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Almost fine gradings on algebras and classification
of gradings up to isomorphism

Alberto Elduque and Mikhail Kochetov

Abstract. We consider the problem of classifying gradings by groups on a finite-dimensional alge-
bra A (with any number of multilinear operations) over an algebraically closed field. We introduce
a class of gradings, which we call almost fine, such that every G-grading on A is obtained from an
almost fine grading on A in an essentially unique way, which is not the case with fine gradings. For
abelian G, we give a method of obtaining all almost fine gradings if fine gradings are known. We
apply these ideas to the case of semisimple Lie algebras in characteristic 0: to any abelian group
grading with nonzero identity component, we attach a (possibly nonreduced) root system ˆ and, in
the simple case, construct an adapted ˆ-grading.

1. Introduction

Gradings by groups on algebras appear in many areas of mathematics and mathematical
physics. For example, if G is any abelian group, then a G-grading on the algebra of poly-
nomials (or Laurent polynomials) A can be defined by assigning each variable a “weight”
in G. We also obtain a G-grading on the Lie algebra of derivations Der.A/ and on some
of its important subalgebras. In fact, many Lie algebras come equipped with a grading
by a free abelian group (for example, the root lattice in the case of complex semisimple
Lie algebras), which plays a crucial role in their representation theory. These include the
Lie algebras graded by not necessarily reduced root systems, or root-graded Lie algebras.
Among these we find the Z-graded Lie algebras attached to Jordan algebras and more
general Jordan systems, or to structurable algebras. Gradings by Z=2Z and more general
finite abelian groups appear in the study of superalgebras, symmetric spaces, and Kac–
Moody Lie (super)algebras.

Starting with [19], there has been considerable interest in describing all possible group
gradings on important algebras, such as simple Lie algebras. In particular, abelian group
gradings are closely related to symmetries (i.e., automorphisms) of the algebra. Indeed,
over an algebraically closed field of characteristic 0, any grading by an abelian group
G on a finite-dimensional algebra A is given by a homomorphism of algebraic groups
yG ! Aut.A/, where yG is the group of multiplicative characters of the grading group G.
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In particular, as pointed out in [19], the so-called fine gradings (see below) on A cor-
respond to maximal abelian diagonalizable subgroups of Aut.A/. Over arbitrary fields,
this connection is preserved but one needs to use affine group schemes instead of linear
algebraic groups (see e.g. [14]).

In the view outlined above, the algebra A takes center stage, while its grading groups
are derived from it – via the group (scheme) of automorphisms in the case of abelian group
gradings. On the other hand, if one wants to work with a category of graded algebras, it
becomes necessary to fix the grading group G, which may also carry additional structure
(such as a bicharacter or a cocycle) to define certain operations on the category (such as
braiding). These two points of view lead to different kinds of classification of gradings:
fine gradings up to equivalence and G-gradings up to isomorphism (see below).

The two kinds of classification are not independent of each other. Any G-grading
on a finite-dimensional algebra is a coarsening of a fine grading. This means that any
component of the G-grading is a sum of certain components of the fine grading. Actually,
theG-grading is then determined by a homomorphism toG from the universal group (see
Section 2.1) of the fine grading. However, there is no canonical way to attach a specific
fine grading to a given G-grading. The purpose of this paper is to define a new class of
gradings, which we call almost fine gradings because they are not too far from being fine
(see Proposition 5.1 and Theorem 5.4). But, unlike fine gradings, they allow us to attach
to any G-grading a canonical almost fine grading. In this way, the classification of G-
gradings up to isomorphism reduces to the classification of almost fine gradings up to
equivalence and to the determination of the Weyl groups (see Section 2.2) of these almost
fine gradings and their actions on the universal groups (Theorem 4.3).

To explain our approach more precisely, we first need some definitions. Let G be a
group and let A be an algebra with any number of multilinear operations. A is said to be
a G-graded algebra if there is a fixed G-grading on A, i.e., a direct sum decomposition
of its underlying vector space, A D

L
g2G Ag , such that, for any operation ' defined on

A, we have '.Ag1 ; : : : ;Agn/ � Ag1���gn for all g1; : : : ; gn 2 G, where n is the number
of arguments taken by '. The subspaces Ag are called homogeneous components. For
any nonzero element a 2 Ag , we will say that a is homogeneous of degree g and write
dega D g. (The zero vector is also considered homogeneous, but its degree is undefined.)

For a fixed group G, the class of G-graded vector spaces is a category in which
morphisms are the linear maps that preserve degree. In particular, we can speak of isomor-
phism of G-graded algebras. Two G-gradings, � and � 0, on the same algebra A are said
to be isomorphic if there exists an isomorphism of G-graded algebras .A; �/! .A; � 0/

or, in other words, there exists an automorphism of the algebra A that maps each compo-
nent of � onto the component of � 0 of the same degree. If the automorphism maps each
component of � onto a component of � 0, but not necessarily of the same degree, then �
and � 0 are said to be equivalent; in this setting the group G need not be fixed. A grading
is said to be fine if it has no proper refinement (see Section 2.3).

As already mentioned, one may wish to classify all G-gradings on A up to isomor-
phism or fine gradings on A up to equivalence. Both problems received much attention in
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the last two decades, especially for simple algebras in many varieties: associative, associa-
tive with involution, Lie, Jordan, alternative, various triple systems, and so on (see, e.g.,
[14] and the references therein, also [2–4, 9, 15]). It should be noted that a solution to one
of these problems is often instrumental in solving the other, but not in a straightforward
way.

Any group homomorphism ˛WG ! H gives a functor from G-graded vector spaces
to H -graded ones: for V D

L
g2G Vg , we define the H -graded vector space ˛V to

be the same space V but equipped with the H -grading V D
L
h2H V 0

h
where V 0

h
WDL

g2˛�1.h/ Vg . (This functor is the identity map on morphisms.) If the G-grading on V
is denoted by � , the corresponding H -grading on V will be called induced by ˛ and
denoted ˛� . Note that the homogeneous elements of degree g with respect to � become
homogeneous of degree ˛.g/ with respect to ˛� .

If ¹�iºi2I is a set of representatives of the equivalence classes of fine gradings on a
finite-dimensional algebra A and Ui is the universal group of �i , then anyG-grading � on
A is isomorphic to the induced grading ˛�i for some i 2 I and a group homomorphism
˛WUi!G. However, both i and ˛ are usually far from unique, so we do not easily obtain a
classification ofG-gradings up to isomorphism. In this paper, we will show how to extend
the class of fine gradings and at the same time restrict the homomorphisms ˛ to obtain
uniqueness (up to the action of the Weyl group). This approach may be applied when the
fine gradings on a certain algebra are known and one wishes to classify G-gradings. For
example, this is the case for the exceptional simple Lie algebras of types E6, E7, E8 (see
[13, 14] and the references therein).

The paper is structured as follows. After reviewing preliminaries on gradings and
algebraic groups in Section 2, we introduce almost fine gradings on a finite-dimensional
algebra A in Section 3. The goal of Section 4 is to prove Theorem 4.3, which classifies
all G-gradings on A up to isomorphism if we know almost fine gradings on A up to
equivalence. In Section 5, we discuss how to obtain almost fine gradings if we know fine
gradings (Proposition 5.1 and Theorem 5.4). Finally, in Section 6, we apply these ideas to
the case of abelian group gradings on semisimple Lie algebras that have nontrivial identity
component: to any such grading � on L, we attach a (possibly nonreduced) root system
ˆ (Theorem 6.1) and, in the case of simple L, construct a ˆ-grading on L adapted to �
(Theorem 6.4).

