.16)

Indeed, this is due to the isomorphism of � -algebras K^� TMF ' .KUp/� ˝Zp V , where
V is the p-adic ring representing smooth elliptic curves E with a chosen isomorphism
between yE and yGm (see [32, §12.5] for a discussion of V , which is the smooth variant
of what is written there as V ^1), and the fact that this V is formally smooth over Zp; see
[32, Lem. 12.7.9]. By (2.16), we see it suffices to study the p-adic K-theory of TMF
and KOLqM. Following [38, Prop. A.4], we can also calculate the � -algebra K^� KOLqM as
.KUp/� ˝Zp VTate, where VTate is now defined as the universal p-adic ZLqM-algebra with
an isomorphism class of pairs of an invariant 1-form on the smooth Tate curve T and a
chosen isomorphism between yT and yGm.3 There is a canonical map �W V ! VTate of p-
adic rings as the smooth Tate curve E is an elliptic curve, and as explained in the proof of
[38, Prop. 4.49], this morphism defines a map of � -algebras. The map � is known as the p-
adic q-expansion map, and by (2.16), we can recognise this map by our desired morphism
of K.1/-local E1-rings ƒW LK.1/ TMF ! KOLqMp . We are now required to show the
diagram of E1-rings (2.15) commutes. Appealing to (2.16) again, we are reduced to show
that the above diagram commutes after applying p-adicK-theory. As we know the p-adic
K-theory of all of the above E1-rings, and these p-adic K-theories are all base changed
from their zeroth p-adic K-theory, it suffices to check (2.15) commutes after applying
zeroth p-adic K-theory. We will get back to this shortly, once we bring the case for even
p up to speed.

(For p D 2). Recall from [32, Def. 12.7.10] (as well as the appendix of that chapter)
that the 2-adic real K-theory KO^� R of an E1-ring R is defined as ��LK.1/.KO˝R/,
and naturally has the structure of a reduced graded � -algebra, meaning that  �1 acts
trivially. There is a form for Goerss–Hopkins obstruction theory in this situation for Bott
periodic E1-rings. An E1-ring R is said to be Bott periodic if K^�R is torsion-free and
concentrated in even degrees, and the natural map KO^0 R ! K^0R is an isomorphism.

3Note that this calculation of K^� KOLqM holds for all primes, as the arguments calculating K^� KOJqK
from [38, Prop. A.4] also hold in this generality.
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Bott periodic Goerss–Hopkins obstruction theory then states that if R1 and R2 are two
K.1/-local Bott periodic E1-rings and f�WKO^� R1! KO^� R2 is a morphism of reduced
graded � -algebras, then the obstructions to the lifting f� to a map f WR1 ! R2 of K.1/-
local E1-rings lie in the following André–Quillen cohomology groups:

H s

�Algred
.KO2/�

�
KO^� R1;KO^� R2Œ�s C 1�

�
s � 2 (2.17)

Moreover, obstructions to the uniqueness of f recognising f� up to homotopy live in the
following cohomology groups:

H s

�Algred
.KO2/�

�
KO^� R1;KO^� R2Œ�s�

�
s � 1 (2.18)

We claim that forR1DLK.1/TMF andR2DKOLqM2, both families of obstruction groups
above vanish. To show this, consider the vanishing criteria of [32, Lem. 12.7.13]:

(1) The E1-ring tmf is Bott periodic by construction [32, Rem. 12.7.12] and it follows
that its localisation TMF is also Bott periodic. To see KOLqM is Bott periodic,
we first refer to the calculation that K^� KOLqM is isomorphic to the � -algebra
.KUp/� ˝Zp VTate discussed above under the assumption that p is odd—indeed,
this calculation holds for all primes. It is rather formal that the natural map

KO^0 KOLqM! K^0 KOLqM (2.19)

is an isomorphism. Indeed, as the map of E1-rings KO! KOLqM is flat, then for
any KO-module M we obtain natural isomorphisms

M� KOLqM D ��
�
M ˝ KOLqM

�
' ��

�
M ˝ KO˝KO KOLqM

�
' ��.M ˝ KO/˝ ZLqM

by a degenerating Künneth spectral sequence. For M D KO or KU, we then see
that the map (2.19) is the base change of the classical isomorphism KO0 KO '
K0 KO over ZLqM, and then 2-completed, and hence is an isomorphism.

(2) The mod 2-reduction of V Z�2 is formally smooth over F2. Indeed, the Z�2 -action
factors through the quotient Z�p =¹˙1º as Œ�1� acts trivially on V ; see [32,
Lem. 12.7.14 (1)]. The Z�2 =¹˙1º-fixed points of V are V2, the 2-adic ring rep-
resenting the moduli stack Mord

Ell .4/ whose S -points consist of a pair of a smooth
elliptic curve E, with ordinary mod 2-reduction, and level structure given by an
isomorphism of finite group schemes �4 ' yEŒ4�; this is [32, Lem. 12.7.14]. The
(affine) stack Mord

Ell .4/˝ F2 is smooth over F2, which proves our claim.

(3) To see the continuous cohomology groups H s
c .Z�2 =¹˙1º; VTate=2VTate/ vanish for

s � 1, it suffices to see that SpfVTate is an ind-Galois torsor for the group Z�2 =¹˙1º
over Spf ZLqM2. This follows by observing that VTate can be explicitly written
(à la [38, Prop. A.4]) as the set of continuous maps from Z�2 =¹˙1º into ZLqM2,
where Z�2 =¹˙1º acts by conjugation, and that using this expression for VTate its
Z�2 =¹˙1º-fixed points are precisely ZLqM2.
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(4) In part (2) above, we saw V Z�2 =¹˙1º is given by the 2-adic ring V2, so V2 ! V

is a Z�2 =¹˙1º-ind-Galois extension. In particular, V2 ! V is ind-étale. By base
change, we see that the mod 2-reduction of this inclusion of fixed points is also
ind-étale.

The four conditions above line up with the four hypotheses of [32, Lem. 12.7.13],
and we consequently see that the obstruction groups (2.17)–(2.18) all vanish. Hence the
commutativity of (2.15) can be checked on 2-adic KO-homology. By [32, Lem. 12.7.11],
we see the 2-complete KO-theory of a Bott periodic E1-ring R naturally depends on its
zeroth 2-complete K-theory:

KO^� R ' .KO2/� ˝Z2 K^0R:

Consequently, just like in the case for an odd prime p, we are reduced to studying the
zeroth p-adic K-theory of (2.15).

(Back to general p). It suffices to show that (2.15) commutes after applying zeroth p-
adic K-theory:

V V

VTate VTate:

 ksm

� �

 kTate

By construction, the morphism � is one of � -algebras with respect to the algebraic Adams
operations on both V and VTate, given by on S -valued points of SpfV by

.E; ˛/ 7!
�
E; ˛ ı Œk�

�
:

Hence it suffices to show that the p-adic K-theory of the operations  ksm and  kTate agree
with the relevant algebraic Adams operations. This will follow from our construction of
these operations from Section 2.2.

Let us begin with the  ksm-case. For any object X in Csm=BTp2
, we can define

 kX WO
sm.X/! Osm.X/

by applying Osm to the k-fold multiplication maps on the associated p-divisible groups;
see Proposition 2.7 and Definition 2.10, or [27, Def. 6.16]. If X D SpfR is affine, then
[32, Lem. 12.6.1] supplies us with the morphisms and equivalences of formal stacks

Spf K^0A D SpfVR SpfRord

M
sm;ord
Ell .p1/ D SpfV D Spf K^0 TMF M

sm;ord
Ell

Mord
Ell .p

1/ D Spf K^0 tmf Mord
Ell

(2.20)
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where A D Osm.X/, SpfRord is SpfR base-changed over Mord
Ell !

yMEll, and the square
above is Cartesian. The naturality with respect to Csm=BTp2

of the isomorphism in condition
(iv) of Theorem 2.4 shows that the map that  kX induces the k-fold multiplication map on
the associated Quillen formal groups. Hence the map  kX WVR ! VR is represented by the
pair .E; Œk� ı ˛/, where E is the universal smooth elliptic curve over V pulled back to VR,
˛ is the base change of the universal isomorphism yE ' yGm to VRsm , and Œk� is the k-fold
multiplication map on formal groups—such a map of p-divisible groups induced such a
map on formal groups.

When X D yMsm
Ell , then we can choose an affine étale cover SpfR ! yMsm

Ell and again
consider the diagram of formal stacks (2.20). In this case, the lower-horizontal map is
faithfully flat by assumption, so the upper-horizontal map is also faithfully flat. In particu-
lar, the map of rings V ! VR is injective. From the argument above, the algebraic Adams
operations on VR and those induced by  kR agree. Moreover, the map V ! VR is induced
by tmfp ! Osm.SpfR/, hence it commutes with the Adams operations induced by  ksm
and  kR. Finally, the map V ! VR also commutes with the algebraic Adams operations
as we again appeal to [38, Prop. 4.49] which states that this holds if V ! VR is a map of
rings over yMEll. From these facts and the injectivity of V ! VR, we see that the algebraic
Adams operations on V agree with those induced by  ksm.

The  kTate-case is analogous. Indeed, coping the above affine argument for KUp , we
see that the Adams operations  k on KUp induce the algebraic Adams operations on p-
adic K-theory. As the map of E1-rings KO ! KU induces an isomorphism of zeroth
p-adic K-theory, we see that the operations  k on KOp , themselves induced from  k

on KUp , also induce the algebraic operations on zeroth p-adic K-theory. As the Adams
operations on KOLqMp are determined by those on KOp , and that likewise the algebraic
Adams operations on the zeroth p-adic K-theory of KOLqMp are determined by those on
KOp , we obtain the desired result.

