
© 2025 European Mathematical Society
Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1665

Jungwon Lee · Hae-Sang Sun

Dynamics of continued fractions and distribution of
modular symbols

Received 8 April 2020; revised February 3, 2025

Abstract. We formulate a dynamical approach to the study of distribution of modular symbols,
motivated by the work of Baladi–Vallée. We introduce the modular partition functions of continued
fractions and observe that the modular symbols are special cases of modular partition functions. We
prove the limit Gaussian distribution and residual equidistribution for modular partition functions
as random variables on the set of rationals whose denominators are up to a fixed positive integer,
by studying the spectral properties of the transfer operator associated to the underlying dynamics.
The approach leads to a few applications. We show an average version of a conjecture of Mazur–
Rubin on statistics for modular symbols of rational elliptic curves. We further observe that the
equidistribution of mod p values of modular symbols leads to a mod p non-vanishing result for
special modular L-values twisted by Dirichlet characters.
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1. Introduction and statements of results

The statistics of continued fractions has been a rich source of research. For instance,
it is a longstanding conjecture that the distribution of the length of continued fractions
over the rational numbers follows the Gaussian distribution. More precisely, for a rational
number r 2 .0; 1/, write Œ0Im1; : : : ; m`� for the continued fraction expansion of r where
m1; : : : ;m`�1 are integers greater than 0 andm` is an integer greater than 1, and `D `.r/
is the length of the expansion. We consider the set†M WD¹a=M j1�a<M; .a;M/D1º:

One can regard†M as a probability space with the uniform distribution and ` as a random
variable on†M . The unsettled conjecture is that the variable ` follows asymptotically the
Gaussian distribution as M !1.

The first prominent result goes back to Hensley [16]. He obtained a partial result on
the problem in an average setting; in other words, instead of†M , he proved the conjecture
for a larger probability space

�M D
[
n�M

†n:

Later, Baladi–Vallée [3] showed the average version in full generality with an optimal
error based on the dynamical analysis of the Euclidean algorithm.

In this paper, we study the statistics of generalizations of the variable `, so-called
modular partition functions.

1.1. Modular partition functions

Let Pi=Qi be the i -th convergent of r , i.e.,

Pi

Qi
D Œ0Im1; : : : ; mi �; P0 D 0; Q0 D 1:

For 1 � i � `, we define 2 � 2 integral matrices

gi .r/ WD
�
Pi�1 Pi
Qi�1 Qi

�
2 GL2.Z/ and g.r/ WD g`.r/:

The matrices satisfy the recurrence relation giC1.r/ D gi .r/
�
0 1
1 miC1

�
:

Let � be a subgroup of SL2.Z/. For a right coset u 2 �nGL2.Z/ and a rational r 2
.0; 1/, a natural quantity to consider is #¹1 � i � ` j �gi .r/ 2 uº. We observe that it can
be written as

P`
iD1 Iu.�gi .r// where Iu.v/ is 1 if u D v and 0 otherwise. Extending it

to a function  on �nGL2.Z/, let us define a more general quantity

a .r/ WD
X̀
iD1

 .�gi .r//:

In order to define an SL2-version, let us introduce

j WD
�
1 0

0 �1

�
:
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In this paper, we assume that

ŒSL2.Z/ W �� is finite and � is normalized by j:

For g 2 GL2.Z/, we define

yg WD

´
g if detg D 1;

jg otherwise;
zg WD

´
g if detg D 1;

gj otherwise:

For a function  on �nSL2.Z/, we define

b .r/ WD
X̀
iD1

 .� ygi .r// and c .r/ WD
X̀
iD1

 .� zgi .r//:

The functions a , b , and c are called the modular partition functions or modular cost
functions.

One of the main goals in the present paper is to determine the moment generating
functions of the random variables b and c on �M . In particular, there are two applic-
ations: the recent conjecture of Mazur–Rubin on the distribution of modular symbols and
the non-vanishing modulo p of special L-values of modular forms.

1.2. Main results

Let I be the interval Œ0; 1�. For the later applications, we study more general probability
spaces. For a map ' on the right cosets of � , denote the functions on I \Q given by

r 7! '.�g.r//; r 7! '.� yg.r//; or r 7! '.� zg.r//

by the same symbol ' according to the context, unless any confusion arises. For an open
subinterval J � I and a non-trivial non-negative function ', let

�M;';J

be the probability space �M \ J with a density function .
P
r2�M\J

'.r//�1' as long
as the denominator is non-zero. For a random variable g on a probability space X , we
denote by P Œg j X�, EŒg j X�, and V Œg j X� the probability, mean, and variance of g

on X , respectively.
In order to state the main results we also need the following:

Definition 1.1. Let k be an abelian group and  W �nSL2.Z/! k.

(1) If there exists a k-valued function ˇ on �nSL2.Z/ such that

 .u/ D ˇ.u/ � ˇ

�
ju
�
�m 1

1 0

��
for all u 2 �nSL2.Z/ and integers m � 1, then  is called a b-coboundary over k,
associated with ˇ. Let Bb.�;k/ be the abelian group of all b-coboundaries over k.
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(2) If there exists a k-valued function ˇ on �nSL2.Z/ such that

 .u/C  

�
u

�
�n 1

1 0

�
j
�
D ˇ.u/ � ˇ

�
u

�
�n 1

1 0

��
�m 1

1 0

��
for all u 2 �nSL2.Z/ and integersm;n � 1, then  is called a c-coboundary over k,
associated with ˇ. Let Bc.�;k/ be the abelian group of all c-coboundaries over k.

Example 1.2. For a prime p and � D �0.p/, we set

u1 D �

�
� �

1 0

�
; u2 D �

�
� �

0 1

�
D �:

One can show that Iu1 is neither a b- nor a c-coboundary over R. Observe that
Iu1
�
jv
�
�m 1
1 0

��
D Iu2.v/ for all v 2 �nSL2.Z/ and m 2 Z. Hence,  D Iu1 � Iu2 is

a b-coboundary associated with Iu1 . As  .uj/ D  .ju/ for all u, we can also show that
 is a c-coboundary associated with Iu1 . Hence, � D Iu1 �

1
2
Iu2 is neither a b- nor a

c-coboundary over R. A numerical example is presented in Figure 1.

440 460 480 500 520 540

5000

10000

15000

20000

Fig. 1. Distribution of b� in Example 1.2 on the random samples of size 106 chosen from �210000
for � D �0.5/.

1.2.1. Joint Gaussian distribution. One of our main results is that a vector of modular
partition functions follows the Gaussian distribution asymptotically.

Theorem A. Let J be a non-empty open subinterval of .0; 1/, ' a non-trivial non-
negative function on �nSL2.Z/, and g D b or c.

(1) Let  W �nSL2.Z/! Rd with  D . 1; : : : ;  d /. Set g WD .g 1 ; : : : ; g d /. For
each  , there exists H 2Md .R/ .see Section 3.1 for definition/ such that:

(a) H is non-singular if and only if  1; : : : ;  d are R-linearly independent modulo
Bg.�;R/.

(b) When H is non-singular, the distribution of g on �M;';J is asymptotically
Gaussian as M ! 1. More precisely, there exists � 2 Rd such that for
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any x 2 Rd ,

P

�
g � � logM
p

logM
� x

ˇ̌̌̌
�M;';J

�
D

1

.2�/d=2
p

det H 

Z
t�x

exp
�
�
1

2
tTH�1 t

�
d tCO

�
1

p
logM

�
where t � x means tj � xj for all 1 � j � d and the implicit constant is uniform
in x.

(2) Let d D 1. For  W �nSL2.Z/! R and C D H , there exists D ;';J such that the
variance satisfies

V Œg j �M;';J � D C logM CD ;';J CO.M�
 /

for some 
 > 0. In particular, C D 0 if and only if  is a g-coboundary over R.

(3) Let d D 1 and k � 3. There exists a polynomial QJ;';k of degree at most k such that

EŒgk j �M;';J � D QJ;';k.logM/CO..logM/kM�
 /:

Example 1.3. For  in Example 1.2, note that

b .r/ D
X̀
iD1

�
Iu1.� ygi / � Iu1

�
j� ygi

�
�mi 1
1 0

���
;

which is equal to Iu1.� yg`/� Iu1.�/. Since
�
a b
c d

�
2 u1 if and only if d � 0 .mod p/, we

conclude that

b .r/ D Iu1.� yg`/ D

´
0 if Q.r/ 6� 0 .mod p/;

1 if Q.r/ � 0 .mod p/:

In particular, b does not follow the Gaussian distribution asymptotically.

Remark 1.4. Numerical evidence suggests that an analogue of Theorem A for the vari-
able a is plausible. However, due to the fact that the relevant transfer operator for a is not
topologically mixing (see Remark 5.2), the arguments in the present paper do not work
for a. The second-named author plans to provide an approach to deal with this problem
in future work.

1.2.2. Residual equidistribution. Another main result is the equidistribution of integer
valued modular partition functions in residue classes of a fixed modulus. Let �M;J WD
�M \ J .

Theorem B. Let g D b or c and Q � 3 be an integer.

(1) Let J be a non-empty open subinterval of .0; 1/ and  D . 1; : : : ;  d / W

�nSL2.Z/! Zd . If  1; : : : ;  d .mod Q/ are Z=QZ-linearly independent modulo
Bg.�;Z=QZ/, then for all g 2 .Z=QZ/d we have

P Œg � g .mod Q/ j �M;J � D Q�d CO.M�ı/

for some ı > 0.
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(2) Let Q be relatively prime to ŒSL2.Z/ W �� and  W �nSL2.Z/ ! Z. If there is a
non-empty open subinterval J that

lim
M!1

P Œg � g .mod Q/ j �M;J � D Q�1

for all g 2 Z=QZ, then  .mod q/ is a g-coboundary over Z=qZ for no prime
divisor q of Q.

Remark 1.5. From Example 1.3, we see that the random vectors .bIu/u2�nSL2.Z/ and
.cIu/u2�nSL2.Z/ are not equidistributed modulo Q for Q � 3.

A specialization d D 1 and  � 1 gives us a new result that the length ` of the
continued fractions on �M;J is residually equidistributed.

Corollary 1.6. For g 2 Z=QZ, we have

P Œ` � g .mod Q/ j �M;J � D Q�1 C o.1/:

1.3. Applications of main results

First, we introduce an application of Theorem A.

1.3.1. Conjecture of Mazur–Rubin. In order to understand the growth of the Mordell–
Weil ranks of a rational elliptic curve in large abelian extensions, Mazur and Rubin [29]
described heuristically the behavior of special values of twisted modular L-functions by
presenting the conjecture on statistics for modular symbols based on numerical computa-
tions.

Let �0.N /D SL2.Z/\
�

Z Z
NZ Z

�
. Let f be a newform for �0.N / and of weight 2 with

Fourier coefficients af .n/. Let � be a Dirichlet character of conductor M . We denote by
L.s; f; �/ the twisted modular L-function, which is given as the meromorphic continu-
ation of the Dirichlet series with the coefficients af .n/�.n/. Let Qf be the field generated
by the coefficients af .n/ over Q. It is known that Qf is real. There are suitable peri-
ods �˙

f
such that the following normalized special L-values are algebraic:

Lf .�/ WD
G.x�/L.1; f; �/

�˙
f

2 Qf .�/

where G.x�/ denotes the Gauss sum and˙ corresponds to the sign �.�1/ D ˙1.
The modular symbols are period integrals of the form

m˙f .r/ WD
1

�˙
f

²Z i1

r

f .z/ dz ˙

Z i1

�r

f .z/ dz

³
2 Qf

for r 2 Q. We regard m˙
f

as a random variable. Set m˙E D m˙
fE

for the newform fE

corresponding to an elliptic curveE over Q. The periods�˙
fE

can be chosen as the Néron
periods �˙E . Mazur–Rubin [28] proposed the following conjecture.



Dynamics of continued fractions and distribution of modular symbols 7

Conjecture A (Mazur–Rubin). Let E be an elliptic curve over Q of conductor N .

(1) The random variable m˙E on †M follows the asymptotic Gaussian distribution as
M !1.

(2) For a divisor d of N , there exist two constants C˙E and D˙
E;d

, called the variance
slope and the variance shift respectively, such that

lim
M!1
.M;N/Dd

.V Œm˙E j †M � � C
˙
E logM/ D D˙E;d :

Petridis–Risager [34] obtained the �M -version of statement (1) for general cusp-
forms f of cofinite Fuchsian groups and statement (2) for the congruence subgroup
�0.N / with a square-free integer N . They gave an explicit formula for the constant C˙

f

as well as D˙
f;d

in terms of special values of a symmetric square L-function of f . They
further established an interval version of (1), that is, for any interval J � I , the vari-
able m˙

f
on �M \ J follows the Gaussian distribution asymptotically. Their approach

is based on the sophisticated theory of non-holomorphic Eisenstein series twisted by
moments of modular symbols. Their work has been generalized to arbitrary weights by
Nordentoft [32].

In this paper, we present another proof of the average version of Conjecture A for
a newform of weight 2 for �0.N / and an arbitrary N as a specialization of the result
(Theorem A) on modular partition functions.