Except in Section 2, we assume that the ground field F is algebraically closed. The
characteristic is arbitrary unless stated otherwise.

2. Preliminaries on gradings

In this section we will briefly review some general facts and terminology concerning grad-
ings on algebras, most of which go back to J. Patera and H. Zassenhaus [19]. We will also
introduce notation that is used throughout the paper. The reader is referred to Chapter 1
of the monograph [14] for more details, and to [18, 21] for the background on (linear)
algebraic groups and (affine) group schemes.
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2.1. Gradings and their universal groups

There is a more general concept of a grading on an algebra A, namely, a set of nonzero
subspaces of A, which we write as �D¹Asºs2S for convenience, such that AD

L
s2S As

and, for any n-ary operation ' defined on A and any s1; : : : ; sn 2 S , there exists s 2 S
such that '.As1 ; : : : ;Asn/ � As . Any G-grading on A becomes a grading in this sense if
we take S to be its support: S D ¹g 2 G j Ag ¤ 0º.

For a given grading � on an algebra A as above, there may or may not exist a real-
ization of � over a group G, by which we mean an injective map �W S ! G such that
assigning the nonzero elements of As degree �.s/ 2G, for all s 2 S , and taking the homo-
geneous components of degree in G X �.S/ to be zero defines a G-grading on A. If such
realizations exist, there is a universal one among them. Indeed, let U D U.�/ be the
group generated by the set S subject to all relations of the form s1 � � � sn D s whenever
0 ¤ '.As1 ; : : : ;Asn/ � As for an n-ary operation ' on A. It is easy to see that � admits
a realization over a group (not necessarily U ) if and only if the canonical map �0WS ! U

is injective. If this is the case, then we will say that � is a group grading. Then .U; �0/ is
universal among all realizations .G; �/ of � in the sense that there exists a unique group
homomorphism ˛WU ! G such that ˛�0 D �. We will call U the universal group of � .

Many gradings (for example, all group gradings on simple Lie algebras) can be real-
ized over an abelian group. We will call them abelian group gradings. Let Uab D Uab.�/

be the abelianization of U.�/, i.e., the abelian group generated by S subject to the rela-
tions above. Then � has a realization over some abelian group if and only if the canonical
map �0W S ! Uab is injective, and in this case .Uab; �0/ is the universal one among such
realizations. We will call Uab the universal abelian group of � .

2.2. Equivalence and automorphisms of gradings

An equivalence of graded algebras from A D
L
s2S As to B D

L
t2T Bt is an alge-

bra isomorphism  WA! B such that, for any s 2 S , we have  .As/ D Bt for some
t 2 T . Since we assume that all As are nonzero,  defines a bijection  WS ! T such that
 .As/ D B.s/ for all s 2 S . If these are group gradings and we realize them over their
universal groups, U and U 0, then any equivalence  WA! B leads to an isomorphism:
the bijection of the supports  WS ! T determined by  extends to a unique isomorphism
of the universal groups, which we also denote by  , so that  W A!B is an isomorphism
of U 0-graded algebras.

Two gradings, � and � 0, on the same algebra A are said to be equivalent if there
exists an equivalence .A; �/! .A; � 0/ or, in other words, there exists an automorphism
of the algebra A that maps the set of nonzero components of � to that of � 0. In particular,
we can consider the group Aut.�/ of all equivalences from the graded algebra .A; �/ to
itself. Applying the above property of universal groups, we see that the permutation of
the support of � defined by any element of Aut.�/ extends to a unique automorphism of
the universal group U D U.�/. This gives us a group homomorphism Aut.�/! Aut.U /,
whose kernel is denoted Stab.�/ and consists of all degree-preserving automorphisms,
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i.e., isomorphisms from the graded algebra .A; �/ to itself. The image of this homomor-
phism Aut.�/! Aut.U / is known as the Weyl group of the grading �:

W.�/ WD Aut.�/=Stab.�/ ,! Aut
�
U.�/

�
:

If we deal with abelian group gradings, the universal abelian groups can be used, and we
can regard W.�/ as a subgroup of Aut.Uab.�//.

2.3. Fine gradings

A grading � W A D
L
s2S As is said to be a refinement of a grading � 0 W A D

L
t2T A0t

(or � 0 a coarsening of �) if, for any s 2 S , there exists t 2 T such that As � A0t . If the
inclusion is proper for at least one s 2 S , the refinement (or coarsening) is called proper.

For example, if � is a grading by a group G (so S � G) and ˛WG ! H is a group
homomorphism, then ˛� is a coarsening of � , which is proper if and only if ˛jS is not
injective. If G is the universal group of � , then any coarsening � 0 that is a grading by a
group H necessarily has the form ˛� for a unique group homomorphism ˛WG ! H .

A group grading (respectively, abelian group grading) is said to be fine if it does not
have a proper refinement that is itself a group (respectively, abelian group) grading. Note
that the concept of fine grading is relative to the class that we consider. For example,
there is a Zn-grading defined on the matrix algebra Mn.F/ by declaring the degree of
the matrix unit Eij to be "i � "j , where ¹"1; : : : ; "nº is the standard basis of Zn. This
grading is fine in the class of group gradings, but has a refinement whose components
are the one-dimensional subspaces spanned by Eij . This latter cannot be realized over
a group, although it can be realized over a semigroup, for instance, over the semigroup
¹0; "ij j 1 � i; j � nº with 0"ij D "ij 0D 02 D 0 and "ij "kl D ıjk"il , by assigning degree
"ij to the matrix unit Eij . (Note that the group completion of this semigroup is trivial.)

2.4. Gradings and actions

Given aG-grading � WAD
L
g2G Ag , any group homomorphism �WG! F�, where F�

denotes the multiplicative group of F , acts as an automorphism of A as follows: � � a D
�.g/a for all a 2Ag and g 2 G, which is then extended to the whole A by linearity. Note
that this is actually an automorphism of A as a graded algebra, as it leaves each component
Ag invariant – in fact, acts on it as the scalar operator �.g/ idAg

. Thus � defines a group
homomorphism �� from the group of (multiplicative) characters yG WD Hom.G; F�/ to
the automorphism group Aut.A/, which is particularly useful if G is abelian and F is
algebraically closed and of characteristic 0, because then yG separates points of G and,
therefore, the grading � can be recovered as a simultaneous eigenspace decomposition
with respect to these automorphisms:

Ag D
®
a 2 A j � � a D �.g/a for all � 2 yG

¯
: (2.1)

For example, the above Zn-grading onMn.F/ corresponds to the homomorphism from the
(algebraic) torus .F�/n to Aut.Mn.F// that sends .�1; : : : ; �n/ to the inner automorphism
Int diag.�1; : : : ; �n/.
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If A is finite-dimensional and F is algebraically closed, then Aut.A/ is an algebraic
group (see, e.g., [18, Exer. 7.3] or [21, §7.6]). If G is a finitely generated abelian group,
then yG is a diagonalizable algebraic group [18, §16], isomorphic to the direct prod-
uct of a torus and a finite abelian group whose order is not divisible by char F ; such
groups are often called quasitori (especially in characteristic 0). For any G-grading on
A, �� is a homomorphism of algebraic groups. Conversely, the image of any homomor-
phism of algebraic groups �W yG!Aut.A/ consists of commuting diagonalizable operators
and, therefore, defines a simultaneous eigenspace decomposition of A indexed by the
homomorphisms of algebraic groups yG ! F�, which are canonically identified with the
elements of G if char F D 0 or char F D p and G has no p-torsion. Thus the subspaces
Ag defined by (2.1), with respect to the yG-action � � a D �.�/a, form a G-grading � on
the algebra A, and � D �� .

