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On n-ADC integral quadratic lattices over algebraic
number fields

Zilong He

Abstract. In the paper, we extend the ADC property to the representation of quadratic lattices
by quadratic lattices, which we define as n-ADC-ness. We explore the relationship between n-
ADC-ness, n-regularity, and n-universality for integral quadratic lattices. Also, for n � 2, we give
necessary and sufficient conditions for an integral quadratic lattice over arbitrary non-archimedean
local fields to be n-ADC. Moreover, we show that over any algebraic number field F , an integral
OF -lattice with rank nC 1 is n-ADC if and only if it is OF -maximal of class number one.

1. Introduction

The problem of representing quadratic forms by quadratic forms was first studied by
Mordell. In [27], he proved that the sum of five squares represents all binary quadratic
forms. Building on this work, B. M. Kim, M.-H. Kim, and S. Raghavan [22] defined a
positive definite classic integral quadratic form (i.e., a form with even cross terms) to
be n-universal if it represents all n-ary classic integral quadratic forms. When n D 1,
this notion agrees with the concept of universal quadratic forms, which dates back to
Lagrange’s four-square theorem and has been extensively studied by mathematicians such
as Ramanujan, Dickson and so on. Among the most famous are the 15-theorem by Conway
and Schneeberger for classic integral quadratic forms and the 290-theorem by Bhargava
and Hanke for quadratic forms with integer coefficients. Similar results have also been
shown for n-universal quadratic forms in [8, 21]. Another important topic is the study
of regular quadratic forms, which represent all integers represented by their genus. This
concept was first introduced and systematically studied by Dickson in [11]. Since then,
a significant amount of research has been devoted to classifying them in the ternary case
(cf. [18, 20, 25, 29]). Similarly, Earnest [12] introduced n-regular quadratic forms and
showed that there are only finitely many primitive quaternary 2-regular quadratic forms
up to equivalence, which were partly classified by Oh [28]. For n � 2, Chan and Oh [7]
extended Earnest’s result to .nC 2/-ary (resp. .nC 3/-ary) n-regular quadratic forms.

A classical theorem, due to Aubry, Davenport and Cassels, states: if Q.x/ is a pos-
itive definite classic n-ary quadratic form such that for all x 2 Qn there exists y 2 Zn

such that Q.x � y/ < 1, then Q.x/ satisfies the property: for all c 2 Z, if the equation
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Q.x/ D c has a solution in Q, then it has a solution in Z. Based on this result, Clark
[9] introduced the concept of ADC quadratic forms, which satisfy the property “solvable
over rationals implies solvable over integers”. In general, he defined ADC and Euclidean
quadratic forms over normed ring, and investigated their relationship. In [10], Clark and
Jagy further determined all ADC forms in non-dyadic local fields and obtained some par-
tial results in 2-adic local fields. Additionally, they completely enumerated all n-ary ADC
integral forms for 1 � n � 4 and all Euclidean integral forms.

As for universality and regularity, studying higher-dimensional analogues of the ADC
property is a natural generalization, which motivates the introduction of n-ADC lattices
(defined in Definitions 1.1 and 1.2) in this paper. Also, we find that such notion plays an
important role between n-universality and n-regularity (Theorems 1.3 and 1.4 (iii)). We
will investigate n-ADC-ness from local fields to global fields. Precisely, we characterize n-
ADC lattices of rank� n over arbitrary non-archimedean local fields for n� 2 (Theorems
1.4 (i)–(ii), 1.5 and 1.9), and give a counting formula (Theorem 1.10). The case n D 1

requires a different approach than that for n � 3 odd, as discussed in Section 7, and it
will be treated in a future paper. Due to the complexity of Jordan splittings, we will use
a non-classical but effective theory, developed by Beli [2–4], to treat higher dimensional
representations of quadratic lattices over general dyadic local fields (see [14,15] for recent
progress). By virtue of these local classifications, we establish the equivalent condition on
n-ADC lattices of rank nC 1 over algebraic number fields (Theorem 1.7). Based on the
work of previous researchers [13,23,28], we determine all positive definite n-ADC lattices
of rank nC 1 over totally real number fields (Corollary 1.8), and partially classify 2-ADC
lattices over Q (Theorem 1.11).

First of all, we briefly introduce the arithmetic theory of quadratic forms. Any unex-
plained notations or definitions can be found in [31]. For short, by local fields, we always
mean non-archimedean local fields (cf. [31, §32:1 Definition]).

General settings. Let F be an algebraic number field or a local field with charF 6D 2,
OF the ring of integers of F and O�F the group of units. Let V be a non-degenerate
quadratic space over F together with the symmetric bilinear form BWV � V ! F and set
Q.x/´ B.x; x/ for all x 2 V . We call L an OF -lattice in V if it is a finitely generated
OF -submodule of V , and say that L is on V if V D FL, i.e., V is spanned by L over F .
For an OF -lattice L, we denote by s.L/ (resp. n.L/, v.L/) the scale (resp. the norm,
the volume) of L as usual. We call L integral if n.L/ � OF . For a non-zero fractional
ideal a in F , we also call L a-maximal if n.L/ � a and there is no OF -lattice L0 on
FL with n.L0/ � a such that L ¨ L0. We denote by LF;n the set of all integral OF -
lattices of rank n and by Mn the set of all OF -maximal lattices of rank n. When F is an
algebraic number field, we also denote by �F (resp.1F ) the set of all primes (resp. all
archimedean primes) of F .

Local settings. When F is a local field, write p for the maximal ideal of OF , � 2 p

for a uniformizer and Np for the number of elements in the residue class field of F . Set
p0 D OF for convention. For c 2 F �, let c D "�k with " 2 O�F and k 2 Z. We denote by
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ord.c/ D k the order of c and formally put ord.0/ D1. Put e´ ord.2/. For a fractional
or zero ideal c of F , we put ord.c/ D min¹ord.c/ j c 2 cº. We fix � 2 O�F such that
F.
p
�/=F is quadratic unramified. If F is non-dyadic, then � is an arbitrary non-square

unit; if F is dyadic, then � is a non-square unit of the form � D 1 � 4�, with � 2 O�F .
If F is dyadic, we define the quadratic defect of c by d.c/´

T
x2F .c � x

2/OF
and the order of relative quadratic defect by the map d from F �=F �2 to N [ ¹1º:
d.c/´ ord.c�1d.c//. Recall some properties of the map d :

(i) The image of d is ¹0; 1; 3; : : : ; 2e � 1; 2e;1º.

(ii) For c 2 F �, d.c/ D 0 if and only if ord.c/ is odd, d.c/ D 2e if and only if
c 2 �F �2, and d.c/ D1 if and only if c 2 F �2.

(iii) The domination principle: d.ab/ � min¹d.a/; d.b/º for all a; b 2 F �.

Also, we denote by U a complete system of representatives of O�F =O
�2
F such that d.ı/ D

ord.ı � 1/ for all ı 2U, and by V ´U[ �UD ¹ı; �ı j ı 2Uº a set of representatives
of F �=F �2. If F is non-dyadic, we put U D ¹1;�º and V D ¹1;�; �;��º.

We write V Š Œa1; : : : ; an� (resp. L Š ha1; : : : ; ani) if V D Fx1 ? � � � ? Fxn (resp.
L D OF x1 ? � � � ? OF xn) with Q.xi / D ai . For  2 F � and �; � 2 F , we denote by
A.�; �/ the binary OF -lattice associated with the Gram matrix . � 11 � /. Write H D
2�1A.0; 0/ and A D 2�1A.2; 2�/. When F is non-dyadic, we have H D h1; �1i and
A D h1;��i. Let H denote the usual hyperbolic plane. Clearly, H D FH. We further
denote by Hk (resp. Hk) the orthogonal sum of k copies of H (resp. H) for any positive
integer k.

If instead of a given local field F we talk about the localization Fp of an algebraic
number field F at the finite prime p, then we will add the subscript p to the notations � ,
ord, e, d, d , U and V .

Definition 1.1. Let n be a positive integer. Let M be an integral OF -lattice over a local
field F . Then

(i) M is called n-universal if it represents all lattices N in LF;n.

(ii) M is called n-ADC if it represents every lattice N in LF;n for which FM
represents FN .

In the rest of this section, we assume that F is an algebraic number field, V is a
quadratic space over F , and M is an integral OF -lattice on V . For p 2 �F , let Fp be
the completion of F at p. Then write Mp ´ OFp ˝M when p 2 �F n1F , and set
Mp ´ Fp ˝M D Vp for convention when p 2 1F . Thus Mp is always n-ADC for
p 2 1F . Then we say that M is locally n-ADC (resp. locally n-universal) if Mp is n-
ADC (resp. n-universal) for all p 2 �F n1F .

Definition 1.2. Let n be a positive integer. Then

(i) M is called globally n-universal, or simply n-universal, if it represents all lat-
tices N in LF;n with compatible signatures, i.e., with Np !�Mp at all real
primes p 2 1F .
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(ii) M is called globally n-ADC, or simply n-ADC, if it represents every lattice N
in LF;n for which FM represents FN .

Recall that an OF -lattice M (that may not be integral) is called n-regular if it rep-
resents every lattice N in LF;n for which Mp represents Np for each p 2 �F . The
n-ADC property can be viewed as a transition between n-universality and n-regularity.
More specifically, an OF -lattice that is n-universal must be n-ADC from definition, and
an n-ADC OF -lattice is n-regular. In fact, we have the following equivalent condition for
n-ADC OF -lattices, which is a generalization of [9, Theorem 25] with R D OF .

Theorem 1.3. Let n be a positive integer. Then M is globally n-ADC if and only if it is
locally n-ADC and n-regular.

Theorem 1.4. Suppose rankM � nC 3 � 4. Let p 2 �F n1F . Then

(i) Mp is n-ADC if and only if it is n-universal.

(ii) M is locally n-ADC if and only if it is locally n-universal.

(iii) M is globally n-ADC if and only if it is globally n-universal.

For n � 1, all n-universal lattices over non-dyadic/dyadic local fields have been com-
pletely determined in [6,15,16,33]. Hence, from Theorems 1.3 and 1.4 (i), determining the
n-regularity for a given OF -latticeM is crucial for its n-ADC-ness when rankM � nC 3.
Although it was shown in [16, Theorem 1.1 (1)] that local-global principle holds for indef-
inite n-universality1 with n � 3, it is difficult to verify n-regularity of a quadratic lattice
in general for definite cases.

Theorem 1.5. Suppose rankM D n � 2 or rankM D nC 1 � 3. Let p 2�F n1F . Then

(i) Mp is n-ADC if and only if it is OFp -maximal.

(ii) M is locally n-ADC if and only if it is OF -maximal.

Remark 1.6. For OFp -maximal lattices, we note that

(i) All OFp -maximal lattices have been explicitly listed in [15, 16]. See Lemmas
4.7 (i) and 4.9 (i) (or [15, Proposition 3.7] described in terms of minimal norm
splittings).

(ii) Theorem 19 of [9] states that Mp is OFp -maximal if and only if it is Euclidean
with respect to the canonical norm (see [9, §4.2] for Euclidean property over
local fields). Therefore, in Theorems 1.5 and 1.9, the term “OFp -maximal” can
be smoothly replaced with “Euclidean”.

For n � 2, the class number of an n-regular OF -lattice M may not be equal to one
in general, but it is exactly one when the rank is n C 1, as proved by Kitaoka in [24,
Corollary 6.4.1] for F D Q and M is positive definite, which was extended by Meyer

1In the indefinite case, the notion of n-universal defined in this paper does not coincide with that of
indefinite n-universal introduced in [16, Definition 1.4 (3)] for n � 2.
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[26, Corollary 5.3] to the case when F is totally real and M is definite. This is also true
for indefinite cases (Corollary 8.3). Based on these and Theorem 1.5, we provide more
explicit equivalent conditions on n-ADC OF -lattices with rank nC 1.

Theorem 1.7. If rankM D nC 1 � 3, then M is n-ADC if and only if it is OF -maximal
of class number one.

When F is totally real, all positive definite OF -maximal lattices with rank� 3 of class
number one were enumerated by Hanke [13] for F D Q (115 in total) and by Kirschmer
[23] forF 6DQ (471 in total), respectively. Thus, from Theorem 1.7, we have the following
finiteness result.

Corollary 1.8. Up to isometry, there are 586 positive definite n-ADC integral OF -lattices
of rank nC 1 � 3 in total, when F varies through all totally real number fields.

Theorem 1.9. Suppose rankM D nC 2 � 4. Let p 2 �F n1F .

(i) If p is non-dyadic, then Mp is n-ADC if and only if it is OFp -maximal.

(ii) If p is dyadic and n is even, then Mp is n-ADC if and only if it is either OFp -
maximal or isometric to the non OFp -maximal lattice

H ? 2�1�pA.2�
�1
p ; 2�p�p/:

(iii) If p is dyadic and n is odd, then Mp is n-ADC if and only if it is either OFp -
maximal or isometric to

H
n�1
2 ? �

�lp
p A

�
�
lp
p ;�.ıp � 1/�

�lp
p

�
? h"p�

kp
p i

or
H

n�1
2 ? ı#

p�
�lp
p A

�
�
lp
p ;�.ıp � 1/�

�lp
p

�
? h"p�

kp
p i;

with

ıp 2 Upn¹1;�pº; 2lp D dp.ıp/ � 1 � 2ep � 2; "p 2 Up and kp 2 ¹0; 1º;

where ı#
p D 1C 4�p.ıp � 1/

�1.
Moreover, if Mp is simultaneously OFp -maximal and has the described orthog-
onal splitting, then it is isometric to

H
n�1
2 ? 2�1�pA.2; 2�p/ ? h�p"pi;

with "p 2 Up.

If m � nC 3, then from Theorem 1.4, the notions of n-ADC-ness and n-universality
coincide. Because the n-universality was treated in [15], in this paper we deal with the
remaining cases, with n � m � n C 2. In these cases the number of n-ADC lattices is
finite and it can be calculated as follows.



Z. He 986

Theorem 1.10. Let n � 2. Denote by B.m; n/ the number of n-ADC OF -lattices with
rank m 2 ¹n; nC 1; nC 2º over a local field F . Then B.m; n/ is given by8̂̂̂̂

<̂̂
ˆ̂̂̂:
8.Np/e � 1C 0 if m D n D 2;

8.Np/e C 1 if m D nC 2 D 4 and e � 1;

8.Np/e C .8e � 2/.Np/e if m D nC 2 � 5 with odd n and e � 1;

8.Np/e C 0 otherwise;

where the second addend counts the number of those lattices that are n-ADC, but not
OF -maximal.

From Theorem 1.3, one can determine whether an n-regular OF -lattice with rank nC
2 is n-ADC by virtue of Theorem 1.9. In particular, we classify the case OF D Z and
n D 2 based on Oh’s classification for stable 2-regular quaternary Z-lattices [28].

Theorem 1.11. There are exactly 21 quaternary positive definite 2-ADC Z-lattices up
to isometry, which are enumerated in Table 2. Each 2-ADC Z-lattice Li in the table is
obtained by scaling some lattice Lj in Table 1 by 1=2.

Moreover, all of the lattices have class number one, and all except for L10 are Z-
maximal.

Remark 1.12. All of the ternary 2-ADC lattices have been determined by Theorem 1.7.
For the quinary case, Theorem 1.4 (iii) indicates that the 2-ADC property is equivalent to
2-universality. However, currently it is only known from [19, Theorem 2.4] that there are
at most 55 quinary 2-universal Z-latticesM with 2s.M/DZ, of which the 2-universality
has not been completely confirmed yet.

The rest of the paper is organized as follows. We first prove Theorems 1.3 and 1.4 in
Section 2. Then, we review Beli’s BONGs theory of quadratic forms in Section 3. In Sec-
tion 4, we study some basic notions including quadratic spaces and maximal lattices, and
the related results in local fields. In Sections 5, 6 and 7, we establish equivalent conditions
on n-ADC lattices in non-dyadic local fields, and in dyadic local fields for even and odd n,
respectively. In the last section, we will prove our main results, including Theorems 1.5,
1.7, 1.9, 1.10 and 1.11.

Here and subsequently, all lattices under consideration are assumed to be integral.

2. Proof of Theorems 1.3 and 1.4

To show Theorems 1.3 and 1.4, we need some lemmas.

Lemma 2.1. Suppose that F is an algebraic number field or a local field. Let M be an
OF -lattice. ThenM is n-ADC if and only ifM represents every latticeN in Mn for which
FM represents FN .
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Proof. Necessity is trivial. Suppose that FM represents FN . By [31, 82:18], there exists
some lattice N 0 inside Mn on FN such that N � N 0. Since FM represents FN Š FN 0,
by the n-ADC-ness, M represents N 0, and therefore represents N .

Lemma 2.2. Suppose that F is an algebraic number field. Let V be a quadratic space
over F and p 2 �F n1F . Given a subspace U.p/ � Vp, there exists a subspace U � V
such that Up Š U.p/.