Theorem C. Let f be a newform for �0.N / and of weight 2.

(1) The random variable m˙
f

on�M;';J follows the asymptotic Gaussian distribution as
M !1. More precisely, there exist �˙

f
and C˙

f
> 0 such that

P

�
m˙
f
� �˙

f
logMq

C˙
f

logM
� x

ˇ̌̌̌
�M;';J

�
D

1

2�

Z x

�1

exp
�
�
1

2
t2
�
dt CO

�
1

p
logM

�
:

Here the implicit constant is independent of x.

(2) The variance slope C˙
f

is independent of ' and there exists a variance shift D˙
f;';J

such that
V Œm˙f j �M;';J � D C

˙
f logM CD˙f;';J CO.M

�
 /:

(3) Let k � 3. There exists a polynomial QJ;';k of degree at most k such that

EŒ.m˙f /
k
j �M;';J � D QJ;';k.logM/CO..logM/kM�
 /:

Theorem C directly implies the result of Petridis–Risager or the average version of
Conjecture A with specific choices of '. For (1), we take ' D 1. For a divisor d of N ,
we define 'd

��
˛ ˇ

 ı

��
to be 1 when .ı; N / D d and 0 otherwise. Note that 'd is well-

defined on �0.N /nSL2.Z/. The particular choice ' D 'd shows that the �M -version of
Conjecture A (2) is a special case of our result.
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Theorem C is a specialization of Theorem A: More precisely, there is a function ˙
f

on
�0.N /nSL2.Z/ such that it is not a coboundary over R and m˙

f
follows the distributions

of b
 
C

f

and c �
f

(see Sections 4.3 and 4.4).

Remark 1.7. From the specializations b
 
C

f

and c �
f

, we observe that the asymptotic

normality of modular symbols comes essentially not from the modularity of f , but from
the dynamics of continued fractions. The modularity in our paper plays a role only in
showing that  ˙

f
is not a coboundary (see Section 4.3); it is also a crucial ingredient

in calculating the mean (Diamantis et al. [11], Sun [41]), the variance slope and shift
(Petridis–Risager [34], Blomer et al. [5]).

Remark 1.8. One may wonder if b �
f

can be used to study the modular symbols instead
of c �

f
. In fact, the answer is negative. It is the action of j that prohibits m�

f
from being

expressed in terms of b �
f

. We refer to Remarks 4.1 and 4.2.

Remark 1.9. Bettin–Drappeau [4] proved the asymptotic Gaussian distribution of modu-
lar symbols for level 1 and arbitrary higher weights (see Remark 1.12). We speculate that
by adopting their arguments, our work can be extended to arbitrary weights.

Remark 1.10. Even though computable in polynomial time (Lhote [24]), no closed forms
for the variance slope and shift for the length ` are known from the dynamical approach.
It is an interesting question whether the expressions of Petridis–Risager for C˙

f
and D˙

f;'

are hints for this open problem.

In the next section, we discuss an application of Theorem B.

1.3.2. Non-vanishing mod p of modular L-values. Non-vanishing of twisted L-values
seems to genuinely rely on the equidistribution or density results for special
algebraic cycles (see Vatsal [45]). The first prominent example goes back to Ferrero–
Washington [13] and Washington [46] for mod p non-vanishing of special Dirichlet
L-values. A key lemma used in their proof comes precisely from a p-adic analogue of
the classical density result due to Kronecker in ergodic theory. One of the main motiva-
tions of the present paper is to suggest a new dynamical approach towards the study of
modular L-values with Dirichlet twists.

We can choose a suitable period �˙
f

so that the corresponding algebraic parts Lf .�/
are p-integral with minimum p-adic valuation when, for example, the mod p Galois rep-
resentation �f;p is irreducible, p does not divide 2N , andN � 3 (see Section 4.2). In these
circumstances, the p-integralL-values are expected to be generically non-vanishing mod-
ulo p. One also obtains the p-integrality of m˙E when the residual Galois representation
�E;p of E is irreducible, and E has good and ordinary reduction at p.

For a Dirichlet character � of modulus M , we define a variant of the special L-value
Lf .�/ by

ƒf .�/ WD
X

a2.Z=MZ/�

x�.a/ �m˙f

�
a

M

�
:
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This L-value is closely related to the special L-value: They can differ by an Euler-like
product over the prime divisors of the conductor of �. In particular, when � is primitive,
one has Lf .�/ D ƒf .�/: We obtain a version of the mod p non-vanishing result from
our dynamical setup.

Theorem D. Let N � 3 and p − 2N . Let f be an elliptic newform for �0.N / such that
�f;p is irreducible. Then

#
[
n�M

¹� 2 3.Z=nZ/� j ƒf .�/ 6� 0 .mod p1Cvp.�.n///º �M

where p is a prime over p in Qp and vp.�.n// is the p-adic valuation of the Euler totient
�.n/.

A similar quantitative mod p non-vanishing of Dirichlet L-values was studied by
Burungale–Sun [7]: Let � be a Dirichlet character of modulus N and .p;NM/ D 1 with
.N;M/D 1. Removing the condition p − �.M/, their result can be formulated as follows:

#¹� 2 4.Z=MZ/� j L.0; ��/ 6� 0 .mod p1Cvp.�.M///º �M 1=2�":

Let us remark that even though Theorem D is not as strong as the result of Burungale–
Sun, as far as we know it is the first result of this type for modular L-values with Dirichlet
twists. In fact, this non-vanishing result is a consequence of one of our main results on
another Mazur–Rubin conjecture [28].

Conjecture B (Mazur–Rubin). Assume that �E;p is irreducible and E has good and
ordinary reduction at p. Then, for any integer a,

lim
M!1

P Œm˙E � a .mod p/ j †M � D
1

p
:

Here is our result on the residual equidistribution of modular symbols.

Theorem E. Assume that �E;p is irreducible and E has good and ordinary reduction
at p. Then, for any e � 1 and any integer a,

P Œm˙E � a .mod pe/ j �M;J � D
1

pe
CO.M�ı/

for some ı > 0.

This is a specialization of Theorem B. More precisely, there are integer valued func-
tions �˙E on �1.N /nSL2.Z/ such that their reductions modulo pe are not coboundaries
over Z=peZ and m˙E .mod pe/ follow the distributions of b

�
C

E

and c��
E

(see Section 4.5).

Remark 1.11. Constantinescu–Nordentoft [10] obtained a discrete version of the result
of Petridis–Risager [34], implying Theorem E.
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Mazur, in a private communication, raised the question of whether the Gaussian (or
Archimedean) and residual distributions of the modular symbols are correlated or not. We
answer this question in Theorem 4.7, which is a consequence of a more general discussion
in Section 3.3.

1.4. Dynamics of continued fractions: Work of Baladi–Vallée

We now describe our approach. It is deeply motivated by the work of Baladi–Vallée [3]
on dynamics of continued fractions. Let us briefly outline their result and strategy for the
proof.

Baladi–Vallée established the quasi-power behavior of the moment generating func-
tion EŒexp.w`/ j �M �, which ensures the asymptotic Gaussian distribution of ` (see
Theorem 3.7). More precisely, they studied a Dirichlet series whose coefficients are essen-
tially given by the moment generating function EŒexp.w`/ j †n�:

L.s; w/ D
X
n�1

cn.w/

ns
; cn.w/ D

X
r2†n

exp.w`.r//;

for two complex variables s;w with <s > 1 and jwj being sufficiently small. The desired
estimate then follows from the Tauberian argument on L.s; w/. To this end, they estab-
lished the analytic properties of the poles of the Dirichlet series L.s; w/ and uniform
estimates on its growth in a vertical strip. Their crucial observation is that the weighted
transfer operator plays a central role in ensuring the necessary properties of L.s; w/.

Let T W I ! I denote the Gauss map given by T .x/ D 1
x
�
�
1
x

˘
for x ¤ 0 and

T .0/ D 0. They considered the weighted transfer operator associated with the Gauss
dynamical system .I; T /, defined by

Hs;wf .x/ WD
X

yWT.y/Dx

exp.w/
jT 0.y/js

� f .y/

for two complex variables s and w. A key relation they established is that

L.2s; w/ D Fs;w.Id �Hs;w/�11.0/ (1.1)

where Id is the identity operator and Fs;w is the final operator defined like Hs;w with
summation restricted to y.x/ D 1

mCx
with m � 2. The properties of Dirichlet series that

are crucial for the Tauberian argument thus directly follow from the spectral properties of
the transfer operator. In particular, the estimate on the growth of L.s;w/ in a vertical strip
comes from the Dolgopyat–Baladi–Vallée estimate on the operator norm of Hn

s;w , n � 1.
Our idea is to follow their framework by finding a certain dynamical system and the

corresponding transfer operator that naturally describe the analytic properties of Dirichlet
series associated to modular partition functions.

Remark 1.12. Bettin–Drappeau [4] generalized the work of Baladi–Vallée in a different
direction and obtained distributional results for crucial examples of quantum modular
forms.
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1.5. Dynamical system for modular partition functions

Let us describe the dynamics and transfer operators for modular partition functions.
Let ' be a function on the right cosets of � and J a non-empty open subinterval of I .

To study the moment generating function of g on �M;';J , for w 2 Cd we set

cn.w/ WD
X

r2†n\J

'.r/ exp.w � g .r//:

Obviously,

EŒexp.w � g / j �M;';J � D
P
n�M cn.w/P
n�M cn.0/

:

In order to study cn.w/, we consider the generating function, namely a Dirichlet series:
For s 2 C, set Lg.s;w/ WD

P
n�1

cn.w/
ns

. The strategy is to apply Tauberian arguments
to Lg.s;w/ using their behaviors in a critical strip of C, which are expected to be con-
sequences of the dynamical analysis of the modular partition functions g . For Dw � ,
we get w � g D g . Hence, for the dynamical analysis, we consider the transfer operators
with parameter  instead of w.

1.5.1. Random variable a. Let us define an operator T on I � �nGL2.Z/ by

T.x; v/ WD
�
T .x/; v

�
�m1.x/ 1

1 0

��
where m1.x/ denotes the first digit of the continued fraction expansion of x. We call T
the skewed Gauss map.

Let ‰ be a bounded function on the product I � �nGL2.Z/. For s 2 C and
 W�nGL2.Z/!C, we consider the weighted transfer operator associated to the dynam-
ical system .I � �nGL2.Z/;T/ defined by

Ls; ‰.x; u/ WD
X

.y;v/2T�1.x;u/

expŒ .v/�
jT 0.y/js

�‰.y; v/:

Let Fs; be the final operator defined like Ls; with summation restricted to .y; v/ D�
1

mCx
;u
�
0 1
1 m

��
withm� 2. To study the space�M;';J , we also introduce interval operat-

ors DJ
s; (see Section 6.4). Our crucial observation is that the Dirichlet series for a admits

an alternative expression in terms of weighted transfer operators (see Theorem 6.10): The
quasi-inverse .I � Ls; /

�1 is well-defined when .<s;<w/ is close to .1; 0/ (See The-
orem 8.5). Then, for an interval J � I , we have

La.2s;w/ D BJ
s; .1˝ '/.0; �/CDJ

s; .I �Ls; /
�1Fs; .1˝ '/.0; �/ (1.2)

for  D w � and an auxiliary analytic operator BJ
s; .

Remark 1.13. When J D .0; 1/, � D SL2.Z/, and ' D 1, the expression (1.1) can be
recovered from the above expression of La.s;w/.



J. Lee, H.-S. Sun 12

1.5.2. Random variable b. First of all, note that there is a natural right action of GL2.Z/
on �nSL2.Z/ given by

.�h/ � g WD �chg:
With this right action, we consider the spaces

I� WD I � �nSL2.Z/:

Let us define the skewed Gauss map yT on I� by

yT.x; v/ WD
�
T .x/; v �

�
�m1.x/ 1

1 0

��
:

As in the case of a, for a function ' on �nSL2.Z/ we define the weighted transfer
operator yLs;' associated to the dynamical system .I� ; yT/, the final operator yFs;' , and
the interval operator yDJ

s;' (see Section 6.4). We are also able to obtain a version of (1.2),
i.e., an analogous expression for Lb.s;w/ in terms of yLs;w� , yFs;w� , yDJ

s;w� , and yBJ
s;w� 

(see Theorem 6.10), which is partly a consequence of the existence of the right action.

Remark 1.14. This type of skew-product Gauss map has already been discussed by
Manin–Marcolli [26] in a different context, to study the Gauss–Kuz’min operator and
the limiting behavior of modular symbols. We refer to Remark 4.2.

1.5.3. Random variable c. Unlike g 7! yg, the map g 7! zg does not induce a right action of
GL2.Z/ on �nSL2.Z/. Even though one can easily define c-analogues of yT and yLs;w, say
zT and zLs;w, the Dirichlet series Lc.s;w/ no longer admits an expression similar to (1.2),
especially in terms of zLs;w, mainly due to the absence of a suitable right action of GL2.Z/.