If F is not necessarily algebraically closed or char F ¤ 0, one can recover the above
one-to-one correspondence by using group schemes over F , namely, the automorphism
group scheme Aut.A/, defined by Aut.A/.R/ WD AutR.A˝F R/ for any commutative
associative unital F -algebra R, and the Cartier dualGD of an abelian groupG, defined by
GD.R/ WD Hom.G;R�/. Then a G-grading � on A corresponds to the homomorphism
of group schemes �� WGD ! Aut.A/ defined by

.��/R.�/Wa˝ r 7! a˝ �.g/r for all � 2 Hom.G;R�/; a 2Ag ; g 2 G; r 2R: (2.2)

The homomorphism �� W yG ! Aut.A/ in the previous paragraph is obtained by applying
this one to F -points, i.e., taking R D F .

The image of the homomorphism �� WG
D ! Aut.A/ is contained in the following

diagonalizable subgroupscheme Diag.�/ of Aut.A/, which can be defined for any grading
A D

L
s2S As:

Diag.�/.R/ WD
®
 2 AutR.A˝R/ j  jAs˝R 2 R� idAs˝R for all s 2 S

¯
: (2.3)

If � is an abelian group grading and we take G D Uab.�/ in (2.2), then it follows from
the defining relations of Uab.�/ that �� WUab.�/

D ! Diag.�/ is an isomorphism. In par-
ticular, the group of F -points Diag.�/ is isomorphic to the group of characters of Uab.�/.
Moreover, the automorphism group scheme Stab.�/ WD Aut.A; �/ coincides with the
centralizer of Diag.�/ in Aut.A/.

Since we are going to assume that F is algebraically closed, the group schemes that are
algebraic and smooth can be identified with algebraic groups, by assigning to such a group
scheme its group of F -points. For a finite-dimensional algebra A, Aut.A/ is algebraic
and, for an abelian group G, GD is algebraic if and only if G is finitely generated. The
smoothness condition is automatic if char F D 0, but not so if char F D p. In particular,
GD is smooth if and only if G has no p-torsion, and Aut.A/ is smooth if and only if
the tangent Lie algebra of the algebraic group Aut.A/ coincides with Der.A/, which is
the tangent Lie algebra of the group scheme Aut.A/ (in general, the former is contained
in the latter). In any case, GD is a diagonalizable group scheme, and the centralizers
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of diagonalizable subgroupschemes in smooth group schemes are known to be smooth
([10, Exp. XI, Cor. 2.4], cf. [18, §18.4]). Hence, if � is an abelian group grading on A and
Aut.A/ is smooth, then so is Stab.�/.

Proposition 2.1. Let A be a finite-dimensional algebra over an algebraically closed field
F such that Aut.A/ is smooth. If char F D p, then Uab.�/ has no p-torsion for any fine
abelian group grading � on A.

Proof. This is equivalent to the statement that any maximal diagonalizable subgroup-
scheme Q of Aut.A/ is smooth. We have Q ' GD for some finitely generated abelian
group G. We can write G as the direct product of a finite p-group, a finite group of
order coprime to p, and a free abelian group. Consider the corresponding decomposition
Q D Q0 �Q1 � T. Let C be the centralizer of Q in Aut.A/. Then Q � C, C is smooth,
and T is a maximal torus in C. Indeed, if T� T0 �C for some torus T0, then Q�QT0 and
QT0 is diagonalizable (as a homomorphic image of Q � T0), so we get T0 � Q by max-
imality of Q, but then T D T0 since T is a maximal torus in Q. Consider the connected
component Cı (see e.g. [21, §6.7]). It is smooth and contains T as its maximal torus. Since
T is central in Cı, Cı must be nilpotent (for example, apply [18, §21.4] to the groups of
F -points) and, therefore, Cı D T � U where U is unipotent (see e.g. [21, §10.4]). Now,
Q0 is connected, so it is contained in Cı. But its projection to U must be trivial, since
U does not have nontrivial diagonalizable subgroupschemes. Therefore, Q0 � T, which
forces Q0 D 1.

Corollary 2.2. Any fine abelian group grading on A is obtained as the eigenspace decom-
position with respect to a unique maximal diagonalizable subgroup of Aut.A/, namely,
Diag.�/.

Thus, if Aut.A/ is smooth, then we have a one-to-one correspondence between the
equivalence classes of fine abelian group gradings on A and the conjugacy classes of
maximal diagonalizable subgroups of Aut.A/.

3. Definition and construction of almost fine gradings

Let A be a finite-dimensional algebra over an algebraically closed field F . Let � W A DL
s2S As be a grading on A with nonzero homogeneous components As , universal group

U and universal abelian group Uab (see Section 2.1).

3.1. Toral rank

It is well known that, over an algebraically closed field, all maximal tori in an algebraic
group are conjugate (see, e.g., [18, §21.3]). In particular, they have the same dimension,
which is known as the (reductive) rank of the algebraic group. Let r be the rank of the
automorphism group Aut.A/.
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Definition 3.1. The rank of the algebraic group Stab.�/ of the automorphisms of the
graded algebra .A; �/ will be called the toral rank of � and denoted tor:rank.�/.

Since Stab.�/ � Aut.A/, we have 0 � tor:rank.�/ � r . A maximal torus of Aut.A/
gives a Zr -grading on A, called its Cartan grading (for example, the root space decompo-
sition of a semisimple complex Lie algebra), whose toral rank is equal to r , since Stab.�/
contains this maximal torus (see Section 2.4).

If � 0 is a coarsening of � (see Section 2.3), then Stab.�/� Stab.� 0/, so tor:rank.�/�
tor:rank.� 0/. In particular, any coarsening of the Cartan grading has toral rank r . Those
among the coarsenings that are themselves abelian group gradings are known as toral
gradings.

3.2. Almost fine gradings

For any grading � , Stab.�/ contains the quasitorus

Diag.�/ WD
®
 2 Aut.A/ j  jAs

2 F� idAs
for all s 2 S

¯
in its center. This quasitorus is isomorphic to the group of characters of the finitely gener-
ated abelian group Uab D Uab.�/, so its dimension is equal to the (free) rank of Uab, i.e.,
the rank of the free abelian group Uab=t.Uab/, where t .Uab/ denotes the torsion subgroup
of Uab. Indeed, for any finitely generated abelian group A, the closed subgroup of yA con-
sisting of all characters of A that kill t .A/ can be identified with the group of characters of
A=t.A/, so it is a torus of dimension rank.A/. The quotient of yA by this subgroup can be
identified with the group of characters of t .A/, so it is a finite abelian group (whose order
is not divisible by char F ). Therefore, the connected component of the identity Diag.�/ı

is isomorphic to the group of characters of Uab=t.Uab/, a torus of dimension rank.Uab/. In
particular,

rank
�
Uab.�/

�
� tor:rank.�/:

Definition 3.2. A grading � on A is almost fine if rank.Uab.�//D tor:rank.�/ or, in other
words, Diag.�/ı is a maximal torus in Stab.�/.

For example, if � has toral rank 0, then � is almost fine and Uab.�/ is finite. Unlike
fine gradings, almost fine gradings can have proper refinements, but at least the toral rank
cannot drop:

Proposition 3.3. If � is almost fine, then any refinement of � is almost fine and has the
same toral rank.