Proof. We prove the statement by induction on dim U.p/. When dim U.p/ D 1, then
U.p/ D Fpu.p/ for some u.p/ 2 Vp. Recall from [31, 63:1b Corollary, 21:1] that F �2p is
open in Fp and V is dense in Vp. Then there exists u 2 V such thatQ.u/ 2Q.u.p//F �2p .
Thus, Q.u/ D c2Q.u.p// D Q.cu.p// for some c 2 F �p . Take U ´ Fu. Then U � V
and FpU D Fpu D Fp.cu.p// Š Fpu.p/ D U.p/.

For dimU.p/> 1, we may letU.p/DW.p/?Fpu.p/. Then, by inductive assumption,
there existsW � V such thatWp ŠW.p/. Since U.p/ is non-degenerate, and so isW.p/.
Thus W is also non-degenerate. It follows that V D W ? W ?, where W ? ´ ¹v 2 V j
B.v;W / D 0º. This yields Vp D Wp ? FpW

?. We also have Vp D W.p/ ? W.p/
?. By

Witt’s cancellation theorem, FpW
? Š W.p/?. Thus one can find u0 2 W ?p Š W.p/

? Š

FpW
? such that Q.u0/ D Q.u.p//. By the one-dimensional case of the lemma, there

exists u 2W ? such that FpuŠ Fpu
0 Š Fpu.p/. Now take U DW ? Fu, as desired.

Proof of Theorem 1.3. For sufficiency, suppose that FM represents FN for some N 2
LF;n. By [31, 66:3 Theorem], FMp represents FNp for all p 2�F , soMp representsNp

by the n-ADC-ness of Mp. Hence M represents N by the n-regularity of M .
For necessity, we will first prove that M is locally n-ADC, i.e., Mp is n-ADC for

each p 2 �F n1F . By Lemma 2.1, it is sufficient to show that Mp represents every OFp -
maximal lattice N.p/ for which FMp represents FN.p/.

We may assume FN.p/ � FMp. By Lemma 2.2, there exists a subspace U � FM
such that Up Š FN.p/. Hence, by [31, 82:18], FM represents FL for some OF -maximal
lattice L on U . So M represents L from the n-ADC-ness of M . Thus Mp represents Lp.
Note from [31, §82K] that Lp is OFp -maximal, so Lp Š N.p/ by [31, 91:2 Theorem].
Hence Mp represents N.p/, as desired.

To show the n-regularity of M , let N 2 LF;n. Suppose that Mp represents Np for all
p 2 �F . Then FMp represents FNp for all p 2 �F . Hence, by [31, 66:3 Theorem], FM
represents FN . So M represents N from the n-ADC-ness of M .

Proof of Theorem 1.4. (i) Let p 2�F n1F . Since dimFMp D rankMp � nC 3, by [16,
Theorem 2.3 (1)], FMp represents all n-dimensional quadratic spaces. Hence for every
lattice Np in LFp;n, FMp represents FNp, so Mp represents Np by the n-ADC-ness of
Mp, i.e., Mp is n-universal, as desired.

(ii) This is clear from the definition and (i).
(iii) Note that M is locally n-ADC (resp. locally n-universal) if and only if it is

globally n-ADC (resp. globally n-universal) when M is n-regular. Then we are done by
Theorem 1.3 and (ii).
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3. Lattices in terms of BONGs

In this section, following Beli’s work [1–6], we use bases of norm generators (abbr.
BONGs) to describe the lattices in arbitrary dyadic local fields instead of Jordan split-
tings. Let us first review his BONGs theory and recent development [14, 15].

Unless otherwise stated, we always assume F to be dyadic, i.e., e � 1. We write
Œh; k�E (resp. Œh; k�O ) for the set of all even (resp. odd) integers i such that h � i � k. For
ci 2 F

�, we also write ci;j D ci � � � cj for short and put ci;i�1 D 1.
The vectors x1; : : : ; xm of FM is called a BONG for M if n.M/ D Q.x1/OF and

x2; : : : ; xm is a BONG for prx?1M , and it is said to be good if ord.Q.xi //� ord.Q.xiC2//
for 1 � i � m� 2. We denote by M Š � a1; : : : ; am � if x1; : : : ; xm forms a BONG for
M with Q.xi / D ai .

Lemma 3.1 ([15, Lemma 2.2]). Let x1; : : : ; xm be pairwise orthogonal vectors in V with
Q.xi / D ai and Ri D ord.ai /. Then x1; : : : ; xm forms a good BONG for some lattice is
equivalent to the conditions

Ri � RiC2 for all 1 � i � m � 2 (3.1)

and

RiC1 �Ri C d.�aiaiC1/ � 0 and RiC1 �Ri � �2e for all 1 � i �m� 1: (3.2)

Corollary 3.2 ([15, Corollary 2.3]). Suppose 1 � i � m � 1.

(i) If RiC1 �Ri is odd, then RiC1 �Ri must be positive.

(ii) IfRiC1 �Ri D�2e, then d.�aiaiC1/� 2e and� ai ; aiC1 �Š 2�1�RiA.0;0/
or 2�1�RiA.2; 2�/. Consequently, Œai ; aiC1� Š H or �Ri Œ1;���.

Let M Š � a1; : : : ; am � be an OF -lattice relative to some good BONG. Define the
Ri -invariants Ri .M/´ ord.ai / for 1 � i � m and the ˛i -invariants

˛i .M/´ min
�®
.RiC1 �Ri /=2C e

¯
[
®
RiC1 �Rj C d.�ajajC1/ j 1 � j � i

¯
[
®
RjC1 �Ri C d.�ajajC1/ j i � j � m � 1

¯�
for 1�i�m�1. Both are independent of the choice of the good BONG (cf. [2, Lemma 4.7],
[4, §2]).

We give some useful properties for Ri and ˛i without proof (cf. [15] or [6]).

Proposition 3.3. Suppose 1 � i � m � 1.

(i) RiC1 �Ri > 2e (resp.D 2e, < 2e) if and only if ˛i > 2e (resp.D 2e, < 2e).

(ii) If RiC1�Ri �2e or RiC1�Ri 2¹�2e; 2�2e; 2e�2º, then ˛iD.RiC1�Ri /=2
C e.

(iii) If RiC1 �Ri � 2e, then ˛i � RiC1 �Ri . Also, the equality holds if and only if
RiC1 �Ri D 2e or RiC1 �Ri is odd.
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Proposition 3.4. Suppose 1 � i � m � 1.

(i) Either 0 � ˛i � 2e and ˛i 2 Z, or 2e < ˛i <1 and 2˛i 2 Z; thus ˛i � 0.

(ii) ˛i D 0 if and only if RiC1 �Ri D �2e.

(iii) ˛i D 1 if and only if eitherRiC1 �Ri 2 ¹2� 2e;1º, orRiC1 �Ri 2 Œ4� 2e;0�E

and dŒ�ai;iC1� D Ri �RiC1 C 1.

(iv) If ˛i D 0, i.e., RiC1 �Ri D �2e, then dŒ�ai;iC1� � 2e.

(v) If ˛i D 1, then dŒ�ai;iC1� � Ri �RiC1 C 1. Also, the equality holds if RiC1 �
Ri 6D 2 � 2e.

Proposition 3.5. Suppose that M is integral.

(i) We have Rj � Ri � 0 for all odd integers i; j with j � i and Rj � Ri � �2e
for all even integers i; j with j � i .

(ii) If Rj D 0 for some j 2 Œ1;m�O , then Ri D 0 for all i 2 Œ1; j �O and Ri is even
for all 1 � i � j .

(iii) IfRj D�2e for some j 2 Œ1;m�E , then for each i 2 Œ1; j �E , we haveRi�1 D 0,
Ri D �2e and d.�ai�1ai / � dŒ�ai�1;i � � 2e. Consequently, dŒ.�1/j=2a1;j �
� 2e.

(iv) If Rj D �2e for some j 2 Œ1; m�E , then Œa1; : : : ; aj � Š Hj=2 or H.j�2/=2 ?

Œ1;���, according as d..�1/j=2a1;j / D1 or 2e.

(v) If Rj D �2e and RjC1 is even for some j 2 Œ1; m�E , then Œa1; : : : ; ajC1� Š
Hj=2?Œ"� for some " 2 O�F with " 2 ajC1F �2 [�ajC1F �2.

Let N Š � b1; : : : ; bn � be another OF -lattice relative to some good BONG, Si D
Ri .N / and ˇi D ˛i .N /. For 0 � i � m and 0 � j � n, we define

dŒca1;ib1;j �´ min
®
d.ca1;ib1;j /; ˛i ; ǰ

¯
; c 2 F �;

where ˛i is ignored if i 2 ¹0;mº and ǰ is ignored if j 2 ¹0; nº. In particular, if M D N
and 0 � i � 1 � j � m, then we define

dŒcai;j �´ dŒca1;i�1a1;j � D min
®
d.cai;j /; ˛i�1; j̨

¯
:

Here we ignore ˛i�1 if i 2 ¹1; m C 1º and we ignore j̨ if j 2 ¹0; mº. Recall that the
invariants dŒca1;ib1;j � satisfy the same domination principles as their d.ca1;ib1;j / cor-
respondents. (See [6, §1.4].) With this notation, the invariant ˛i can be neatly expressed
as

˛i D min
®
.RiC1 �Ri /=2C e;RiC1 �Ri C dŒ�ai;iC1�

¯
(3.3)

(cf. [4, Corollary 2.5 (i)]). For any 1 � i � min¹m � 1; nº, we define

Ai D Ai .M;N /´ min
®
.RiC1 � Si /=2C e;RiC1 � Si C dŒ�a1;iC1b1;i�1�;

RiC1 CRiC2 � Si�1 � Si C dŒa1;iC2b1;i�2�
¯
;

where the termRiC1CRiC2 � Si�1 � Si C dŒa1;iC2b1;i�2� is ignored if i D 1 orm� 1.
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Our main tool is the representation theorem due to Beli [6,Theorem1.2 and Remarks 1]
(see [4, Theorem 4.5] and [5] for more details).

Theorem 3.6. Suppose n � m. Then N !�M if and only if FN !� FM and the fol-
lowing conditions hold:

(i) For any 1 � i � n, we have either Ri � Si , or 1 < i < m and Ri C RiC1 �
Si�1 C Si .

(ii) For any 1 � i � min¹m � 1; nº, we have dŒa1;ib1;i � � Ai .

(iii) For any 1 < i � min¹m � 1; nC 1º, if

RiC1 > Si�1 and dŒ�a1;ib1;i�2�C dŒ�a1;iC1b1;i�1� > 2eC Si�1 �RiC1;

then Œb1; : : : ; bi�1�!� Œa1; : : : ; ai �.

(iv) For any 1 < i �min¹m� 2;nC 1º such that Si �RiC2 >Si�1C 2e �RiC1C
2e, we have Œb1; : : : ; bi�1�!� Œa1; : : : ; aiC1�. (If i D nC 1, the condition Si �
RiC2 is ignored.)

4. Preliminaries over local fields

Unless otherwise stated, we always assume that F is a local field and n is a positive integer
in this section. Clearly, e D 0 if F is non-dyadic and e � 1 if F is dyadic.

First, we extend [15, Definitions 3.4 and 3.6, and Proposition 3.5] to the non-dyadic
case, including n D 1.

Definition 4.1. Let n�1. For c2V , we define the n-dimensional quadratic space over F :

W n
1 .c/´

´
H

n�2
2 ? Œ1;�c� if n is even;

H
n�1
2 ? Œc� if n is odd;

and define the n-dimensional quadratic space W n
2 .c/ with detW n

2 .c/ D detW n
1 .c/ and

W n
2 .c/ 6Š W

n
1 .c/ if n 6D 1 and .n; c/ 6D .2; 1/. We further define the OF -maximal lattice

on W n
� .c/ by N n

� .c/ provided that W n
� .c/ is defined.

From Definition 4.1, the notations W n
� .c/ and N n

� .c/ are defined only if

.n; �/ 6D .1; 2/ and .n; �; c/ 6D .2; 2; 1/; (4.1)

which is in essential due to [31, 63:22 Theorem]. Hereafter, we always assume that the
conditions (4.1) hold when a quadratic space W n

� .c/ or an OF -maximal lattice N n
� .c/ is

discussed.
If F is dyadic, for c 2 Vn¹1;�º, we let c�� ord.c/ D �2.1C ��d.c// with �; � 2 O�F

when ord.c/ is even. To describe W n
2 .c/ and N n

2 .c/ explicitly, we put

c#
´

´
� if ord.c/ is odd;

1C 4���1��d.c/ if ord.c/ is even;
(4.2)
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as in [15, Definition 3.1]. From [15, Proposition 3.2], we also have the properties for c#:

d.c#/ D 2e � d.c/ and .c#; c/p D �1: (4.3)

Proposition 4.2. Let n � 1, � 2 ¹1; 2º and c 2 V .

(i) The quadratic space W n
� .c/ is given by the following table,

n c W n
1 .c/ W n

2 .c/

Even

1 H
n
2 H

n�4
2 ? Œ1;��;�;����

� H
n�2
2 ? Œ1;��� H

n�2
2 ? Œ�;����

ı; ı 2 Un¹1;�º H
n�2
2 ? Œ1;�ı� H

n�2
2 ? Œı#;�ı#ı�

ı�; ı 2 U H
n�2
2 ? Œ1;�ı�� H

n�2
2 ? Œ�;��ı��

Odd
ı; ı 2 U H

n�1
2 ? Œı� H

n�3
2 ? Œ�;���;�ı�

ı�; ı 2 U H
n�1
2 ? Œı�� H

n�3
2 ? Œ1;��;�ı��

where the third case is ignored when e D 0. (If e D 0, then Un¹1;�º D ;.)

(ii) Every n-dimensional quadratic space over F is isometric to one of the spaces
in the table above.

(iii) For every n-dimensional quadratic spaceW , up to isometry, there is exactly one
.nC2/-dimensional quadratic spaceV representing all n-dimensional quadratic
spaces except forW . Precisely, ifW DW n

� .c/ with .n; �/ 6D.1; 2/ and .n; �; c/ 6D
.2; 2; 1/, then V D W nC2

3�� .c/.

Remark 4.3. All n-dimensional quadratic spaces have been exhausted by the above table
from Proposition 4.2 (ii). Also, on each space W n

� .c/, by [31, 91:2 Theorem], there is
exactly one OF -maximal lattice, up to isometry. Hence Mn consists of all the OF -maximal
latticesN n

� .c/ for � 2 ¹1;2º and c 2V such that .n;�/ 6D .1;2/ and .n;�;c/ 6D .2;2;1/. So,
by Proposition 4.2 (i) and [31, 63:9], one can count the number of OF -maximal lattices
with rank n:

jMnj D

8̂̂<̂
:̂
8.Np/e if n � 3;

8.Np/e � 1 if n D 2;

4.Np/e if n D 1:

(4.4)

Next we show Lemma 4.4, which refines [31, 63:21 Theorem] slightly and provides
an alternative proof for Proposition 4.2 (ii) and (iii), covering the case n D 1.

Lemma 4.4. Let n � 1, �; �0 2 ¹1; 2º and c; c0 2 V .

(i) W n
�0 .c
0/ representsW n

� .c/, i.e.,W n
�0 .c
0/ŠW n

� .c/ if and only if .�0; c0/D .�; c/.

(ii) W nC1
�0 .c0/ represents W n

� .c/ if and only if .c0; c/p D .�1/�
0C� .

(iii) W nC2
�0 .c0/ represents W n

� .c/ if and only if c0 6D c or .�0; c0/ D .�; c/.
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Proof. (i) This is clear from Definition 4.1.
(ii) Let D D detW nC1

1 .c0/ detW n
1 .c/. Then D D detW nC1

�0 .c0/ detW n
� .c/ for any

�; �0 2 ¹1; 2º. By [31, 63:21 Theorem], W n
� .c/!�W

nC1
�0 .c0/ if and only if W nC1

�0 .c0/ Š

W n
� .c/ ? ŒD�. Since detW nC1

�0 .c0/ D det.W n
� .c/ ? ŒD�/, this is equivalent to

Sp

�
W nC1
�0 .c0/

�
D Sp

�
W n
� .c/ ? ŒD�

�
:

Consider the case � D �0 D 1. If n is even, then W n
1 .c/ D Hn=2�1 ? Œ1;�c� and

W n
1 .c
0/ D Hn=2 ? Œc0�, so W n

1 .c/!� W
nC1
1 .c0/ if and only if Œ1;�c�!�H ? Œc0� Š

Œc;�c; c0�, which is equivalent to 1!� Œc; c0�, i.e., .c; c0/p D 1. If n is odd, thenW n
1 .c/D

H.n�1/=2 ? Œc� andW nC1
1 .c0/DH.n�1/=2 ? Œ1;�c0�, soW n

1 .c/!�W
nC1
1 .c0/ if and only

if c!� Œ1;�c0�, which is equivalent to .c; c0/p D 1. Hence, regardless of the parity of n,
we have

Sp

�
W nC1
1 .c0/

�
D Sp

�
W n
1 .c/ ? ŒD�

�
” W n

1 .c/!�W
nC1
1 .c0/” .c; c0/p D 1:

It follows that
Sp

�
W nC1
1 .c0/

�
D .c; c0/pSp

�
W n
1 .c/ ? ŒD�

�
: (4.5)

Also, we have
Sp

�
W n
1 .c/ ? ŒD�

�
D .�1/��1Sp

�
W n
� .c/ ? ŒD�

�
: (4.6)

Indeed, if �D 1, this is trivial. And if �D 2, then det.W n
1 .c/? ŒD�/D det.W n

2 .c/? ŒD�/,
but W n

1 .c/ ? ŒD� 6Š W
n
2 .c/ ? ŒD�, so Sp.W

n
1 .c/ ? ŒD�/ D �Sp.W

n
2 .c/ ? ŒD�/.