Instead, we first observe that the maps yT2 and zT2 are the same as T2jI� , whose second
component is now the canonical right action of SL2.Z/ on �nSL2.Z/. Then one can
define another weighted transfer operator Ms;' associated to the system .I� ; zT2/. After
defining analogues of the previous operators, namely the final operator zFs;' , the interval
operator zDJ

s;' , and the auxiliary operator zBJ
s;' , we are able to express the Dirichlet series

Lc.s;w/ in terms of those operators as before (see Theorem 6.10).

Remark 1.15. Note that a function  W �nSL2.Z/! k is a b-coboundary over k if and
only if there exists a k-valued function ˇ on �nSL2.Z/ such that  D ˇ � ˇ ı �2yT. And
 is a c-coboundary if and only if  C  ı �2zT D ˇ � ˇ ı �2T2 for some ˇ.

1.6. Spectral analysis of transfer operators

For .s;  / with real part .<s;< / close to .1; 0/, the transfer operators for b and c act
boundedly on C 1.I�/ and admit a spectral gap with dominant eigenvalues �s; . Then
by analogues of the identity (1.2), the poles s of the Dirichlet series with a fixed  in a
certain vertical strip are in a bijection with the values s with �s; D 1. Hence the analytic
properties ofLg.s;w/ (Proposition 3.2) that are necessary to apply the Tauberian theorem
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follow from the spectral properties of the transfer operator: For general � , the dominant
eigenvalue of the transfer operator is simple. The topological mixing property of yT ensures
the uniqueness of the eigenvalue. See Section 5.1 for more details.

Structure of the paper

In Section 2, we collect several group-theoretic results relevant to topological mixing
of yT and the coboundary condition for modular partition functions. In Sections 3 and 4,
a series of number-theoretic results on the distribution of modular partition functions are
deduced by a Tauberian argument from the behaviors of Dirichlet series. Their proofs will
be presented in Section 10. Two transitional sections 5 and 6 are devoted to transforming
the number-theoretic assertions to dynamical ones. In Sections 7–9, dynamical analyses
of the corresponding transfer operators are presented.

2. GL2.Z/-action on �nSL2.Z/

Throughout, we fix a subgroup � of SL2.Z/ of finite index.

2.1. Right action of GL2.Z/

Set J WD hji and let G� WD h�; ji be the subgroup of GL2.Z/ generated by � and j.
Both the right cosets G�nGL2.Z/ and the double cosets �nGL2.Z/=J are identified with
�nSL2.Z/ by the maps

�nSL2.Z/ ' G�nGL2.Z/; u D �h 7! Gu WD G�h; (2.1)

�nSL2.Z/ ' �nGL2.Z/=J; v D �h 7! vJ WD �hJ: (2.2)

The right action of GL2.Z/ on �nSL2.Z/ discussed in Section 1.5.2 actually comes from
the natural action on G�nGL2.Z/ via the identification (2.1).

Remark 2.1. On the other hand, no right action of GL2.Z/ originates from (2.2). We
can still observe that the map �hJ 7! �hgJ is a permutation of �nGL2.Z/=J for a
g 2 GL2.Z/, in other words, the map tg W �h 7! �fhg is a permutation of �nSL2.Z/.
Further, for u 2 �nSL2.Z/, it can be observed that

tg2.tg1.u// D ug1g2 if g1 2 SL2.Z/: (2.3)

Let u be a right coset of � in SL2.Z/ and g 2 GL2.Z/. It is easy to see that yg 2 u
if and only if G�g D Gu and that zg 2 u if and only �gJ D uJ. We extend a function  
on �nSL2.Z/ to �nGL2.Z/ such that y WD  ı G�1 ı p1 and z WD  ı J�1 ı p2 where
pi are the canonical surjections p1 W �nGL2.Z/! G�nGL2.Z/ and p2 W �nGL2.Z/!
�nGL2.Z/=J. It is easy to see that

y .�g/ D  .� yg/ and z .�g/ D  .� zg/:
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Hence, from the definition of b and c , one obtains

b .r/ D
X̀
iD1

y .�gi .r// and c .r/ D
X̀
iD1

z .�gi .r//: (2.4)

Let us first prove several preliminary results on the special linear group.

2.2. T -mixing

In this section, a matrix of the form
�
�m ˙1
1 0

�
is called a digit matrix. The following lemma

and proposition are useful when we discuss the topological properties of yT.

Lemma 2.2. Let " D ˙1 be fixed.

(1) For any v 2 �nSL2.Z/, we have

�nSL2.Z/ D
²
v �

�
�m1 "

1 0

��
�m2 "

1 0

�
� � �

�
�m` "

1 0

� ˇ̌̌̌
` � 0; mi 2 Z�1

³
(2.5)

where the element for ` D 0 corresponds to v.

(2) There exists K � 1 such that for each integer k � K, we can find integers
m1; : : : ; mk � 1 such that

� �

�
�m1 "

1 0

��
�m2 "

1 0

�
� � �

�
�mk "

1 0

�
D �:

Proof. Consider first the case of " D 1. Let us denote the RHS of (2.5) by S . Let

a D
�
�1 1
1 0

�
and b D

�
�2 1
1 0

�
:

Let u 2 S . As � is of finite index, there exist integers p; q � 1 such that for all u, we have
u � ap D u and u � bq D u, and hence u � a�1; u � b�1 2 S . In sum, we conclude that for
any g 2 GL2.Z/ generated by a and b, we have u � g 2 S . On the other hand, observe that

ab�1 D
�
1 1
0 1

�
; a�1b D

�
1 0
1 1

�
; ab�1a D

�
0 1
1 0

�
:

It is well-known that GL2.Z/ is generated by these three elements, hence by a and b.
Since �nSL2.Z/ D � � GL2.Z/, we obtain statement (1).

For the second statement, observe that ab�1a2b�1a D
�
1 0
0 1

�
and b�1a3b�1 D j:

When applied to a coset, the first product above can be regarded as the product of
2.q � 1/ C 4 digit matrices. The second one is the product of 2.q � 1/ C 3 digit
matrices. Then there exists a number K such that any integer k � K can be written as
k D .2.q � 1/C 4/s C .2.q � 1/C 3/t with s; t � 1. Then

� � .ab�1a2b�1a/s.b�1a3b�1/t D � � jt D �

since � � j D � .
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For the case of " D �1, set c D
�
�Q �1
1 0

�
where Q is an integer > 0 such that

u
�
1 �Q
0 1

�
D u for all u. Then uc D u

�
0 �1
1 0

�
for each u. We also set d D

�
�1 �1
1 0

�
and

e D
�
�2 �1
1 0

�
. Then de�1 D

�
1 1
0 1

�
. Since SL2.Z/ is generated by

�
0 �1
1 0

�
and

�
1 1
0 1

�
, we

obtain the first statement by a similar argument to the one above. Note that u D uc4 and
u D ud3 for all u. As before, we obtain the second statement.

Remark 2.3. A version of (1) can also be found in Manin–Marcolli [26, Theorem 0.2.1].

Proposition 2.4. Fix " D ˙1. There exists an M > 0 such that for any u 2 �nSL2.Z/
and any ` �M ,

�nSL2.Z/ D
²
u �

�
�m1 "

1 0

�
� � �

�
�m` "

1 0

� ˇ̌̌̌
mi 2 Z�1

³
:

Proof. Let �0 be the kernel of the homomorphism from SL2.Z/ to the permutation group
on �nSL2.Z/ induced from the right action. Then �0 is normal, of finite index, and is
normalized by j. Since the statement for � follows from one for �0, we may assume that
� is normal.

First fix representations of �nSL2.Z/ in (2.5), i.e., product representations by digit
matrices. For a right coset u, we can find a product m.u/ of digit matrices such that u D
� �m.u/. Let `.u/ be the number of digit matrices that form m.u/ and L WD maxu `.u/.
We claim that for any n � LC K and any two right cosets u; v of � , there are n digit
matrices whose product, say muv , satisfies u D v �muv .

First of all, we show the claim for v D � . Let wk be the product of k digit matrices
in Lemma 2.2 (2). For any n � L C K, set mnŒu� WD wn�`.u/m.u/. Observe that u D
� �mnŒu� and mnŒu� is the product of n digit matrices.

Let v be a general right coset. Set u D �g and v D �h for g; h 2 SL2.Z/. Let n �
LCK. Then

�g �mnŒ�g
�1h� D g� �mnŒ�g

�1h� D g�g�1h D �h

as � is normal in SL2.Z/.

2.3. Coboundary functions

Let k be an abelian group. In this section, we characterize all the coboundary functions
over k. We fix ˇ W �nSL2.Z/! k corresponding to a coboundary  , i.e.,  .u/D ˇ.u/�
ˇ.u �

�
�m 1
1 0

�
/ if gD b and  .u/C 

�
u
�
�m 1
1 0

�
j
�
D ˇ.u/� ˇ

�
u
�
�m 1
1 0

��
�n 1
1 0

��
if gD c.

Let

L WD
�
1 0

Z 1

�
:

Since �nSL2.Z/ is a finite set, the natural right action of L on the cosets �nSL2.Z/
factors through

�
1 0
Z 1

�
!
�

1 0
Z=QZ 1

�
for an integer Q > 1.

We collect several properties of ˇ:
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Proposition 2.5. Let  W �nSL2.Z/! k be a function.

(1) If  is a g-coboundary, then ˇ is L-invariant. In particular,

ˇ
�
u �
�
m 1
1 0

��
D ˇ

�
u �
�
n 1
1 0

��
for all m; n 2 Z. (2.6)

(2) Let  be a b-coboundary. If  .u/ D  .�u/ and  .uj/ D  .ju/ for all u, then
ˇ.uj/ D ˇ.ju/ for all u.

Proof. (1) Consider g D b. Then  .u/ D ˇ.u/ � ˇ
�
u �
�
�m 1
1 0

��
for all m 2 Z and u.

Observe also that
�

Z 1
1 0

�
D
�
0 1
1 0

��
1 0
Z 1

�
. Then the coboundary condition on  implies that

ˇ is invariant under L.
Let  be a c-coboundary. As above, for allm;n 2 Z, we get  .u/C 

�
u
�
�m 1
1 0

�
j
�
D

ˇ.u/� ˇ
�
u
�
�m 1
1 0

��
�n 1
1 0

��
. SettingmD 0, we get ˇ

�
u
�
1 0
�n 1

��
D ˇ.u/� .u/� .u�/.

Hence, ˇ is L-invariant.
(2) Setting ˛.u/ WD ˇ.u/� ˇ.�u/, we get ˛.u/ D ˛

�
u �
�
�m 1
1 0

��
for all u and m. By

Proposition 2.4, we know ˛ is constant, in particular ˛.u/D ˛.�u/. But ˛.�u/D�˛.u/.
Hence, ˛ D 0, i.e.,

ˇ.u/ D ˇ.�u/ for all u: (2.7)

The expression for  can be written as ˇ.uj/� ˇ.ju/D ˇ
�
uj �

�
�m 1
1 0

��
� ˇ

�
ju �

�
�m 1
1 0

��
:

Using j
�
m 1
1 0

�
jD�

�
�m 1
1 0

�
and (2.7) with (2.6), the last expression equals ˇ.uj/�ˇ.ju/D

ˇ
�
u �
�
�m 1
1 0

�
j
�
� ˇ

�
ju �

�
�m 1
1 0

��
: Hence, u 7! ˇ.uj/� ˇ.ju/ is constant. Considering juj,

we obtain the statement.

The following is crucial for determining Bg.�;k/.

Proposition 2.6. Let  be a g-coboundary over k for an L-invariant ˇ. Then  is zero
if and only if ˇ is a constant. In this case, ˇ can be chosen to be zero.

Proof. First let g D b. If  is zero, then by Proposition 2.4, we can find m1; : : : ; m` for
a sufficiently large ` and v such that u �

�
�m1 1
1 0

�
� � �
�
�mk 1
1 0

�
D v. Hence, ˇ is a constant.

The converse is trivial.
Let gD c. Let ˇ be a constant function. Then .u/C 

�
u
�
�m 1
1 0

�
j
�
D 0 for allm, i.e.,

 .u/ D � 
�
u
�
�m �1
1 0

��
D 0 for all m � 1. By Proposition 2.4, we can find m1; : : : ; m`

for a sufficiently large odd ` such that u
�
�m1 �1
1 0

�
� � �
�
�m` �1
1 0

�
D u. So, we get  D 0.

Conversely, suppose that  is zero. Then, as above, we can show that ˇ is a constant.

Now, the boundary functions are completely characterized.

Corollary 2.7. (1) Let U D �nSL2.Z/=L n ¹�º. There is an isomorphism

Bg.�;k/ ' kU :

(2) For every integer Q > 1, the Q-torsion subgroup of Bg.�; R=2�Z/ is equal to
Bg.�; 2�Q

�1Z=2�Z/, which is isomorphic to Bg.�; Z=QZ/ by the map  7!
Q
2�
 .mod Q/.
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Proof. The map  7! ˇjU � ˇ.�/ is an isomorphism. For the second statement, observe
that the Q-torsion subgroup of .R=2�Z/U is just .2�Q�1Z=2�Z/U .