Proof. If � 0 is a refinement of � , then we have

Diag.�/ � Diag.� 0/ � Stab.� 0/ � Stab.�/:

By hypothesis, Diag.�/ı is a maximal torus in Stab.�/ and, hence, in Stab.� 0/. But
Diag.� 0/ı is a torus and contains Diag.�/ı, so Diag.� 0/ı D Diag.�/ı by maximality.
The result follows.
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In the next subsection, we will see that any grading � admits an almost fine refinement
and, moreover, if � is a group (respectively, abelian group) grading, then so is this refine-
ment. Therefore, any fine grading (in the class of all gradings, group gradings, or abelian
group gradings) is almost fine.

Lemma 3.4. If � is almost fine, then Stab.�/ı is the direct product of the torus Diag.�/ı

and a connected unipotent group (the unipotent radical).

Proof. Since Diag.�/ı is central in Stab.�/ı and is a maximal torus by hypothesis, the
connected algebraic group Stab.�/ı is nilpotent (see e.g. [18, §21.4]) and, hence, the
direct product of its (unique) maximal torus and unipotent radical (see e.g. [18, §19.2]).

In characteristic 0, almost fine gradings can be characterized in terms of derivations
of A. Let D D Der.A/, which is the Lie algebra of the algebraic group Aut.A/, and let

De D
®
ı 2 Der.A/ j ı.As/ � As for all s 2 S

¯
; (3.1)

which is the Lie algebra of Stab.�/. Note that, if � can be realized as a G-grading for a
group G, then the associative algebra End.A/ has an induced G-grading with the follow-
ing components:

End.A/g WD
®
f 2 End.A/ j f .Ah/ � Agh for all h 2 G

¯
;

and De D D \ End.A/e , where e denotes the identity element of G. Moreover, if G is
abelian, then D has an induced G-grading: D D

L
g2G Dg where Dg DD \ End.A/g .

Proposition 3.5. Assume char F D 0. A grading � W A D
L
s2S As is almost fine if and

only if, for any element ı 2 De , each of the restrictions ıjAs
, s 2 S , has a unique eigen-

value.

Proof. If � is almost fine, then the decomposition Stab.�/ı D Diag.�/ı �Ru of Lemma
3.4 gives De D M ˚ N where any element of M acts as a scalar on each As and any
element of N is nilpotent. It follows that any element of De has a unique eigenvalue on
each As . Conversely, suppose Diag.�/ı � T � Stab.�/ where T is a torus. Then every
element of the Lie algebra of T is semisimple, so it must act as a scalar on each As by
hypothesis. This implies T D Diag.�/ı, proving the maximality of Diag.�/ı.

There is a simpler characterization in the case of abelian group gradings if we assume
that Aut.A/ is a reductive algebraic group, by which we mean that its unipotent radical
is trivial, but do not assume connectedness (contrary to the convention in [18]). It turns
out that this characterization holds in prime characteristic as well if we assume that the
group scheme Aut.A/ is reductive, by which we mean that it is smooth and its group of
F -points, Aut.A/, is reductive. The following result is probably known, but we could not
find a reference.

Lemma 3.6. Let G be a reductive algebraic group over an algebraically closed field.
Then the centralizer CentG.Q/ of any diagonalizable subgroup Q � G is reductive.
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Proof. Without loss of generality, we assume that Q is Zariski closed, so it is the prod-
uct of a torus and a finite abelian group whose order is not divisible by char F . Since
CentGı.Q/ has finite index in CentG.Q/, it suffices to prove that CentGı.Q/ is reductive.
Let H and Z be, respectively, the derived group ŒGı; Gı� and the connected component
of the center Z.Gı/ı. Then Z is a torus and the radical of Gı, H \ Z is finite (see e.g.
[18, §19.5]), H is connected semisimple, and Gı D HZ (see e.g. [18, §27.5]). We claim
that it suffices to prove that CentH .Q/ is reductive. Indeed, let CH D CentH .Q/ and
CZ D CentZ.Q/. Then

CHCZ � CentGı.Q/ � QCH QCZ ;

where
QCH WD

®
h 2 H j Œh; q� 2 H \Z 8q 2 Q

¯
and similarly for QCZ . SinceH \Z is finite, we have QC ıH � CH and QC ıZ � CZ , so CHCZ
has finite index in QCH QCZ , and the claim follows.

Replacing G by H and Q by its image in the automorphism group of H (see e.g.
[18, §27.4]), we arrive at the following setting: G is a connected semisimple algebraic
group, Q is a closed diagonalizable subgroup of Aut.G/, and we have to prove that the
group of fixed pointsGQ is reductive. Now,Q defines a grading on the Lie algebra g ofG,
and the Lie algebra g0 ofGQ is the identity component of this grading. If char F D 0, then
a standard argument shows that the restriction of the Killing form of g to g0 is nondegen-
erate and, hence,GQ is reductive (see e.g. [16, Prop. 6.2 of Chap. 1, Prop. 3.6 of Chap. 3],
cf. [14, Lem. 6.9]). Unfortunately, this approach does not work if char F D p, so we will
make some further reductions.

First, we may suppose that Q is finite (of order not divisible by char F ), because Qı

is a torus and the centralizers of tori in reductive algebraic groups are reductive (see e.g.
[18, §26.2]). By induction on jQj, we may further suppose that Q is cyclic: Q D hsi.

Second, we may assume that G is simply connected, because aQ-equivariant isogeny
f WG!H restricts to an isogeny f �1.HQ/!HQ andGQ is a subgroup of finite index
in f �1.HQ/, by the same argument as in the first paragraph.

Now the result follows from [20, Thm. 8.1].

Corollary 3.7. Assume that Aut.A/ is reductive and let � be a fine abelian group grading
on A. If char F D 0, then Stab.�/ D Diag.�/. If char F D p, then the index ŒStab.�/ W
Diag.�/� is a power of p.

Proof. Let Q D Diag.�/. Then, by Corollary 2.2, � is the eigenspace decomposition of
A with respect to Q, so Stab.�/ is the centralizer of Q in Aut.A/, which is reductive by
Lemma 3.6. By Lemma 3.4, we then get Stab.�/ı DQı. Hence, for any s 2 Stab.�/, we
have sn 2 Q for some n > 0. If char F D 0, it follows that s is semisimple and, therefore,
hQ;si is diagonalizable, which forces s 2Q by maximality ofQ. If char F D p, choose n
minimal possible and write n D mpk where p − m. Applying the above argument to sp

k
,

we see that sp
k
2 Q.
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Proposition 3.8. Assume that Aut.A/ is reductive. Then, for an abelian group grading �
on A, the following conditions are equivalent:

(i) � is almost fine;
(ii) Diag.�/ı D Stab.�/ı;
(iii) rank.Uab.�// D dim De where De � Der.A/ is defined by (3.1).

If these conditions hold, dim De D tor:rank.�/ and the elements of De act as scalars on
each component of � .

Proof. We will see later (Corollary 5.2) that if � is almost fine, then Uab.�/ has no p-
torsion in the case char F D p. Then the argument in the proof of Corollary 3.7 shows that
(i))(ii). The converse is trivial.

We always have rank.Uab.�// D dim Diag.�/ and dim Stab.�/ � dim De , since De

is the Lie algebra of Stab.�/. But being reductive, Aut.A/ is in particular smooth, so
Stab.�/, as the centralizer of a diagonalizable group scheme, is smooth, too, and this
means dim Stab.�/ D dim De . It is now clear that (ii),(iii).

In particular, if char F D 0 and � is an abelian group grading on a semisimple Lie
algebra L, then adWL ! D D Der.L/ is an isomorphism of graded algebras (for any
realization of � over an abelian group), so Le ' De . Thus, � is almost fine if and only if
the quasitorus Q D Diag.�/ satisfies dimQ D dim Le , which is condition (*) of Jun Yu
[22, 23], who studied such quasitori in the automorphism groups of simple complex Lie
algebras. At the extreme values of toral rank for these almost fine gradings, we have the
Cartan grading for which Le is a Cartan subalgebra of L and special gradings of Wim
Hesselink [17] for which Le D 0.