For primes p ¤ 2, there is a strengthening of the previous proposition. Let us equip
TMFp , KOp , KOJqKp , and KOLqMp with an F�p -action using the coherent Adams opera-
tions of Definitions 2.10 and 2.12 together with the multiplicative lift F�p �Z�p . From these
definitions, the Adams operations  k are F�p -equivariant as automorphisms of E1-rings.

Proposition 2.21. There is a morphism of E1-ringsƒWTMFp!KOLqMp with F�p -action
such that the diagram (2.15) inside CAlgBF�p commutes up to homotopy.

Proof. One can carry out the whole argument used to prove Proposition 2.14 for odd
primes in the setting of F�p -equivariant E1-rings, so the category CAlgBF�p . As discussed
in [54, §5.1], there is a G-equivariant form of Goerss–Hopkins obstruction theory for
a finite group G. If the order of our group F�p is not divisible by p, then all of the
F�p -equivariant obstruction groups can be calculated as the F�p -fixed points of the non-
equivariant obstruction groups used in the proof of Proposition 2.14. This allows us to
run all of the arguments of Proposition 2.14 in the F�p -equivariant setting and obtain
our desired result. One can alternatively construct these F�p -equivariant Adams operations
using the variant of Goerss–Hopkins obstruction theory found in [26].
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We can now construct the p-adic Adams operations on Tmfp .

Proof of Theorem B. Define an E1-ring Tmfp using Proposition 2.14 (or an F�p -equivari-
ant E1-ring using Proposition 2.21 at odd primes) via the Cartesian diagram

Tmfp KOJqKp

TMFp KOLqMpI
ƒ

this diagram is one definition of Tmfp; see [38, Def. 5.10], [24], or [28, Thm. B]. By
(the proof of) Proposition 2.14 we see that the map ƒ agrees with the usual smooth q-
expansion map up to 1-homotopy (as they both have the same effect on zeroth p-adic
K-theory by construction), hence the pullback is homotopy equivalent to any other E1-
ring one might call Tmfp . Moreover, Proposition 2.14 equips Tmfp with an endomorphism
of E1-rings k which agrees with the action of k when restricted to TMFp and KOJqKp .
Moreover, when p is odd, Proposition 2.21 constructs Tmfp as an E1-ring with F�p -action
equipped with an F�p -equivariant morphism of E1-rings  k .

Let us reiterate: these Adams operations  k on Tmfp have no obvious compatibility
as k varies—when working over Msm

Ell , we have natural homotopies  k ` '  k`, for
example; see [27, Prop. 6.17] or [25, Thms. C–D]. For odd primes p, one can show there
are homotopies between the Adams operations on Tmfp of the form  k ` '  k`, and
such homotopies are associative up to 3-homotopy; see [26, Thm. C and Thm. 3.16].

Remark 2.22. One might hope that other constructions on TMFp made possible using p-
divisible groups also have analogues for Tmfp . For example, the morphisms q�WTMFp !
TMF0.`/p defined for a prime ` distinct from p. The construction of these morphisms over
Msm

Ell is simple, they send a pair .E;H/ to the quotientE=H , but over the compactification
require a lot of care; see [23, §4.4.3] and [21, §4.7]. Following the recipe above, one can
construct morphisms q�W Tmfp ! Tmf0.`/p which restrict to the above morphisms of
periodic topological modular forms. There are at least two reasons one might like such
additional morphisms surrounding Tmf: to construct Hecke operators on Tmfp and hence
also tmfp , akin to those on TMFp found in [25, §2], and to construct connective versions
of Behrens’ Q.N/ spectra of [9]. Both of these constructions will appear in future work.

2.4. Proof of Theorem A

To construct the desired map of E1-rings

 k WTmf
�
1

k

�
! Tmf

�
1

k

�
for a positive integer k, we will glue the morphisms  k on Tmfp for each prime p not
dividing k together with a morphism  k on TmfQ that we will construct shortly—the
techniques used here are standard.
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Recall that tmfQ, the rationalisation of tmf, is formal as a rational cdga;4 see [38,
Prop. 4.47], for example. This means that tmfQ is equivalent to the connective formal
rational cdga A� D ƒQŒc4; c6� defined by the free E1-Q-algebra on elements c4 2 A8
and c6 2 A12. Write � for the element c

3
4�c

2
6

1728
2 A24. Consider the following Cartesian

square of rational cdgas:

TmfQ tmfQŒc
�1
4 �

tmfQŒ�
�1� D TMFQ tmfQŒc

�1
4 ; ��1�

(2.23)

Fix an integer k. Define the endomorphism of rational cdgas  k W tmfQ ! tmfQ by
sending c4 to k4c4 and c6 to k6c6. As this induces compatible endomorphisms on all the
cdgas in (2.23) we obtain an endomorphism of rational cdgas  k on TmfQ. We are now
ready to glue this endomorphism on TmfQ to those of Theorem B.

We will use Theorem C to prove Theorem A, however, the statement of Theorem C
only involves the operations from Theorem B. Moreover, we only use the weaker rational
version of Theorem C, which can also be proven using the simpler techniques of Section 3.

Proof of Theorem A. Fix an integer k. Write X for any E1-ring in the set²
TMF

�
1

k

�
; tmf

�
c�14 ;

1

k

�
;TMF

�
c�14 ;

1

k

�³
:

For each such X , there is the following Cartesian arithmetic fracture square of E1-rings:

X
Q
p−k Xp

XQ
�Q

p−k Xp
�

Q
˛

(2.24)

By Theorem B and our discussion of TmfQ above, Xp and XQ both have an endomorph-
ism  k . Moreover, the right vertical morphism of (2.24) commutes with these Adams
operations, so to obtain Adams operations on X , we only have to show that the lower
horizontal map commutes with Adams operations. This is easy though, as the space of
E1-morphisms out of XQ into a rational E1-ring R is (a component of) the space

�1C8R ��1C12R

as tmfQ is a free rational E1-ring and X is a localisation. In particular, we see that two
morphisms ˛ ı  k and  k ı ˛ agree up to homotopy if their images of c4 and c6 agree in
the homotopy groups of .

Q
p−k Xp/Q. Theorem C allows us to compare our p-complete

4Here, we are implicitly using the symmetric monoidal Schwede–Shipley equivalence of1-categories
ModQ 'D.Q/; see [53] or [43, Thm. 7.1.2.13].



Adams operations on dualisable topological modular forms 953

calculations of  k to the rational calculations (which follow by definitions), and we see
that ˛ ı  k and  k ı ˛ do agree on homotopy groups, so we obtain endomorphisms of
E1-rings  k WX ! X . To glue together endomorphisms, consider the diagram of rational
E1-rings

T TŒc�14 � tŒc�14 �

T TŒc�14 � tŒc�14 �

Q
Tp

Q
TŒc�14 �p

Q
tŒc�14 �p

Q
Tp

Q
TŒc�14 �p

Q
tŒc�14 �p

(2.25)

where TDTMF and tDtmf, all diagonal maps are the respective Adams operations k , the
products are taken over all primes p not dividing k, and we have suppressed rationalisation
everywhere. Repeating our arguments above, we see that each face in the above diagram
commutes, up to a homotopy. We can then use the 2-skeleton of the left cube above to
construct a map of spaces

S1 ! MapCAlgQ

�
T;
Y

TŒc�14 �p

�
� �1C8

Y
TŒc�14 �p ��

1C12
Y

TŒc�14 �p (2.26)

which encodes how these six homotopies (each represented above by whiskering a face
in the left cube of (2.25)) relate the six compositions from T to

Q
TŒc�14 �p from (2.25).

Note that the second map in (2.26) is the inclusion of a component. From (2.26), we see
the obstruction to lifting the 2-skeleton of the left cube of (2.25) in CAlgQ to the whole
cube lies in �1 of the codomain of (2.26), based at any choice of map T!

Q
TŒc�14 �p

displayed in (2.25). We see �i of the codomain of (2.26) vanishes for i D 1; 2; 3, hence
we see that the left cube of (2.25) admits a lift to a diagram in CAlgQ. The same argument
applies to the right cube of (2.25) mutatis mutandis. Taking pullbacks along the horizontal
cospans in (2.25) gives us the left square in the commutative diagram of E1-rings

TmfQ
�Q

p−k Tmfp
�

Q
Q
p−k Tmfp

TmfQ
�Q

p−k Tmfp
�

Q
Q
p−k Tmfp

 k  k  k

and the right square commutes bydefinition.Taking pullbacks along the horizontal cospans
again yields a morphism of E1-rings  k WTmfŒ 1

k
�! TmfŒ 1

k
� whose p-completion at any

p not dividing k is the Adams operation of Theorem B.
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3. Calculations
One can now take Theorems A and B for granted, i.e., the existence of Adams operations on
Tmf, as in this section, we prove Theorem C (repeated below) using different techniques.

Theorem 3.1 (Theorem C). For every odd prime p, every p-adic unit k 2 Z�p , and every
x 2 �d Tmfp with d positive, we have the equality

 k.x/ D

´
x x 2 Torsd
kd

d
2 ex x 2 Freed

where Torsd � �d Tmfp is the subgroup of torsion elements and Freed is the orthogonal
subgroup of Notation 3.3. At the prime pD 2, the above equalities hold for all d , however,
they are vacuous for positive d which are congruent to 60 or 156 modulo 192.

In Section 3.1, we define Free and relate them to the notation of Bruner–Rognes
[16]. In Section 3.2, a homotopical self-duality for Tmf is discussed, originally proven
by Stojanoska. In Section 3.3, we prove Theorem C and on the way gather evidence for a
conjecture concerning dual endomorphisms of self-dual spectra.