3. Modular partition functions of continued fractions

In this section, we prove the limit joint Gaussian distribution and the residual equidistri-
bution of modular partition functions of b and c over �M;';J . We consider the setting
of Section 1.5. Throughout, we fix a non-empty open interval J � I and a non-trivial
function ' W �nSL2.Z/ ! R�0 unless explicitly mentioned otherwise. Recall that j is
assumed to normalize � . Set

g WD b or c:

We define a map on †M by

r D Œ0Im1; : : : ; m`� 7! r� WD Œ0Im`; : : : ; m1�:

For a function ‰ on I� , we denote the two functions on Q \ I ,

r 7! ‰.r�; � yg.r// and r 7! ‰.r�; � zg.r//;

by the same symbol ‰� according to the choice of g. We define the Dirichlet series asso-
ciated to g as

L‰;J .s;w/ WD
X
n�1

dn.w/
ns

with dn.w/ D
X

r2†n\J

‰�.r/ exp.w � g .r//

for s 2 C, w 2 Cd , and  D . 1; : : : ;  d /. The average of the coefficients dn.w/ can be
studied using the following truncated Perron formula.

Theorem 3.1 (Perron’s formula, Titchmarsh [42, Lemma 3.12]). Suppose an is a
sequence and A.x/ is a non-decreasing function such that janj D O.A.n//. Let F.s/ DP
n�1

an
ns

for � WD <s > �a, the abscissa of absolute convergence of F.s/. Then for all
D > �a and T > 0,X

n�x

an D
1

2�i

Z DCiT

D�iT

F.s/
xs

s
ds CO

�
xDjF j.D/

T

�
CO

�
A.2x/x log x

T

�
CO

�
A.N/min

²
x

T jx �N j
; 1

³�
where jF j.�/ D

P
n�1

janj
n�

for � > �a and N is the nearest integer to x.

In order to shift the contour, we use the following properties of Dirichlet series in
the vertical strip. We say an R-valued function is a g-coboundary over R=2�Z if its
composition with the surjection R! R=2�Z is a g-coboundary.

Proposition 3.2. Let v 2 Rd . There exists 0 < ˛1 � 1=2 such that for any y̨1 with 0 <
y̨1 < ˛1, there exists a neighborhood W of iv in Cd such that:
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(1) If v � 2 Bg.�;R=2�Z/, then L‰;J .2s;w/ has a unique simple pole at s D s.w/ in
the strip j<s � 1j � ˛1 for each w 2 W with the following properties:

(a) s.w/ is analytic in W and s.iv/ D 1.

(b) <s.w/ > 1 � .˛1 � y̨1/.
(c) The Hessian of s.w/ is non-singular at w D iv if and only if  1; : : : ;  d are

R-linearly independent modulo Bg.�;R/.

(d) The residue Ev.w/ at s.w/ is analytic on W with

Ev.iv/ D
eiˇ.�/6jJ j

�2 log 2

Z
.0;1=2/��nSL2.Z/

e�iˇ‰ dm

where ˇ is associated with v � . Here jJ j is the length of J .

(2) If v �  62 Bg.�;R=2�Z/, then L‰;J .2s;w/ is analytic in the strip j<s � 1j � ˛1
for all w 2 W .

(3) For 0 < � < 1=5, there exist 0 < ˛0 � ˛1, 0 < � < 1, and a neighborhood B of 0
in Rd such that for any ‰ 2 C 1.I�/ and all w 2 Cd with <w 2 B , we have

jL‰;J .2s;w/j � max.1; j=sj�/

when j<s � 1j � ˛0 with j=sj � 1=�2 or <s D 1˙ ˛0 with j=sj � 1=�2.

Remark 3.3. Proposition 3.2 is a combination of Lemmas 8 and 9 of Baladi–Vallée [3],
which correspond to the cases (1) d D 1, v D 0 and (2) d D 1, w D iv with v ¤ 0,
respectively. See also Remarks 3.10 and 9.6.

We postpone the proof of Proposition 3.2 to the end of the paper after introducing the
skewed Gauss map and the associated transfer operator on C 1.I�/, and establishing an
explicit relation between the resolvent of the operator and Dirichlet series associated to
the modular partition functions in Sections 5–9.

The following is one of our main results which leads to both the asymptotic Gaussian
behavior and residual equidistribution of the variable g .

Proposition 3.4. Let v 2 Rd . There exist a constant 0 < ı < 2 and a neighborhood W
of iv in Cd such that for ‰ 2 C 1.I�/ and w 2 W ,X

n�M

dn.w/ D RM;v.w/CO.M ı/ (3.1)

where

RM;v.w/ WD

´
Ev.w/
s.w/ M

2s.w/ if v � 2 Bg.�;R=2�Z/;

0 otherwise:

The implicit constant and ı are independent of w.

Proof. Proposition 3.2 enables us to do the contour integration using Cauchy’s residue
theorem

1

2�i

Z
UT .w/

L‰;J .2s;w/
M 2s

2s
d.2s/ D RM;v.w/
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where UT .w/ denotes the rectangle with vertices 1C ˛0C iT , 1� ˛0C iT , 1� ˛0 � iT ,
and 1C ˛0 � iT with positive orientation.

Applying the Perron formula from Theorem 3.1 toL‰;J .2s;w/ for s along the vertical
line 1C ˛0 ˙ iT , we haveX
n�M

dn.w/ D RM;v.w/CO
�
M 2.1C˛0/

T

�
CO.A.M//

CO

�
A.2M/M logM

T

�
CO

�Z 1�˛0CiT

1�˛0�iT

jL‰;J .2s;w/j
M 2.1�˛0/

jsj
ds

�
CO

�Z 1C˛0˙iT

1�˛0˙iT

jL‰;J .2s;w/j
M 2<s

T
ds

�
:

Note that the last two error terms come from the contour integral and each of them cor-
responds to the left vertical line and horizontal lines of the rectangle UT respectively. Let
us write this as X

n�M

dn.w/ D RM;v.w/C IC IIC IIIC IVC V:

We choose y̨0 with 8
59
˛0 < y̨0 < ˛0 and set

T DM 2˛0C4y̨0 :

Notice that Ev.w/=s.w/ is bounded in the neighborhood W since s.iv/ D 1. Then the
error terms are bounded as follows.

The error term I isO.M 2.1�2y̨0// and by Proposition 3.2, the exponent ofM satisfies
2.1 � 2y̨0/ < 2.

Set jxj WDmaxi jxi j for xD<w. Since x � .r/�jxj`.r/ and `.r/� logn for r 2†n,
for some c > 0 we obtain

dn.w/� n1Ccjxj: (3.2)

By (3.2), for any 0 < " < y̨0=2, we can take W from Proposition 3.2 small enough to
have cjxj < "=2 so that A.M/ D O.M 1C"=2/ and logM �M "=2. Hence, the exponent
of M in the error term III is equal to

1C .1C cjxj/C
"

2
� .2˛0 C 4y̨0/ � 2 �

23

4
y̨0 < 2:

Similarly the error term II is O.M 1C"=2/, so the exponent satisfies

1C
"

2
< 1C

1

4
y̨0 < 2:

Also for 0 < � < 1=5, we have jL‰;J .2s;w/j � j=sj� by Proposition 3.2. Hence, the
error term IV is O.M 2.1�˛0/T �/ and the exponent of M is equal to

2.1 � ˛0/C .2˛0 C 4y̨0/� < 2 �
4

5
.2˛0 � y̨0/ < 2:
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The last term V is O.T ��1 �M 2.1C˛0/.logM/�1/, hence the exponent of M satisfies

.2˛0 C 4y̨0/.� � 1/C 2.1C ˛0/ �
"

2
< 2 �

�
�
2

5
˛0 C

59

20
y̨0

�
< 2:

In total, setting

ı D max
�
2 �

23

4
y̨0; 1C

1

4
y̨0; 2 �

4

5
.2˛0 � y̨0/; 2 �

�
�
2

5
˛0 C

59

20
y̨0

��
concludes the proof.

Remark 3.5. For Proposition 3.4, we have used a version of Perron’s formula which is
different from the one used by Baladi–Vallée [3]. The current version directly leads us
to the desired estimate for the moment generating function of spaces smaller than �M ,
namely†M ."/, without using the extra smoothing process of Baladi–Vallée. See Lee–Sun
[23] for the relevant discussion concerning the length of continued fractions.

Observe that by Proposition 3.4 with ‰ � 1 and v D 0,

j�M;J j D E0.0/M 2
CO.M ı/ with E0.0/ D

3jJ j

�2 log 2
: (3.3)

3.1. Joint Gaussian distribution: Proof of Theorem A

In this subsection, we obtain an explicit quasi-power behavior for the moment generating
function of modular partition functions and show the limit joint Gaussian distribution.

Theorem 3.6. There exist a neighborhood W of 0, an analytic function B';J on W , and
a constant 0 < 
 < ˛1 with ˛1 from Proposition 3.2, such that B';J is non-vanishing
on W and

EŒexp.w�g / j �M;';J � D
B';J .w/
B';J .0/

M 2.s.w/�s.0//.1CO.M�
 //

with s.w/ from Proposition 3.2 .1/ with v D 0 and ‰ D 1˝ '. The implicit constant and
the constant 
 are independent of w 2 W .

Proof. Setting B';J .w/ WD E0.w/=s.w/, we obtain the conclusion from Proposition 3.4
with v D 0 and ‰ D 1˝ '.

The following probabilistic result ensures that the asymptotic normality of a sequence
of random vectors comes from the quasi-power behavior of their moment generating func-
tions.

Theorem 3.7 (Heuberger–Kropf [17], Hwang [3]). Suppose that the moment generating
function for a sequence XN of m-dimensional real random vectors on spaces „N has a
quasi-power expression

EŒexp.w�XN / j „N � D exp.ˇNU.w/C V.w//.1CO.��1N //
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with ˇN ; �N !1 as N !1, and U.w/; V .w/ analytic for w D .wi / 2 Cm with jwj
sufficiently small. Assume that the Hessian HU .0/ of U at 0 is non-singular.

(1) The distribution of XN is asymptotically normal with the speed of convergence
O.��1N C ˇ

�1=2
N /. In other words, for any x 2 Rm,

P

�
XN � rU.0/ˇNp

ˇN
� x

ˇ̌̌̌
„N

�
D

1

.2�/m=2
p

det HU .0/

Z
t�x

exp
�
�
1

2
tTHU .0/�1t

�
d tCO

�
1

�N
C

1p
ˇN

�
where t � x means tj � xj for all 1 � j � k and the O-term is uniform in x.

(2) Let m D 1. The moments of XN satisfy

EŒXN j „N � D ˇNU
0.0/C V 0.0/CO.��1N /;

V ŒXN j „N � D ˇNU
00.0/C V 00.0/CO.��1N /;

EŒXkN j „N � D Pk.ˇN /CO.ˇ
k
N �
�1
N /;

for some polynomials Pk of degree at most k � 3.

Proof of Theorem A. Let U.w/ D 2.s.w/ � s.0// and V.w/ D log B';J .w/
B';J .0/

with s and
B';J from Theorem 3.6. By Proposition 3.2 with v D 0, both U and V are independent
of M and analytic for sufficiently small w, the Hessian of U at 0 is equal to the Hessian
of s.w/ at 0, and it is non-singular if and only if  i are R-linearly independent modulo
Bg.�;R/. Letting H be the Hessian ofU , Theorem 3.7 enables us to finish the proof.

3.2. Residual equidistribution: Proof of Theorem B

In this subsection, we give a proof for the residual equidistribution of modular partition
functions. First we need:

Theorem 3.8. Let v 2 Rd and  W �nSL2.Z/! Rd . There exists 
1 > 0 such that

EŒexp.iv � g / j �M;J � D R.v/CO.M�
1/

with

R.v/ D

8<:
P
v expŒi.ˇ.�/ � ˇ.v//�
ŒSL2.Z/ W ��

if v � 2 Bg.�;R=2�Z/;

0 otherwise:

Here in the first case, v � is associated with ˇ.