We note that, in general, if a grading � on A satisfies De D 0 then � is almost fine of
toral rank 0.

Example 3.9. Let H be the split quaternion algebra over F , char F ¤ 2, with basis
¹O1; O{; O|; Okº and multiplication defined by O{2 D O|2 D 1 and O{ O| D � O| O{ D Ok. We have a
grading on H by the Klein group Z22: deg O1 D .N0; N0/, deg O{ D .N1; N0/, deg O| D .N0; N1/,
and deg Ok D .N1; N1/, so we can define a Z32-grading on M2.H/ ' M2.F/˝H by setting
deg.Eij ˝ d/ D .Ni � Nj ; deg d/ 2 Z2 � Z22 for any nonzero homogeneous d 2 H.

Denote by bar the standard involution of H, which maps O1 7! O1, O{ 7! �O{, O| 7! � O| ,
Ok 7! � Ok. The corresponding involution � on M2.H/, Eij ˝ d 7! Ej i ˝ Nd , preserves
degrees, so the Lie algebra of skew elements

L D
®
X 2M2.H/ j X

�
D �X

¯
becomes Z32-graded. This is a simple Lie algebra of type B2, which is isomorphic to the
algebra of derivations of either itself or the associative algebra with involution M2.H/.
Since Le D 0, we have almost fine gradings of toral rank 0 on L and M2.H/. However,
these gradings are not fine, because they can be refined to Z42-gradings. Indeed, transport-
ing the Z22-grading via the isomorphism H!M2.F/ defined by

O{ 7!
�
1 0
0 �1

�
; O| 7!

�
0 1
1 0

�
;
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we obtain a Z22-grading on M2.F/, which is a refinement of the original Z2-grading
degEij D Ni � Nj . Consequently, we obtain a Z22 �Z22-grading onM2.H/ 'M2.F/˝H,
which is a refinement of the original Z2 �Z22-grading and is still preserved by the involu-
tion � (cf. [14, Thm. 3.30 and Rem. 6.60]).

3.3. Canonical almost fine refinement

Given a grading � on A, pick a maximal torus T in Stab.�/. Then the eigenspace decom-
position of each homogeneous component As with respect to the action of T yields a
refinement of �:

A D
M

.s;�/2S�X.T /

A.s;�/ with A.s;�/ WD
®
a 2 As j �.a/ D �.�/a 8� 2 T

¯
; (3.2)

where X.T / denotes the group of characters of T , i.e., the algebraic group homomor-
phisms from T to the multiplicative group F�. We will denote this refinement by ��T .
Clearly, if � is a G-grading for some group G, then ��T is a G � X.T /-grading.

Lemma 3.10. If T and T 0 are maximal tori of Stab.�/, then the gradings ��T and ��T 0 are
equivalent.

Proof. Since F is assumed to be algebraically closed, there exists ' 2 Stab.�/ such that
'T '�1 D T 0 or, in other words, T 0 D .Int '/.T /, where Int ' is the inner automorphism
determined by '. Thus we get an isomorphism O'WX.T 0/! X.T / sending �0 7! �0 ı Int',
and it follows from the definition that '

�
A.s;�/

�
DA0

.s; O'�1.�//
for all s 2 S , � 2X.T /.

Lemma 3.11. Diag.��T /
ı D T is a maximal torus in Stab.��T /. In particular, ��T is an

almost fine grading and tor:rank.��T / D tor:rank.�/.

Proof. By definition, every element � 2 T acts as the scalar �.�/ on A.s;�/, so we have
T � Diag.��T /

ı � Stab.��T /. Since ��T is a refinement of � , we also have Stab.��T / �
Stab.�/. By the maximality of the torus T in Stab.�/, we conclude that T D Diag.��T /

ı

is a maximal torus in Stab.��T /.

Corollary 3.12. For any grading � , tor:rank.�/ is the maximum of dim Diag.� 0/’s over
all refinements � 0 of � . If � is a group (respectively, abelian group) grading, then this
maximum is attained among group (respectively, abelian group) gradings.

Proof. If � 0 is a refinement of � , then Diag.� 0/ � Stab.� 0/ � Stab.�/. Since Diag.� 0/ı

is a torus, we get dim Diag.� 0/� tor:rank.�/. The result now follows by Lemma 3.11.

The last two lemmas justify the following terminology:

Definition 3.13. For any maximal torus T � Stab.�/, the refinement ��T will be called
the canonical almost fine refinement of � .

The following is an abstract characterization of ��T among refinements of � .
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Proposition 3.14. The following are equivalent for a refinement � 0 of �:

(i) � 0 is almost fine and tor:rank.� 0/ D tor:rank.�/;

(ii) � 0 is a refinement of ��T for some T .

Proof. If � 0 is a refinement of ��T , then � 0 satisfies (i) by Lemma 3.11 and Proposi-
tion 3.3. Conversely, if � 0 satisfies (i), then T WDDiag.� 0/ı is a maximal torus in Stab.� 0/
and, hence, in Stab.�/, since Stab.�/ and its subgroup Stab.� 0/ have the same rank by
hypothesis. But the elements of T act as scalars on each component of � 0, so � 0 must be
a refinement of ��T .

4. Classification of group gradings up to isomorphism

We will now show how a classification of almost fine group gradings on A up to equiv-
alence can be used to obtain, for any group G, a classification of G-gradings on A up to
isomorphism.

Let � be a G-grading on A. As discussed in the introduction, � can be obtained from
a fine group grading� by a homomorphism ˛WU.�/! G, but neither� nor ˛ is unique.
To remedy the situation, we restrict the class of homomorphisms ˛ that we are going to
use, and this forces us to extend the class of gradings from which we will take � by
allowing � to be almost fine.

Definition 4.1. Let � be an almost fine group grading on A, U D U.�/, Uab D Uab.�/,
and let ��WU ! Uab=t.Uab/ be the composition of the natural homomorphisms U !
Uab ! Uab=t.Uab/. A group homomorphism ˛WU ! G is said to be admissible if the
restriction of the homomorphism .˛; ��/WU ! G � Uab=t.Uab/ to the support of � is
injective.

In the abelian case, i.e., ifG is an abelian group and� is an abelian group grading, the
restriction of the natural homomorphism �abWU ! Uab to the support of� is injective and
any homomorphism ˛WU ! G is the composition of �ab and a (unique) homomorphism
˛0WUab ! G. Hence, the condition in Definition 4.1 reduces to the following: the restric-
tion of .˛0; � 0�/ to the support of � is injective, where � 0� is the natural homomorphism
Uab ! Uab=t.Uab/. We will say that ˛0 is admissible if this is satisfied.

Lemma 4.2. Let � be an almost fine group grading (respectively, abelian group grad-
ing) on A and let G be a group (respectively, abelian group). Denote T D Diag.�/ı.
Let � D ˛� be the G-grading induced by a homomorphism ˛WU.�/! G (respectively,
˛WUab.�/! G). Then the following are equivalent:

(i) ˛ is admissible;

(ii) T is a maximal torus in Stab.�/ and the set of nonzero homogeneous compo-
nents of ��T coincides with that of � (in particular, these gradings are equiva-
lent).
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Proof. Recall from Section 3.2 that the torus T D Diag.�/ı is isomorphic to the group
of characters of Uab=t.Uab/ where Uab D Uab.�/. Hence, we obtain an evaluation homo-
morphism "WU D U.�/! X.T /, which is the composition of �� and the isomorphism
Uab=t.Uab/! X.T /. Explicitly, for any s in the support of �, ".s/ is the character of T
that maps each � 2 T to the scalar by which � acts on the component As of �. It fol-
lows that the induced G � X.T /-grading .˛;"/� coincides with the G � X.T /-grading � 0

obtained from � by decomposing each of its components into eigenspaces with respect to
the action of T � Stab.�/.