Throughout this section, we will freely use the notation of [32, §13] and [8] to indicate
elements in �� tmf, and [39] for elements in ��Tmf. There are more details for the descent
spectral sequence for Tmf given in [19], where this topic is treated with synthetic spectra.
Although the pictures in [32, §13] are arguably the most readable, they can be misleading,
for example, the vertical axis is neither the Adams nor Adams–Novikov filtration, and
contain occasional omissions. For this reason, we will reference [16] for specific calcula-
tions.

3.1. Defining the subgroup Free of �� Tmf

One often defines the elements in �� Tmf by choosing a representative from the E2-page
of the descent spectral sequence of [39] or [19]. As with any spectral sequence though,
we only know these elements are well defined up to higher filtration. In this section, we
define the subgroup Free � �� Tmf, which in the reader’s mind should be “elements in
�� Tmf of lowest filtration in the descent spectral sequence”, but which we need to make
precise below. A particular subtlety occurs at the prime 2: we cannot explicitly define
Freed � �d Tmf2 for d �192 60; 156 and d > 0, a problem also encountered by Bruner–
Rognes [16, Rem. 9.24 (4)].

First, let us start with the following lemma.

Lemma 3.2. Implicitly localise tmf at the prime 2 and write mfk D H 0.MEll;Z.2/ ; !
˝k/

for the group of weight k holomorphic modular forms over Z.2/. Then the following ele-
ments uniquely exist in �� tmf:

(1) A class c4 2 �8 tmf which maps to the normalised Eisenstein series c4 2 mf4 and
is N�-torsion.

(2) For each k 2 ¹0; 1; 2; 3; 4; 5; 6º, a class Œc4�kC1� 2 �32C24k tmf which maps to
c4�

kC1 2 mf16C12k and is N�-torsion.
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Proof. In the first case, we can choose our c4 to be zB in the notation of [16, Defs. 9.22
and 9.50]. By [16, Prop. 9.40], we see that N�c4 D 0. This class is determined by the fact
that it detects c4 and is N�-torsion. Indeed, the ambiguity in our choice of c4 lies in a factor
of ", the image of " 2 �8S. This ambiguity is solved by computing the Adams–Novikov
spectral sequence (ANSS) for tmf of [8, §8], where we explicitly see that " N� ¤ 0 on the
E2-page.

In the second case, notice that the k D 1; 5; 6 are uninteresting as there is no torsion
class in these degrees, so the edge map in the Adams–Novikov spectral sequence is inject-
ive. Otherwise, we choose Œc4�kC1� to be zBkC1 in the notation of [16, Defs. 9.22 and
9.50]. By [16, Lem. 9.11], we see that N� is B D c4 C " power torsion, so [16, Cor. 9.55]
states that zBkC1 N� D 0 for all k. Similar to the first case, these classes are uniquely defined
by these properties. Indeed, the ambiguity of this choice is up to the higher filtration
elements "k above zBkC1 for k 2 ¹0; 3; 4º and N� above zB3. An inspection of the ANSS
E2-page shows these torsion classes support nontrivial multiplication by N�.

We can now move onto our basis of Free. For a modular form f of weight k, we will
write f for an element in �2k tmf which maps to f under the edge map if such an element
is uniquely determined by this fact or if this element is mentioned in Lemma 3.2.

Notation 3.3. The elements of Tors � �� tmf are simply the torsion elements, which
can also be interpreted as elements in strictly positive filtration in the Adams–Novikov
spectral sequence (ANSS)—this spectral sequence is called the elliptic spectral sequence
in [8, §7–8], which is identified with the desired ANSS in [46, §5] using the Gap theorem
of [39] or [19]. The elements of Free � �� tmf in nonnegative degree are then described
in the following three cases:

• When 6 is inverted, Free D �� tmfŒ1
6
� as there is no torsion.

• When localised at 3, Free is multiplicatively generated by the classes:

c4; c6; Œ3��; Œc4��; Œc6��; Œ3�
2�; Œc4�

2�; Œc6�
2�; �3

• When localised at 2, Free is multiplicatively generated by the classes

c4; Œ2c6�; Œ8�
2iC1�; Œ4�4jC2�; Œ2�4�; Œc4�

kC1�; Œ2c6�
kC1�; �8

for i 2 ¹0; 1; 2; 3º, j 2 ¹0; 1º, and k 2 ¹0; 1; 2; 3; 4; 5; 6º, using Lemma 3.2 when
necessary and where Œ2c6�kC1� is defined with additive indeterminacy 2 N�3 and ��6"
for k D 1 and 5, respectively; see [16, Rem. 9.24 (4)].

Define Free � �� Tmf in nonnegative degrees as the subset Free � �� tmf given above
and in negative degrees as follows:

• When 6 is inverted, then there is no torsion and the ZŒ1
6
�-module Free is generated by

elements of the form ¹ci4c
j
6�

kº, for i ��1, j 2 ¹0;1º, and k��1.; see [39, Thm. 3.1].

• When localised at 3, Free is generated by elements of the form°
ci4c

j
6�

k�3l
±
;
°
c�14 c6�

�1�3l
±
;
°1
3
c�14 c6�

�2�3l
±
;
°1
3
c�14 c6�

�3.lC1/
±
;
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where i � �1, j 2 ¹0; 1º, k 2 ¹�3;�2;�1º, j C k < 0, and l � 0; see [39, Thm. 4.1].
Unlike [39], we have used the brackets ¹�º to express torsion-free classes in negative
degree to remind us that there is a degree shift that differs from the torsion-free classes
in positive degree:

¹ci4c
j
6�

k
º 2 �8iC12jC24k�1 Tmf.3/ :

The classes ¹c�m4 ��nº 2 ��8n�24m�1 Tmf.3/ for positive n and m such that �8n �
24m � 1 � �49 modulo 72 above are not necessarily well defined by their repres-
entative on the E2-page of the descent spectral sequence, so we define them as the
product of two well-defined elements c4¹c�m�14 ��nº.

• When localised at 2, Free is generated by elements of the form

¹ci42c
j
6�

k�8l
º; ¹c�14 c6�

k�8l
º; ¹c�14 2e2.kC1/�2c6�

k�8l
º;

where i <�1, j 2¹0;1º, k2¹�8;�7; : : : ;�1º, l�0, and e2 is the function which sends
a nonzero integer a the largest integer b with 2bja, and e2.0/ D 3; see [39, Thm. 5.3].
Similar to the 3-local case, any potentially ambiguous elements can be defined as the
product of either c4 or c24 with another well-defined element. For instance, we define
the element ¹ci42c

j
6�

kº in �q Tmf.2/ for some negative q D 8i C 12j C 24k � 1, as
the product of c4¹ci�14 2c

j
6�

kº if q is congruent modulo 192 to an element in the set

¹�37;�57;�61;�81;�97;�121;�133;�153;�157;�177º;

and as the product c24¹c
i�2
4 2c

j
6�

kº if q is congruent modulo 192 to an element in the
set

¹�49;�73;�145;�169º:

Let us now explicitly compare our generators to [16] (see Definitions 9.22, 9.50, and
13.13) in positive degrees: first at the prime 3, then at the prime 2—thank you to John
Rognes for noticing our previous misreading of loc. cit.

Free c4 c6 Œ3�� Œc4�� Œc6�� Œ3�2� Œc4�
2� Œc6�

2� �3

[16] B D B0 C D C0 D1 B1 C1 D2 B2 C2 H

c4 Œ2c6� Œ8�2iC1� Œ4�4jC2� Œ2�4� Œc4�
kC1� Œ2c6�

kC1� Œ2c6�
k0C1� �8

zB C D2iC1 D4jC2 D4 zBkC1 CkC1 Ck0C1C‹ M

Above we write k 2 ¹0; 2; 3; 4; 6; 7º and k0 2 ¹1; 5º and the question mark above
indicates that those the objects C2 and C6 are only well defined up to some additive inde-
terminacy.

3.2. Anderson duality

To systematically study the negative homotopy groups of Tmf, we will use the following
form of duality.
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Definition 3.4. For an injective abelian group J , we write IJ for the spectrum represented
by the cohomology theory

Sp! Ab�; X 7! HomAb�.���X; J /:

For a general abelian group A, we take an injective resolution of the form

0! A! J1 ! J2;

which by functoriality, yields a morphism of spectra IJ1! IJ2 . The fibre of this morphism
we denote by IA, and for a spectrum X , we define the Anderson dual of X to be the
function spectrum IAX D F.X; IA/.

From the definition above one can calculate

��IJX ' HomZ.���X; J /

for an injective abelian group J . When A is a general abelian group, we obtain the fol-
lowing functorial exact sequence of abelian groups for all k 2 Z

0! Ext1Z.��k�1X;A/! �kIAX ! HomZ.��kX;A/! 0 (3.5)

which non-canonically splits when A is a subring of Q. More basic facts about Anderson
duality, such as the fact that the natural map X ! IAIAX is an equivalence when X
has finitely generated homotopy groups, can be found in [45, §6.6], under the guise of
Grothendieck duality in spectral algebraic geometry. Anderson duality is of interest to us
as many of the spectra we will study in this article are Anderson self-dual.

Definition 3.6. Let X be a spectrum and A an abelian group. We say that X is Anderson
self-dual if it comes equipped with an integer d and an equivalence of spectra

�WXŒd�
'
�! IAX:

We also want to define a stricter form of self-duality for ring spectra. Let R be an E1-
ring with �0R ' A such that ��dR is a free A-module of rank one. We say an element
D 2 ��dR witnesses the Anderson self-duality of R if the isomorphism �D W��dR! A

sendingD 7! 1 which identifiesD as an A-module generator of ��dR, lifts to an element
D_ 2 �dIAR under the surjection of (3.5) whose representing map of left R-modules
D_WRŒd�! IAR is an equivalence.

Example 3.7. There are some famous examples of Anderson self-duality.