Proof. Note that if v � 2 Bg.�;R=2�Z/, then by Proposition 3.2 with ‰ � 1,

Ev.iv/ D
3jJ j

P
v expŒi.ˇ.�/ � ˇ.v//�

ŒSL2.Z/ W ���2 log 2
:

Setting R.v/ D Ev.iv/
E0.0/

, by Proposition 3.4 and (3.3) we obtain the statement with 
1 D
2 � ı.
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Proof of Theorem B. Recall that g .r/ 2 Zd as r varies over �M . For g 2 .Z=QZ/d , it
is easy to see that

P Œg � g .mod Q/ j �M;J � D
1

Qd

X
s2.Z=QZ/d

e�
2�i
Q s�g
� E

�
exp

�
2�i

Q
s�g 

� ˇ̌̌̌
�M;J

�
:

We then split the summation into two parts: s D 0 and s ¤ 0. The term corresponding to
s D 0 is the main term which is Q�d . For the sum over s 6D 0, we assert that

2�

Q
s � 62 Bg.�;R=2�Z/: (3.4)

Note that the condition is independent of any choice of a lift of s to Zd . Assume the
contrary of (3.4). Then, by Corollary 2.7 (2) we get 2�

Q
s � 2 Bg.�; 2�Q

�1Z=2�Z/
and hence s � 2 Bg.�;Z=QZ/. This contradicts the condition on  . Hence, from The-
orem 3.8, we obtain

E

�
exp

�
2�is
Q
�g 

� ˇ̌̌̌
�M;J

�
�M�
1 :

This yields the first statement.
For the second one, suppose that  is a g-coboundary over Z=qZ for a prime q jQ,

associated with ˇ. First, we have

P Œg � a .mod q/ j �M;J � D
1

q

X
t2Z=qZ

e�2�iat=qE

�
exp

�
2�i

q
tg 

� ˇ̌̌̌
�M;J

�
:

Note that 2�it
q
 is also a coboundary associated with 2�it

q
ˇ. From Theorem 3.8, the last

expression equals

1

qŒSL2.Z/ W ��

X
t

e�2�iat=q
X

v2�nSL2.Z/

exp
�
2�it

q
.ˇ.�/ � ˇ.v//

�
C o.1/:

This equals caŒSL2.Z/ W ���1 C o.1/ where ca D #¹v j ˇ.v/ � ˇ.�/ � a .mod q/º. On
the other hand,

P Œg � a .mod q/ j �M;J � D
X

g�a.q/
g2Z=QZ

P Œg � g .mod Q/ j �M;J � D
Q

q
�
1

Q
C o.1/

for each a. Hence, caŒSL2.Z/ W ���1 are all q�1. This is possible only when q is a divisor
of ŒSL2.Z/ W ��, which is a contradiction. Hence, we obtain the statement.

3.3. Weak correlation between Archimedean and residual distributions

In this subsection, we show that the Gaussian distribution and residual distribution of
modular partition functions are weakly correlated, i.e., non-correlated asymptotically.
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Let  W �nSL2.Z/! Z and Q > 1 be an integer. For a g 2 Z=QZ, let �gM;J be the
probability space ¹r 2 �M;J j g .r/ � g .mod Q/º with the uniform density. Let g be
the normalization of g , i.e.,

g WD
g � � logMp

C logM

where � and C are given in Theorem A. The following result shows that the two
distributions of g on �M;J are asymptotically non-correlated for a residual non-
coboundary  :

Theorem 3.9. Assume that  .mod q/ 62 Bq.�;Z=qZ/ for each prime q j Q. For each
x 2 R, as M !1,

(1) P Œg � x j �
g
M;J � D P Œg � x j �M;J �C o.1/;

(2) P Œg �x; g �g .mod Q/ j�M;J �DP Œg �x j�M;J � �P Œg �g .mod Q/ j�M;J �
C o.1/:

Proof. For (1), it suffices to show that there exists 
2 > 0 such that for all w 2 C suffi-
ciently close to 0, EŒexp.wg / j �

g
M;J � D EŒexp.wg / j �M;J �CO.M

�
2/: Set

R.w/ WD
X

r2�
g
M;J

exp.wg .r//:

Note that R.w/=R.0/ D EŒexp.wg / j �
g
M;J � by definition.

Using the orthogonality of the additive character t 7! exp.2�it=Q/, we have

R.w/ D
1

Q

X
t2Z=QZ

e�
2�i
Q tg

X
r2�M;J

exp
��

2�i

Q
t C w

�
g .r/

�
:

Split the sum over t into two parts, t D 0 and t 6� 0 .mod Q/. As in the proof of The-
orem B, from t 6� 0 .mod Q/ and the hypothesis on  , we get 2�t

Q
 62 Bg.�;R=2�Z/.

Since w is near 0, from Proposition 3.4, for some 0 < ı < 2, we find thatX
r2�M;J

exp
��

2�t

Q
i C w

�
g .r/

�
D O.M ı/ if t 6� 0 .mod Q/:

In sum, R.w/ D 1
Q

P
r2�M;J

exp.wg .r//CO.M
ı/, and hence

R.w/

R.0/
D EŒexp.wg / j �M;J �CO

�
M ı

j�M;J j

�
:

Since j�M;J j �M 2 by (3.3), we obtain the statement with 
2 D 2 � ı.
For (2), a simple calculation gives

P Œg � x; g � g .mod Q/ j �M;J � D P Œg � x j �
g
M;J � �

j�
g
M;J j

j�M;J j
:

Using (1), we conclude the proof.
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In particular, we obtain the weak correlation for Archimedean and residual distribu-
tions of the length of continued fractions for �M;J .

Remark 3.10. Two special cases of Proposition 3.4, namely (1) any w near v D 0 in
Section 3.1 and (2) w D iv with v ¤ 0 in Section 3.2, are sufficient for our main ends of
the present paper. Nevertheless, we still need the luxury of generality (any w near iv) as
it is indispensable for the proof of Theorem 3.9.

4. Distribution of modular symbols

In this section, we show that modular symbols are non-degenerate specializations of mod-
ular partition functions in both zero and positive characteristics. Using this, we deduce
distribution results for modular symbols from those for modular partition functions.

4.1. Involution on de Rham cohomology

Let H WD ¹z 2 C j =z > 0º be the upper-half plane, P1.Q/ WD Q [ ¹1º, and H� WD
H [ P1.Q/. Let � be a congruence subgroup of SL2.Z/ and X� WD �nH� the corres-
ponding modular curve. For two cusps r; s in P1.Q/, we write ¹r; sº� for the relative
homology class corresponding to the projection to X� of the geodesic on H� connecting
r to s. For � D �1.N /, set ¹r; sºN WD ¹r; sº�1.N/.

LetH 1
dR.X�/ denote the first de Rham cohomology of X� . We define an operator � on


 2 SL2.Z/ and z 2 H� by


 � WD j
 j 2 SL2.Z/ and z� WD �z 2 H�:

As � is assumed to be normalized by j (e.g. � D �1.N /), the action of � yields a well-
defined involution on X� . Let S2.�/ be the space of cuspforms of weight 2 for � . The
involution � then acts onH 1

dR.X�/' S2.�/˚ S2.�/ by interchanging S2.�/ and S2.�/.
Moreover, � is normal with respect to the cap product

\ W H1.X� ;Z/ �H
1
dR.X�/! C; .�; !/ 7! � \ ! D

Z
�

!: (4.1)

The cap product can be interpreted as follows. For f 2 S2.�/, g 2 S2.�/, and ¹r; sº� 2
H1.X� ;Q/, set

h¹r; sº� ; .f; g/i D

Z s

r

f .z/ dz C

Z s

r

g.z/ dz�: (4.2)

Then it is known that the pairing h� ; �i is non-degenerate (see Merel [30]). Note that the
modular symbol m˙

f
.r/ can be understood as the above pairing (4.2) between a relative

homology class ¹r; i1ºN and the de Rham cohomology class .f;�f �/, respectively.
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4.2. Optimal periods

We discuss some preliminary results to study the residual distribution of modular symbols.
Let f be a newform of level N and weight 2. Let m be a maximal ideal of the Hecke

algebra TN such that the characteristic of TN =m is p and corresponds to f . There exists
a Galois representation �m W Gal.Q=Q/! GL2.TN =m/.

Let C1.N / be the set of cusps on X1.N /. Consider the .X1.N /; C1.N //-relative
homology sequence

0! H1.X1.N /;Z/! H1.X1.N /; C1.N /;Z/! H0.C1.N /;Z/! Z! 0: (4.3)

For a prime q with q � 1 .mod Np/, let Dq D Tq � qhqi � 1. It was observed by
Greenberg–Stevens [14] that the operator Dq annihilates H0.C1.N /; Z/ in (4.3). Let
TN;m denote the completion of the Hecke algebra TN at m. Since Dq is a unit
in TN;m if �m is irreducible, we conclude that H1.X1.N /; Z/m is isomorphic to
H1.X1.N /; C1.N /;Z/m. For a Zp-algebra R with the trivial action of TN , we have a
perfect pairing

H1.X1.N /;R/m �H
1.�1.N /;R/m ! R: (4.4)

When R is given by C, the pairing is realized as the Poincaré pairing under the isomorph-
ism Cp ' C.

Let O be an integral extension of Zp including the Fourier coefficients of f . Assume
thatN � 3, p − 2N , and �m is irreducible. Then there is a Hecke equivariant isomorphism

ı˙ W S2.�1.N /;O/m Š H 1.�1.N /;O/
˙
m : (4.5)

It is the isomorphism mentioned in Vatsal [43].
Let!f 2H1.�1.N /;C/ be the cohomology class corresponding to 2�if .z/dz. Using

the isomorphism (4.5) and the theorem of strong multiplicity 1, the periods�˙
f
2 Cp can

be chosen (see Vatsal [43]) so that

�˙f ı
˙.f / D !f ˙ !

�
f : (4.6)

It is known that for a newform fE corresponding to an elliptic curveE over Q, the periods
�˙
fE

can be chosen as the Néron periods �˙E of E.

4.3. Modular symbol as a modular partition function: Manin’s trick

We describe how the statistics of continued fractions enters our discussion on the distri-
bution of modular symbols.

Let f be a newform for �0.N / of weight 2, i.e., a cuspform for �1.N / with the trivial
Nebentypus. Manin [25] noticed that the period integral can be written asZ r

0

f .z/ dz D
X̀
iD1

Z Pi=Qi

Pi�1=Qi�1

f .z/ dz D �
X̀
iD1

Z zgi .r/�1
zgi .r/�0

f .z/ dz
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with zgi .r/ D
�
Pi�1 �Pi
Qi�1 �Qi

�
if detgi .r/ D �1. Setting gi D gi .r/, we also getZ �r

0

f .z/ dz D
X̀
iD1

Z �Pi=Qi
�Pi�1=Qi�1

f .z/ dz D �
X̀
iD1

Z jzgi j�1

jzgi j�0
f .z/ dz:

For u 2 �0.N /nSL2.Z/, define

 ˙f .u/ WD
1

�˙
f

�Z u�1

u�0

f .z/ dz ˙

Z juj�1

juj�0
f .z/ dz

�
2 Qf :

By the definition of c �
f

, the modular symbols are expressed as

m�f .r/ D �c �
f
.r/: (4.7)

We observe that  ˙
f
.uj/ D ˙ ˙

f
.ju/. Hence, we also get  C

f
.� zgi / D  

C

f
.� ygi / and

mC
f
.r/ D

2L.1; f /

�C
f

� b
 
C

f

.r/: (4.8)

Let us use the optimal periods of Section 4.2 with the same notation �˙
f

when we
study the residual equidistribution of modular symbols. By the previous discussion, one
obtains m˙

f
.r/ 2 O for each r . We define �˙

f
W �1.N /nSL2.Z/! O by

�˙f .u/ WD ¹u � 0; u � 1ºN \ ı
˙.f /:

Note that

mC
f
.r/ D

2L.1; f /

�C
f

� b
�
C

f

.r/ and m�f .r/ D �c��
f
.r/: (4.9)

Remark 4.1. The representation (4.7) is no longer true for ygi .r/. In fact,Z ygi .r/�1
ygi .r/�0

f .z/ dz D �

Z ˙Pi=Qi
˙Pi�1=Qi�1

f .z/ dz

as ygi D
�
˙Pi�1 ˙Pi
Qi�1 Qi

�
for detgi .r/ D ˙1 and henceZ r

0

f .z/ dz �

Z �r
0

f .z/ dz D
X̀
iD1

.�1/i �f .� ygi /;

which is not equal to b �
f
.r/ in general.

Remark 4.2. As far as we understand, Manin–Marcolli seemed to assert that the modular
symbols are expressible in terms of b

 ˙
f

. As discussed in Remark 4.1, it is doubtful that

there is such an expression for  �
f

. A relevant mistake is that they regarded gj .r/ as
an element of PSL2.Z/, which is not the case if det gj .r/ D �1 (see Manin–Marcolli
[26, p. 6, line 12]).
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4.4. Gaussian distribution: Proof of Theorem C

In this subsection, we prove the limit Gaussian distribution of modular symbols m˙
f

on
�M;';J .

Proposition 4.3. For any non-trivial f 2 S2.�0.N //, the function  C
f
. �
f

, resp./ is not
a b-coboundary .c-coboundary, resp./ over R.