Similarly, Sp.W
nC1
1 .c0// D �Sp.W

nC1
2 .c0//, so for �0 2 ¹1; 2º, we have

Sp

�
W nC1
1 .c0/

�
D .�1/�

0�1Sp

�
W nC1
�0 .c0/

�
: (4.7)

Plugging (4.6) and (4.7) into (4.5), we deduce that

Sp

�
W nC1
�0 .c0/

�
D .�1/�C�

0

.c; c0/pSp

�
W n
� .c/ ? ŒD�

�
:

Hence

W n
� .c/!�W

nC1
�0 .c0/”Sp

�
W nC1
�0 .c0/

�
DSp

�
W n
� .c/? ŒD�

�
”.�1/�C�

0

.c; c0/pD1:

(iii) If V and W are two quadratic spaces such that dimV � dimW D 2, then W !�
V if and only if either det V 6D � detW D det.W ? H/ or V Š W ? H. In our case,
since W n

� .c/ ? H D W nC2
� .c/, we have that W nC2

�0 .c0/ represents W n
� .c/ if and only if

either detW nC2
�0 .c0/ 6D detW nC2

� .c/, i.e., c0 6D c, orW nC2
�0 .c0/ŠW nC2

� .c/, i.e., .�0; c0/D
.�; c/.

Lemma 4.5. Let V be a quadratic space over F . Let W1 and W2 be n-dimensional
quadratic spaces over F such that detW1 D detW2 D D and W1 6Š W2.

(i) For n � 2, suppose either dimV D nC 1, or dimV D nC 2 with detV D �D.
Then V represents precisely one of W1 and W2.
In particular, for every c, V represents exactly one of W n

1 .c/ and W n
2 .c/.
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(ii) For n � 3, suppose either dimV D n� 1, or dimV D n� 2 with detV D �D.
Then V is represented by precisely one of W1 and W2.
In particular, for every c, V is represented by exactly one ofW n

1 .c/ andW n
2 .c/.

Proof. (i) See [15, Lemma 3.13].
(ii) Let dimV D n � 1. Recall from [31, 63:21 Theorem] that V !�W if and only if

W Š V ? ŒdetW det V �. Since W1 and W2 are the exactly non-isometric n-dimensional
spaces with the same determinant D, we see that V ? ŒD det V � Š W1 or W2, but not
both. Hence V is represented by precisely one of W1 and W2.

If dim V D n � 2 and det V D �D, then, by [31, 63:21 Theorem], V !�W if and
only if W Š V ? H. Similar to the previous case, we see that V ? H Š W1 or W2, but
not both, as desired.

Under the n-ADC assumption, we also have the lattice versions of Lemma 4.5 (i) and
Proposition 4.2 (iii).

Lemma 4.6. Let n � 2, � 2 ¹1; 2º and c 2 V . Let M be an n-ADC OF -lattice.

(i) If either rankM D nC 1, or rankM D nC 2 and detFM D�detW n
� .c/, then

M represents exactly one of N n
1 .c/ and N n

2 .c/.

(ii) If FM Š W nC2
� .c/, then M represents every lattice N in LF;n with FN 6Š

W n
3��.c/. In particular, M represents every N in Mn with N 6Š N n

3��.c/.

Proof. This follows from Lemma 4.5 (i), Proposition 4.2 (iii) and the n-ADC-ness
of M .

We treat the non-dyadic and dyadic case separately.

Case I. F is non-dyadic. Recall from [31, 92:2 Theorem] that a lattice L over F has a
unique Jordan splitting. Hence we may denote by Jk.L/ the Jordan component of L, with
possible zero rank and scale pk , and write Ji;j .L/´ Ji .L/ ? JiC1.L/ ? � � � ? Jj .L/

for integers i � j .
We reformulate [16, Proposition 3.2] as below.

Lemma 4.7. Let n � 1, � 2 ¹1; 2º and c 2 V .

(i) The OF -maximal lattice N n
� .c/ is given by the following table.

n c N n
1 .c/ N n

2 .c/

Even

1 H n
2 H n�4

2 ? h1;��;�;���i

� H n�2
2 ? h1;��i H n�2

2 ? h�;���i

ı�; ı 2 U D ¹1;�º H n�2
2 ? h1;�ı�i H n�2

2 ? h�;��ı�i

Odd
ı; ı 2 U D ¹1;�º H n�1

2 ? hıi H n�3
2 ? h�;���;�ıi

ı�; ı 2 U D ¹1;�º H n�1
2 ? hı�i H n�3

2 ? h1;��;�ı�i

(ii) The set Mn is a minimal testing set for n-universality.
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Lemma 4.8. Let N D N n
� .c/ be an OF -maximal lattice of rank n. Then J0;1.N / D N .

Thus, an OF -lattice M represents N if and only if FJ0.M/ represents FJ0.N / and
FJ0;1.M/ represents FN .

Proof. Recall that H D h1;�1i is unimodular, and so is Hk . For each N D N n
� .c/ in

Lemma 4.7 (i), one may obtain the Jordan splittings by collecting or reordering the com-
ponents according to their scales. From these splittings, it follows that J0;1.N / D N for
each N D N n

� .c/. Furthermore, the second assertion holds by [30, Theorem 1].

Case II. F is dyadic. We rephrase [15, Theorem 1.2] in terms of BONGs by virtue of
[15, Remark 3.9, Lemmas 3.10 and 3.11].

Lemma 4.9. Let n � 1, � 2 ¹1; 2º and c 2 V .
(i) The OF -maximal lattice N n

� .c/ is given by the following table,

n c N n1 .c/ N n2 .c/

Even

1 H
n
2 H

n�4
2 ?� 1;����2e ; �;���1�2e �

� H
n�2
2 ?� 1;����2e � H

n�2
2 ?� �;���1�2e �

ı; ı 2 Un¹1;�º H
n�2
2 ?� 1;�ı�1�d.ı/ � H

n�2
2 ?� ı#;�ı#ı�1�d.ı/ �

ı�; ı 2 U H
n�2
2 ?� 1;�ı� � H

n�2
2 ?� �;��ı� �

Odd
ı; ı 2 U H

n�1
2 ?� ı � H

n�3
2 ?� ı�#;�ı�#��2�2e ; ı� �

ı�; ı 2 U H
n�1
2 ?� ı� � H

n�3
2 ?� 1;����2e ; �ı� �

where � is a fixed unit with d.�/D2e�1 and HŠ� 1;���2e � (cf. [15, Lemma 3.9 (i)]).
(ii) The set Mn is a minimal testing set for n-universality.

Remark 4.10. Each OF -maximal lattice N n
� .c/ can be written as the form Hk ? L Š

� 1;���2e; : : : ; 1;���2e; c1; : : : ; c` � relative to a good BONG, where k; ` are non-
negative integers andLŠ� c1; : : : ; c` � relative to a good BONG. Hence the above table
gives the values of the invariants Ri .N n

� .c// (cf. [15, Lemma 3.11]).

The next two lemmas indicate that the invariants Ri .N / (1 � i � n) and the space
FN determine whether an OF -lattice N of rank n is OF -maximal or not. The proofs are
the same as that of [15, Proposition 3.7]. (See also [15, Lemma 3.11].)

Lemma 4.11. Let N be an OF -lattice of even rank n � 2 and put Si D Ri .N /.

(i) If FN Š W n
1 .c/ with c 2 ¹1; �º, then N Š N n

1 .c/ if and only if Si D 0 for
i 2 Œ1; n�O and Si D �2e for i 2 Œ1; n�E .

(ii) If FN Š W n
2 .c/ with c 2 ¹1; �º, then N Š N n

2 .c/ if and only if Si D 0 for
i 2 Œ1; n � 2�O , Si D �2e for i 2 Œ1; n � 2�E , Sn�1 D 1 and Sn D 1 � 2e.

(iii) If FN ŠW n
� .c/, with � 2 ¹1; 2º and c 2 Vn¹1;�º, thenN ŠN n

� .c/ if and only
if Si D 0 for i 2 Œ1; n� 1�O , Si D �2e for i 2 Œ1; n� 1�E and Sn D 1 � d.c/.
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Lemma 4.12. Let N be an OF -lattice of odd rank n � 1 and put Si D Ri .N /.

(i) If FN ŠW n
1 .ı/with ı 2U, thenN ŠN n

1 .ı/ if and only if Si D 0 for i 2 Œ1;n�O

and Si D �2e for i 2 Œ1; n�E .

(ii) IfFN ŠW n
2 .ı/with ı 2U, thenN ŠN n

2 .ı/ if and only if Si D 0 for i 2 Œ1;n�O ,
Si D �2e for i 2 Œ1; n � 2�E and Sn�1 D 2 � 2e.

(iii) If FN Š W n
� .ı�/, with � 2 ¹1; 2º and ı 2 U, then N Š N n

� .ı�/ if and only if
Si D 0 for i 2 Œ1; n � 1�O , Si D �2e for i 2 Œ1; n � 1�E and Sn D 1.

Proposition 4.13. LetN Š� b1; : : : ; bn � be an OF -maximal lattice of odd rank n � 3.
Put Si D Ri .N / and ˇi D ˛i .N /. Then

(i) SiD0 for i2Œ1; n� 2�O , SiD�2e for i2Œ1; n� 2�E and Sn�12¹�2e; 2 � 2eº.

(ii) If Sn�1 D �2e, then Sn 2 ¹0; 1º, ˇn�2 D 0 and ˇn�1 � dŒ�bn�2;n�1� � 2e.

(iii) If Sn�1 D 2� 2e, then Sn D 0, ˇn�2 D 1 and dŒ�bn�2;n�1�D ˇn�1 D 2e � 1.

Proof. (i) It is clear from Lemma 4.12.
(ii) If Sn�1 D �2e, then Sn 2 ¹0; 1º by Lemma 4.12. Since Sn�1 � Sn�2 D �2e, by

Proposition 3.4 (ii) and (iv), we have ˇn�2 D 0 and ˇn�1 � dŒ�bn�2;n�1� � 2e.
(iii) If Sn�1 D 2 � 2e, then Sn D 0 by Lemma 4.12. Since Sn�1 � Sn�2 D 2 � 2e

and Sn � Sn�1 D 2e � 2, by Proposition 3.3 (ii), we have ˇn�2 D 1 and ˇn�1 D 2e � 1.
Hence

2e � 1 D .2e � 2/C 1 D Sn�2 � Sn�1 C ˇn�2 � dŒ�bn�2;n�1� � ˇn�1 D 2e � 1

by (3.3), as desired.

We return to the case where F is a local field. The following lemma shows that, over
local fields, maximality implies n-ADC-ness.

Lemma 4.14. Let M be an OF -maximal lattice. If FM represents FN , then M repre-
sents N ; thus M is n-ADC for 1 � n � rankM .

Proof. If FM represents FN , by [30, Proposition 1], FM Š FN ? V for some quadratic
space. Take an integral lattice L on V . Then n.N ? L/ � OF . By [31, 82:18] and [31,
91:2 Theorem], there must be an OF -maximal lattice M 0 of rank n on FM such that
N � N ? L �M 0 ŠM . Thus M represents N .

The following proposition characterizes n-ADC OF -lattices of rank n, thereby prov-
ing the simple case of Theorem 1.5 (i).

Proposition 4.15. Let M be an OF -lattice of rank n � 2. Then M is n-ADC if and only
if M is OF -maximal.

Proof. Sufficiency is clear from Lemma 4.14. From Remark 4.3, we may choose an OF -
maximal lattice N of rank n such that FN ŠFM . Then FN!�FM by [31, 63:21 The-
orem]. Since M is n-ADC, we have N !�M , so M Š N by the maximality of N .
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Using Lemmas 4.7 (i) and 4.9 (i) with nD 4, one can easily prove the following propo-
sition for quaternary maximal lattices, which will be used in the proof of Theorem 1.11.

Proposition 4.16. Let N be a quaternary OF -maximal lattice. Then N represents H
except whenN DN 4

2 .1/. In the exceptional case,N Š A? A.�/, where A.�/ denotes the
lattice A scaled by � .

5. n-ADC lattices over non-dyadic local fields

Throughout this section, let n be an integer with n � 2. We assume that F is a non-
dyadic local field and M is an OF -lattice. In this case, we have U D ¹1; �º and V D

¹1;�; �;��º.

Theorem 5.1. If rankM D nC 1 or nC 2, then M is n-ADC if and only if M is OF -
maximal.

Lemma 5.2. Suppose thatM D J0;1.M/ and rankJ1.M/ � 1. ThenM is OF -maximal;
thus it is n-ADC.

In particular, if M is unimodular, then it is OF -maximal and n-ADC.

Proof. By the hypothesis, we have n.M/ D s.M/ D OF and v.M/ � p. It follows from
[31, 82:19] that M is OF -maximal. Hence it is n-ADC from Lemma 4.14.

If M is unimodular, then M D J0.M/ and rank J1.M/ D 0, so the first assertion
applies.

Lemma 5.3. We have the following statements:

(i) If for every ı 2 U there is some �ı 2 ¹1; 2º such that M represents N n
�ı
.ı�/,

then rankJ0.M/ � n � 1 and rankJ0;1.M/ � nC 1.

(ii) If M represents N n
1 .ı/ for some ı 2 U, then rankJ0.M/ � n.

(iii) If M represents N n
1 .ı/ for all ı 2 U, then rankJ0.M/ � nC 1.

(iv) If M represents both N n
1 .c/ and N n

2 .c/ for some c 2 V , then rank J0;1.M/ �

nC 2.

Proof. (i) By Lemma 4.8, FJ0.M/ represents FJ0.N n
�ı
.ı�//, which implies that

rankJ0.M/ � rankJ0
�
N n
�ı
.ı�/

�
D n � 1:

Also, FJ0;1.M/ represents FN n
�ı
.ı�/DW n

�ı
.ı�/ for ıD1;�. SinceW n

�1
.�/ 6ŠW n

��
.��/

by Lemma 4.4 (i), this implies that

rankJ0;1.M/ D dimFJ0;1.M/ � nC 1:

(ii) Observe from Lemma 4.7 (i) thatN n
1 ."/ is unimodular for any "2U, so J0.N n

1 ."//

D N n
1 ."/. By Lemma 4.8, FJ0.M/ represents FJ0.N n

1 .ı// D FN
n
1 .ı/ D W

n
1 .ı/, which

implies that
rankJ0.M/ � rankN n

1 .ı/ D n:
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(iii) By Lemma 4.8, FJ0.M/ represents FJ0.N n
1 .ı// D W

n
1 .ı/ for ı D 1; �. Since

W n
1 .1/ 6Š W

n
1 .�/ by Lemma 4.4 (i), this implies that

rankJ0.M/ D dimFJ0.M/ � nC 1:

(iv) By Lemma 4.8, FJ0;1.M/ represents FN n
� .c/ D W

n
� .c/ for � D 1; 2. This con-

tradicts Lemma 4.5 (i) if dimFJ0;1.M/ D nC 1. Hence

rankJ0;1.M/ D dimFJ0;1.M/ � nC 2:

Lemma 5.4. Suppose thatM is n-ADC of rank nC 1 or nC 2. ThenM D J0;1.M/ and
rankJ1.M/ � 2.

Proof. Let rankM D nC 1. For each ı 2 ¹1; �º, by Lemma 4.6 (i), there is some �ı 2
¹1; 2º such that M represents N n

�ı
.ı�/. Hence, by Lemma 5.3 (i), we have

rankJ0.M/ � n � 1 and rankJ0;1.M/ � nC 1:

So rankJ0;1.M/ D nC 1. Thus J0;1.M/ DM and rankJ1.M/ � 2.
Let rankM D nC 2 and FM ŠW nC2

� .c/. Since jUj D 2 and jV j D 4, we have Un¹cº

6D ; and Vn¹1; cº 6D ;. Let ı 2Un¹cº and c0 2 Vn¹1; cº. Since ı 6D c, by Lemma 4.4 (iii),
FM represents W n

1 .ı/. Since c0 6D 1, both W n
1 .c
0/ and W n

2 .c
0/ are defined (including the

case n D 2) and, since c0 6D c, by Lemma 4.4 (iii), FM represents both of them. Then,
since M is n-ADC, it represents N n

1 .ı/, N
n
1 .c
0/ and N n

2 .c
0/. By Lemma 5.3 (ii) and (iv),

we get
rankJ0.M/ � n and rankJ0;1.M/ � nC 2:

So rankJ0;1.M/ D nC 2. Thus J0;1.M/ DM and rankJ1.M/ � 2.