• The class 1 2 �0 KU witnesses the Anderson self-duality of KU, i.e.,

1_WKU
'
�! IZ KU

is an equivalence. This is originally due to Anderson [4], and is an immediate con-
sequence of the fact that HomZ.�� KU;Z/ is a free ��KU-module; see [37, p. 3].
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• The class vu�1R 2 ��4 KO witnesses the Anderson self-duality of KO, i.e.,

.vu�1R /_WKOŒ4�
'
�! IZ KO

is an equivalence. This result is also due to Anderson. An accessible modern proof
with an eye towards spectral algebraic geometry can be found in [37, Thm. 8.1].

• The classD D ¹2c�14 c6�
�1º 2 ��21Tmf witnesses the Anderson self-duality of Tmf,

i.e.,
D_WTmfŒ21�

'
�! IZ Tmf

is an equivalence. The abstract duality result, meaning the existence of such an equi-
valence of Tmf-modules above, is due to Stojanoska; see [54, Thm. 13.1] for the case
with 2 inverted and [55] where it is announced in general; the 2-primary case can also
be found in [16, Thm. 10.13]. Any such equivalence of Tmf-modules is a posteriori
defined by a generator of �21IZ Tmf ' Z, which we choose to be the above D_, dual
to D using (3.5).

There are other examples for self-duality of topological modular forms with level
structure, as discussed for Tmf.2/ in [54, Thm. 9.1] and Tmf1.m/ in [48, Thm. 5.14].
Studying endomorphisms of Anderson self-dual spectra leads us to dual endomorphisms.

Definition 3.8. LetAbe an abelian group,X an Anderson self-dual spectrum, and F WX!
X an endomorphism of X . Define the dual endomorphism of F as the composite

LF WX
�;'
��! .IAX/Œ�d�

.IAF /Œ�d�
�������! .IAX/Œ�d�

�;'
 �� X:

Given A;X , and F from the above definition, then the functoriality of (3.5) yields the
following commutative diagram of abelian groups with exact rows for all k 2 Z:

0 Ext1Z.��k�1�dX;A/ �kX HomZ.��k�dX;A/ 0

0 Ext1Z.��k�1�dX;A/ �kX HomZ.��k�dX;A/ 0

Ext1Z.F;A/DF
�
1 LF HomZ.F;A/DF

�
0

(3.9)

Our calculations of  k on Tmf in negative degrees will rest upon explicit calculations of
L k on positive homotopy groups and (3.9).

When working with 6 inverted, there also exists a kind of algebro-geometric duality
on MEll called Serre duality. The following can be found in [47, §A] using the well-known
identification of MEll;ZŒ 16 �

with the weighted projective line PZŒ 16 �
.4; 6/; see [47, Ex. 2.1].

Theorem 3.10. The dualising sheaf for MEll;ZŒ 16 �
is !�10. In particular, for any integer k

the natural cup product map

H 0
�
MEll;ZŒ 16 �

; !k
�
˝H 1

�
MEll;ZŒ 16 �

; !�k�10
�
! H 1

�
MEll;ZŒ 16 �

; !�10
�
' Z

�
1

6

�
is a perfect pairing of ZŒ1

6
�-modules.
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Let us note that the stack MEll certainly has no Serre duality before inverting 6, which
can be seen through the cohomology calculations of !� over MEll from [39].

Remark 3.11. A simple consequence of the above theorem is that one can immediately
see the E1-ring TmfŒ1

6
� is Anderson self-dual. Indeed, as discussed on [54, p. 8], the

Serre duality statement of Theorem 3.10, the calculation ofH�.MEll;ZŒ 16 �
; !�/ in [39, §3],

and a collapsing DSS, immediately implies the Anderson self-duality of TmfŒ1
6
� as in

Example 3.7.

When 6 is inverted, dual endomorphisms on Tmf (defined using Anderson duality) can
be computed directly using Serre duality.

Lemma 3.12. Let P be a set of primes containing both 2 and 3 and implicitly local-
ise everywhere away from P . If F W Tmf! Tmf is a morphism of spectra, then one can
compute LF on �� Tmf in negative degrees as the composite

LF W�k Tmf ' H 0
�
MEll; !

�
kC1
2 �10

�_ F _

��! H 0
�
MEll; !

�
kC1
2 �10

�_
' �k Tmf

and in nonnegative degrees as the composite

LF W�k Tmf ' H 1
�
MEll; !

� k2�10
�_ F _

��! H 1
�
MEll; !

� k2�10
�_
' �k Tmf;

where we have implicitly used the Serre duality isomorphism.

Proof. This follows immediately from the definitions, as in this case, the Anderson duality
equivalence comes directly from Serre duality; see Remark 3.11.

3.3. Proof of Theorem C

To prove Theorem C we will use the following lemmas, the first helping us to calculate
inside Free and the second to help us with Tors.

Lemma 3.13. Let R be an algebra in hSp and A an R-algebra in hSp. Suppose we have
a decomposition of ��A given by Tors˚Free, where the elements of Tors are precisely
the �0R-torsion elements of ��A. Fix some �kA. Suppose that for each y 2Tors� �kA,
there is a z in the image of the unit ��R! ��A such that zx D 0 for all x 2Free� ��A
and the map of �0R-modules

�kA � hyi
z�
�! hzyi � �kCjzjA (3.14)

is injective. Then for every R-module map F WA ! A, the induced map on homotopy
groups F W�kA! �kA preserves the decomposition Tors˚Free.

Proof. Clearly F.Tors/ � Tors as F is R-linear. Take an x 2 Free and write F.x/ D
x0 C y where x0 2 Free and y 2 Tors using the decomposition above. The hypotheses
then lead us to the equalities

0 D F.zx/ D zF.x/ D z.x0 C y/ D zy
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where the second equality follows from the R-linearity of F . The injectivity of (3.14)
leads us to the conclusion that y D 0, and we are done.

Lemma 3.15. Let p be a prime, x be a homogeneous element of Tors � �� tmfp , and
F W tmfp ! tmfp a morphism of spectra. Furthermore, if p D 2, suppose that on rational
homotopy groups we have the equality F.cm4 �

l / D �m;lF.1/c
m
4 �

l for all m � 1 and
l � 0, where �m;l is an integer congruent to 1 modulo 8. Then we have the equality

F.x/ D xF.1/ 2 �� tmfp :

It will become clear during the proof that the above hypotheses can be somewhat
weakened, but we will not need any generalisation in this article.

The following proof is quite long and relies on a case-by-case analysis of �� tmf.

Proof. Let us start by considering two purely formal cases:

(1) Suppose x is in the image of the Hurewicz morphism ��S!�� tmf. These classes
are displayed in colour in [32, §13, pp. 2–4] as conjectured by Mahowald and
recently proven at the prime 2 in [13] and at the prime 3 in [14]; these facts can
also be found in [16, §11.11 and §13.7], respectively. In this case, as F is S-linear
(all maps of spectra are) we obtain an equality:

F.x/ D xF.1/ 2 �jxj tmf

(2) Suppose that there exists an element y 2 �� tmf in the Hurewicz image such that
xy lies in the Hurewicz image and that the multiplication-by-y map

�yW�jxj tmf! �jxyj tmf (3.16)

is injective. In this case, we have the equalities

xyF.1/ D F.xy/ D F.x/y

which using the assumption that (3.16) is injective, implies that F.x/ D xF.1/.

These first two cases cover all of the torsion at the prime 3, so let us now focus on the
prime 2. Consider the family of elements of the form

�ic
j
4�

k ; i 2 ¹1; 2º; j; k � 1

where we have temporarily foregone the use of brackets. For these elements, we immedi-
ately obtain the equality

F.�ic
j
4�

k/ D �iF.c
j
4�

k/ 2 �iC8jC24k tmf2

using S-linearity. Moreover, we claim to have the equality

F.c
j
4�

k/ D �j;kc
j
4�

kF.1/ 2 �8jC24k tmf2 : (3.17)
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Indeed, this is the naïve calculation from the zero line in the E2-page of the ANSS and
the fact that this zero line injects into the rational homotopy groups. Hence we need to
check that F preserves Freed in these degrees d D 8j C 24k, i.e., that F does not jump
filtration in these degrees. The only nontrivial cases to check, so those d where Torsd ¤ 0,
are those d congruent modulo 192 to a number in the set

¹8; 32; 40; 80; 104; 128; 136º: (3.18)

In the above cases, we have potential torsion classes

"; q D "1; N�2; N�4; Œ"�4� D "4; Œq�4� D "5; N�2Œ2�4� D N�2D4

where we have used the notation of [8] on the left and [16, Def. 9.22] on the right. We want
to apply Lemma 3.13 with z D N�. The fact that yz ¤ 0 for all y in the set (3.18) above
follows from [16, Prop. 9.41] and the fact that N�5 ¤ 0. This allows us to use Lemma 3.13
to conclude the equality (3.17) for those (3.18). The fact that for all remaining d and all
x 2 Freed , we have x N� D 0 follows from the facts that Œc4�k � N� D 0 for all 0 � k � 7 as
shown in the proof of Lemma 3.2, and the fact that all other classes in these degrees are
c4 and �8 multiplies of these classes. To summarise this argument thus far, we have the
equalities

F.�ic
j
4�

k/ D �iF.c
j
4�

k/ D �i�j;kc
j
4�

kF.1/ D �ic
j
4�

kF.1/

the latter coming from our hypothesis. We claim it suffices to now consider the two fam-
ilies of elements

Œ��� D �1; Œ���2 D �21; Œ���3 D �31; Œ��4� D �4; Œ�2�5� D �1�4; (3.19)