Proof. First assume that  �
f

is a c-coboundary over R, so there exists ˇ 2 Rh�i such that
 �
f
.u/ C  �

f
.u
�
�m 1
1 0

�
j/ D ˇ.u/ � ˇ.u

�
�m 1
1 0

��
�n 1
1 0

�
/ for all u and m; n 2 Z. Taking

m D n D 0, we get  �
f
.u/ D � �

f
.u�/ for each u and � D

�
0 �1
1 0

�
. Furthermore, we

have u� � 1 D �u � 0 and u� � 0 D �u � 1. Hence,  �
f
.u�/ D  �

f
.u/. In sum, 2 �

f
is

the zero function. On the other hand, Manin’s trick implies that the set of Manin symbols
¹u � 0;u � 1º�0.N/ for u 2 �0.N /nSL2.Z/ generates the first homology group of X0.N /.
Since the pairing (4.1) is non-degenerate, we conclude that  ˙

f
are not trivially zero as

long as f is non-trivial. This is a contradiction and hence  �
f

is not a c-coboundary.
Assume that  C

f
is a b-coboundary over R, i.e.,  C

f
.u/ D ˇ.u/ � ˇ.u �

�
�m 1
1 0

�
/ for

all m and u. Let h W �0.N /! H1.X0.N /;Z/ by given by h.
/ WD ¹0; 
 � 0º�0.N/. Let

 2 �0.N /. Note that ¹0; 
 � 0º�0.N/ D ¹1; 
 � 1º�0.N/. Since

�
1 m
0 1

�
2 �0.N / for each

m 2 Z, we get

¹1; 
 � 1º�0.N/ D
®�
1 m
0 1

�
� 1;

�
1 m
0 1

�

 � 1

¯
�0.N/

D
®
1;

�
1 m
0 1

�

 � 1

¯
�0.N/

:

Therefore we have h.
/ D
®
0;
�
1 m
0 1

�

 � 0

¯
�0.N/

D h
��
1 m
0 1

�


�

for eachm 2 Z and hence
may assume that 0 < 
 � 0 < 1. Let 
 � 0 D Œ0Im1; : : : ; m`� and gi D gi .
 � 0/. Note that
gi
�
�mi 1
1 0

�
D gi�1 with g0 D I . Then

h.
/ \ .!f C !
�
f / D

Z 
 �0

0

f .z/ dz C

Z �
 �0
0

f .z/ dz D
X̀
iD1

 C
f
.�0.N /ygi /

D

X̀
iD1

�
ˇ.�0.N / � gi / � ˇ

�
�0.N / � gi

�
�mi 1
1 0

���
D ˇ.�0.N /yg`/ � ˇ.�0.N //:

Observe that  C
f
.u/ D  C

f
.�u/ and  C

f
.ju/ D  C

f
.uj/ for all u. By Proposition

2.5 (2), we know ˇ.ju/ D ˇ.uj/ for all u. In particular, ˇ.�0.N /yg`/ D ˇ.�0.N /zg`/.
Note that 
 � 0 D zg` � 0, i.e., zg` 2 
L. Since ˇ is L-invariant, we get ˇ.�0.N /zg`/ D
ˇ.�0.N /
/ D ˇ.�0.N //. In sum, h.
/ \ .!f C !�f / D 0 for all 
 2 �0.N /. Since it is
well-known that h is surjective, we conclude from the non-degeneracy of the pairing (4.1)
that f D 0, which is a contradiction.

Proof of Theorem C. By the expressions (4.7) and (4.8), the distribution of modular sym-
bols follows the ones of the modular partition functions b

 
C

f

and c �
f

. Now Theorem C
follows from Theorem A and Proposition 4.3.
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4.5. Residual distribution: Proofs of Theorems E and D

In this subsection, we establish the residual equidistribution of the integral random vari-
able m˙E on �M;';J and non-vanishing of special L-values.

First, we need the following:

Proposition 4.4. Let $ be a uniformizer of O. Assume that N � 3, p − 2N , and �m

is irreducible. Let f 6� 0 .mod $/. Then �C
f
.mod $/ .��

f
.mod $/, resp./ is not a b-

coboundary .c-coboundary, resp./ over O=.$/.

Proof. First assume that ��
f
.mod $/ with ��

f
.u/ D ¹u � 0; u � i1ºN \ ı

˙.f / is a c-
coboundary over O=.$/. As in the proof of Proposition 4.3, for each u, we get ��

f
.u/ D

���
f
.u�/ with the action of � on ı˙.f /. Moreover, we have ��

f
.u�/ D ��

f
.u/ using the

action of � on 0 and i1. In sum, we get 2��
f
� 0 .mod $/. On the other hand, the Manin

symbols generate the first homology group of X1.N /. Therefore due to the perfectness
of the pairing (4.4), the congruence ��

f
� 0 .mod $/ implies that ı�.f / � 0 .mod �/.

However, this is forbidden by the hypothesis using (4.5), and we conclude that ��
f

is not
a c-coboundary over O=.$/.

Assume that �C
f
.mod $/ is a b-coboundary over O=.$/, i.e., there exists a function

ˇ 2 .O=.$//h�1.N/i such that �C
f
.u/ � ˇ.u/ � ˇ.u �

�
�m 1
1 0

�
/ .mod $/ for all m and

u 2 �1.N /nSL2.Z/. Set k.
/ WD ¹1; 
 � 1ºN \ ıC.f / 2 O for 
 2 �1.N /. As in
the previous proof, from the observation that �C

f
.u/ D �C

f
.�u/ and �C

f
.ju/ D �C

f
.uj/ for

all u, we conclude that k.
/ � 0 .mod $/ for all 
 2 �1.N /. Using the non-degeneracy
of the pairing (4.4) and the isomorphism (4.6), we obtain f � 0 .mod $/, which is a
contradiction. This finishes the proof.

Proof of Theorem E. By the expressions (4.9), the residual distribution of modular sym-
bols follows the ones of the modular partition functions b

�
C

f

and c��
f

. Now Theorem E

follows from Theorem B and Proposition 4.4.

Proof of Theorem D. Let c < 1�
q
1 � 6

�2
.1 � 1

p
/. Let 2.Z=nZ/�

˙
be the set of Dirichlet

characters modulo n that are even or odd according to the parity˙. Set

T˙M WD ¹1 < n �M j 9� 2
2.Z=nZ/�˙; ƒE .�/ 6� 0 .mod p1Cvp.�.n///º:

The statement follows once we verify that #T˙M � cM for all sufficiently largeM . Assume
the contrary, i.e., #T˙M < cM for infinitely many M . Then for each n 62 T˙M with 1 <
n �M and m 2 .Z=nZ/�, we obtainX

�21.Z=nZ/�
˙

�.m/ƒE .�/ � 0 .mod p1Cvp.�.n///:

Then for all r 2 †n with n 62 T˙M , we obtain m˙E .r/ � 0 .mod p/. Hence,X
1<n�M

n62T˙
M

�.n/ <
1

p

X
1<n�M

�.n/; i.e.,
X
n2T˙

M

�.n/ >

�
1 �

1

p

� X
1<n�M

�.n/:
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Since #T˙M < cM , the LHS is smaller than or equal toX
M�cM<n�M

n �
1

2
.1 � .1 � c/2/M 2:

Note that limM!1 1
M2

P
n�M �.n/ D 3

�2
. Hence, .1 � c/2 � 1 � 6

�2
.1 � 1

p
/, contra-

dicting the choice of c.

Remark 4.5. It seems that it is currently not doable to deduce an estimate on

#
[

n�M;p−�.n/

¹� 2 2.Z=nZ/� j ƒE .�/ 6� 0 .mod p/; �.�1/ D ˙1º

from the previous proof or a similar argument since the set ¹n�M j p − �.n/º is too thin
as its size is asymptotic to M.logM/�1=.p�1/ (see Spearman–Williams [39]).

Remark 4.6. It is worth mentioning previous research on residual non-vanishing of
L-values. The ergodic approach to Dirichlet L-values has been extensively generalized
to the study of anti-cyclotomic twists (for example, see Hida [18], Burungale–Hida [8],
and Vatsal [44]). Meanwhile, until now, there has been no notable analogous progress for
modular L-values with cyclotomic or Dirichlet twists except a few cases. The first non-
vanishing result goes back to Ash–Stevens [1] and Stevens [40] for a large class of char-
acters. Kim–Sun [21] recently obtained a non-vanishing result for a positive proportion
of characters � of `-power conductors with a prime ` ¤ p. However, all of these results
are based on the classical arguments and their improvements. It is also worth mentioning
another ergodic approach to DirichletL-values proposed recently by Lee–Palvannan [22].

Using Theorem 3.9, we present an answer to Mazur’s question on weak correlation
between Archimedean and residual distributions of modular symbols:

Theorem 4.7. Assume that �E;p is irreducible and p − NE . For x 2 R and a 2 Z=peZ,
as M !1, we get

P Œm˙E � x; m˙E � a .mod pe/ j �M;J �

D P Œm˙E � x j �M;J � � P Œm
˙
E � a .mod pe/ j �M;J �C o.1/:

5. Skewed Gauss dynamical systems

The remaining part of this paper will be devoted to explaining in detail how Proposi-
tion 3.2 can be obtained. We first present an underlying dynamical description for modular
partition functions motivated by the work of Baladi–Vallée [3].

5.1. Skewed Gauss map

Recall that the skewed Gauss map T on I � �nGL2.Z/ is given by

T.x; v/ D
�
T .x/; v

�
�m1.x/ 1
1 0

��
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and the skewed Gauss map yT on I� D I � �nSL2.Z/ is given by

yT.x; v/ D
�
T .x/; v �

�
�m1.x/ 1
1 0

��
:

Let Kı.m1; : : : ; m`/ be the open fundamental interval associated with the digits mi ,
in other words,

Kı.m1; : : : ; m`/ WD ¹Œ0Im1; : : : ; m` C x� j 0 < x < 1º:

An easy observation is that

yT`.Kı.m1; : : : ; m`/ � ¹vº/ D .0; 1/ �
®
v �
�
�m1 1
1 0

��
�m2 1
1 0

�
� � �
�
�m` 1
1 0

�¯
: (5.1)

It can be easily seen that T and yT are measure-preserving and in fact ergodic with
respect to the product measure of the Gauss measure and the counting measure on the
skewed Gauss dynamical systems .I � �nGL2.Z/; T/ and .I� ; yT/, respectively. How-
ever, measure-theoretic properties will not be investigated in this paper as we restrict our
attention to topological properties.

For a dynamical system .X; f /, the map f is called topologically transitive if for
any non-empty open subsets U and V in X , there exists a positive integer L such that
f L.U /\ V ¤¿; and topologically mixing if f n.U /\ V ¤¿ for all n � L. Notice that
if f is topologically mixing, then it is topologically transitive.

Proposition 5.1. (1) The map yT on I� is topologically mixing.

(2) For any sequence .xn; vn/ in I� , the set
S
n�1
yT�n.xn; vn/ is dense in I� .

Proof. (1) Take any non-empty open sets U and V in I� . One can assume that U is
of the form .a; b/ � ¹uº for some 0 < a < b < 1 and u 2 �nSL2.Z/. Since the Gauss
map T has the strong Markov property, i.e., T .Œ 1

mC1
; 1
m
// D Œ0; 1/ for all m � 1, we

have T n.a; b/ D I for all sufficiently large n. Once we have the full image on the first
coordinate, we obtain all the elements in the skewed component at all sufficiently many
iterations as well using Proposition 2.4. Hence we conclude that yTn.U / \ V D I� \ V
¤ ¿ for all sufficiently large n.

(2) Let V be an open subset of I� . We may assume V D Kı.a1; : : : ; ak/ � ¹uº. By
Proposition 2.4, there exists L � 1 such that for all ` � L,

u �
�
�a1 1
1 0

�
� � �
�
�ak 1
1 0

�
�
�
�m1 1
1 0

�
� � �
�
�m` 1
1 0

�
D vn

for somem1; : : : ;m`. Then, by (5.1), we have .xn; vn/ 2 yTn.V / when n� kCL. Hence,
we get the second statement.

Remark 5.2. In a similar way, one can show that T is also transitive. However, it is easy
to see that T is not topologically mixing for any subgroup � of SL2.Z/.

5.2. Inverse branches

Let Q be the set of inverse branches of T, that is,

Q WD ¹qm j m 2 Z�1º
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where an inverse branch qm W I � �nGL2.Z/! I � �nGL2.Z/ is given by

qm.x; v/ D
�

1

mC x
; v

�
0 1

1 m

��
: (5.2)

Let F � Q be the final set that consists of the branches corresponding to the final digits of
continued fractions. In other words,

F WD ¹qm j m � 2º:

5.2.1. Basic setting. For n � 1, denote by Qın the set of inverse branches of the n-th
iterate Tn,

Qın WD Q ı � � � ıQ D ¹qmn ı qmn�1 ı � � � ı qm1 j m1; : : : ; mn � 1º

and Qı0 WD ¹idI� º. Also, set
Q1 WD

[
n�0

Qın:

The index n is called the depth of inverse branches. For an inverse branch qD qmn ı � � � ı
qm2 ı qm1 of depth n and i � n, define the i -th part q.i/ of q to be

q.i/ WD qmi ı � � � ı qm2 ı qm1 D Tn�i ı q 2 Qıi :

For a branch q.x; u/ D .y.x/; ug/, let �iq be the i -th component of q, i.e.,

�1q.x; u/ WD y.x/ and �2q.x; u/ WD ug:

5.2.2. Definitions for b and c. Let q 2 Q1 be given by q.x; u/ D .y.x/; ug/ for some
y.x/ and g 2 GL2.Z/. Then for v 2 �nSL2.Z/, define

yq.x; v/ WD .y.x/; vyg/ D .y.x/; v � g/:

These functions constitute the set of inverse branches of yT, denoted by yQ. We also set

zq.x; v/ WD .y.x/; vzg/:

It can be easily checked from the action of GL2.Z/ on �nSL2.Z/ that for all p;q 2 Q1,

bp ı q D yp ı yq and yq.i/ Dbq.i/ D yTn�i ı yq: (5.3)

For q 2 Q ıQ, the map �2q is now just the right action of SL2.Z/ by the relation (2.3).
Therefore, if q is of even depth, then yq D zq D qjI� and for all p 2 Q1 we obtain

ep ı q D zp ı zq: (5.4)

In particular, for q 2 Qı2n and 1 � i � n,

zq.2i/ D eq.2i/ D .yT2/n�i ı zq and Bq.2i�1/ D zT ı .yT2/n�i ı zq:
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5.2.3. Specialization. It can be easily seen that there is a one-to-one correspondence
between Q \ .0; 1/ and F ıQ1 given by

r D Œ0Im1; : : : ; m`� 7! qr WD qm` ı � � � ı qm1

with m1; : : : ; m`�1 � 1 and m` � 2.