Proof of Theorem 5.1. Sufficiency is clear from Lemma 4.14. Let mD rankM 2¹nC1;
nC 2º. By Lemma 5.4, M D J0;1.M/ and rankJ1.M/ � 2. If rankJ1.M/ � 1, then we
are done by Lemma 5.2.

Assume rank J1.M/ D 2 and let M D J0.M/ ? M 0.�/, where M 0 is unimodular of
rank 2. Since J0.M/ and M 0 are unimodular, both are OF -maximal from Lemma 5.2.
Hence, by Lemma 4.7 (i),

J0.M/ Š Nm�2
1 .1/ or Nm�2

1 .�/; and M 0 Š H or h1;��i:

If M 0 Š h1;��i, then M Š Nm
2 .1/ or Nm

2 .�/, as desired. Assume M 0 Š H. Then

FM Š W m
1 .�

0/ for some �0 2 ¹1;�º:

Hence FM represents W n
1 .�/ with � 2 ¹1; �º, by Lemma 4.4 (ii), for m D n C 1 (we

have .�; �0/p D 1) and, by Lemma 4.4 (iii), formD nC 2, soM represents both ofN n
1 .1/

and N n
1 .�/ by n-ADC-ness of M . By Lemma 5.3 (iii), we have rank J0.M/ � nC 1, a

contradiction.
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6. n-ADC lattices over dyadic local fields I

In this section, let n be an even integer with n� 2. We assume that F is a dyadic local field
and M Š � a1; : : : ; am � is an OF -lattice of rank m � n, relative to some good BONG.
Let Ri D Ri .M/ for 1 � i � m and ˛i D ˛i .M/ for 1 � i � m � 1. We also suppose
that N Š � b1; : : : ; bn � is an OF -lattice of rank n, relative to some good BONG, and
denote its associated invariants by Si D Ri .N / and ˇi D ˛i .N / when an OF -lattice N
with rank n is discussed.

Theorem 6.1. If rankM D nC 1, then M is n-ADC if and only if M is OF -maximal.

Theorem 6.2. If rankM D n C 2, then M is n-ADC if and only if either M is OF -
maximal, or n D 2 and

M Š H ? � 1;���2�2e � Š H ? 2�1�A.2��1; 2��/;

which is not OF -maximal.

Remark 6.3. When e D 1, by [2, Corollary 3.4 (ii)] and [15, Lemma 3.10], we also have
H ?� 1;���2�2e �Š H ? h1;��i.

Lemma 6.4. We have the following statements:

(i) IfM representsN n
1 .�/ (resp.N n

1 .1/), thenRi�1DRi C 2eD 0 for i 2 Œ1;n�E .
If moreover RnC1 > 0, then d..�1/n=2a1;n/D 2e (resp. d..�1/n=2a1;n/D1).

(ii) If M represents N n
1 .1/ and N n

1 .�/, then Ri�1 D Ri C 2e D 0 for i 2 Œ1; n�E

and RnC1 D 0.

(iii) If M represents N n
2 .�/ (resp. N n

2 .1/, with n � 4), then Ri�1 D Ri C 2e D 0
for i 2 Œ1; n � 2�E and either Rn�1 D 0 and Rn 2 ¹�2e; 2 � 2eº or Rn�1 D
Rn C 2e D 1.

(iv) If M represents one of N n
1 .1/, N

n
1 .�/ and N n

2 .�/, and one of N n
1 .�/ and

N n
2 .�/, then RnC1 2 ¹0; 1; 2º. (Here � is the unit with d.�/ D 2e � 1 from

Lemma 4.9 (i).)

Proof. (i) Let N D N n
1 .�/ or N n

1 .1/. Then Sn�1 D Sn C 2e D 0 by Lemma 4.11 (i). By
Proposition 3.5 (i), we have Rn�1 � 0 and Rn � �2e. If M represents N , then

�2e � Rn � Rn�1 CRn � Sn�1 C Sn D �2e

by [3, Lemma 4.6 (i)]. So Rn D �2e and hence Ri�1 D Ri C 2e D 0 for i 2 Œ1; n�E , by
Proposition 3.5 (iii).

If RnC1 > 0, then RnC1 � Sn > 2e. By [5, Corollary 2.10], we have a1;nb1;n 2
F �2 and thus a1;n D b1;n in F �=F �2. So .�1/n=2a1;n D .�1/n=2b1;n D � or 1, i.e.,
d..�1/n=2a1;n/ D 2e or1, according as N D N n

1 .�/ or N D N n
1 .1/.

(ii) The first statement is clear from (i). By Proposition 3.5 (i), we have RnC1 � 0.
Assume RnC1 > 0. If M represents N n

1 .1/ and N n
1 .�/, then d..�1/n=2a1;n/ D 1 and

d..�1/n=2a1;n/ D 2e by (i). This is impossible.
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(iii) LetN DN n
2 .�/, orN n

2 .1/, with n� 4. Then Sn�3 D Sn�2C 2eD 0 and Sn�1 D
Sn C 2e D 1 by Lemma 4.11 (ii). Similar to (i), we have Ri�1 D Ri C 2e D 0 for i 2
Œ1; n � 2�E . Applying [3, Lemma 4.6 (i)], we see that

�2e CRn�1 D Rn�2 CRn�1 � Sn�2 C Sn�1 D 1 � 2e; (6.1)

Rn�1 CRn � Sn�1 C Sn D 2 � 2e: (6.2)

Hence Rn�1 2 ¹0; 1º by (6.1). If Rn�1 D 0, then �2e � Rn � 2 � 2e by (3.2) and (6.2),
so Rn 2 ¹�2e; 2 � 2eº by Corollary 3.2 (i). If Rn�1 D 1, then Rn D 1 � 2e similarly.

(iv) Assume RnC1 > 2. If N D N n
� ."/ is any of the five lattices under consideration,

then, by Lemma 4.11 (i) and (iii), we have Sn � 2� 2e, so RnC1 � Sn > 2e. Then, same
as in the proof of (ii), we get d..�1/n=2a1;n/ D d..�1/n=2b1;n/ D d."/.

Since M represents N n
1 .1/, N

n
1 .�/ or N n

2 .�/, we have d..�1/n=2a1;n/ D 1 or 2e.
Since M also represents N n

1 .�/ or N n
2 .�/, we have

d
�
.�1/n=2a1;n

�
D d.�/ D 2e � 1;

a contradiction.

Lemma 6.5. Suppose m D nC 1 and Ri�1 D Ri C 2e D 0 for all i 2 Œ1; n � 2�E . Let
N D N n

� ."�/, with � 2 ¹1; 2º and " 2 U.

(i) If Rn�1 D 0, Rn 2 ¹�2e; 2 � 2eº and RnC1 � 2, then Theorem 3.6 (ii) fails at
i D n.

(ii) If Rn�1 D Rn C 2e D 1, then Theorem 3.6 (ii) fails at i D n � 1.

Proof. By Lemma 4.11 (iii), we have Si D SiC1 C 2e D 0 for i 2 Œ1; n � 2�O , Sn�1 D 0
and Sn D 1.

(i) IfRn�1D 0 andRn 2 ¹�2e;2� 2eº, then ord.a1;nb1;n/ is odd and thus dŒa1;nb1;n�
D 0. Also, RnC1 � Sn � 2 � 1 D 1 and dŒ�a1;nC1b1;n�1� � 0. Hence

An D min
®
.RnC1 � Sn/=2C e;RnC1 � Sn C dŒ�a1;nC1b1;n�1�

¯
� min¹1=2C e; 1º

D 1 > 0 D dŒa1;nb1;n�:

(ii) If Rn�1 D 1, then ord.a1;n�1b1;n�1/ is odd and so dŒa1;n�1b1;n�1� D 0. Since
Rn � Rn�1 D �2e, by Proposition 3.4 (iv), we have dŒ�an�1;n� � 2e. Since Rn�2 D
Sn�2 D �2e, by Proposition 3.5 (iii), we have

d
�
.�1/.n�2/=2a1;n�2

�
� 2e and d

�
.�1/.n�2/=2b1;n�2

�
� 2e:

So, by the domination principle, we see that

dŒ�a1;nb1;n�2� � 2e:

Also, Rn � Sn�1 D .1 � 2e/ � 0 D 1 � 2e, and

RnC1 � Sn�2C dŒa1;nC1b1;n�3��RnC1 � Sn�2 �Rn�1 � Sn�2 D 1� .�2e/D 2eC 1
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from (3.1). Hence

An�1 D min
®
.Rn � Sn�1/=2C e;Rn � Sn�1 C dŒ�a1;nb1;n�2�;

Rn � Sn�1 CRnC1 � Sn�2 C dŒa1;nC1b1;n�3�
¯

� min
®
.1 � 2e/=2C e; .1 � 2e/C 2e; .1 � 2e/C .2e C 1/

¯
D 1=2 > 0 D dŒa1;n�1b1;n�1�:

Proof of Theorem 6.1. Sufficiency follows from Lemma 4.14. We claim thatRi�1DRi C
2e D 0 for i 2 Œ1; n � 2�E , Rn�1 D 0, Rn 2 ¹�2e; 2 � 2eº and RnC1 2 ¹0; 1º. By
Lemma 4.6 (i), M represents either N n

1 .�/ or N n
2 .�/. In both cases, by Lemma 6.4 (i)

and (iii), we have Ri�1 D Ri C 2e D 0 for i 2 Œ1; n � 2�E and either Rn�1 D 0 and
Rn 2 ¹2 � 2e;�2eº or Rn�1 D Rn C 2e D 1.

Next, take " 2U. By Lemma 4.6 (i),M representsN n
� ."�/ for some � 2 ¹1;2º. Hence

M andN n
� ."�/ satisfy the conditions (i)–(iv) of Theorem 3.6. Then, by Lemma 6.5 (i) and

(ii), we cannot haveRn�1D 0,Rn 2 ¹2� 2e;�2eº andRnC1� 2 orRn�1DRnC 2eD 1,
because Theorem 3.6 (ii) would fail at i D n or n� 1. Hence we are left with the case when
Rn�1 D 0, Rn 2 ¹2 � 2e;�2eº and RnC1 � 1. The claim is proved.

If Rn D �2e, then Œa1; : : : ; an� Š W n
1 .�/ with � 2 ¹1;�º by Proposition 3.5 (iv). For

any " 2 U, since .�; "/p D 1 6D �1, by Lemma 4.4 (ii),

Œa1; : : : ; an� Š W
n
1 .�/!6�W

nC1
2 ."/:

HenceFM 6ŠW nC1
2 ."/, soFM is isometric to one of the remaining three types:W nC1

1 .ı/,
W nC1
1 .ı�/ and W nC1

2 .ı�/, with ı 2 U (cf. Proposition 4.2 (i)).
Recall thatRnC1 2 ¹0; 1º. If FM ŠW nC1

1 .ı/, then ord.a1;nC1/ is even, soRnC1 D 0
and hence M is OF -maximal by Lemma 4.12 (i); if FM Š W nC1

1 .ı�/ or W nC1
2 .ı�/,

then ord.a1;nC1/ is odd, so RnC1 D 1 and hence M is OF -maximal by Lemma 4.12 (iii).
If Rn D 2 � 2e, let FM Š W nC1

� .c/. Assume that W n
1 .�/!� FM for some � 2

¹1; �º. Then, by n-ADC-ness, N n
1 .�/!�M , which, by Lemma 6.4 (i), implies Rn D

�2e. Contradiction. Hence for � 2 ¹1;�º, we have W n
1 .�/!6� FM Š W

nC1
� .c/, which,

by Lemma 6.4 (ii), is equivalent to .1; c/p D .�; c/p D �.�1/1C� , i.e., 1 D .�; c/p D
.�1/� . But this happens precisely when � D 2 and c D ı for some ı 2 U. Thus FM Š
W nC1
2 .ı/. Recall that RnC1 2 ¹0; 1º from the claim. Hence RnC1 D 0 by the parity of

ord.a1;nC1/ and so M is OF -maximal by Lemma 4.12 (ii).

Lemma 6.6. SupposemD nC 2,Ri�1DRi C 2eD 0 for all i 2 Œ1;n�E ,RnC2 � 2� 2e
and dŒ�anC1;nC2� > 1 �RnC2.

(i) For n � 2, if RnC1 is even or d..�1/n=2a1;n/ D 2e, then Theorem 3.6 (iii) fails
at i D nC 1 for M and N n

2 .�/.

(ii) For n � 4, if RnC1 is even or d..�1/n=2a1;n/ D1, then Theorem 3.6 (iii) fails
at i D nC 1 for M and N n

2 .1/.

Proof. LetN D N n
2 .�/, with � 2 ¹1;�º. Then Sn�1 D SnC 2e D 1, by Lemma 4.11 (ii).

Thus RnC2 � 2 � 2e > Sn.
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Since Sn � Sn�1 D �2e, by Proposition 3.4 (iv), we have dŒ�bn�1;n� � 2e. Since
Rn D Sn�2 D �2e, by Proposition 3.5 (iii), we have

d
�
.�1/n=2a1;n

�
� 2e and d

�
.�1/.n�2/=2b1;n�2

�
� 2e:

Hence dŒa1;nb1;n� � 2e > 1 � RnC2 by the domination principle. Combining with the
assumption dŒ�anC1;nC2� > 1 �RnC2, we deduce that

dŒ�a1;nC2b1;n� > 1 �RnC2

by the domination principle again. This, combined with dŒ�a1;nC1b1;n�1�� 0, shows that

dŒ�a1;nC1b1;n�1�C dŒ�a1;nC2b1;n� > 0C .1 �RnC2/ D 2e C .1 � 2e/ �RnC2

D 2e C Sn �RnC2:

Now it remains to show that Œa1; : : : ; anC1� fails to represent Œb1; : : : ; bn� Š FN ,
which, under hypothesis (i) (resp. (ii)), is isometric toW n

2 .�/ (resp.W n
2 .1/). Equivalently,

by Lemma 4.5 (i), we must show that Œa1; : : : ; anC1� represents W n
1 .�/ (resp. W n

1 .1/).
If RnC1 D ord.anC1/ is even, then, by Proposition 3.5 (v), Œa1; : : : ; anC1� Š Hn=2 ?

Œ"� D W nC1
1 ."/ for some " 2 O�F . For � 2 ¹1; �º, since .�; "/p D 1, by Lemma 4.4 (ii),

W n
1 .�/!�W

nC1
1 ."/, as required.

If d..�1/n=2a1;n/ D 2e, then, by Proposition 3.5 (iv),

W n
1 .�/ Š Œa1; : : : ; an�!� Œa1; : : : ; anC1�;

so (i) holds. And if d..�1/n=2a1;n/ D 1, then, by Proposition 3.5 (iv) again, W n
1 .1/ Š

Œa1; : : : ; an�!� Œa1; : : : ; anC1�, so (ii) holds.

Lemma 6.7. Suppose m D nC 2, Ri�1 D Ri C 2e D 0 for all i 2 Œ1; n�E and RnC2 �
2 � 2e.

(i) Suppose that eitherRnC1 is even or d..�1/n=2a1;n/D2e. IfM representsN n
2 .�/,

then either ˛nC1 D 0, or ˛nC1 D 1 and d.�anC1anC2/ D dŒ�anC1;nC2� D

1 �RnC2.

(ii) Suppose that n � 4 and either RnC1 is even, or d..�1/n=2a1;n/ D 1. If M
represents N n

2 .1/, then either ˛nC1 D 0, or ˛nC1 D 1 and d.�anC1anC2/ D
dŒ�anC1;nC2� D 1 �RnC2.

Proof. (i) Assume dŒ�anC1;nC2� > 1 � RnC2. Then Theorem 3.6 (iii) fails at i D nC 1
forN DN n

2 .�/ by Lemma 6.6 (i). But this contradicts the fact thatM representsN n
2 .�/.

Thus dŒ�anC1;nC2� � 1 � RnC2. By Proposition 3.5 (i), we have RnC1 � 0. Hence, by
(3.3), we deduce that

˛nC1 � RnC2 �RnC1 C dŒ�anC1;nC2� � RnC2 C dŒ�anC1;nC2� � 1;

which implies that ˛nC1 2 ¹0; 1º by Proposition 3.4 (i), and dŒ�anC1;nC2�D 1�RnC2 if
˛nC1 D 1.
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Since RnC1 �Rn � 2e, by Proposition 3.3 (i) and the hypothesis thatRnC2 � 2� 2e,
we have ˛n � 2e > 1�RnC2 D dŒ�anC1;nC2�Dmin¹d.�anC1;nC2/;˛nº. (We have nC
2 D m, so ˛nC2 is ignored.) It follows that d.�anC1;nC2/ D dŒ�anC1;nC2� D 1�RnC2.