Now, if (ii) holds, then � 0 D ��T by definition and, hence, the coarsening .˛;"/� of �
is not proper, so the restriction of .˛; "/ to the support of � is injective. Since " is the
composition of �� and an isomorphism, we get (i).

Conversely, assume (i). Then the restriction of .˛; "/ to the support of� is injective, so
� 0 D .˛;"/� has the same nonzero homogeneous components as� and, hence, Stab.� 0/D
Stab.�/. But Stab.� 0/ D CentStab.�/.T /, so T is a maximal torus in CentStab.�/.T /, since
� is almost fine. It follows that T is a maximal torus in Stab.�/. Since � 0 D ��T , we see
that (ii) holds.

Theorem 4.3. Let ¹�iºi2I be a set of representatives of the equivalence classes of al-
most fine group (respectively, abelian group) gradings on A. For any group (respectively,
abelian group) G and a G-grading � on A, there exists a unique i 2 I such that � is
isomorphic to the induced grading ˛�i for some admissible homomorphism ˛WU.�i /!G

(respectively, ˛WUab.�i /! G). Moreover, two such homomorphisms, ˛ and ˛0, induce
isomorphic G-gradings if and only if there exists w 2 W.�i / such that ˛ D ˛0 ı w.

Proof. Consider the canonical almost fine refinement �� D ��T , for some maximal torus
T � Stab.�/. Since �� is equivalent to some �i , there exists an automorphism ' of A

that moves the set of nonzero homogeneous components of �� onto that of �i . Hence,
'.�/ is a coarsening of �i , so there exists a homomorphism ˛W U.�i / ! G such that
'.�/ D ˛�i . Since T D Diag.��/ı by Lemma 3.11, we have 'T '�1 D Diag.�i /ı and
can apply Lemma 4.2, with � D �i , to conclude that ˛ is admissible.

Now, suppose that ˛WU.�i /!G and ˛0WU.�j /!G are admissible homomorphisms
such that the induced G-gradings ˛�i and ˛0�j are isomorphic, i.e., there exists ' 2
Aut.A/ such that '.˛�i / D ˛0�j . In particular, we have ' Stab.˛�i /'�1 D Stab.˛

0

�j /.
Let T D Diag.�i /ı and T 0 D '�1 Diag.�j /ı'. Applying Lemma 4.2 to � D �i and to
� D �j , we see that T and T 0 are maximal tori of Stab.˛�i /, �i is equivalent to .˛�i /�T ,
and �j is equivalent to .˛�i /�T 0 . But .˛�i /�T and .˛�i /�T 0 are equivalent by Lemma 3.10,
so �i and �j are equivalent, which forces i D j .

Finally, since T and T 0 D '�1T ' are maximal tori of Stab.˛�i /, there exists  2
Stab.˛�i / such that T 0 D  T �1. Replacing ' by the composition ' , we get T D
'�1T ' and still '.˛�i / D ˛0�i . But then ' moves the set of nonzero homogeneous com-
ponents of .˛�i /�T onto that of .˛

0

�i /
�
T . Since, by Lemma 4.2, these sets are both equal to

the set of nonzero homogeneous components of �i , we see that ' 2 Aut.�i / and, hence,
' determines an element w 2 W.�i / by '.As/ D Aw.s/ for all s in the support S of �i .
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Now, the homogeneous component of degree g 2 G in the grading ˛�i is, by definition,
the direct sum

L
s2˛�1.g/ As , whereas in ˛0�i it is

L
s02˛0�1.g/ As0 . Since ' moves the

former to the latter, we conclude that, for any s 2 S , '.As/ �
L
s02˛0�1.˛.s// As0 and,

hence, w.s/ 2 ˛0�1.˛.s//. This implies ˛0.w.s// D ˛.s/ for all s 2 S , so ˛ D ˛0 ıw.

Remark 4.4. Theorem 4.3 reduces the problem of classification of G-gradings up to iso-
morphism to the problems of classifying almost fine gradings up to equivalence and of
describing their Weyl groups, as subgroups of automorphisms of their universal groups.
Weyl groups are important invariants reflecting the symmetries of gradings, so their com-
putation is of independent interest and usually far from trivial (see [14] and references
therein).

5. From fine to almost fine gradings

As we have seen in the previous section, the knowledge of almost fine group gradings on
A up to equivalence, together with their universal and Weyl groups, yields a classification
of all G-gradings on A up to isomorphism, for any group G. We will now discuss, in the
abelian case, how to determine almost fine gradings if fine gradings are known, which can
then be used to classify all G-gradings for abelian G.

Recall from Section 2 that, if Aut.A/ is smooth (as is always the case in character-
istic 0), then fine abelian group gradings on A are classified by the conjugacy classes
of maximal diagonalizable subgroups of Aut.A/, which can be studied using the tools
of the theory of algebraic groups or, in characteristic 0, of compact Lie groups, since in
that case the problem reduces to the field of complex numbers (see [13]). For example,
fine gradings on exceptional simple Lie algebras and superalgebras over an algebraically
closed field of characteristic 0 were classified in this way (see [11, 14, 23] and the refer-
ences therein). Also note that, for a simple Lie (super)algebra, the universal group of any
grading is abelian (see, e.g., [14, Prop. 1.12]).

Proposition 5.1. Let � be a fine group (respectively, abelian group) grading on A and
let � be a coarsening of �. Then � is almost fine if and only if the kernel of the quotient
map Uab.�/! Uab.�/ is finite and tor:rank.�/ D tor:rank.�/.

Proof. Denote U D Uab.�/ and let E � U be the above kernel. Since the canonical
almost fine refinement of � cannot be proper, � is almost fine, so we have rank.U / D
tor:rank.�/. Now, tensoring the short exact sequence of abelian groups 0! E ! U !

U=E! 0 by Q over Z yields rank.U=E/D rank.U /� rank.E/. Since � is a coarsening
of �, we also have tor:rank.�/ � tor:rank.�/. Therefore, rank.U=E/ D tor:rank.�/ if
and only if rank.E/ D 0 and tor:rank.�/ D tor:rank.�/.

Now let � be an almost fine abelian group grading. Then � is a coarsening of some fine
abelian group grading�, hence � is defined by the quotient mapUab.�/!Uab.�/, whose
kernel must be finite by Proposition 5.1. It follows that Proposition 2.1 and Corollary 2.2
extend to almost fine gradings.
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Corollary 5.2. Assume Aut.A/ is smooth. If � is an almost fine abelian group grading on
A, then Uab.�/ has no p-torsion in the case char F D p and, hence, � is the eigenspace
decomposition with respect to Diag.�/ in any characteristic.

Corollary 5.3. Any fine abelian group grading admits only finitely many almost fine
coarsenings that are themselves abelian group gradings.

Enumerating almost fine coarsenings is helped by the fact that the subgroups ofUab.�/

that lie in the same W.�/-orbit correspond to equivalent coarsenings.

Theorem 5.4. Assume Aut.A/ is reductive. Let � be a fine abelian group grading on
A, U D Uab.�/, and † be the support of the induced U -grading on the Lie algebra
D D Der.A/. Let � be an abelian group grading that is a coarsening of � and let E be
the kernel of the quotient map U ! Uab.�/. Then � is almost fine if and only if E � t .U /
and E \† � ¹eº.