Œ2��� D �1; Œ��2� D �2; Œ��4� D �4; Œ2��5� D �5; Œ��6� D �6 (3.20)

up to �8-periodicity and multiplication by an element in the Hurewicz image—again
we have used the notation from [8] on the left and that from [16] on the right of the
equalities. We will now detail an argument for the element Œ���, and all other elements
of the first family (3.19) follow similarly. Our map F W tmf2 ! tmf2 of spectra induces a
map of ANSSs. As our original map is S-linear and the ANSS functor is lax-monoidal,5

this induced map of spectral sequences is linear over the ANSS for the sphere S. The class
Œ��� has E2-representative h1� as we can see on [8, p. 32], where h1 is the image of the
class of the same name in the ANSS for S induced by the unit map S! tmf. The value of
the map induced by F on the E2-page can then be calculated as

F2.h1�/ D h1F2.�/ 2 E
1;25
2 ' Z=2Z¹h1�º ˚ Z=2Z¹h1c34º:

5Indeed, the ANSS can be viewed as the cobar spectral sequence of the cosimplicial spectrum X ˝

MU˝.�C1/, which induces a lax-monoidal functor by [40, Lem. 2.39]. One could also use the more classical
and direct argument found in [52, Thm. 2.3.3].
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Everything on the zero line of this E2-page is torsion-free, so this line maps injectively
into its rationalisation. Rationally, however, the ANSS for tmf collapses on the E2-page,
so F2.�/ may be calculated as F.�/ inside �24 tmfQ. From our hypotheses, we see that
F2.�/ D ��F.1/, where � is odd. This immediately yields the equality F2.h1�/ D
h1�F.1/ inside E1;252 . This equality also exists on the E1-page E1;251 , and due to the
lack of classes of higher filtration in the 25-stem, we obtain this equality in �25 tmf2,
meaning F.Œ���/ D Œ���F.1/. The argument works similarly for the other elements in
the first family (3.19) as there are no classes of higher Adams–Novikov filtration in each
degree considered above, the E2-representative h1 for � comes from the ANSS for S and
is 2-torsion.

The case for the elements in the family (3.20) follows similarly, except we need to be
careful about the exotic 2-extensions supported by these classes. In other words, it is no
longer clear that our argument on the E2-page carries over. To fix this, we will work with
the synthetic spectrum � tmf =�4, which acts as an intermediary between the E2-page and
E1-page. This remedy was suggested to us by an anonymous referee, who we heartily
thank—another thank you to Christian Carrick for helping us out with some details below.

Let us consider the argument for Œ��2�D �2—the other cases follow with the obvious
changes. Consider the BP-synthetic category Syn of [50] at the prime 2,6 and in particular
the C.�4/-module internal to this category X D �.tmf/=�4, where �W Sp ! Syn is the
synthetic analogue functor. The rest of this proof also goes through without major changes
with the synthetic spectrum Smf of [20, Thm. C] and its � -spectral sequence computed in
[19]. We calculate �51;��.tmf/ to be the Z.2/Œ� �-module

Z=8ZŒ� �
®
Œ��2�

¯
˚
�
Z=2ZŒ� �=�2

�
¹h30c

6
4 ; h

3
0c
3
4�º ˚ V51

where V51 is all 2- and �2-torsion and comes from elements in filtration 7 or higher in the
ANSS. Similarly, we can calculate �d;�X for d D 48 and 51 as the following Z.2/Œ� �=�4-
modules:

�48;�X '
�
Z.2/Œ� �=�4

�
¹�2; c34�; c

6
4º ˚W48;

�51;�X '
�
Z=8ZŒ� �=�4

�
¹��2º ˚

�
Z=2ZŒ� �=�2

�
¹h30c

6
4 ; h

3
0c
3
4�º ˚W51:

The Z.2/Œ� �=�4-modules W48 and W51 above are both 2- and �2-torsion and come from
elements in filtration 4 or higher. Notice that we still have an element ��2 which is strictly
8-torsion in �51;�X as the exotic multiplication by 2 jumps only 2-filtrations in the E1-
page of the classical ANSS for tmf, hence it is detected in �.tmf/=�4.

Our assumption about the effect of F on rational homotopy groups implies that F.�2/
� �2F.1/ modulo 8 on the E2-page of the classical ANSS for tmf. The naturality of the
� -Bockstein spectral sequence for X D �.tmf/=�4 implies that the map induced by F on
�48;�X sends � to itself modulo 8 and elements in W48. As there exists a lift of � 2 �3S

6This is not the even BP-synthetic category. Inside Syn, an element in ��;��X is � r�1-torsion if and
only if it is hit by a dr -differential in the BP-baseed ANSS for X .
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inside �3;��S, then by �S-linearity we see that the map induced by F sends the element
�� to itself modulo elements in �W48 � W51.

The canonical quotient map �.tmf/! X sends the Œ��2� generating a Z=8ZŒ� � to the
8-torsion class ��2 inside �51;�X . The naturality of�˝C.�4/ and our calculation above
shows that the map induced by F on �51;��.tmf/ sends Œ��2� to itself modulo V51 and � -
torsion. Inverting � , using the fact that V51 is all �4-torsion, we see that F.Œ��2�/D Œ��2�
inside �51 tmf.

For other elements in (3.20) the above argument runs through with the evident changes
without any surprises.

We are now in a position to prove Theorem C.

Proof of Theorem C. First, we start with elements x 2 Free � �� Tmfp in nonnegative
degrees. As the operations  k are multiplicative, it suffices to calculate  k on these gen-
erators of Free. If x lies in a degree with no torsion elements, then our calculation on the
E2-page of the descent spectral sequence (DSS) holds, and we are done. If there is tor-
sion, in this degree, we have to make another argument. Checking our definition of Free
in nonnegative degree and the homotopy groups of Tmfp , we first notice that at the prime
3, there are no generators of Free in nonnegative degree with a nonzero torsion class also
in that degree, so we focus on the case of p D 2. At this prime, the only problematic
nonnegative degrees lie in the following list congruent 192:

8; 32; 60; 80; 104; 128; 156:

In the cases other than 60 and 156, our E2-page calculation yields the calculation on
homotopy groups using Lemma 3.13, where z D N�; this technique was already used in the
proofs of Lemma 3.2 and Lemma 3.15. In degrees d congruent to 60 and 156 the group
Freed is not well defined, hence the exception in these degrees.7 To summarise, for all x 2
Freed for nonnegative d , the E2-page calculations holds and we obtain  k.x/ D k

d
2 x.

Suppose now that x 2 Free has negative degree. Looking at our generators of Free as
an abelian group from Notation 3.3 in negative degrees, we notice that these generators are
either in a degree with no torsion or defined as the product of such a class with c4 or c24 .
From this observation, it suffices to calculate  k on x 2 Free in negative degrees where
there is no torsion, hence we may invert p and work inside �� TmfpŒ 1p �. In this case, we
have to compute the morphism

 k WH 1.MEll;Qp ; !
d /! H 1.MEll;Qp ; !

d /

for all d <0. This we can do with a calculation of the cohomology of the stack with graded
structure sheaf .MEll;Qp ;!

�/, which is equivalent to the weighted projective line PQp.4;6/;

7The failure to find well-defined elements in these degrees is closely related to the failure of
Lemma 3.13 in these degrees as well, as the torsion classes in these degrees do not support any interesting
multiplication.
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see [47, Ex. 2.1]. In this case, we can use the fact that the groups H�.PQp .4; 6/; !
�/ are

isomorphic to the groupsH�. zP .4; 6/;O/, where . zP .4; 6/;O/ is .SpecA� ¹0º;O/, where
A D QpŒc4; c6�, together with the Gm-action given by the gradings jc4j D 4 and jc6j D 6.
As discussed for M.2/ in [54, §7], one can use the long exact sequence on cohomology
induced by the expression zP .4; 6/ � SpecA � ¹0º [36, Exer. III.2.3], and the fact that
R�¹0º.SpecA;O/ can be computed via the Koszul complex

A! A

�
1

c4

�
� A

�
1

c6

�
! A

�
1

c4c6

�
we obtain the following exact sequence

0! A! H 0. zP .4; 6/;O/! 0! 0! H 1. zP .4; 6/;O/! A=.c14 ; c
1
6 /! 0

Using this, we can explicitly calculate  k on H 1. zP .4; 6/;O/ ' A=.c14 ; c
1
6 / as

 k
�

1

ci4c
j
6

�
D k�4i�6j

1

ci4c
j
6

where 1

ci4c
j
6

represents a class in �� TmfpŒ 1p � of topological degree �8i � 12j � 1. This

yields the desired result.
Let us first consider a torsion element x 2 Tors � �� Tmfp and implicitly complete

at p for the rest of this proof. It suffices to consider the prime p D 2 or p D 3, otherwise
Tors D 0. If x has nonnegative degree, then we can immediately apply Lemma 3.15,
and we are done. Indeed, the hypotheses of that proposition apply as we already know
 k.cm4 �

l / D k8mC12lcm4 �
l and k8mC12l is congruent to 1 modulo 8 using Euler’s the-

orem, for k 2 Z�2 . If x is an element of Tors of negative degree, then we will consider
(3.9) for Tmf, which yields the commutative diagram of abelian groups for every integer d

0 Ext1Z.��d�22 Tmf/ �d Tmf HomZ.��d�21 Tmf/ 0

0 Ext1Z.��d�22 Tmf/ �d Tmf HomZ.��d�21 Tmf/ 0

. k/�1 L k . k/�0
(3.21)

where all Ext- and Hom-groups above have Z as a codomain and the dual operation L k

is defined in Definition 3.8. As  k induces a map of abelian groups on homotopy groups,
we can then detect the effect of  k on Tors� �� Tmf by the effect of . k/�1 on the above
Ext-groups. We want to use the Anderson self-duality diagram (3.21) to turn the compu-
tations of  k into computations of the dual operation L k of Definition 3.8. In particular,
we are reduced to compute the effect of L k on elements in Tors of nonnegative degree,
for which we would like to use Lemma 3.15, again. This first requires us to calculate
L k.cm4 �

l / for k 2 Z�2 after inverting 2. Using Lemma 3.12 and the above calculations of
 k to obtain the rational calculation

L k.cm4 �
l / D k�10�8m�12lcm4 �

l :
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We now use the fact that .Z=8Z/� ' .Z=2Z/2 to see that for k 2 Z�2 , k�10�8m�12l is
congruent to 1 modulo 8. From this we see that Lemma 3.15 applies, which shows that for
torsion elements x in nonnegative degree, L k.x/ D x L k.1/ D xk�10 D x as k�10 �8 1
for all k 2 Z�2 and k�10 �3 1 for k 2 Z�3 , both of which are easily checked by hand. Using
(3.21), we see that  k.x/ D x for x 2 Tors of negative degree, and we are done.