(ii) Similar to (i).

Lemma 6.8. Suppose that m D nC 2 and M is n-ADC.

(i) If FM Š W nC2
1 .1/, then M Š N nC2

1 .1/.

(ii) If n � 4 and FM Š W nC2
1 .�/, then M Š N nC2

1 .�/.

(iii) If FM Š W nC2
2 .1/, then M Š N nC2

2 .1/.

(iv) If FM Š W nC2
2 .�/, then M Š N nC2

2 .�/.

(v) If c 2 Vn¹1;�º and FM Š W nC2
1 .c/, then M Š N nC2

1 .c/.

(vi) If c 2 Vn¹1;�º and FM Š W nC2
2 .c/, then M Š N nC2

2 .c/.

Proof. (i) If nD 2, then FM is 2-universal by [16, Theorem 2.3] and soM is 2-universal
by 2-ADC-ness. So M Š H2 D N 4

1 .1/ by [15, Remark 6.4]. Suppose n � 4. Then, by
Lemma 4.6 (ii), M represents every N in Mn with N 6Š N n

2 .1/. Since M represents
N n
1 .1/ and N n

1 .�/, by Lemma 6.4 (ii), we have

Ri D 0 for i 2 Œ1; nC 1�O and Ri D �2e for i 2 Œ1; n�E : (6.3)

IfRnC2DRnC2 �RnC1� 2� 2e, then ˛nC1 6D 0, by Proposition 3.4 (ii). SinceRnC1D 0
is even and M represents N n

2 .�/, we have ˛nC1 D 1 and dŒ�anC1;nC2� D 1 � RnC2
by Lemma 6.7 (i). Since Rn D �2e, we also have dŒ.�1/n=2a1;n� � 2e by Proposition
3.5 (iii). So

d
�
.�1/.nC2/=2a1;nC2

�
D d

�
.�1/.nC2/=2a1;nC2

�
D 1 �RnC2 < 2e

by the domination principle. However, FM Š W nC2
1 .1/ and so d..�1/.nC2/=2a1;nC2/

D1, a contradiction. Hence RnC2 �RnC1 < 2 � 2e.
Note that RnC2�RnC1 6D 1�2e by Corollary 3.2 (i). Hence RnC2DRnC2�RnC1D

�2e by (3.2). Combining with (6.3), we conclude that N Š N nC2
1 .1/ by Lemma 4.11 (i).

(ii) If n � 4, then N n
2 .1/ is defined. By Lemma 4.6 (ii), M represents every N in Mn

with N 6Š N n
2 .�/. In particular, it represents N n

1 .1/, N
n
1 .�/ and N n

2 .1/. We repeat the
reasoning from (i), but in this case we use Lemma 6.7 (ii) instead of Lemma 6.7 (i). Again
we see that M satisfies (6.3) and RnC2 D �2e. Since FM Š W nC2

1 .�/, we deduce that
N Š N nC2

1 .�/ by Lemma 4.11 (i).
(iii)–(iv) First,M represents everyN in Mn withN 6Š N n

1 .1/ (resp.N 6Š N n
1 .�/) by

Lemma 4.6 (ii). Since M represents N n
1 .�/ (resp. N n

1 .1/) and N n
1 .�/, we see that

Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E (6.4)

by Lemma 6.4 (i) and RnC1 2 ¹0; 1; 2º by Lemma 6.4 (iv).
By Proposition 3.5 (i), we have RnC2 � �2e. We assert RnC2 D 1 � 2e.
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If RnC2 D �2e, then FM Š W nC2
1 .1/ or W nC2

1 .�/ by Proposition 3.5 (iv). This
contradicts FM Š W nC2

2 .1/ (resp. FM Š W nC2
2 .�/).

If RnC2 � 2 � 2e, by Lemma 6.4 (i), we have either RnC1 2 ¹0; 2º, or

RnC1 D 1 and d
�
.�1/n=2a1;n

�
D 2e

(resp.RnC1 D 1 and d..�1/n=2a1;n/D1). Hence the hypothesis of Lemma 6.7 (i) (resp.
Lemma 6.7 (ii)) is satisfied. Since M represents N n

2 .�/ (resp. N n
2 .1/ with n � 4), we see

that either ˛nC1 D 0, or ˛nC1 D 1 and d.�anC1anC2/ D 1 � RnC2 by Lemma 6.7 (i)
(resp. Lemma 6.7 (ii)).

Case I: ˛nC1 D 0. By Proposition 3.4 (ii), RnC2 � RnC1 D �2e. Since RnC1 � 2 and,
by our assumption, RnC2 � 2 � 2e, we must have RnC1 D 2 and RnC2 D 2 � 2e. This
combined with (6.4) shows that for every i 2 Œ1; nC 1�O , we have RiC1 �Ri D �2e and
Ri is even. So, by Corollary 3.2 (ii), Œai ; aiC1� Š H or Œ1;���. It follows that FM Š
Hn=2 ? Œ1;��� D W nC2

1 .�/ for � D 1 or �. This contradicts FM Š W nC2
2 .1/ (resp.

FM Š W nC2
2 .�/).

Case II: ˛nC1D1. SinceRnD�2e, we have d..�1/n=2a1;n/�2e by Proposition 3.5 (iii).
Hence

d
�
.�1/.nC2/=2a1;nC2

�
D d.�anC1anC2/ D 1 �RnC2 < 2e

by the domination principle. This contradicts FM Š W nC2
2 .1/ (resp. FM Š W nC2

2 .�/)
again.

With above discussion, the assertion is proved and thus RnC2 D 1 � 2e.
Recall that RnC1 2 ¹0; 1; 2º and so RnC1 D 1 by Corollary 3.2 (i). Combining with

(6.4), we deduce that M Š N nC2
2 .1/ (resp. N nC2

2 .�/) by Lemma 4.11 (ii).
(v) Let c2Vn¹1;�º. By Lemma 4.6 (ii),M represents everyN in Mn withN 6ŠN n

2 .c/.
In particular, M represents N n

1 .1/ and N n
1 .�/, so it satisfies (6.3) by Lemma 6.4 (ii).

By Proposition 3.5 (i), we haveRnC2��2e. IfRnC2D�2e, thenFM ŠW nC2
1 .1/ or

W nC2
1 .�/ by Proposition 3.5 (iv), which contradictsFM ŠW nC2

1 .c/. ThusRnC2>�2e.
Since RnC1 D 0, Corollary 3.2 (i) implies RnC2 6D 1� 2e. Hence RnC2 � 2� 2e and so
˛nC1 6D 0 by Proposition 3.4 (ii).

Now, we see that RnC1 D 0 is even, M represents N n
2 .�/ and ˛nC1 6D 0, so 1 �

RnC2 D d.�anC1anC2/ by Lemma 6.7 (i). Since Rn D �2e, we also have

d
�
.�1/n=2a1;n

�
� d

�
.�1/n=2a1;n

�
� 2e

by Proposition 3.5 (iii). On the other hand, FM Š W nC1
1 .c/, so in F �=F �2 we have

a1;nC2 D detFM D .�1/.nC2/=2c. It follows that

d
�
.�1/.nC2/=2a1;nC2

�
D d.c/ < 2e D d

�
.�1/n=2a1;n

�
:

By the domination principle, this implies 1�RnC2D d.�anC1anC2/D d.c/. Combining
with (6.3), we conclude M Š N nC2

1 .c/ by Lemma 4.11 (iii).
(vi) Similar to (v).
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Lemma 6.9. Suppose m D 4 and R1 D R3 D R2 C 2e D 0. If FM Š W 4
1 .�/ and M

represents both N 2
1 .�/ and N 2

2 .�/, then R4 2 ¹�2e; 2 � 2eº.

Proof. Let N D N 2
� .�/, � 2 ¹1; 2º. Then S1 D 0 and S2 D 2 � 2e by Lemma 4.11 (iii).

Suppose R4 > 2 � 2e. Then R4 > S2. Since R4 � R3 D R4 > 2 � 2e > �2e and S2 �
S1 D 2 � 2e, we have ˛3 � 1 D ˇ1 by Proposition 3.4 (ii) and (iii). Since ord.a1;3b1/ is
even, we also have d.�a1;3b1/ � 1. Combining these, we see that

dŒ�a1;3b1� D min
®
d.�a1;3b1/; ˛3; ˇ1

¯
D 1:

Also, dŒ�a1;4b1;2� D d.�a1;4b1;2/ D d.��/ D d.�/ D 2e � 1 by the domination prin-
ciple. So

dŒ�a1;3b1�C dŒ�a1;4b1;2� D 1C .2e � 1/ > 2e C .2 � 2e/ �R4 D 2e C S2 �R4:

By definition, Œb1; b2�D FN ŠW 2
1 .�/ orW 2

2 .�/. But, by Lemma 4.5 (i), Œa1; a2; a3� rep-
resents exactly one ofW 2

1 .�/ andW 2
2 .�/. Hence Theorem 3.6 (iii) fails at i D 3 for either

N D N 2
1 .�/ or N 2

2 .�/. This contradicts the hypothesis thatM represents both N 2
1 .�/ and

N 2
2 .�/. Hence R4 � 2 � 2e.

By Proposition 3.5 (i), we have R4 � �2e. Recall that R3 D 0 and so R4 6D 1� 2e by
Corollary 3.2 (i). Hence R4 2 ¹�2e; 2 � 2eº.

Lemma 6.10. If FM Š W 4
1 .�/ and R1 D R3 D R2 C 2e D R4 C 2e � 2 D 0, then

M Š H ?� 1;���2�2e �.

Proof. Let N D H ? � 1;���2�2e �. By [15, Lemma 3.10], N Š � 1;���2e; 1;
���2�2e �, S1 D S3 D 0, S2 D �2e and S4 D 2 � 2e.

To show M Š N , we only need to verify that conditions (i)–(iv) in [3, Theorem 3.2]
are satisfied. We have R2 � R1 D �2e, R3 � R2 D 2e and R4 � R3 D 2 � 2e. Hence
.˛1; ˛2; ˛3/ D .0; 2e; 1/ by Proposition 3.3 (ii). Since Ri D Si for 1 � i � 4, we have
.ˇ1; ˇ2; ˇ3/ D .0; 2e; 1/ similarly. Hence conditions (i) and (ii) hold. For i D 1; 3, since
ord.a1;ib1;i / is even, we have d.a1;ib1;i / � 1 � ˛i . Since R2 � R1 D �2e, we have
d.�a1a2/ � 2e by Corollary 3.2 (ii). Similarly, d.�b1b2/ � 2e. Hence d.a1;2b1;2/ �
2e � ˛2 by the domination principle. Thus condition (iii) is checked. Since ˛1 C ˛2 D 2e
and ˛2 C ˛3 D 2e C 1, we only need to show that Œb1; b2�!� Œa1; a2; a3� for condition
(iv). By definition, Œb1; b2� Š W 2

1 .1/. By Proposition 3.5 (v), Œa1; a2; a3� Š W 3
1 ."/ for

some " 2 U. Hence Œb1; b2�!� Œa1; a2; a3� by Lemma 4.4 (ii).

Lemma 6.11. Suppose that M is 2-ADC of rank 4. If FM Š W 4
1 .�/, then M Š N 4

1 .�/

or H ?� 1;���2�2e �.

Proof. By Lemma 4.6 (ii), M represents every N in M2 with N 6Š N 2
2 .�/. Since M

represents N 2
1 .1/ and N 2

1 .�/, we have R1 D R3 D R2 C 2e D 0 by Lemma 6.4 (ii).
Since M represents N 2

1 .�/ and N 2
2 .�/, we also have R4 2 ¹�2e; 2 � 2eº by Lemma 6.9.

If R4 D �2e, then M Š N 4
1 .�/ by Lemma 4.11 (i). If R4 D 2 � 2e, then M Š H ?

� 1;���2�2e � by Lemma 6.10.
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Lemma 6.12. Let M Š H ?� 1;���2�2e �. Then

(i) M is 2-ADC, but not OF -maximal.

(ii) M is not 3-ADC.

Proof. (i) We have FM Š W 4
1 .�/ and R4.M/ D 2 � 2e. Hence M is not OF -maximal

from Lemma 4.11 (i).
By Proposition 4.2 (iii), FM represents FN for everyN in M2 withN 6ŠN 2

2 .�/. So,
by Lemma 2.1, it suffices to show thatM represents all N in M2 except for N Š N 2

2 .�/.
To do so, we will verify conditions (i)–(iv) in Theorem 3.6 for those N . Note that their
invariants Si are clear from Lemma 4.11.

Let � 2 ¹1;2º, �2 ¹1;�º and c 2Vn¹1;�º. Then d.c/ < 2e. For condition (i), we have
R1D 0� S1 andR2D�2e � S2 for everyN in M2. Since S1C 2e � 2e > 2� 2eDR4,
condition (iv) is verified.

To verify condition (ii), for every N in M2, we have

A1 �
R2 � S1

2
C e D

�2e � S1

2
C e D

�S1

2
� 0 � dŒa1b1�:

Thus condition (ii) holds at i D 1 for these N .
For N D N 2

1 .�/, since R2 D S2 D �2e, by Proposition 3.5 (iii), we have dŒ�a1;2� �
2e and dŒ�b1;2� � 2e. So dŒa1;2b1;2� � 2e by the domination principle. Hence

A2 �
R3 � S2

2
C e D

0 � .�2e/

2
C e D 2e � dŒa1;2b1;2�:

ForNDN 2
� .c/, by the domination principle, we have dŒa1;2b1;2�D dŒ�b1;2�D d.�b1b2/

D d.c/ < 2e. Since S1 D 0 and S2 D 1 � d.c/, (3.3) gives ˇ1 D 1. Hence

A2 �R3 �S2C dŒ�a1;3b1��R3 �S2Cˇ1D 0�
�
1� d.c/

�
C 1D d.c/D dŒa1;2b1;2�:

Hence condition (ii) also holds at i D 2 for every N in M2. Thus condition (ii) is verified.
To verify condition (iii), we have R3 D 0 � S1 for every N in M2. Thus condition

(iii) holds at i D 2 for these N .
For N D N 2

1 .�/, we have Œb1; b2� Š W 2
1 .1/ or W 2

1 .�/. Also, Œa1; a2; a3� Š W 3
1 ."/

for some " 2 U by Proposition 3.5 (v). Hence Œb1; b2�!� Œa1; a2; a3� by Lemma 4.4 (ii).
For N D N 2

� .c/, in F �=F �2 we have a1;4 D detFM D � and b1;2 D detFN D �c.
Since d.�/D 2e > d.c/, by the domination principle, we have d.�a1;4b1;2/D d.�c/D
d.c/ D 1 � S2. Hence

dŒ�a1;3b1�C dŒ�a1;4b1;2� � ˇ1 C d.�a1;4b1;2/ D 1C .1 � S2/ � 2e C S2 �R4;

where the last inequality holds from 2 � 2e � S2 and R4 D 2 � 2e. Hence condition (iii)
also holds at i D 3 for every N in M2. Thus condition (iii) is verified.

(ii) Suppose that M is 3-ADC. Let " 2 U. By Lemma 4.6 (i), M represents N 3
� ."�/

for some � 2 ¹1; 2º. Then S1 D S2 C 2e D 0 and S3 D 1 by Lemma 4.12 (iii). Since
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ord.a1;3b1;3/ is odd, dŒa1;3b1;3�D 0. By definition, we have d.a1;4/D d.�/D 2e. Since
S2 � S1 D�2e, we also have d.�b1b2/� 2e by Corollary 3.2. Hence d.�a1;4b1;2/� 2e
by the domination principle. Since S3 � S2 D 2e C 1, Proposition 3.3 (ii) implies ˇ2 D
2e C 1=2. So dŒ�a1;4b1;2� D min¹d.�a1;4b1;2/; ˇ2º � 2e. Also, R4 � S3 D .2� 2e/�
1 D 1 � 2e. Hence

A3 D min
®
.R4 � S3/=2C e;R4 � S3 C dŒ�a1;4b1;2�

¯
� min

®
.1 � 2e/=2C e; .1 � 2e/C 2e

¯
D 1=2 > 0 D dŒa1;3b1;3�:

Thus Theorem 3.6 (ii) fails at i D 3, which contradicts the fact that M represents N .

Proof of Theorem 6.2. Sufficiency follows by Lemmas 4.14 and 6.12 (i). Suppose that M
is n-ADC. Then, by Proposition 4.2 (ii), FM ŠW n

� .c/ for some � 2 ¹1; 2º and c 2 V . So,
by Lemmas 6.8 and 6.11,M ŠN n

� .c/ or H?� 1;���2�2e �. Also,� 1;���2�2e �Š
2�1�A.2��1; 2��/ by [2, Corollary 3.4 (iii)] and [31, 93:17 Example].