Proposition 5.3. For each r 2 Q \ .0; 1/,

qr .0; �/ D .r�; �g.r//; yqr .0; �/ D .r�; � yg.r//; zqr .0; �/ D .r�; � zg.r//: (5.5)

Proof. We get �2q.i/r .�/ D �gi .r/ from the expression

qmn ı qmn�1 ı � � � ı qm1.0; �/ D
�
Qn�1

Qn
; �g.Œ0Im1; : : : ; mn�/

�
where Pn=Qn D Œ0Im1; : : : ; mn� and Qn�1=Qn D Œ0Imn; mn�1; : : : ; m1�. This finishes
the proof.

5.3. Branch analogues of modular partition functions

In this section, we introduce the branch versions of modular partition functions, which
liaise between the Dirichlet series and the corresponding transfer operators in Section 6.

For a function ' on �nGL2.Z/, let us abuse the notation a' to define a branch ana-
logue of a'.r/ in an inductive way by a'.q/ WD a'.q.n�1//C ' ı �2q for each q 2 Qın,
n � 1, and a'.idI� / WD 0. Similarly, we define

b .q/ WD b .q.n�1//C y ı �2q;

c .q/ WD c .q.n�1//C z ı �2q

for q2Qın, n� 1, and a function on �nSL2.Z/. We also set b .idI� /D c .idI� /D 0.

Proposition 5.4. For r 2 Q \ .0; 1/, we have a'.r/ D a'.qr /.0; �/, b .r/ D

b .qr /.0; �/, and c .r/ D c .qr /.0; �/.

Proof. It is immediate from the definitions that a'.q/ D
Pn
iD1 ' ı �2q.i/, b .q/ DPn

iD1
y ı �2q.i/, and c .q/ D

Pn
iD1
z ı �2q.i/ for q 2 Qın. From (2.4) and (5.5), we

obtain the statement.

Remark 5.5. Since q 2 Q1 is completely determined by �1q, the value b .q/ also
depends on yq. In fact, one can define yq.i/ as a product of yqm’s and hence define b.yq/
analogously. Since GŒ�2q.i/.v/� D Gu is equivalent to �2bq.i/.v/ 2 u, one can conclude
that b .q/ D b .yq/.

Remark 5.6. One may want to define zq.i/ as a product of zqm’s and hence to define c.zq/
analogously. However, due to the absence of an analogue of (5.3), the i -th part zq.i/ is not

equal to eq.i/ in general. Instead, using (5.4), we can give a new definition for c.zq/, which
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is equal to c.q/. Since the variable c.q/ is enough for our discussion, we are not going to
pursue this direction. Note that c .q/ is also completely determined by zq. Hence, we also
set c .zq/ WD c .q/ for q 2 Q1.

6. Transfer operators

The transfer operator is one of the main tools for studying the statistical properties of
trajectories of a dynamical system. Ruelle [35] first made a deep observation that the
behavior of trajectories of dynamics can be well explained by the spectral properties of
the transfer operator. In this section, we define weighted transfer operators corresponding
to modular partition functions and several miscellaneous operators necessary to obtain the
desired relations between Dirichlet series and operators.

We use the notation

h�i WD �nGL2.Z/ or �nSL2.Z/;

according to the symbol a, b, or c under discussion. We also set

X D X� WD I � h�i:

For a set A, let Ah�i be the set of all maps from h�i to A. For a  2 Ch�i, we set

 D �C i� for �; � 2 Rh�i:

6.1. Branch operators

In order to represent Dirichlet series, we first obtain expressions for the iterations of the
transfer operator by studying a component of the operator, which corresponds to the con-
tinued fraction expansion of a rational number in .0; 1/.

For s 2 C and  2 Ch�i, the branch operators for g are defined by

B
q
s; ‰ WD expŒa .q/�j@�1qjs‰ ı q;
yB

q
s; ‰ WD expŒb .q/�j@�1qjs‰ ı yq;
zB

q
s; ‰ WD expŒc .q/�j@�1qjs‰ ı zq

for q 2 Q1 and ‰ 2 L1.X/. Here @�1q is the derivative of the first component of q. We
have a multiplicative property:

Proposition 6.1. (1) For p1; : : : ;pn 2 Q1 and q D pn ı � � � ı p2 ı p1, we have

B
q
s; D B

p1
s; ı � � � ıB

pn
s; and yB

q
s; D

yB
p1
s; ı � � � ı

yB
pn
s; :

(2) For p;q 2 Q1 with q of even depth, we have

zB
qıp
s; D

zB
p
s; ı

zB
q
s; :
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In particular, for qD pn ı pn�1 ı � � � ı p1 with pi 2Q1 of even depth for 1� i � n� 1
and pn 2 Q tQı2, we have

zB
q
s; D

zB
p1
s; ı � � � ı

zB
pn
s; :

Proof. For the first statement it suffices to show that B
p
s; ı B

q
s; ‰ D B

qıp
s; ‰ for all

p; q 2 Q1. This is just a consequence of the identity a .p/C  ı �2q ı p D a .q ı p/
and the chain rule. Similarly, we obtain the statements for b and c from (5.3) and (5.4).

From Proposition 5.4, we obtain the relation between a term in a Dirichlet series and
an evaluation of a branch operator, both of which correspond to a rational number:

Corollary 6.2. For r 2 Q \ .0; 1/, we have

B
qr
s; ‰.0; �/ D expŒa .r/�Q.r/�2s‰.r�; �g.r//;

yB
qr
s; ˆ.0; �/ D expŒb .r/�Q.r/�2sˆ.r�; � yg.r//;

zB
qr
s; ˆ.0; �/ D expŒc .r/�Q.r/�2sˆ.r�; � zg.r//:

For later use, we also record:

Proposition 6.3. Setting y‡s; .x; v/ WD s log jxj C  .v/, for q 2 Qın we have

yB
q
s; ‰ D

yB
q
1;0

h
exp

�n�1X
iD0

‡2s�2; ı yTi
�
‰
i
:

Setting z‡s; .x; v/ WD s log jxj C  .v/C  .�2zT.x; v//, for q 2 Qı2n we have

zB
q
s; ‰ D

zB
q
1;0

h
exp

�n�1X
iD0

z‡2s�2; ı T2i
�
‰
i
:

Proof. The first statement follows from the chain rule and the expression b .q/ DPn�1
iD0  ı �2.

yTi ı yq/ for q 2 Qın. The second one follows from

c .q/ D
2nX
iD1

 ı �2
eq.i/ D

n�1X
iD0

. C  ı �2zT/ ı .T2i ı yq/

for q 2 Qı2n.

6.2. Transfer operators

In this section, to put more emphasis on iterations, we express transfer operators in terms
of branch operators rather than, as in traditional interpretations, the so-called density
transformers associated to dynamical systems.

For s 2 C and  2 Ch�i, the transfer operator for the variable a can be written as
Ls; D

P
q2Q B

q
s; : It is a weighted transfer operator associated to the skewed Gauss
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map T. Using (5.2), we can rewrite the operator in a more explicit way as

Ls; ‰.x; v/ D
X
m�1

exp
�
 
�
v
�
0 1
1 m

���
.mC x/2s

‰

�
1

mC x
; v

�
0 1

1 m

��
for ‰ 2 L1.X/. It can be easily observed that this series converges absolutely for
<s > 1=2. The transfer operator for the variable b is defined as

yLs; WD

X
q2Q

yB
q
s; :

It is a weighted transfer operator associated to yT, which can be written as

yLs; ‰.x; v/ D
X
m�1

exp
�
y 
�
v
�
0 1
1 m

���
.mC x/2s

‰

�
1

mC x
; v �

�
0 1

1 m

��
:

Our discussions in Sections 5.2 and 6.1, especially the expression (5.4) and Proposi-
tion 6.1, lead us to define

Ms; WD

X
p2QıQ

zB
p
s; :

It is a weighted transfer operator associated to yT2 D zT2 which equals the restriction of T2

to I� . Explicitly, we have

Ms; ˆ.x; v/

D

X
m;n�1

exp
�
 
�
v
�
0 1
1 m

�
j
�
C  

�
v
�
1 n
m 1Cmn

���
.1CmnCmx/s

ˆ

�
1

nC 1
mCx

; v

�
1 n

m 1Cmn

��
:

It can also be easily checked that the series converges absolutely for <s > 1=2.

Remark 6.4. For the variable c, one may want to define the transfer operator for c such
that zLs; WD

P
q2Q
zB

q
s; : However, due to the absence of a c-analogue of (5.3), it seems

unlikely that Lc
‰;J .s;  / is expressible in terms of zLs; .

Remark 6.5. Note that Ms; is not equal to zL2
s; , but we have Ms;0 D yL

2
s;0.

6.3. Final operators

The final operator for a is defined as

Fs; WD
X
q2F

B
q
s; :

We can also define the final operator for b by

yFs; WD
X
q2F

yB
q
s; 
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and the final operator for c by

zFs; WD
X

p2.FıQ/tF

zB
p
s; :

6.4. Interval and auxiliary operators

To deal with distributions over intervals, we need an operator, called an interval operator,
which corresponds to most of rational numbers in the interval; to deal with the missing
rational points avoided by the interval operator, we devise an auxiliary operator.

We first give a preliminary result on structures of intervals. Recall that

Kı.m1; : : : ; mn/ D ¹Œ0Im1; : : : ; mn C x� j 0 < x < 1º:

Observe that

Kı.m1; : : : ; mn/ D

1G
kD1

Kı.m1; : : : ; mn; k/ t ¹Œ0Im1; : : : ; mn; k� j k > 1º: (6.1)

For an integer n � 1, we define a collection A0n of open fundamental intervals inductively
as follows:

(1) Let A01 be the collection of (consecutive) open fundamental intervals of depth 1 that
are included in J .

(2) Suppose A0j has been defined for 1 � j � n. Then A0nC1 is the collection of open
fundamental intervals of depth nC 1 that are included in J n

Sn
jD1

S
K2A0

j
K.

Obviously A0n ¤ ¿ for some n.
The following is useful when we discuss the convergence of interval and auxiliary

operators.

Proposition 6.6. Let J D .a; b/ � .0; 1/. Let a D Œ0Iu1; u2; : : : � and b D Œ0I v1; v2; : : : �
be the .possibly finite/ continued fraction expansions. When n is even,

A0n � ¹K
ı.u1; : : : ; un�1; k/ j k � un C 1º [ ¹K

ı.v1; : : : ; vn�1; k/ j 1 � k � vnº:

When n is odd,

A0n � ¹K
ı.u1; : : : ; un�1; k/ j 1 � k � unº [ ¹K

ı.v1; : : : ; vn�1; k/ j k � vn C 1º:

Proof. Suppose that c 2 .0; 1/ has a (possibly finite) continued fraction expansion c D
Œ0Im1; m2; : : : � and let Pn=Qn be the n-th convergent of c. It is well-known that for any
n;m � 1 we have P2n=Q2n � c � P2m�1=Q2m�1:

Let n > 1 be an even integer. The leftmost open fundamental intervals of depths n� 1
and n that are included in an interval .c; 1/ are respectively

Kı.m1; : : : ; mn�1/ and Kı.m1; : : : ; mn�1; mn C 1/:

Note that the left end points of these intervals arePn�1=Qn�1 and PnCPn�1
QnCQn�1

, respectively.
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Then it can be easily seen that the open fundamental intervals of depth n that are included
in an interval .c; Pn�1=Qn�1/ are Kı.m1; : : : ; mn�1; k/ for k � mn C 1:

The rightmost open fundamental intervals of depths n � 1 and n that are included in
an interval .0; c/ are respectively

Kı.m1; : : : ; mn�2; mn�1 C 1/ and Kı.m1; : : : ; mn/:

Note that the right end points of these intervals are Pn�1CPn�2
Qn�1CQn�2

and Pn=Qn, respect-
ively. Then the open fundamental intervals of depth n that are included in an interval
. Pn�1CPn�2
Qn�1CQn�2

; c/ areKı.m1; : : : ;mn�1; k/ for 1 � k �mn: In sum, we obtain the desired
statements.