The above proof shows that we can calculate L k on �� Tmf in certain degrees.

Proposition 3.22. Let p be a prime and k 2 Z�p be a p-adic unit. Then the effect of the
dual Adams operation L k on �� Tmfp is given by

L k.x/ D

´
x x 2 Tors

k�10�d
jxj
2 ex x 2 Free

unless for x 2 Free lies in the following degrees at the following primes:

• p D 3 and jxj D 72r C 40 for some r � 0, then the answer holds modulo ˇ4�3r .

• pD3 and jxjD72r�49 for some r <0, then the answer holds modulo h˛ˇ2�3.r�1/i.

• pD2 and jxjD192rCd for some r�0 and d in the set ¹20;60;68;100;116;156;164º,
then the answer holds modulo

4 N��8r ; 2 N�3�8r ; ��Œ��2��8r ; N�5�8r ; 2 N�Œ2�4��8r ; �3Œ��6��8r ; ��Œ��6��8r ;

respectively.

• p D 2, jxj � 0, and jxj � d modulo 192, where d is an element of

¹�49;�61;�73;�97;�121;�145;�157;�169º

where the result holds modulo torsion.

Our proof will follow the outline of the proof of Theorem C, the only difference being
that the operations  k are multiplicative and the L k are not. A similar style of proof can
be used to compute the effect of other operators on Tmf and TMF such as the Hecke
operators of [25].

Proof. If x 2 Freed lives in �d tmf with no torsion, then the desired result follows by
inverting p and applying Lemma 3.12 and Theorem C. If �d tmf contains some torsion,
then we want to apply Lemma 3.13. At the prime 3, the only nonnegative degrees where
we have problems are d �72 20; 40, the first is dealt with using Lemma 3.13 with z D ˇ
and the latter case is an exception. Similarly for negative degrees; see [39, §4]. At the
prime 2, the problematic nonnegative degrees lie in the set

¹8; 20; 28; 32; 40; 52; 60; 68; 80; 100; 104; 116; 124; 128; 136; 148; 156; 164º

modulo 192. All of the cases above can be dealt with using Lemma 3.13 with zD �, except
for d D 20; 40; 60; 80 where we use z D N�, and the exceptional cases. For the negative
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degrees, a similar we are reduced to degrees in the set

¹�37;�49;�57;�61;�73;�81;�97;�121;�133;�145;�153;�157;�169;�177º

modulo 192, which are again dealt with using Lemma 3.13 or left as an exception. For
x in Tors in nonnegative degree, we can apply Lemma 3.15. For x in Tors in negative
degree, we can look at (3.21) and use our calculations from Theorem C.

This extra calculation of L k above suggests the following conjecture regarding the
relation between endomorphisms and dual endomorphisms.

Conjecture 3.23. Let R be an E1-ring spectrum and write A D �0R. Suppose that there
is a class D 2 ��dR such that D witnesses the Anderson self-duality of R. Then, for
any endomorphism F WR! R of algebra objects in hSp such that F.D/ D �D for some
� 2 A, the composites F ı LF and LF ı F are equivalent to multiplication by � on ��R.

An optimist might speculate that these potential equalities can perhaps be lifted to
homotopies of morphisms of spectra.

This conjecture holds in the following cases:

• For KUp and  k for k 2 Z�p , one has D D 1 and � D 1. In this case, the above
conjecture can be checked using (3.9).

• For KOp and  k for k 2 Z�p , one hasD D vu�1R and � D k�2. In this case, the above
conjecture can be checked using (3.9) again. Furthermore, Heard–Stojanoska verified
that at the prime 2 there is a homotopy between L l and the .�2/-fold suspension of
 1=l , where l is a topological generator of Z�2 =¹˙1º; see [37, Lem. 9.2].

• For Tmfp and  k for k 2 Z�p , one has D D ¹2c�14 c6�
�1º and � D k�10. In this

case, the above conjecture can be checked (in some degrees) using Theorem C and
Proposition 3.22.

Remark 3.24. Let us note a possible counter-example if we do not assume F is multiplic-
ative, as mentioned to us by Lennart Meier. Consider F D idC �1 as an endomorphism
of KU. Then � D 2, however F.u/ D u � u D 0 on the usual generator u 2 �2 KU, so
Conjecture 3.23 cannot possibly hold in this case.

4. Applications

Our goal of this applications section is to show how one can easily manipulate the Adams
operations on Tmf from Theorems A and B as one does Adams operations on topological
K-theory. In Section 4.1, we construct a connective height 2 Adams summand u. That is,
for each prime p we define u D tmfhF�p using Theorem B such that u only has homotopy
groups in nonnegative degrees divisible by the order of v1, so divisible by 2.p � 1/. For
pD 5 the homotopy groups of this E1-ring u appear (meaning are isomorphic as a graded
ring) to be of the form

��u ' Z5Œv1;
p
v2� ' �� BPh2iŒ

p
v2�
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which suggests this u is quite close to an E1-form of BPh2i—similar observations also
hold at the primes 7 and 11. We then prove Theorem D, which states that tmfp splits
as a sum of shifts of u if and only if p � 1 divides 12, but when we invert � we always
obtain the desired splitting. In Section 4.2, we conjecture that for primes p such that p � 1
does not divide 12, there is a cofibre sequence involving a sum of shifts of u, tmfp , and
a sum of shifts of height 1 Adams summands `. In Section 4.3, we construct height 2
image-of-J spectra j2 with maps j2 ! j1 to the classical height 1 image-of-J spectra. In
particular, the fact that this map j2! j1 is surjective on homotopy groups and the classical
fact that S! j1 is split surjective on homotopy groups implies that S! j2 detects all of
the image-of-J elements inside ��S; see Theorem E. We hope that further refinements
of j2 will bring us closer to a spectrum capturing height 1 and height 2 information, such
as Behrens Q.N/ spectra do at large primes [10], and that these spectra j2 might lend
themselves to computations with an Fp-based Adams spectral sequence.

4.1. Connective height 2 Adams summands and Theorem D

By Proposition 2.7, we see that KUp and TMFp both have p-adic Adams operations  k

for each k 2 Z�p . When p is odd, then Z�p has a maximal finite subgroup F�p . This implies
that both KUp and TMFp have E1-actions of the group F�p , which by a theorem of Gauß
is isomorphic to the cyclic group of order p � 1. A classical construction in homotopy
theory is the Adams summand KUhF�p

p , usually denoted by L, with connective cover `.
Both L and ` have simple homotopy groups as we are working with p-complete spectra
and the group F�p has order prime to p. In particular, we have isomorphisms

��` ' ZpŒv1�; ��L ' ZpŒv˙1 �

where v1Dup�1 is the first Hasse invariant from chromatic homotopy theory and ��KU'
ZŒu˙�. When written like this, it is clear that ` is an E1-form of p-complete BPh1i.
These E1-rings L and ` are summands of KUp and kup , respectively, associated with the
idempotent map

1

p � 1

X
k2F�p

 k (4.1)

revealing why they are called Adams summands. In fact, more is true, as one can easily
check that the canonical maps of E1-rings L! KUp and `! kup recognise the codo-
main as a quasi-free8 module over the source of rank p � 1. Given we have the same
p-adic Adams operations on Tmfp , we would like to explore the above ideas at the height
two—the results are not what one might immediately expect; see Theorem 4.4. For an odd
prime p, recall the F�p action on the E1-rings TMFp and tmfp given by Proposition 2.7
and Theorem B, respectively.

8Recall from [43, Def. 7.2.1.16] that for an E1-ring R and an R-module M , we say M is quasi-free
if there exists an equivalence M '

L
˛ RŒn˛ �, and M is free if all of the n˛ can be taken to be zero.
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Definition 4.2. For an odd prime p, define the E1-rings u D tmfhF�p
p and U D tmfhF�p

p

and call them height two Adams summands. For p D 2 we set u D tmf2 and U D TMF2.
By Theorem B, the natural map tmfp ! TMFp is F�p -equivariant, factors through a map
of E1-rings u! U, and tmfp ! kup factors through a map of E1-rings u! `. In other
words, we have the following commutative diagram of E1-rings

u tmfp

U TMFp

L KUp

` kup

(4.3)

Recall that the map f WTmf! KU does not extend over TMF as f .�24/ D 0, so we also
do not expect to see vertical maps between U and L above.

We choose the names u and U as u is to tmfp as ` is to kup—we are open to other
conventions. The homotopy groups of u and U as still simple to write down if p � 5:

��u '
�
ZpŒx; y�

�F�p
' Zp¹xiyj j i; j � 0 such that 4i C 6j �p�1 0º;

��U ' Zp¹xiyj�k j i; j � 0; k 2 Z such that 4i C 6j C 12k �p�1 0º;

where x D c4 has degree 8, y D c6 has degree 12, and � D x3�y2

1728
. Both u and U are

summands of tmfp and TMFp , respectively, using the same idempotent (4.1) as the height
one case. However, it is not true that the inclusion u ! tmfp witnesses the target as a
quasi-free module over the source for all p unlike the height one case.