7. n-ADC lattices over dyadic local fields II

In this section, we keep the setting as the previous section, but let n be an odd integer with
n � 3.

Theorem 7.1. If rankM D nC 1, then M is n-ADC if and only if M is OF -maximal.

Proof. Sufficiency is clear from Lemma 4.14. Suppose that M is n-ADC. Then it is
.n � 1/-ADC. Since n � 1 is even, M is OF -maximal except for n � 1 D 2 and M Š
H ? � 1;���2�2e � by Theorem 6.2. However, H ? � 1;���2�2e � is not 3-ADC
by Lemma 6.12 (ii). So the exceptional case cannot happen.

Theorem 7.2. If rankM D n C 2, then M is n-ADC if and only if either M is OF -
maximal, or

M Š N nC1
� .ı/ ? h"�ki;

with � 2 ¹1; 2º, ı 2 Un¹1;�º, " 2 U and k 2 ¹0; 1º.
Also, if M is simultaneously OF -maximal and isometric to the described orthogonal

splitting, then M Š N nC2
2 ."/ with " 2 U.

Remark 7.3. For the lattice N nC1
� .ı/ given in Theorem 7.2, we see from Lemma 4.9 and

[15, Remark 3.8, Lemma 3.9] that

N nC1
1 .ı/ D H.n�1/=2

? N 2
1 .ı/ Š H.n�1/=2

? ��lA
�
� l ;�.ı � 1/��l

�
and

N nC1
2 .ı/ D H.n�1/=2

? N 2
2 .ı/ Š H.n�1/=2

? ı#��lA
�
� l ;�.ı � 1/��l

�
;

with ı 2Un¹1;�º and 2l D d.ı/� 1 � 2e � 2, where ı# D 1C 4�.ı � 1/�1. Similarly,
we also see that

N nC2
2 ."/ D H.n�1/=2

? N 3
2 ."/ Š H.n�1/=2

? 2�1�A.2; 2�/ ? h�"i;

with " 2 U.
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Before showing Theorem 7.2, we first prove the following theorem, which character-
izes the n-ADC lattices with odd n. In the remainder of this section, we assume rankM D
nC 2.

Theorem 7.4. M is n-ADC if and only ifRi D 0 for i 2 Œ1;n�O ,Ri D�2e for i 2 Œ1;n�E ,
RnC1 2 Œ�2e; 0�

E and RnC2; ˛n 2 ¹0; 1º.

Proof. We will show that the theorem is equivalent to Lemma 7.5 below.
For necessity, by Proposition 3.4 (ii), ˛n D 0 if and only if RnC1 D �2e < 0. Hence

the conditions follows from Lemma 7.5 (i), (ii) and (iv).
For sufficiency, from the hypothesis, we have RnC1 � �2e and RnC2 � 1. It fol-

lows that RnC2 � RnC1 � 2e C 1, and the equality holds if and only if RnC1 D �2e
and RnC2 D 1. This shows Lemma 7.5 (iii). If ˛n D 1, then RnC1 D RnC1 � Rn 2

Œ2 � 2e; 0�E [ ¹1º by Proposition 3.4 (iii), but RnC1 � 0 and so RnC1 2 Œ2 � 2e; 0�E .
Hence Lemma 7.5 (i), (ii) and (iv) follow from the hypothesis except for the condition
RnC1 C dŒ�an;nC1� D 1.

Since ˛n D 1, by Proposition 3.4 (v), we see that dŒ�an;nC1� � 1 � RnC1 and the
equality holds when RnC1 6D 2 � 2e. Assume RnC1 D 2 � 2e. Since RnC2 � RnC1 �
1 � .2 � 2e/ D 2e � 1, Proposition 3.3 (i) implies that

dŒ�an;nC1� � ˛nC1 � 2e � 1 D 1 �RnC1:

Hence dŒ�an;nC1� D 1 �RnC1, as desired.

Lemma 7.5. M is n-ADC if and only if the following conditions hold:

(i) Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E .

(ii) Either ˛n D 0 or ˛n D RnC1 C dŒ�an;nC1� D 1.

(iii) If RnC2 �RnC1 > 2e, then RnC1 D �2e and RnC2 D 1.

(iv) If ˛n D 1, then RnC1 2 Œ2 � 2e; 0�E and RnC2 2 ¹0; 1º.

To establish Lemma 7.5, we need a series of lemmas. First, we review the invariants
Si D Ri .N / from Proposition 4.13 for N in Mn. Precisely, we have

Si D 0 for i 2 Œ1; n � 2�O ; Si D �2e for i 2 Œ1; n � 2�O ;

Sn�1 2 ¹�2e; 2 � 2eº and Sn 2 ¹0; 1º;
(7.1)

which will be repeatedly used for the argument in Lemmas 7.6, 7.7 and 7.8.

Lemma 7.6. Suppose that Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E . For any
N in Mn, the following statements hold:

(i) dŒa1;ib1;i � � 2e for i 2 Œ1; n � 2�E .

(ii) If Sn�1 D �2e, then dŒa1;n�1b1;n�1� � 2e; if Sn�1 D 2 � 2e, then

dŒa1;n�1b1;n�1� D 2e � 1:
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(iii) If ˛n D 1, then dŒa1;nb1;n� D 1 � Sn.

(iv) If Sn�1 D �2e, then dŒ�a1;nb1;n�2� D 0; if Sn�1 D 2 � 2e, then

dŒ�a1;nb1;n�2� � 1:

(v) If ˛n D RnC1 C dŒ�an;nC1� D 1, then dŒ�a1;nC1b1;n�1� D 1 �RnC1.

Proof. (i) For i 2 Œ1; n � 2�E , since Ri D Si D �2e, Proposition 3.5 (iii) implies that
dŒ.�1/i=2a1;i � � 2e and dŒ.�1/i=2b1;i � � 2e. Hence dŒa1;ib1;i � � 2e by the domination
principle.

(ii) Since Rn�1 D Sn�3 D �2e, by Proposition 3.5 (iii), we have

d
�
.�1/.n�1/=2a1;n�1

�
� 2e and d

�
.�1/.n�3/=2b1;n�3

�
� 2e:

If Sn�1 D �2e, then dŒ�bn�2;n�1� � 2e by Proposition 4.13 (ii). If Sn�1 D 2 � 2e, then
dŒ�bn�2;n�1� D 2e � 1 by Proposition 4.13 (iii). Hence

dŒa1;n�1b1;n�1�

´
� 2e if Sn�1 D �2e;

D 2e � 1 if Sn�1 D 2 � 2e;

by the domination principle.
(iii) First, ord.a1;n/ is even from hypothesis and ord.b1;n�1/ is also even from (7.1).

If Sn D 1, then dŒa1;nb1;n� D d.a1;nb1;n/ D 0; if Sn D 0, then d.a1;nb1;n/ � 1 D ˛n, so
dŒa1;nb1;n� D min¹d.a1;nb1;n/; ˛nº D 1. In both cases, dŒa1;nb1;n� D 1 � Sn.

(iv) If Sn�1 D �2e, then ˇn�2 D 0, by Proposition 4.13 (ii); if Sn�1 D 2 � 2e, then
ˇn�2 D 1, by Proposition 4.13 (iii). Note that 0 � dŒ�a1;nb1;n�2� � ˇn�2 and we are
done.

(v) If ˛n D RnC1 C dŒ�an;nC1� D 1, then RnC1 D RnC1 �Rn � 2 � 2e, by Propo-
sition 3.4 (iii).

By (ii), we have dŒa1;n�1b1;n�1� � 2e � 1 � 1�RnC1. Moreover, the first inequality
is strict unless Sn�1 D 2 � 2e and the second is strict unless RnC1 D 2 � 2e. Therefore,

dŒa1;n�1b1;n�1� > 1 �RnC1 D dŒ�an;nC1�;

unless Sn�1 D RnC1 D 2� 2e. Hence, by the domination principle, dŒ�a1;nC1b1;n�1�D
1 �RnC1 holds except for Sn�1 D RnC1 D 2 � 2e.

In the exceptional case Sn�1 D RnC1 D 2 � 2e, we have

dŒa1;n�1b1;n�1� � 2e � 1 D 1 �RnC1 D dŒ�an;nC1�;

so dŒ�a1;nC1b1;n�1�� 2e � 1, by the domination principle. But, by Proposition 4.13 (iii),
we have

dŒ�a1;nC1b1;n�1� � ˇn�1 D 2e � 1:

Hence dŒ�a1;nC1b1;n�1� D 2e � 1 D 1 �RnC1.
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Lemma 7.7. Suppose that Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E . Then

(i) Theorem 3.6 (i) holds for every N in Mn.

(ii) If ˛n D 0 or ˛n D RnC1 C dŒ�an;nC1� D 1, then Theorem 3.6 (ii) holds for
every N in Mn.

(iii) If ˛n 2 ¹0; 1º and RnC2 �RnC1 � 2e, then Theorem 3.6 (iv) holds for every N
in Mn.

Proof. (i) By Proposition 3.5 (i), if i is odd, then Ri D 0 � Si , and if i is even, then
Ri D �2e � Si . Hence Theorem 3.6 (i) holds for 1 � i � n.

(ii) For i 2 Œ1; n � 2�O , note that Si D RiC1 C 2e D 0 and so

Ai �
RiC1 � Si

2
C e D

�2e � 0

2
C e D 0 � dŒa1;ib1;i �:

For i 2 Œ1; n � 2�E , since RiC1 D Si C 2e D 0, we have

Ai �
RiC1 � Si

2
C e D

0 � .�2e/

2
C e D 2e � dŒa1;ib1;i �

by Lemma 7.6 (i). For i D n � 1, by Lemma 7.6 (ii), we have

dŒa1;n�1b1;n�1�

´
� 2e if Sn�1 D �2e;

D 2e � 1 if Sn�1 D 2 � 2e:

By Lemma 7.6 (iv), we also have

dŒ�a1;nb1;n�2�

´
D 0 if Sn�1 D �2e;

� 1 if Sn�1 D 2 � 2e:

So

An�1 � Rn � Sn�1 C dŒ�a1;nb1;n�2�´
D 0 � .�2e/C 0 D 2e � dŒa1;n�1b1;n�1� if Sn�1 D �2e;

� 0 � .2 � 2e/C 1 D 2e � 1 D dŒa1;n�1b1;n�1� if Sn�1 D 2 � 2e:

For i D n, if ˛n D 0, then RnC1 D �2e by Proposition 3.4 (ii) and so

An �
RnC1 � Sn

2
C e D

�Sn

2
� 0 � dŒa1;nb1;n�:

If ˛n D RnC1C dŒ�an;nC1�D 1, then dŒ�a1;nC1b1;n�1�D 1�RnC1 by Lemma 7.6 (v).
Also, dŒa1;nb1;n� D 1 � Sn by Lemma 7.6 (iii). So

An�RnC1�SnCdŒ�a1;nC1b1;n�1�DRnC1�SnC.1�RnC1/D1�SnDdŒa1;nb1;n�:

Hence Theorem 3.6 (ii) holds for 1 � i � n.
(iii) Since ˛n � 1, Proposition 3.3 (i) implies RnC1 � Rn < 2e. Combining with the

hypothesis, for every 2� i � n, we haveRiC2 �RiC1� 2e, so Theorem 3.6 (iv) holds.
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Lemma 7.8. Suppose that Ri D 0 for i 2 Œ1; n�O , Ri D �2e for i 2 Œ1; n�E and RnC2 �
RnC1 � 2e. If either ˛n D 0, or ˛n D RnC1C dŒ�an;nC1�D 1, RnC1 2 Œ2� 2e; 0�E and
RnC2 2 ¹0; 1º, then Theorem 3.6 (iii) holds for every N in Mn.

Proof. By (7.1), we have RiC1 D 0 D Si�1 for i 2 Œ2; n� 1�E and RiC1 D �2e D Si�1
for i 2 Œ2; n � 1�O , Theorem 3.6 (iii) holds trivially for 2 � i � n � 1.

For i D n, if ˛n D 0, then RnC1 D �2e � Sn�1. If ˛n D RnC1 C dŒ�an;nC1� D 1,
when Sn�1 D 2 � 2e, we have

dŒ�a1;nb1;n�2�C dŒ�a1;nC1b1;n�1� � 1C .1 �RnC1/ D 2e C Sn�1 �RnC1

by Lemma 7.6 (iv) and (v); when Sn�1 D �2e, note that Œb1; : : : ; bn�1� Š W n�1
1 .1/ or

W n�1
1 .�/ from Proposition 3.5 (iv), and Œa1; : : : ; an� Š W n

1 ."/ with " 2 O�F from Propo-
sition 3.5 (v). Hence Œb1; : : : ; bn�1�!� Œa1; : : : ; an� by Lemma 4.4 (ii).

For i D nC 1, we may assume RnC2 > Sn � 0. If RnC1 D �2e, then, by hypothesis,
RnC2 � RnC1 C 2e D 0, a contradiction. Hence RnC1 6D �2e, i.e., ˛n 6D 0. So

˛n D RnC1 C dŒ�an;nC1� D 1:

HenceRnC1 2 Œ2� 2e; 0�E andRnC2 D 1. Now, we have 1DRnC2 > Sn � 0, so Sn D 0.
It follows that ord.a1;nC2b1;n/ is odd and so dŒ�a1;nC2b1;n� D 0. Since RnC2 � 2 � 2e,
we have

dŒ�a1;nC1b1;n�1�C dŒ�a1;nC2b1;n� D .1 �RnC1/C 0 � 2e � 1 D 2e C Sn �RnC2;

by Lemma 7.6 (v). Hence Theorem 3.6 (iii) holds for 2 � i � nC 1.

Now, we are ready to show the sufficiency of Lemma 7.5.

Proof of sufficiency of Lemma 7.5. IfRnC2�RnC1>2e, thenRnC1D�2e andRnC2D1.
Then detFM has an odd order and so FM Š W nC2

� .ı�/ for some ı 2U and � 2 ¹1; 2º.
Then, by Lemma 4.12 (iii), we have M Š N nC2

� .ı�/. So M is OF -maximal and thus is
n-ADC by Lemma 4.14.

Assume RnC2 � RnC1 � 2e. By Lemma 2.1, it is sufficient to show that for every N
in Mn, if FM represents FN , then M represents N . To do so, we need to verify that
Theorem 3.6 (i)–(iv) hold for M and N . But this follows from Lemmas 7.7 and 7.8.

Lemma 7.9. If M is n-ADC, then it is .n � 1/-universal.

Proof. Let N be an OF -lattice of rank n � 1. We take a non-zero element c 2 OF such
that c 6D � det FM det FN , i.e., c det FN 6D � det FM . Define N 0 ´ N ? hci. Then
N 0 is integral and det FN 0 D c det FN 6D � det FM . Since dim FM � dim FN 0 D 2,
it follows from [31, 63:21 Theorem] that FN 0!� FM . Since M is n-ADC, we have
N 0!�M . Since also N !�N 0, we have N !�M . Thus M is .n� 1/-universal by the
arbitrariness of N .
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In view of Lemma 7.9 and the classification for .n � 1/-universality in [15, Theo-
rem 4.1], we further have the lemma.

Lemma 7.10. Suppose that M is n-ADC. Then

(i) Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E .

(ii) Either ˛n D 0 or ˛n D RnC1 C dŒ�an;nC1� D 1.

(iii) If RnC2 �RnC1 > 2e, then RnC1 D �2e; and if moreover n � 5, or nD 3 and
d.a1;4/ D 2e, then RnC2 D 1.

Lemma 7.11. Suppose n D 3, d.a1;4/ D1, R1 D R3 D R2 C 2e D R4 C 2e D 0 and
R5 > 1. Then Theorem 3.6 (iii) fails at i D 4 for all N D N 3

2 .c/ with c 2 V .

Proof. Since R4 �R3 D �2e, we have dŒ�a3;4� � 2e by Proposition 3.4 (iv).
We have c D " or "� for some " 2U. For N D N 3

2 ."/, we have S1 D 0, S2 D 2� 2e
and S3 D 0 by Lemma 4.12 (ii), so dŒa1;2b1;2� D 2e � 1 by Lemma 7.6 (ii). For N D
N 3
2 ."�/, we have S1 D 0, S2 D �2e and S3 D 1 by Lemma 4.12 (iii), so dŒa1;2b1;2� �

2e by Lemma 7.6 (ii). Since also dŒ�a3;4� � 2e, by the domination principle, we have
dŒ�a1;4b1;2� D 2e � 1 or � 2e, according as S3 D 0 or 1. So, in both cases,

dŒ�a1;4b1;2� � 2e � 1C S3:

So we conclude that R5 > 1 � S3 and

dŒ�a1;4b1;2�C dŒ�a1;5b1;3� � .2e � 1C S3/C 0 > 2e C S3 �R5: (7.2)

It remains to show that Œa1; a2; a3; a4� fails to represent Œb1; b2; b3�. Since a1;4 2 F �2,
Œa1; a2; a3; a4�ŠW

4
1 .1/DH2 by Proposition 3.5 (iv). Also, Œb1; b2; b3�ŠW 3

2 .c/. Hence
Œb1; b2; b3�!6� Œa1; a2; a3; a4� by Lemma 4.4 (ii).