Proof. Under the additional assumption, we have rank.U / D dim De by Proposition 3.8.
With respect to the U=E-grading on D induced by � , the identity component is DE WDL
g2E Dg . Hence, � is almost fine if and only if rank.U=E/ D dim DE (again by

Proposition 3.8). Then we proceed as in the proof of Proposition 5.1, but the condition
tor:rank.�/ D tor:rank.�/ is replaced with dim DE D dim De , which is equivalent to
E \† � ¹eº.

Example 5.5. If char F ¤ 2, the Lie algebra L D sl4.F/ is simple of type A3 and has a
fine Z42-grading� obtained by refining, by means of the outer automorphism X 7! �XT ,
the Z32-grading induced from the Cartan grading by the “mod 2” map Z3 ! Z32 (see e.g.
[14, Ex. 3.60]). Explicitly, � is the restriction to sl4.F/ of the Z2 � .Z42/0-grading on
gl4.F/ defined by setting

deg.Eij �Ej i / D .N0; "i � "j / and deg.Eij CEj i / D .N1; "i � "j /

where ¹"1; "2; "3; "4º is the standard basis of Z42 and .Z42/0'Z32 is the span of "i � "j . We
have L ' Der.L/, Le D 0 and, moreover, Lg D 0 for g 2 Z2 � ¹.N1; N1; N1; N1/º. It follows
that, for each of the two possible values of g, the Z32-grading on L induced by the natural
homomorphism Z42 ! Z42=hgi is almost fine. In fact, these two almost fine gradings are
equivalent, because the two values of g are in the same W.�/-orbit (see [14, Ex. 3.63]).

6. Root systems associated to non-special gradings on semisimple Lie
algebras

In this section L will be a semisimple finite-dimensional Lie algebra over an algebraically
closed field F of characteristic 0. The aim is to show that a (possibly nonreduced) root
system of rank r can be attached canonically to any abelian group grading � on L of toral
rank r ¤ 0, i.e., to any non-special � . We will take advantage of the results in [12] that
deal with the case when � is fine. For the definition of possibly nonreduced root systems,
see e.g. [7, Chap. VI, §1].
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Let G be an abelian group and let � W L D
L
g2G Lg be a G-grading on L with

tor:rank.�/ � 1. Let T be a maximal torus in Stab.�/. It induces a weight space decom-
position:

L D
M

�2X.T /

L.�/ (6.1)

where L.�/ D ¹x 2 L j �.x/ D �.�/x 8� 2 T º.
Let ��T be the associated almost fine grading, as in (3.2):

��T W L D
M

.g;�/2G�X.T /

Lg \L.�/: (6.2)

Let H be the Lie algebra of T inside L ' Der.L/, so H is a Cartan subalgebra of the
reductive Lie subalgebra Le . The adjoint action of H on any weight space L.�/ is given
by the differential d� 2 H�, which is therefore a weight of the adjoint action of H on L.
To simplify notation, we will use � to denote its differential, too, and thus identify X.T /

with a subgroup of H�.
Denote by ˆ the set of nonzero weights of H on L:

ˆ D
®
� 2 H� X ¹0º j L.�/ ¤ 0

¯
:

Under the above identification, we have Zˆ D X.T / and also H � L.e;0/ D Le \L.0/,
where 0 is (the differential of) the trivial character on T . Since ��T is almost fine, we have
equality: H D Le \L.0/ by Proposition 3.8, as the connected component of Aut.L/ is
semisimple and, hence, Aut.L/ is reductive.

Theorem 6.1. With the hypotheses above, ˆ is a (possibly nonreduced) root system in
R˝Z Zˆ. If L is simple, then ˆ is an irreducible root system.

Proof. Let � 0 be a refinement of ��T that is a fine abelian group grading, and let U be its
universal abelian group. Lemma 3.11 and Proposition 3.3 show that

T D Diag.��T /
ı
D Diag.� 0/ı

is a maximal torus in Stab.� 0/, in particular U=t.U / ' X.T /. Now [12, Thm. 4.4] (or
[14, Thm. 6.61]) gives the result.

Abelian group gradings on semisimple Lie algebras have been reduced to gradings on
simple Lie algebras in [8]. For simple Lie algebras, Theorem 6.1 implies that any non-
special abelian group grading is related to a grading by a root system. These gradings
were first studied by S. Berman and R. V. Moody [6].

Definition 6.2. A Lie algebra L over F is graded by the reduced root system ˆ, or ˆ-
graded, if the following conditions are satisfied:

(i) L contains as a subalgebra a finite-dimensional simple Lie algebra whose root
system relative to a Cartan subalgebra h D g0 is ˆ: g D h˚ .

L
˛2ˆ g˛/;



A. Elduque and M. Kochetov 904

(ii) L D
L
˛2ˆ[¹0ºL.˛/, where L.˛/ D ¹x 2 L j Œh; x� D ˛.h/x for all h 2 hº;

(iii) L.0/ D
P
˛2ˆŒL.˛/;L.�˛/�.

The subalgebra g is said to be a grading subalgebra of L.

The simply laced case (i.e., types Ar , Dr and Er ) was studied in [6], and G. Benkart
and E. Zelmanov considered the remaining cases in [5].

As to nonreduced root systems, the definition works as follows (see [1]):

Definition 6.3. Let ˆ be the nonreduced root system BCr (r � 1). A Lie algebra L over
F is graded by ˆ, or ˆ-graded, if the following conditions are satisfied:

(i) L contains as a subalgebra a finite-dimensional simple Lie algebra g D h ˚

.
L
˛2ˆ0 g˛/ whose root system ˆ0 relative to a Cartan subalgebra h D g0 is the

reduced subsystem of type Br , Cr or Dr contained in ˆ;

(ii) L D
L
˛2ˆ[¹0ºL.˛/, where L.˛/ D ¹x 2 L j Œh; x� D ˛.h/x for all h 2 hº;

(iii) L.0/ D
P
˛2ˆŒL.˛/;L.�˛/�.

Again, the subalgebra g is said to be a grading subalgebra of L, and L is said to be
BCr -graded with grading subalgebra of type Xr , where Xr is the type of g.

Assume from now on that L is a finite-dimensional simple Lie algebra over our alge-
braically closed field F of characteristic 0 and let � W L D

L
g2G Lg be a non-special

grading by an abelian group G. As in the proof of Theorem 6.1, let ��T be the canonical
almost fine refinement of � , and refine ��T to a fine abelian group grading � 0D

L
u2U L0u,

where U D Uab.�
0/ (which coincides with U.� 0/ since L is simple [14, Cor. 1.21]). Then,

for any u in the support, there is a unique ˛ 2 ˆ [ ¹0º such that L0u � L.˛/, and this
induces a surjective group homomorphism � WU ! Zˆ with kernel t .U /.

Fix a system � of simple roots of ˆ. Then ˆ D ˆC [ˆ�, with ˆC �
P
˛2� Z�0˛

and ˆ� D �ˆC. As in [12, §5], we choose, for any ˛ 2 �, an element u˛ 2 U such that
�.u˛/ D ˛. This gives us a section of the homomorphism � , so U becomes the direct
product of the free abelian group U 0 generated by the elements u˛ , ˛ 2 �, and its torsion
subgroup t .U /. For any � 2 Zˆ, we will denote by u� the unique element of U 0 such that
�.u�/ D �.