Theorem 4.4. For every odd prime p the map U! TMFp recognises the codomain as a
rank p�1

2
quasi-free module over the domain. The map u! tmfp recognises the target as

a rank p�1
2

quasi-free module if p � 1 divides 12 and for all other primes tmfp is never a
quasi-free u-module.

Recall that u D tmf2 and U D TMF2 at the prime 2, so we ignore this case above.
The proof of this theorem is rather elementary and consists of formal stable homotopy

theory and some dimension formulæ for spaces of (meromorphic) modular forms. We
will write mf� for the p-completion of H 0.MEll; !

��0/ and MF� for the p-completion
of H 0.Msm

Ell; !
�/. Both of these cohomology rings are easy to calculate as in this case the

q-expansion homomorphism into ZJqKp is injective; see [31, Thm. 12.3.7].

Proof. Let us start with the connective case—it is a little simpler. For p D 3, the map
u! tmf3 is an equivalence, as F�3 acts trivially on �� tmf3 and the order of this group
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is invertible in �0 tmf3 ' Z3 so the associated homotopy fixed point spectral sequence
collapses. At p D 5, we claim the map of u-modules

u˚ uŒ12�
1˚y
���! tmf5

defined by the elements 1; y 2 �� tmf5, is an equivalence. This is clear, as the first sum-
mand contains all the monomials xiyj where j is even, and the second summand those
where j is odd. Similarly, we can define maps of u-modules

u˚ uŒ8�˚ uŒ16�
1˚x˚x2

������! tmf7;

u˚ uŒ8�˚ uŒ12�˚ uŒ16�˚ uŒ20�˚ uŒ28�
1˚x˚y˚x2˚xy˚x2y
���������������! tmf13

at the primes 7 and 13, respectively. As in the p D 5 case, one easily checks these maps
are equivalences on homotopy groups. Let us move on to the negative cases now. For
pD 11, we notice that ��u is precisely the summand of �� tmf11 supported in nonnegative
degrees divisible by 20. Any potential splitting of tmf11 into sums of u would have to start
by hitting generators in degrees 0, 8, 12, 16, and 24. The problem is that we need two
summands uŒ24� to hit both y2 and x3 in degree 24 as �24 tmf11 D Z11¹x3º ˚ Z11¹y2º.
This means that a potential sum of u’s has dimension at least 4 in degree 64 as

�64uŒ24� D �40u ' �40 tmf11 ' Z211:

This contradicts the fact that the dimension of the Z11-module �64 tmf11 has dimension
3. Similar problems happen for primes p � 17. Indeed, for each of these primes, ��u
is the summand of �� tmfp supported in nonnegative degrees divisible by 2.p � 1/. A
potential splitting of tmfp into sums of u would have to hit the two generators in degree
24, as 2.p � 1/ � 2.16/D 32 is greater than 24, so �24uD 0. However, writing d for the
dimension

d D dimZp .�2.p�1/ tmfp/ D dimZp .�2.p�1/u/ � 2

where the inequality comes from the fact that 2.p � 1/ � 32, we obtain

dimZp .�2.p�1/C24 tmfp/ D d C 1 < 2d D dimZp
�
�2.p�1/C24

�
uŒ24�˚ uŒ24�

��
:

This shows that there can be no splitting of tmfp purely in terms of suspensions of u—we
will make some suggestions to remedy this in Section 4.2.

Onto the periodic case. Consider the basis B defined as follows: for an even integer
d , write Bd for the basis of MFd given by

¹�lEd 0j
m
ºm�0

where d is uniquely written as d D 12l C d 0 for d 0 in the set ¹0; 4; 6; 8; 10; 14º, j D
x3

�
is the j -invariant, and Ed 0 is the weight d 0 normalised (meaning with linear term 1)

Eisenstein series which can be summarised by the following formulae:

E0 D 1; E4 D c4; E6 D c6; E8 D c
2
4 ; E10 D c4c6; E14 D c

2
4c6:
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Let us write fk D �lEk0 for the generators of MFZp
k

as a module over ZpŒj � ' MFZp
0 .

Note these basis elements have some multiplicativity properties which we will implicitly
use in what follows:

fk1 � f
r
12k2
D fk1 � f12rk2 D fk1 ��

rk2 D fk1C12rk2 :

We now have four cases to consider depending on the remainder of p modulo 12. Essen-
tially, fp�1 2 �2.p�1/U is the first nonzero generator of ��U after �0U. Our splittings of
TMFp will depend on if fp�1 is purely a power of �, or a power of � multiplied by x2y,
x, or y. These are precisely the four cases below, respectively.

(The p �12 1 case). Consider the following map of U-modules:

'1WUŒ2p�˚
M

0�2d<p�1
d¤1

UŒ4d �
fp˚

L
d f2d

��������! TMFp :

We claim '1 is an equivalence. First, note the map is injective on homotopy groups, as
��U is concentrated in degrees divisible by 2.p � 1/ and each summand in the domain
of the map '1 only hits elements in MFZp

� in degrees which are pairwise distinct modulo
2.p � 1/. In the range 0 � k � p � 2, every fk is hit by '1 by construction—the only
case up for debate is f2, however, fp�1D�

p�1
12 lies in �2.p�1/U with inverse�

1�p
12 inside

�2.1�p/U and fp is hit by '1 by construction. We then obtain the following equalities:

fp � f
�1
p�1 D fp � f1�p D �

p�1
12 �1x2y ��

1�p
12 D

x2y

�
D f2:

All other fk are hit for all even k 2 2Z. Indeed, for each such k, there is an integer r such
that k C r.p � 1/ lies in the range between 0 and p � 2. As fkCr.p�1/ D fk � f

r
p�1 is

hit by '1, and f rp�1 and its inverse lies in �2r.p�1/U, we see that the ��U-module map
induced by '1 hits fk .

(The p �12 11 case). Consider the following map of U-modules:

'11W
M

0�2d<p�1

UŒ24d �
L
f12dD�

d

��������! TMFp :

We claim this map is an equivalence. As in the p �12 1 case above, we see the induced
map on �� is injective. To see each fk in MFZp

� is hit by '11, we first note that f6.p�1/ D
f 6p�1 D �

p�1
2 lies in �12.p�1/U, and the above map hits every power of � less than

f6.p�1/ by construction. In particular, given an even integer k, then fk is hit by '11 if k
is divisible by 12. Also, note the following equalities inside ��U:

fp�1 D �
p�11
12 xy; f2.p�1/ D �

p�11
6 C1x2; f3.p�1/ D �

p�11
4 C2y;

f4.p�1/ D �
p�11
3 C3x; f5.p�1/ D �

5
p�11
12 C3x2y:
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If fk is of the form �lEk0 for k not divisible by 12, then the equations above show there
exists an integer r and an i in the range 1 � i � 5 such that fk D �rfi.p�1/ simply
because this range of fi.p�1/ contain the five remaining possible Ek0 .

The following two cases are a mixture of the previous two—let us only detail the first.

(The p �12 5 case). Consider the following map of U-modules:

'5W
M

0�2d<p�1

UŒ12d �
L
f6d

����! TMFp

As previously discussed, the induced map on homotopy groups is injective, so it suffices
to see '5 hits all the generators of MFZp

� . By inspection, we see that '5 hits all fk of the
form �i and �iy for all 0 � i � p�5

4
. Moreover, note the following equalities in ��U:

fp�1 D �
p�5
12 x; f2.p�1/ D �

p�5
6 x2; f3.p�1/ D �

p�5
4 C1:

It follows that every fk of the form �i and �iy is hit by '5, for all integers i now. As
in the p �12 11 case above, the fk’s of the form �lx, �lx2, �lxy, and �lx2y, are
then hit by '5 as every one of these Ek0 ’s is a product of elements in the image-of-'5 by
construction or in ��U. This shows '5 is an equivalence of U-modules.

(The p �12 7 case). The map of U-modules

'7W
M

0�2d<p�1

UŒ8d �
L
f4d

����! TMFp

is an equivalence by an analogous argument to the previous cases.

4.2. A conjecture regarding cofibre sequences with u and tmfp

The fact that tmfp is not a quasi-free u-module for primes p D 11 and p � 17 seems to
be salvageable.

Conjecture 4.5. For primes p � 17 and p D 11, there exists a cofibre sequence of the
following form: M

0�2k<p�1

uŒ‹�
' Np
�! tmfp !

M
`Œ‹�:

The only real mathematical hurdle left in proving the above conjecture seems to be a
combinatorial argument involving the known dimensions of spaces of modular forms of a
fixed weight. Let us now see the example for p D 11 in more detail, and quote the results
for p D 17; 19; 23, and 37.