IfM is n-ADC, then it is .n� 1/-universal by Lemma 7.9 (iii) and thusM satisfies the
hypothesis of [15, Lemma 5.8] from Lemma 7.10. Hence we have the following lemma.

Lemma 7.12. Suppose that M is n-ADC. If ˛n D 1 and either RnC1 D 1 or RnC2 > 1,
then

d
�
.�1/.nC1/=2a1;nC1

�
D 1 �RnC1 < 2e;

..�1/.nC1/=2a1;nC1/
# is a unit and d...�1/.nC1/=2a1;nC1/#/ D 2e CRnC1 � 1.

Lemma 7.13. Suppose that M is n-ADC and FM Š W nC2
� .c/. Thus

c D .�1/.nC1/=2a1;nC2:

Let Qc D .�1/.nC1/=2a1;nC1 and let N D N n
� .c/ or N n

� .c Qc
#/.

If ˛n D 1 and either RnC1 D 1 or RnC2 > 1, then

(i) RnC2 > Sn and dŒ�a1;nC1b1;n�1�C dŒ�a1;nC2b1;n� > 2e C Sn �RnC2.

(ii) Œa1; : : : ; anC1� fails to represent FN D Œb1; : : : ; bn�.

Thus, Theorem 3.6 (iii) fails at i D nC 1.
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Proof. (i) First, ord.a1;n/ is even from Lemma 7.10 (i) and Qc# is a unit from Lemma 7.12.
Hence ord.c/ D ord.c Qc#/ � RnC2 � RnC1 .mod 2/. Therefore, by Lemma 4.12, both
when N D N n

� .c/ or N n
� .c Qc

#/ we have

Sn D

´
1 if RnC2 �RnC1 is odd;

0 if RnC2 �RnC1 is even:

Note thatRnC2 � 0 by Proposition 3.5 (i). IfRnC2 D 0, thenRnC1 D 1 by the hypothesis.
This contradicts Corollary 3.2 (i). Thus RnC2 � 1. If RnC2 D 1, then RnC1 D 1 by the
hypothesis. Then RnC2 � RnC1 is even, so Sn D 0 and thus RnC2 D 1 > 0 D Sn. If
RnC2 > 1, then RnC2 > 1 � Sn. So, in all cases, RnC2 > Sn.

Secondly, from the hypothesis, we have

a1;nC2 D .�1/
.nC1/=2c and b1;n D .�1/

.n�1/=2c or .�1/.n�1/=2c Qc#:

By Lemma 7.12, we also have d. Qc#/ D 2e CRnC1 � 1. Hence

dŒ�a1;nC2b1;n� D d.�a1;nC2b1;n/ D

´
d.c2/ D1 if N D N n

� .c/;

d.c2 Qc#/ D 2e CRnC1 � 1 if N D N n
� .c Qc

#/:

Also, by Lemma 7.6 (v), dŒ�a1;nC1b1;n�1� D 1 �RnC1. Thus

dŒ�a1;nC1b1;n�1�C dŒ�a1;nC2b1;n� � .1 �RnC1/C .2e CRnC1 � 1/ D 2e

> 2e C Sn �RnC2:

(Recall that we have shown RnC2 > Sn.)
(ii) Let V D Œa1; : : : ; anC1�. Then detV D a1;nC1 D .�1/.nC1/=2 Qc, so V ŠW nC1

�0 . Qc/,
with �0 2 ¹1; 2º. Assume that V represents Œb1; : : : ; bn� Š FN for N D N n

� .c/ and N D
N n
� .c Qc

#/, i.e., W nC1
�0 . Qc/ represents both W n

� .c/ and W n
� .c Qc

#/. Then, by Lemma 4.4 (ii),
we have

.c; Qc/p D .�1/
�C�0
D .c Qc#; Qc/p D .c; Qc/p. Qc

#; Qc/p;

which implies . Qc#; Qc/p D 1. This contradicts (4.3).

Proof of necessity of Lemma 7.5. Let FM ŠW nC2
� .c/, where � 2 ¹1; 2º and c 2 V . Sup-

pose that M is n-ADC. Then (i) and (ii) coincide with Lemma 7.10 (i)–(ii).
For (iii), assume that RnC2 � RnC1 > 2e. Then, by Lemma 7.10 (iii), RnC1 D �2e.

If, moreover, either n � 5 or n D 3 and d.a1;4/ D 2e, then also RnC2 D 1. So (iii) holds.
Suppose now that in the remaining case, n D 3 and d.a1;4/ 6D 2e, and (iii) fails, i.e.,

R5 6D 1. Again, by Lemma 7.10 (i) and (iii), R1 D R3 D R2 C 2e D R4 C 2e D 0. Since
d.a1;4/ 6D 2e, Proposition 3.5 (iv) implies d.a1;4/D1. Also from R5 �R4 > 2e we see
that R5 > R4 C 2e D 0, so R5 6D 1 implies R5 > 1.

Let c0 2 Vn¹cº and let N D N 3
2 .c
0/. Since c0 D c, we have N 6Š N 3

3��.c/. So, by
Lemma 4.6 (ii), M represents N . But, by Lemma 7.11, Theorem 3.6 (iii) fails for M and
N , so M cannot represent N . Contradiction. Hence R5 D 1 and (iii) is proved.
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For (iv), suppose ˛n D 1 and either RnC1 D 1 or RnC2 > 1. By Lemma 4.4 (i),
N n
� .c/ 6Š N

n
3��.c/ and N n

� .c Qc
#/ 6Š N n

3��.c/, so, by Lemma 4.6 (ii), M represents N n
� .c/

and N n
� .c Qc

#/. But, by Lemma 7.13, Theorem 3.6 (iii) fails for either N D N n
� .c/ or

N DN n
� .c Qc

#/. HenceRnC1DRnC1 �Rn 6D 1. Since ˛nD 1, Proposition 3.4 (iii) implies
RnC1 2 Œ2 � 2e; 0�

E . Also, RnC2 � 1, i.e., RnC2 2 ¹0; 1º. Thus (iv) is proved.

Unlike in the even case, there are many n-ADC lattices that are not OF -maximal when
n is odd. Thus, to complete the proof of Theorem 7.2, we need to determine the structures
of n-ADC lattices explicitly, as presented in Lemma 7.20.

First, recall from Theorem 7.4 that M is n-ADC of rank nC 2 if and only if

(a) Ri D 0 for i 2 Œ1; n�O and Ri D �2e for i 2 Œ1; n�E I

(b) RnC1 2 Œ�2e; 0�E I (c) ˛n 2 ¹0; 1ºI (d) RnC2 2 ¹0; 1º:
(7.3)

Lemma 7.14. Let � 2 ¹1; 2º and " 2 U. Suppose that M is n-ADC.

(i) If FM Š W nC2
� ."/, then RnC2 D 0.

(ii) If FM Š W nC2
� ."�/, then RnC2 D 1.

Proof. Clearly, ord.a1;nC2/ is even or odd, according as FM Š W nC2
� ."/ or W nC2

� ."�/.
By (7.3) (a)–(b), we have

ord.a1;nC2/ �
nC2X
iD1

Ri � RnC2 .mod 2/:

By (d), we further have

RnC2 D

´
0 if ord.a1;nC2/ is even;

1 if ord.a1;nC2/ is odd;

as desired.

Lemma 7.15. LetM;M 0 be two n-ADC OF -lattices of rank nC 2. ThenM ŠM 0 if and
only if FM Š FM 0 and RnC1.M/ D RnC1.M

0/.

Proof. We only need to show the sufficiency. Let M Š � a1; : : : ; anC2 �, Ri D Ri .M/

and ˛i D ˛i .M/. Since M is n-ADC, the conditions (a)–(d) in (7.3) hold. Let M 0 Š
� b1; : : : ; bnC2 �, Si D Ri .M 0/ and ˇi D ˛i .M 0/. The same conditions (a’)–(d’) hold
for the corresponding invariants Si and ˇi of M 0.

By (7.3) (a) and (a’), we have Ri D Si for 1 � i � n. By hypothesis, RnC1 D SnC1.
And, by Lemma 7.14, RnC2 D SnC2 D 0 or 1, according as FM Š FM 0 Š W nC2

� ."/ or
W nC2
� ."�/ for some " 2 U. Thus

Ri D Si (7.4)

for 1 � i � nC 2, i.e., the condition (i) of [4, Theorem 3.1] is fulfilled.



Z. He 1014

Suppose RnC1 D �2e. If FM Š FM 0 Š W nC2
1 ."/ with " 2 U, by Lemma 7.14 (i),

we have RnC2 D 0. Hence, by Lemma 4.12 (i), M ŠM 0 Š N nC2
1 ."/. If FM Š FM 0 Š

W nC2
� ."�/, with � 2 ¹1; 2º and " 2 U, by Lemma 7.14 (ii), we have RnC2 D 1. Hence,

by Lemma 4.12 (iii), M ŠM 0 Š N nC2
� ."�/.

Now, assume thatRnC1 6D �2e, i.e., ˛n 6D 0. By (7.4),M andM 0 satisfy the condition
(i) of [4, Theorem 3.1], so we are left to verify that the conditions (ii)–(iv) are fulfilled.

By (c), we have ˛n D 1. By (a) and Proposition 3.3 (i)–(ii), we have

˛i D

´
0 if i 2 Œ1; n � 1�O ;

2e if i 2 Œ1; n � 1�E :
(7.5)

If RnC2 D 1, then RnC2 � RnC1 is odd, so Proposition 3.3 (iii) implies ˛nC1 D RnC2 �
RnC1 D 1�RnC1; if RnC2 D 0, then Rn D RnC2, so RnC1 C ˛nC1 D Rn C ˛n D 1 by
[4, Corollary 2.3(i)], i.e., ˛nC1 D 1 �RnC1. Hence, in both cases, we have

˛nC1 D 1 �RnC1:

The same argument combined with (7.4) gives the values of ˇi ’s. Thus ˛i D ˇi for 1 �
i � nC 1 and so [4, Theorem 3.1 (ii)] holds for M and M 0.

For i 2 Œ1; n�O , we have ˛i � 1 (˛i D 0 for i 2 Œ1; n � 1�O and ˛n D 1). Since Ri D
Si , ord.a1;ib1;i / D

Pi
kD1.Rk C Sk/ is even, so d.a1;ib1;i / � 1 � ˛i . For i 2 Œ1; n�E ,

since Ri D �2e, by Proposition 3.5 (iii), we have d..�1/i=2a1;i / � dŒ.�1/i=2a1;i � � 2e.
Similarly, d..�1/i=2b1;i / � 2e. Hence, by the domination principle, d.a1;ib1;i / � 2e D
˛i . For i D n C 1, by Proposition 3.4 (v), we have d.�ananC1/ � dŒ�an;nC1� D 1 �

RnC1. Since d..�1/.n�1/=2a1;n�1/ � 2e, by the domination principle, we see that

d
�
.�1/.nC1/=2a1;nC1

�
� min

®
d
�
.�1/.n�1/=2a1;n�1

�
; d.�ananC1/

¯
� min¹2e; 1 �RnC1º D 1 �RnC1:

Similarly, d..�1/.nC1/=2b1;nC1/ � 1 � RnC1. So, by the domination principle again, we
conclude that d.a1;nC1b1;nC1/ � 1�RnC1 D ˛nC1. Thus [4, Theorem 3.1 (iii)] holds for
M and M 0.

By (7.5), we have ˛i C ˛iC1 D 2e for 1 � i � n � 2. Recall that ˛n D 1, ˛nC1 D
1 � RnC1 and RnC1 2 Œ2 � 2e; 0�E . We also have ˛n C ˛nC1 D 1C .1 � RnC1/ D 2 �
RnC1 � 2e. For i D n � 1, since ˛n�1 C ˛n D 2e C 1 > 2e, we need to prove that
Œb1; : : : ;bn�1�!� Œa1; : : : ;an�. By Proposition 3.5 (iv) and (v), Œb1; : : : ;bn�1�ŠW n�1

1 .�/,
with � 2 ¹1;�º, and Œa1; : : : ; an� Š W n

1 .ı/ for some ı 2 O�F . Then W n�1
1 .�/!�W n

1 .ı/

follows from Lemma 4.4 (ii). (Both when � D 1 or �, we have .�; ı/p D 1.) Thus [4,
Theorem 3.1 (iv)] holds for M and M 0.

Definition 7.16. Let � 2 ¹1; 2º, r 2 ¹0; : : : ; eº and c 2 V . We denote by M nC2
�;r .c/ the

only n-ADC lattice M with FM Š W nC2
� .c/ and RnC1.M/ D �2r , provided that such

lattice exists.
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Remark 7.17. By Lemma 7.15, such lattice is unique up to isometry, if it exists.
If M is n-ADC of rank n C 2, from (7.3) (b) we have RnC1.M/ 2 Œ�2e; 0�E , i.e.,

RnC1.M/ D �2r for some 0 � r � e. Hence M Š M nC2
�;r .c/, where FM Š W nC2

� .c/.
Thus every n-ADC lattice of rank nC 2 is isometric to M nC2

�;r .c/ for some, � 2 ¹1; 2º,
r 2 ¹0; : : : ; eº and c 2 V .

Lemma 7.18. Suppose that M is n-ADC. If FM Š W nC2
2 ."/ for some " 2 U, then

RnC1 6D �2e. Equivalently, M nC2
2;e ."/ is not defined.

Proof. Assume thatRnC1 D�2e. Since FM ŠW nC2
2 ."/, by Lemma 7.14 (i),RnC2 D 0.

Proposition 3.5 (v), with j D nC 1, implies that

FM Š H.nC1/=2
? Œ"0� D W nC2

1 ."0/

for some "0 2 U, a contradiction.

Lemma 7.19. Let � 2 ¹1;2º, c 2V and ı 2U, with d.ı/ < 2e. ThenM DN nC1
� .ı/? hci

is n-ADC and RnC1.M/ D 1 � d.ı/ 2 Œ2 � 2e; 0�E .

Proof. By Lemma 4.9 and Remark 4.10, we have N nC1
� .ı/ Š � a1; : : : ; anC1 � relative

to a good BONG, with .a1; : : : ; an�1/ D .1;���2e; : : : ; 1;���2e/ and .an; anC1/ D
.1;�ı�1�d.ı// or .ı#;�ı#ı�1�d.ı//, according as � D 1 or 2. Put Ri D Ri .N nC1

� .ı//.
Then, by Lemma 4.11 (iii), Ri D 0 for i 2 Œ1; n�O , Ri D �2e for i 2 Œ1; n�E and RnC1 D
1� d.ı/. Since c2V , we have ord.c/2¹0;1º. Hence if anC2´c andRnC2´ord.anC2/,
then RnC2 2 ¹0; 1º.

Since RnC2 � 0 D Rn and RnC2 � 0 � 1 � d.ı/ D RnC1, by [2, Corollary 4.4 (v)],
we have

M Š� a1; : : : ; anC1 �?� anC2 �Š� a1; : : : ; anC1; anC2 �

relative to a good BONG and Ri .M/ D Ri . In particular, since ı 2 Un¹1; �º, we have
d.ı/ 2 Œ1; 2e � 1�O , so RnC1.M/ D 1 � d.ı/ 2 Œ2 � 2e; 0�E .

Write ˛n D ˛n.M/. Since RnC1 � Rn D RnC1 > �2e, Proposition 3.4 (ii) implies
that ˛n � 1. On the other hand, for � 2 ¹1; 2º, in F �=F �2 we have �ananC1 D ı, so

˛n � RnC1 �Rn C d.�ananC1/ D
�
1 � d.ı/

�
� 0C d.ı/ D 1:

Hence ˛n D 1.
With above discussion, we have shown the conditions (a)–(d) in (7.3). By Theorem 7.4,

M is n-ADC.

Let c 2 F �. For convenience, we also write c D U (resp. c 6D U) for c 2 U (resp.
c 62 U) temporarily.

Lemma 7.20. Let � 2 ¹1; 2º, r 2 ¹0; : : : ; eº and c 2 V . Then M nC2
�;r .c/ is defined except

for .�; r; c/ D .2; e;U/.

(i) If r D e and .�; c/ 6D .2;U/, then M nC2
�;e .c/ Š N nC2

� .c/.
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(ii) If r D e � 1 and .�; c/ D .2;U/, then M nC2
2;e�1.c/ Š N

nC2
2 .c/.