Now, [12, Thm. 5.1] (or [14, Thm. 6.62]) shows that

g WD
M
u2U 0

L0u

is a simple Lie algebra with Cartan subalgebra hDH and a root systemˆ0 �ˆ such that
� is a system of simple roots. Moreover, L is graded by the irreducible root systemˆwith
grading subalgebra g, and if ˆ is nonreduced (type BCr ), then g is simple of type Br .
By its construction, not only g but also the components of its triangular decomposition
g D g� ˚ h˚ gC associated to � are graded subalgebras of L with respect to the fine
grading � 0 and, hence, also for ��T and � .
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In this situation, the adjoint action of g on L decomposes L into a direct sum of
irreducible submodules of only a few isomorphism classes. Collecting isomorphic sub-
modules, we get the corresponding isotypic decomposition (see [1]):

• If ˆ is reduced, then the isotypic decomposition is

L D .g˝A/˚ .W ˝ C/˚D ;

where W D 0 if ˆ is simply laced, and otherwise it is the irreducible module whose
highest weight, relative to H and �, is the highest short root in ˆ. The component
D is the sum of trivial one-dimensional modules, so D D CentL.g/ is a subalgebra
of L. Note that A contains a distinguished element 1 that identifies the subalgebra g

with g˝ 1. In this case a WD A˚ C becomes the coordinate algebra with identity 1,
whose product is determined by the bracket in L. Depending on the type of ˆ, dif-
ferent classes of algebras (associative, alternative, Jordan) may appear as coordinate
algebras.

• If ˆ is of type BCr with grading subalgebra of type Br and r � 2, then the isotypic
decomposition is

L D .g˝A/˚ .s˝B/˚ .W ˝ C/˚D ;

where W is the natural module, of dimension 2r C 1, for the simple Lie algebra g '

so2rC1.F/, so W is endowed with an invariant symmetric nondegenerate bilinear form
.� j �/. Then

s D
®
f 2 EndF .W/ j

�
f .v/ j w

�
D
�
v j f .w/

�
8u; v 2 W ; tr.f / D 0

¯
:

The subalgebra D is again the centralizer of g, and the coordinate algebra is a WD

A˚B ˚ C .

• If ˆ is of type BC1 with grading subalgebra of type B1, then the adjoint module is
isomorphic to the natural module and the isotypic decomposition reduces to

L D .g˝A/˚ .s˝B/˚D ;

with coordinate algebra a WD A˚B.

To simplify notation, we will write aDA˚B ˚ C in all cases, with the understand-
ing that B or C may be 0.

It is clear that D D CentL.g/ is a graded subalgebra with respect to � 0. If � is the
highest root of g with respect to �, then g� ˝A D ¹x 2 L.�/ j ŒgC; x� D 0º is a graded
subspace of L with respect to � 0. Since dimg�D 1, this allows us to define a grading on A

by the torsion subgroup t .U / as follows: A D
L
u2t.U /A0u where g� ˝A0u D .g� ˝A/

\L0u�u. Since g˝A is the g-submodule of L generated by g� ˝A, it follows that the
isotypic component g˝A is graded and g�˝A0u D .g˝A/\L0u�u for all � 2Zˆ and
u 2 t .U /. The same argument applies to the other possible isotypic components s˝B
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and W ˝ C , substituting for � the highest weight of s or W . It follows that the coordinate
algebra a inherits a grading by t .U /.

Now let ıWU ! G be the group homomorphism obtained from the fact that � 0 is a
refinement of � WLg D

L
u2ı�1.g/L

0
u for any g 2G. Then g and the isotypic components

are graded subspaces of L with respect to � , with the G-gradings induced by ı. We also
define a G-grading on a (and its pieces) via ı. For the (reductive) subalgebra L.0/ D

.g0 ˝ A/ ˚ .s0 ˝ B/ ˚ .W0 ˝ C/ ˚D , the identity component with respect to � is
H DL.0/e D .g0˝Ae/˚ .s0˝Be/˚ .W0˝Ce/˚De . But g0 DH , so we conclude
that Ae D F1 and Be D Ce D De D 0. On the other hand, since L.0/ D CentL.H /, we
have H DL.0/e �Z.L.0//. Therefore, the restriction of � to the semisimple Lie algebra
ŒL.0/;L.0/� is a special grading.

The fine grading � 0 is not uniquely determined by � . In fact, by Proposition 3.14, we
can take as � 0 any fine refinement of � that has the same toral rank. We have obtained the
following result:

Theorem 6.4. Let L be a finite-dimensional simple Lie algebra over an algebraically
closed field F of characteristic 0 and let � W L D

L
g2G Lg be a non-special grading

on L by an abelian group G. Then there exists a fine refinement � 0 of � whose identity
component is a Cartan subalgebra H of the reductive subalgebra Le . Moreover, for any
such � 0, letU DUab.�

0/ and let � WU !Zˆ and ıWU !G be homomorphisms defined by
L0u �L.�.u// and L0u �Lı.˛/, whereˆ is the root system as in Theorem 6.1, associated
to the decomposition L D

L
˛2ˆ[¹0ºL.˛/ with respect to the adjoint action of H . Then

(i) � is surjective with kernel t .U /.

(ii) Any homomorphism � 7! u� splitting � defines a ˆ-grading on L with the
grading subalgebra g WD

L
˛ L0u˛ (of type Br if ˆ is BCr ) and a G-grading

on the coordinate algebra a D A˚B ˚ C , such that the isotypic components
of L for the adjoint action of g are G-graded subspaces, with the grading on
g˝A given by deg.g˛ ˝Ag/ D g˛g for all g 2 G, and similarly for s˝B

and W ˝ C (if applicable), where g˛ D ı.u˛/.

(iii) For theG-gradings on a and L.0/ as in (ii), the supports are contained in t .G/,
the identity component of a is F1, and the gradings on the subalgebras D and
ŒL.0/;L.0/� of L.0/ are special.

Example 6.5. The simple Lie algebra L of type E8 is the Lie algebra obtained by means
of the Tits construction using the Cayley algebra O and the Albert (i.e., exceptional sim-
ple Jordan) algebra A: L D Der.O/˚ .O0 ˝ A0/˚ Der.A/ (see e.g. [14, §6.2]). The
Cayley algebra is endowed with a Z32-grading (a division grading), and this induces nat-
urally a Z32-grading � on L. The group Aut.A/ (simple of type F4) embeds naturally in
Stab.�/ � Aut.L/, and any maximal torus T in Aut.A/ is a maximal torus in Stab.�/.
The canonical almost fine refinement ��T is the Z4 � Z32-grading obtained by combining
the Cartan grading on A (induced by T ) and the Z32-grading on O. It happens in this case
that ��T is fine.
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Here the root system ˆ is of type F4 and the isotypic decomposition is given by
the components in the Tits construction: g D Der.A/, A D F1, W D A0, C D O0, and
D D Der.O/ (B D 0 in this case). The coordinate algebra a D F1 ˚ O0 is just the
Cayley algebra O. The reductive subalgebra L.0/ is the direct sum of the Lie algebra of
T (a Cartan subalgebra of Der.A/) and the simple Lie algebra Der.O/.

In conclusion, we note that the ˆ-grading on L defined by a non-special fine grading
� 0 allows us to restate the conditions in Theorem 5.4 and Definition 4.1 quite explicitly.
Let Sa and SD be the supports of the t .U /-gradings on a and D , respectively, so the
support of L.0/ is S D Sa [ SD . Then the almost fine coarsenings of � 0 are determined
by the subgroups E � t .U / that are generated by some elements of the form uv�1 with
u; v 2 S (so U=E is the universal group of the coarsening [14, Cor. 1.26]) and satisfy
E \ S D ¹eº. A homomorphism  WU=E ! G is admissible if and only if its restriction
to the support of each L.˛/ is injective, which amounts to  jS being injective.
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