Fix p D 11 and recall we have the following commutative diagram of E1-rings, a
consequence of Theorem B:

u tmf11

` ku11 :
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Consider the map of u-modules

y10W uŒ120�! u

and its cofibre, which we write as u=y10. By inspecting the homotopy groups of u=y10,
one will find they look just like those of the u-moduleM

` D `˚ `Œ40�˚ `Œ60�˚ `Œ80�˚ `Œ120�

viewed with basis 1; x5; y5; x10, and x15. To prove that these u-modules u=y10 and
L
`

are equivalent, and more importantly, to later obtain a morphism of u-modules from ` to
a quotient of tmf11, consider the cohomological Ext-spectral sequence

E
s;t
2 ' Exts;tu� .���M;���N/ H) ��s�tFu.M;N /

for any pair of u-modulesM andN . SettingM D u=y10, the short exact sequence defining
��u=y10 shows it has projective dimension 1 as a ��u-module, meaning the above spectral
sequence is supported in s D 0; 1 and immediately collapses. This degeneration yields a
surjection of groups

�0Fu.u=y10; N /! Ext0;0u� .���u=y
10; N /:

Setting N D
L
`, we lift the desired isomorphism of ��u-modules to an equivalence of

u-modules
u=y10 '

M
`:

The u-module ` then naturally maps into u=y10 as the first summand of
L
`, and with

this inclusion we will study a quotient of tmfp . Consider the following map of u-modules:

'11W

4M
dD0

uŒ24d �
1˚y2˚y4˚y6˚y8

������������! tmf11 :

Write tmf11 =' for the cofibre of this map. Consider the map of u-modules

xW uŒ8�! tmf11

defined by x 2 �8 tmfp and the following diagram of u-modules:

uŒ128� uŒ8� u=y10Œ8�

tmf11 tmf11 ='

y10

x

The composite uŒ128�! tmf11 =' vanishes. Indeed, this map of u-modules is represented
by the class xy10 in �128 tmf11 =' and y10D02�120 tmf11 =' by the construction of '11.
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Hence, we obtain a map u=y10Œ8�! tmf11 =' which induces multiplication by x on homo-
topy groups. Precomposing this map with the inclusion ` !

L
` and the equivalence

u=y10 '
L
`, we obtain the map of u-modules

ix W `Œ8�! tmf11 ='

whose effect on homotopy groups is given by multiplication by x 2 �8 tmf11. Replacing
x with a class z 2 �jzj tmf11 in the set

Z11 D ¹y; x
2; x3; x4; y3; x6; x7; x9; x12º

one can repeat the above process, which yields maps of u-modules iz W `Œjzj�! tmf11 ='.
These morphisms sum to give the following map of u-modules:

i11W
M
z2Z11

`Œjzj�! tmf11 =':

It is now a purely combinatorial exercise to check this is an equivalence. Altogether, this
yields the following cofibre sequence of u-modules:

4M
dD0

uŒ24d �
'11
��! tmf11 !

M
z2Z11

`Œjzj�:

Other examples validating Conjecture 4.5 are the following cofibre sequences:

7M
dD0

uŒ12d �
L
yd

���! tmf17 !
M
12

`Œ‹�;

8M
dD0

uŒ8d �
L
xd

���! tmf19 !
M
9

`Œ‹�;

10M
dD0

uŒ24d �! tmf23
L
�d

����!

M
55

`Œ‹�;

u˚

16M
dD0

uŒ4d C 8�˚ uŒ76�
1˚

L
f2dC4˚f38

�����������! tmf37 !
M
18

`Œ‹�:

The question marks above signify our lack of understanding of the pattern behind the types
of shifts of ` that occur, although everything above seems to only truly depend upon the
residue of the prime modulo 12.

4.3. Connective height 2 image-of-J spectra and Theorem E

A classical construction in homotopy theory is that of the connective image-of-J spectrum
j1, at the prime 2 for this exposition, defined by the following cofibre sequence of spectra:

j1 ! ko2
 3�1
����! ��4 ko2 : (4.6)
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This is to be thought of as a connective approximation to the Z�2 -fixed points of ku2, or
the Z�2 =¹˙1º-fixed points of ko, as 3 generates Z�2 . One constructs the above map by first
considering the morphisms of spectra

ko2
 3�1
����! ko2 ! ��3 ko2

'
�! ��2 ko2 : (4.7)

As truncation is a left adjoint, this map is adjoint to ��2 ko2! ��2 ko2. There is a natural
equivalence ��2S ' ��2 ko2, as ko2 detects � and �2, so our desired map is adjoint to

S! ko2 ! ��2 ko2 :

This map is zero in degree 0, hence our original map (4.7) vanishes and hence  3 �
1 factors through ��4 ko2 as desired. One can also make an argument using singular
cohomology and a Postnikov tower; synthetic versions of this appear in [18, §4.1].

To see that j1 has a canonical choice of E1-structure, we can also define this spectrum
as follows: first, write ko 

3

2 for the equaliser of  3 and the identity in the category of E1-
rings. This is almost j1, but there are some stray factors in low degrees, which we deal
with by defining j1 using the pullback

j1 ko 
3

2

��2S ��2 ko 
3

2

(4.8)

again in the 1-category of E1-rings—one can check these two definitions match. The
practicality of the spectrum j1 comes from the fact that the unit map S2 ! j1 is split
surjective on homotopy groups and detects the 2-primary image of the J -homomorphism
as well as the Hurewicz image of ko inside ��S; this situation is described in [18] and a
simplified proof given too.

Here we are interested in defining a height 2 analogue of the above construction. To
this end, we will use the Adams operations of Theorem B and adapt (4.8) to this tmf-
situation. Recall the E1-rings u of Definition 4.2 have Adams operations  k for each
k 2 Z�p by Theorem B.

Definition 4.9. For any prime p, write g for a generator of Z�p =F where F is the max-
imal finite subgroup of Z�p . Write u 

g
as the equaliser in the1-category of E1-rings of

 g W u! u and the identity. At the prime p D 2, define j2 as the E1-ring in the Cartesian
square of E1-rings

j2 u 
g
D tmf 

g

2

��6S2 ��6u 
g
:
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For odd primes p, let j2 be the E1-rings defined by the following Cartesian square:

j2 u 
g

��2p�3Sp ��2p�3u 
g
:

Notice that u 
g

is not connective—the element 1 2 �0u contributes to a torsion-free
generator @.1/ D � 2 ��1u 

g
. In contrast, the E1-ring j2 is connective by construction.

The above definition also removes elements of the form @x from the homotopy groups of
u 

g
, which leads to the map Sp ! j2 being reasonably connective.
For example, if p D 2 and g D 3, then the map S2 ! j2 is an isomorphism on �d

for 0 � d � 6. To see this, let us first calculate some homotopy groups of tmf 
3

2 . From
our knowledge of the Hurewicz image of tmf ([13] and [16, §11.11]) and the height 1
image-of-J [52, Prop. 1.5.22], we can calculate the following homotopy groups:

d �1 0 1 2 3 4 5 6 7 8

gen. of �d tmf 
3

2 @1 1; @� �; @�2 �2; @� � 0 @�2 �2 @"; � @c4�; "

The elements denoted by @x above come from the image of the boundary map

@W tmf2 ! tmf 
3

2 Œ1�

and � is detected by @c4, a consequence of the classical height 1 image-of-J calculation
and the fact that the map tmf2! ko2 commutes with  3. From this description, it is clear
that S2! j2 induces an isomorphism on �d for 0 � d � 6. It is also clear this map is not
an isomorphism on �7, as �7j2 contains @", which does not exist in �7S2. The element
� D @c4 is the first class detected by j2 that is not detected by tmf2.

Remark 4.10. Some of the utility of j2 lie in their relationship to a cofibre sequence akin
to (4.6). The map  3 � 1W tmf2 ! tmf2 factors through ��1 tmf2 as  3 preserves the unit
and ��6S ' ��6 tmf, or one can argue with singular cohomology again. The same works
at the prime p D 3 as well—in [17] we work with a slight variant of j2 at the prime 3.

We will not pursue similar conclusions at primes p � 5. Notice that for primes p � 13
there cannot exist such a simple relationship between cofibres of  g � 1 and j2. Indeed,
for such primes, we see that the fibre of a hypothetical map

 g � 1W u! ��2p�2

would have �2p�3 be a direct sum of Fp’s, one copy for each generator of the ring of
modular forms of weight p � 1. Conversely, by definition, �2p�3j2 is always Fp , detecting
exactly ˛1.

The following is Theorem E and is a complete formality from Theorem B and Defini-
tion 4.9.
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Theorem 4.11. Let p be a prime. Then under the unit map Sp ! j2, all of the elements
in ��Sp in the p-primary image-of-J and those elements detected by S ! tmfp have
nontrivial image in ��j2.

In other words, ��j2 at least detects the Hurewicz image of tmf, which includes the
Hurwicz image of ko, and the image of the J -homomorphism.

Proof. Recall that for odd primes, j1 is defined either as the fibre of g � 1W`! `Œ2p � 2�

or using the Cartesian diagram of E1-rings

j1 ` 
g

��2p�3S ��2p�3`
 g

where ` 
g

is the equaliser of  g and the identity. The relationship between j1 and the
image of the J -homomorphism is discussed in [52, Thm. 1.5.19 and Prop. 1.5.22] for
odd primes and p D 2, respectively; also see [18, Thm. A] for a modern discussion and
proof. Using this second definition of j1, including (4.8) at the prime p D 2, and the
fact that tmfp ! kop is F�p -equivariant and commutes with  g , we naturally obtain a
morphism j2! j1 which factors the unit Sp ! j1. For our fixed prime p, this unit detects
the image-of-J in ��S and factors through j2, so j2 also detects the image of the p-
primary J -homomorphism. Similarly, we obtain the detection statement for elements in
��Sp detected by tmfp as Sp ! j2 factors the unit Sp ! tmfp .

It would be interesting to know how much closer j2 is to S than simply a combination
of j1 and tmfp . At primes p � 5, the spectrum j2 does not detect much more than the
image-of-J . Indeed, a modified Adams–Novikov spectral sequence for u 

g
in this case,

is concentrated in filtrations 0 and 1. However, at the primes p D 2 and p D 3 we can still
ask the following:

Question 4.12. Are their classes in ��S which are detected by S! j2, but which map to
zero in ��j1 and �� tmf?

Alternatively, we can ask about the connectivity of Sp ! j2. At the prime p D 3, the
author and Christian Carrick show that j2 has a rich Hurewicz image; see [17]. In current
work-in-progress, we also explore the connection between the Hurewicz image of j2 as
the elements constructed in [15]. In particular, the answer to the above question in this
case is an emphatic “yes!”.
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