(iii) If 0 � r � e � 1, then M nC2
�;r .c/ Š N nC1

�0 .!r / ? h!rci, where !r 2U is arbi-
trary such that d.!r /D 2r C 1 and �0 2 ¹1;2º satisfies .�1/�

0

D .�1/�.!r ; c/p.2

Proof. First, by Lemma 7.18, M nC2
2;e .c/ is undefined for every c 2 U. Next, we will

show the assertions (i)–(iii), thereby confirming that the lattice M nC2
�;r .c/ is defined for

.�; r; c/ 6D .2; e;U/.
For (i) and (ii), by Lemma 4.14, N nC2

� .c/ is OF -maximal and thus is n-ADC. We
also have FN nC2

� .c/ Š W nC2
� .c/. If .�; c/ 6D .2;U/, then, by Lemma 4.12 (i) and (iii),

RnC1.N
nC2
� .c//D�2e. So, by Definition 7.16,N nC2

� .c/ŠM nC2
�;e .c/. If .�; c/D .2;U/,

then, by Lemma 4.12 (ii), RnC1.N nC2
2 .c// D 2� 2e. So, by Definition 7.16, N nC2

2 .c/ Š

M nC2
2;e�1.c/.

For (iii), letM DN nC1
�0 .!r /?h!rci and 0� r � e� 1. Since .!r ; c/pD .�1/�C�

0

, by
Lemma 4.4 (ii), we have W nC1

�0 .!r /!�W
nC2
� .c/. Since detW nC1

�0 .!r / detW nC2
� .c/ D

!rc, we get FM ŠW nC1
�0 .!r /? Œ!rc�ŠW

nC2
� .c/. Also, by Lemma 7.19,M is n-ADC

and RnC1.M/ D 1 � d.!r / D �2r . Then, by Definition 7.16, M ŠM nC2
�;r .c/.

Corollary 7.21. Up to isometry, there are .8e C 6/.Np/e n-ADC lattices of rank nC 2
with odd n � 3, of which .8e � 2/.Np/e are not OF -maximal.

Proof. If M is n-ADC of the form (i) in Lemma 7.20, then M Š N nC2
� .c/ with .�; c/ 6D

.2;U/, and the number of these OF -maximal lattices is given by

3jUj D 3ŒO�F W O
�2
F � D 6.Np/e

from (4.4) and [31, 63:9]. IfM is n-ADC of the form (iii) in Lemma 7.20, then the number
of such lattices is given by

4ejUj D 4eŒO�F W O
�2
F � D 8e.Np/e:

Then excluding out the OF -maximal lattices of the form (ii) in Lemma 7.20, i.e.,N nC2
2 ."/

with "2U, gives the number for the non OF -maximal lattices: 4ejUj � jUj D 8e.Np/e �

2.Np/e , as desired.

Proof of Theorem 7.2. This follows from Definition 7.16, Remark 7.17 and Lemma 7.20.

8. Proof of Theorems 1.5, 1.7, 1.9, 1.10 and 1.11

We first prove Theorems 1.5, 1.9 and 1.10.

Proof of Theorem 1.5. (i) Combine Proposition 4.15 and Theorems 5.1, 6.1 and 7.1.
(ii) This follows from (i) and [31, §82K].

2I am thankful to the referee for suggesting this improved version for the case ˛n D 1, which refines
the original version of Theorem 7.2.
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Proof of Theorem 1.9. Combine Theorems 5.1, 6.2 and 7.2 and Remark 7.3.

Proof of Theorem 1.10. Let M be an integral OF -lattice of rank m over a local field F .
If m 2 ¹n; nC 1º, or m D nC 2 and F is non-dyadic, then, by Theorems 1.5 (i) and

1.9 (i),M is n-ADC if and only if it is OF -maximal. Hence, by (4.4), B.m;n/D jMmj D

8.Np/e or 8.Np/e � 1, according as m � 3 or m D 2, as required.
Assume thatmDnC2 andF is dyadic. If n is odd, then we are done by Corollary 7.21.

If n is even, then, by Theorem 1.9 (ii), M is n-ADC if and only if M is OF -maximal or
n D 2 and it is not OF -maximal. Consequently, B.m; n/ D 8.Np/e or 8.Np/e C 1.

In the rest of the paper, we always assume that F is an algebraic number field and M
is an OF -lattice. To show Theorem 1.7, we need some results on the class number of M .

Lemma 8.1. Suppose that M has class number one.

(i) If M is locally n-ADC, then it is globally n-ADC.

(ii) If M is OF -maximal, then it is globally n-ADC.

Proof. Since the class number of M is one, M is n-regular.
(i) If M is locally n-ADC, then it is globally n-ADC by Theorem 1.3.
(ii) If M is OF -maximal, then for each p 2 �F n1F , Mp is OFp -maximal by [31,

§82K] and so it is n-ADC by Lemma 4.14. Hence M is locally n-ADC, so it is globally
n-ADC by (i).

Based on Xu’s work [32, §1], we extend [26, Theorem 5.2 and Corollary 5.3] to the
indefinite case. (Also see [17, §4].)

Theorem 8.2. Suppose rankM D nC 1 � 3. Then there exists an OF -lattice N of rank
n such that

(i) N !�M ;

(ii) if N !�M 0 for some lattice M 0 in gen .M/, then M 0 ŠM .

Proof. This is clear from [26, Theorem 5.2] whenM is definite. Assume thatM is indefi-
nite. Let V D FM and take H D OA.M/O.V /O 0A.V / in [32, Theorem 1.5’]. Then there
exists an OF -lattice N �M with rank n such that

XM=NO.V /O
0
A.V / D OA.M/O.V /O 0A.V /:

From the one-to-one correspondence in [32, p. 181], there is only one spinor genus in
gen.M/ representing N . Since M is indefinite, by [31, 104:5 Theorem], there is exactly
one class in gen.M/ representing N .

Corollary 8.3. Suppose rankM D nC 1� 3. IfM is n-regular, thenM has class number
one.

Proof. Let M 0 be a lattice in gen.M/. Then there exists some lattice N of rank n such
that N !�M 0 and if N !�M for some lattice M in gen.M 0/, then M ŠM 0.
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SinceN !�M 0, we see thatNp!�M
0
p ŠMp for all p 2�F . SinceM is n-regular,

it follows that N !�M . So M ŠM 0 and thus the class number of M is one.

Proof of Theorem 1.7. Sufficiency is clear from Lemma 8.1 (ii). To show necessity, sup-
pose that M is n-ADC of rank nC 1. Then, by Theorem 1.3, it is locally n-ADC. So, by
Theorem 1.5 (ii), M is OF -maximal. Again by Theorem 1.3, M is n-regular. Hence, by
Corollary 8.3, the class number of M is one.

Now, we consider the case F D Q and n D 2. Let p be a prime number. For  2 Q,
denote byN ./ the Z-lattice (resp. Zp-lattice)N scaled by  (cf. [31, §82J]). Assume that
M is a positive definite quaternary Z-lattice. Following [28], a lattice is called primitive
if s.M/D Z. Also note that if p D 2, then H and A from [28] are A.0; 0/ and A.2; 2/, so
they coincide with our H.2/ and A.2/. (We have H D 2�1A.0; 0/ and A D 2�1A.2; 2/.) If
p > 2, they are the same as our H and A. But 2 is a unit in Qp , so h1;�1i Š h2;�2i and
h1;��i Š h2;�2�i, i.e., H Š H.2/ and A Š A.2/. So again H and A from [28] coincide
with H.2/ and A.2/. Then as defined in [28], we call L stable at p if n.Lp/ D 2Zp and
H.2/!� Lp or Lp Š A.2/ ? A.2p/. Moreover, we call L stable if it is stable at every
prime p.

Lemma 8.4. If M is 2-ADC, then M .2/ is 2-regular and stable.

Proof. If M is 2-ADC, then n.Mp/ D Zp , so n.M
.2/
p / D 2Zp . By Theorem 1.3, we see

that M is 2-regular and locally 2-ADC. Clearly, M .2/ is 2-regular because 2-regularity
is invariant under scaling. For any prime p, since Mp is 2-ADC, by Theorem 6.2 and
Proposition 4.16, H!�Mp or Mp Š A ? A.p/. This implies that H.2/ !�M

.2/
p or

M
.2/
p Š A.2/ ? A.2p/, so M .2/

p is p-stable. Thus M .2/ is stable.

By Theorem 1.3 and Lemma 8.4, we have the following corollary.

Corollary 8.5. M is 2-ADC if and only if it is locally 2-ADC and isometric to L.1=2/ for
some stable 2-regular lattice L.

As in [28], we put L Š Œa; b; c; d; f1; f2; f3; f4; f5; f6� if

L Š

0BBBB@
a f1 f2 f4

f1 b f3 f5

f2 f3 c f6

f4 f5 f6 d

1CCCCA :
Table 1 adopted from [28, §4] enumerates all primitive stable 2-regular quaternary Z-
lattices, where we list all the primes for which .L.1=2/

i /p is not 2-ADC in the last column.
Then, we relabel these lattices L

.1=2/
j , as shown in the first two columns of Table 2. The

third and fourth columns provide the local structures of each Li for the primes p, where
.Li /p is not unimodular.
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L Œa; b; c; d; f1; f2; f3; f4; f5; f6� dL The primes p where L
.1=2/
p is not 2-ADC

L1 Œ2; 2; 2; 2; 0; 0; 0; 1; 1; 1� 22 None

L2 Œ2; 2; 2; 2; 1; 0; 0; 1; 0; 1� 5 None

L3 Œ2; 2; 2; 2; 0; 0; 0; 1; 1; 0� 23 None

L4 Œ2; 2; 2; 2; 1; 0; 0; 0; 0; 1� 32 None

L5 Œ2; 2; 2; 4; 1; 1; 0; 1; 0; 0� 22 � 3 None

L6 Œ2; 2; 2; 2; 1; 0; 0; 0; 0; 0� 22 � 3 None

L7 Œ2; 2; 2; 4; 1; 1; 0; 0; 1; 0� 13 None

L8 Œ2; 2; 2; 4; 1; 0; 0; 1; 0; 1� 17 None

L9 Œ2; 2; 2; 4; 0; 0; 0; 1; 1; 1� 22 � 5 None

L10 Œ2; 2; 2; 4; 1; 0; 0; 1; 0; 0� 22 � 5 None

L11 Œ2; 2; 2; 4; 1; 0; 0; 0; 0; 1� 3 � 7 None

L12 Œ2; 2; 2; 6; 1; 1; 0; 0; 1; 0� 3 � 7 None

L13 Œ2; 2; 2; 4; 0; 0; 0; 1; 1; 0� 23 � 3 None

L14 Œ2; 2; 4; 4; 1; 1; 0; 1; 1; 2� 52 None

L15 Œ2; 2; 4; 4; 1; 1; 0; 0; 1; 1� 22 � 7 None

L16 Œ2; 2; 2; 6; 1; 0; 0; 1; 0; 0� 25 2

L17 Œ2; 2; 4; 4; 0; 0; 0; 1; 1; 2� 25 2

L18 Œ2; 2; 4; 4; 1; 1; 0; 1; 0; 0� 25 2

L19 Œ2; 2; 4; 4; 0; 1; 1; 1; 0; 2� 3 � 11 None

L20 Œ2; 2; 2; 10; 1; 1; 0; 1; 0; 0� 22 � 32 3

L21 Œ2; 2; 2; 6; 0; 0; 0; 1; 1; 1� 22 � 32 3

L22 Œ2; 2; 2; 6; 1; 0; 0; 0; 0; 0� 22 � 32 2

L23 Œ2; 2; 4; 4; 1; 0; 0; 0; 0; 2� 22 � 32 3

L24 Œ2; 2; 4; 4; 0; 1; 1; 1; 1; 1� 22 � 32 2

L25 Œ2; 2; 4; 4; 1; 0; 0; 0; 0; 1� 32 � 5 None

L26 Œ2; 2; 4; 4; 0; 1; 0; 0; 1; 1� 32 � 5 3

L27 Œ2; 2; 4; 6; 1; 1; 0; 0; 1; 1� 24 � 3 2

L28 Œ2; 2; 4; 4; 0; 1; 1; 0; 0; 0� 24 � 3 2

L29 Œ2; 4; 4; 4; 0; 0; 0; 1; 2; 2� 24 � 3 2

L30 Œ2; 2; 4; 4; 0; 1; 0; 0; 1; 0� 72 None

L31 Œ2; 4; 4; 4; 1; 0; 2; 0; 1; 2� 22 � 3 � 5 None

L32 Œ2; 2; 4; 6; 0; 1; 0; 1; 1; 0� 3 � 23 None

L33 Œ2; 4; 4; 4; 1; 1; 0; 1; 0; 0� 24 � 5 2

L34 Œ2; 2; 4; 8; 0; 1; 0; 0; 0; 2� 25 � 3 2

L35 Œ2; 4; 4; 4; 0; 0; 0; 1; 1; 1� 25 � 3 2

L36 Œ2; 2; 6; 6; 0; 1; 1; 1; 1; 1� 22 � 52 5

L37 Œ2; 4; 4; 6; 1; 0; 2; 0; 1; 2� 22 � 52 2

L38 Œ2; 4; 4; 6; 0; 0; 2;�1; 1;�1� 22 � 33 3

L39 Œ2; 4; 4; 6; 1; 0; 2; 0; 1; 0� 24 � 7 2

L40 Œ2; 2; 6; 8; 0; 1; 1; 1; 0; 3� 53 5

L41 Œ2; 4; 4; 8; 1; 0; 2; 0; 2; 0� 27 2

L42 Œ2; 4; 4; 6; 1; 1; 0; 0; 1; 1� 27 2

L43 Œ2; 4; 4; 8; 1; 1; 0; 1; 2; 2� 24 � 32 2

L44 Œ2; 4; 4; 8; 1; 0; 1; 1; 1; 2� 132 None

L45 Œ2; 4; 6; 6; 0; 1; 1; 1; 2; 1� 33 � 7 3

L46 Œ2; 4; 6; 6; 1; 0; 1; 0;�1; 2� 26 � 3 2

L47 Œ2; 4; 6; 10; 0; 1; 2; 0; 2; 1� 22 � 34 3

L48 Œ2; 4; 6; 12; 0; 1; 0; 0; 2; 0� 22 � 112 11

Table 1. Quaternary positive definite stable 2-regular integral Z-lattices Li .
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L L.1=2/
Lp is not unimodular

Z-maximal
p D 2 p > 2

L1 L
.1=2/
1 N 42 .1/ True

L2 L
.1=2/
2 N 41 .5/ N 42 .5/, p D 5 True

L3 L
.1=2/
3 N 42 .2/ True

L4 L
.1=2/
4 N 41 .1/ N 42 .1/, p D 3 True

L5 L
.1=2/
5 N 42 .3/ N 41 .3/, p D 3 True

L6 L
.1=2/
6 N 41 .3/ N 42 .3/, p D 3 True

L7 L
.1=2/
7 N 41 .5/ N 42 .13/, p D 13 True

L8 L
.1=2/
8 N 41 .1/ N 42 .17/, p D 17 True

L9 L
.1=2/
9 N 42 .5/ N 41 .5/, p D 5 True

L10 L
.1=2/
10 H ? h1;�5i N 42 .5/, p D 5 False

L11 L
.1=2/
11

N 41 .5/
N 42 .3/, p D 3 True
N 41 .7�7/, p D 7

L12 L
.1=2/
12

N 41 .5/
N 41 .3/, p D 3 True
N 42 .7�7/, p D 7

L13 L
.1=2/
13 N 41 .6/ N 42 .3�3/, p D 3 True

L14 L
.1=2/
14 N 41 .1/ N 42 .1/, p D 5 True

L15 L
.1=2/
15 N 42 .7/ N 41 .7/, p D 7 True

L16 L
.1=2/
19

N 41 .1/
N 42 .3�3/, p D 3 True
N 41 .11/, p D 11

L17 L
.1=2/
25

N 41 .5/
N 42 .5/, p D 3 True
N 41 .5/, p D 5

L18 L
.1=2/
30 N 41 .1/ N 42 .1/, p D 7 True

L19 L
.1=2/
31

N 42 .7/
N 42 .3�3/, p D 3 True
N 42 .5�5/, p D 5

L20 L
.1=2/
32

N 41 .5/
N 42 .3�3/, p D 3 True
N 41 .23/, p D 23

L21 L
.1=2/
44 N 41 .1/ N 42 .1/, p D 13 True

Table 2. Quaternary positive definite 2-ADC integral Z-lattices Li .

Proof of Theorem 1.11. As mentioned before, Table 1 lists all stable 2-regular quaternary
Z-lattices. Hence, by Corollary 8.5, the lattices L

.1=2/
i (i D 1; : : : ; 48) in Table 1 are all

possible candidates, and it suffices to determine which of them are locally 2-ADC. For
each prime p > 2 with p − dL, Lp is unimodular and so Zp-maximal. Thus it is 2-ADC.
Therefore, one only needs to check if Lp is 2-ADC for p D 2 and the primes p > 2 with
p j dL, and we complete the verification by hand.
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