The arguments for odd n are similar.

For an open fundamental interval K D Kı.m1; : : : ; mn/, we define

qK WD qmn ı � � � ı qm1 :

Later, we shall only need fundamental intervals of even length (see Remark 6.8). Having
in mind the identity (6.1), set

An WD

´
A0n if n is even;

¹.K; k/ j K 2 A0n; k � 1º if n is odd;

where .K; k/ WD Kı.m1; : : : ; mn; k/ for K D Kı.m1; : : : ; mn/. Then set

QJ WD

°
qK

ˇ̌̌
K 2

[
n�1

An
±
:

In particular, QK D ¹qKº for an open fundamental interval K if K is of even depth, and
QK D ¹qk ı qK j k � 1º DQ ı qK ifK is of odd depth. Therefore, all the branches in QJ

are of even depth.
Set

UJ WD
[
n�1

[
K2An

K and VJ WD J n UJ :

Note that VJ is a countable set of rational numbers that consists of the endpoints of all
K 2

S
n�1 An except the boundaries of J . Set

@QJ WD ¹qr j r 2 VJ º:

Let s 2 C and � 2 Ch�i with sufficiently large <s and small max j�j. We define an
interval operator and an auxiliary operator for a as

DJ
s; WD

X
q2QJ

B
q
s; and KJ

s; WD

X
q2@QJ

B
q
s; ; (6.2)

respectively. Similarly, we define an interval operator and an auxiliary operator for b as

yDJ
s; WD

X
q2QJ

yB
q
s; and yKJ

s; WD

X
q2@QJ

yB
q
s; : (6.3)
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We also define an interval operator and an auxiliary operator for c as

zDJ
s; WD

X
q2QJ

zB
q
s; and zKJ

s; WD

X
q2@QJ

zB
q
s; : (6.4)

These operators are well-defined for <s > 1=2:

Proposition 6.7. The series in (6.2)–(6.4) are uniformly convergent for <s � �0 for any
�0 > 1=2. Hence, they are analytic in the region <s > 1=2.

Proof. We first consider the interval operator in (6.2). Let J D .a; b/. Let pn=qn and
Pn=Qn be the convergents of a and b, respectively. From Proposition 6.6, for <s D
� > 1=2 and a bounded function ‰ we obtainX

K2An

B
qK
s; ‰ �

1X
kD1

�
1

.qn�1k C qn�2/2�
C

1

.Qnk CQn�1/2�

�
�

1

2� � 1

�
1

q2�n
C

1

Q2�
n

�
:

Hence,
DJ
s; ‰ �

1

2� � 1

X
n

�
1

q2�n
C

1

Q2�
n

�
:

The latter sum is either finite or a convergent series for � > 1=2 since qn;Qn � n.
For (6.3), it suffices to observe that for a bounded function ˆ and a branch q, we have

k yB
q
s; ˆk0 � kB

q
�;�0

1k0 � kˆk0

where �0 is the constant function max j< j and 1 D 1˝ 1. By following the previous
calculation for DJ

s; , we obtain the statement. A similar argument is applied to (6.4).
For the auxiliary operators, we observe that for r 2 VJ , there are at most two K, K 0

in
S
n An such that r is their common endpoint. Then qr D qK or qK0 . Hence, we can

obtain the statement from the observation that kKJ
s; ‰k0 � 2kD

J
�;�j‰j k0 for a bounded

function ‰. The discussions for the other operators are similar.

Remark 6.8. One can define the operators DJ
s; , yDJ

s; , KJ
s; , yKJ

s; by using A0n as well.
However, we have no choice but to use An to define the operators for c since Proposi-
tion 6.1 holds only for branches of even depth.

6.5. Key relations for Dirichlet series

In this subsection, we present an underlying connection between the transfer operators of
the skewed Gauss dynamical systems and Dirichlet series.

Recall  D �C i�. Observe that for <s > 1C cmax j�j
2

(for the definition of c, see
(3.2)), the Dirichlet series for a can be written as

La
‰;J .s;  / D

X
r2Q\J

‰.r�; �g.r// exp.a .r//
Q.r/s

: (6.5)

One can easily obtain similar expressions for b and c.
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In Theorem 8.5, it will be shown that the quasi-inverses .I �Ls; /
�1, .I � yLs; /

�1,
and .I �Ms; /

�1 are well-defined as geometric series of operators when .�; �/ is close
enough to .1; 0/; in the remaining part of this section, we assume this. Then a portion of
the sum (6.5) can be described as follows:

Proposition 6.9. For an open fundamental interval K and a bounded function ‰ on
I � �nGL2.Z/, we have

DK
s; .I �Ls; /

�1Fs; ‰.0; �/ D
X

r2Q\K

‰.r�; �g.r// exp.a .r//
Q.r/2s

:

For a bounded function ˆ on I � �nSL2.Z/, we also have

yDK
s; .I �

yLs; /
�1 yFs; ˆ.0; �/ D

X
r2Q\K

ˆ.r�; � yg.r// exp.b .r//
Q.r/2s

;

zDK
s; .I �Ms; /

�1 zFs; ˆ.0; �/ D
X

r2Q\K

ˆ.r�; � zg.r// exp.c .r//
Q.r/2s

:

Proof. Let n � 0 be an integer. From Proposition 6.1, we obtain

DK
s; Ln

s; Fs; ‰.0; �/ D
X

q2FıQınıQK

B
q
s; ‰.0; �/:

Since r 7! qr is a one-to-one correspondence between K \Q and F ı Q1 ı QK , and
Q.r/ D Q.r�/, we obtain the first statement by Corollary 6.2. The proof for the second
statement is similar. For the third statement, with Proposition 6.1, we have

zDK
s; Mn

s; 
zFs; ˆ.0; �/ D

X
q

zB
q
s; ˆ.0; �/

where
P

q means summation over q 2 F ı .Qı2n ıQK/t .F ıQ/ ı .Qı2n ıQK/: By the
correspondence Q\K! F ıQ1 ıQK , we obtain the statement from Corollary 6.2.

Finally, we establish the following explicit expressions for Dirichlet series:

Theorem 6.10. Let ‰ be a bounded function on I � �nGL2.Z/, ˆ a bounded function
on I� , and <s > 1C cmax j�j

2
. Then

La
‰;J .2sI'/ DKJ

s; ‰.0; �/CDJ
s; .I �Ls; /

�1Fs; ‰.0; �/;

Lb
ˆ;J .2sI / D

yKJ
s; ˆ.0; �/C

yDJ
s; .I �

yLs; /
�1 yFs; ˆ.0; �/;

Lc
ˆ;J .2sI / D

zKJ
s; ˆ.0; �/C

zDJ
s; .I �Ms; /

�1 zFs; ˆ.0; �/:

Proof. From the correspondence VJ ! @QJ , as in the last proof, we get

KJ
s; ‰.0; �/ D

X
r2VJ

‰.r�; �g.r// exp.a .r//
Q.r/2s

:

We also have similar expressions for b and c. Note that there are one-to-one correspond-
ences Q \ UJ ! F ıQ1 ıQJ and VJ ! @QJ , given by r 7! qr : Now Proposition 6.9
and the disjoint union J D UJ t VJ enable us to conclude the proof.
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Remark 6.11. Instead of using the interval operator, one might want to choose for ‰ a
product of a smooth approximation of J and the function ' to study �M;';J . A prob-
lem is that no relation is known between c .r/ and c .r

�/, in general. However, there
is a relation between m˙

f
.r/ and m˙

f
.r�/, called the Atkin–Lehner relation (see Mazur–

Rubin [29]). We tried this direction and were only able to obtain a partial and unsatisfact-
ory result. One advantage of introducing the interval operator is that the Atkin–Lehner
relation is unnecessary.

7. Spectral analysis of the transfer operator

In this section, we present a dynamical analysis of the transfer operator associated to the
skewed Gauss dynamical system.

7.1. Basic settings and properties

For the remaining part of the paper, we write s WD � C i t 2 C with �; t 2 R. In order to
discuss all the modular partition functions simultaneously, we set

g WD a;b; or c:

We use the symbol
Hs; WD Ls; ; yLs; ; or Ms; 

according to the choice of g. Since b and c are also functions on the inverse branches
of yT and zT2, respectively (Remarks 5.5 and 5.6), let us use B to represent the branches:

B WD Q; yQ; or eQı2

according to the choice of g. Note that for‰ 2C 1.X/, the transfer operator can be written
as

Hs; ‰ D
X
p2B

expŒg .p/�j@�1pjs‰ ı p:

Here a .q/ D  ı �2q and b .q/ D  ı �2yq for q 2 Q. For p D p2 ı p1 2eQı2, we get
c .p/ D  ı �2zp1 C  ı �2zp:

Recall that Hs; acts on the space C 1.X/D ¹‰ WX !C j‰ and @‰ are continuousº
where @ is the partial derivative with respect to the first coordinate, @‰.x;v/WD @

@x
‰.x;v/:

The spaceC 1.X/ is just a finite union ofC 1.I /’s and its elements are linear combinations
of tensor type .f ˝ g/.x; v/ WD f .x/g.v/ for a function f on I and a function g on the
set of right cosets of � . It is a Banach space with the norm

k‰k1 D k‰k0 C k@‰k0:

It is easy to show that the operator acts boundedly: For ‰ 2 C 1.X/ and .�; �/ in a small
compact real neighborhood B � R �Rh�i of .1; 0/, we have

kH�;�‰k1 �B k‰k1: (7.1)
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7.2. Geometric properties of the skewed Gauss dynamical system

We study the spectrum of our transfer operator in a later section. This will be done by
applying the metric properties of the set Q of inverse branches of T based on the following
geometric properties of the Gauss dynamical system.

We define the contraction ratio as

� WD

´
1=2 if g D a or b;

1=4 if g D c;

We remark that the � from Proposition 3.2 is given by the contraction ratio.

Proposition 7.1 (Baladi–Vallée [3]). For any branch q 2 Bın for n � 1, we have:

(1) (Uniform contraction)
k@�1qk0 � �n:

(2) (Bounded distortion) 



@2�1q
@�1q






0

� 1:

Proof. This is a mere translation of the results of Baladi–Vallée [3, Section 2.2] or Naud
[31, Lemma 3.5] in our notation.

We recall the UNI property for the Gauss dynamical system established by Baladi–
Vallée [3]. For any n � 1 and for two inverse branches p and q of Tn, their temporal
distance is defined by

�.p;q/ WD inf
X
j@…p;qj

where the map …p;q on X is given by

…p;q WD log
j@�1pj
j@�1qj

:

Proposition 7.2 (Baladi–Vallée [3, Lemma 6]). The skewed Gauss dynamical systems
satisfy the UNI condition:

(1) Let m be the product of Lebesgue measure on I and the counting measure on the
right cosets of � . For 0 < a < 1, n � 1, and p 2 Qın, we have

m
� [

q2Qın
�.p;q/��an

q.X/
�
� �an

where the implicit constant is independent of a, n, and p.

(2) We have
sup

p;q2Q1
k@2…p;qk0 <1:

7.3. Dominant eigenvalue and spectral gap of the positive transfer operator

We describe the spectrum of the positive transfer operator H�;� acting on C 1.X/. We
begin by stating the following sufficient condition for quasi-compactness, due to Hennion.
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Theorem 7.3 (Hennion [15]). Let H be a bounded operator on a Banach space X ,
endowed with two norms k � k and k � k0, and suppose that H .¹� 2 X W k�k � 1º/ is
conditionally compact in .X; k � k0/. Suppose that there exist two sequences of real num-
bers rn and tn such that for any n � 1 and � 2 X ,

kHn�k � tnk�k
0
C rnk�k: (7.2)

Then the essential spectral radius of H is at most lim infn!1 r
1=n
n .

In the theory of dynamical systems, inequalities of the form (7.2) are often said to
be of Lasota–Yorke type. They enable us not only to show quasi-compactness of H�;� on
C 1.X/, but also to obtain an explicit estimate for the iterates, which is a crucial ingredient
for the uniform spectral bound in Section 8.

The main estimate for norms of our transfer operators is controlled by geometric beha-
vior of inverse branches of the Gauss map. For example, we have the following result.

Proposition 7.4. Let B be the neighborhood of .1; 0/ as in (7.1). If B is small enough,
then for .�; �/ 2 B the following hold:

(1) For any n � 1 and ‰ 2 C 1.X/, we have

k@Hn
�;�‰k0 �B j� j k‰k0 C �

n
k@‰k0:

(2) The operator H�;� on C 1.X/ is quasi-compact.

Proof. By Proposition 6.1, for n � 1, the iteration is of the form

Hn
�;�‰ D

X
p2Bın

expŒg�.p/�j@�1pj�‰ ı p:

Then differentiation gives

@Hn
�;�‰ D

X
p

expŒg�.p/�
�
� j@�1pj�

j@2�1pj
j@�1pj

�‰ ı pC j@�1pj�@�1p � @‰ ı p
�
:

By uniform contraction in Proposition 7.1, we obtain the first statement.
Notice that the embedding of .C 1.X/; k � k1/ into .C 1.X/; k � k0/ is a compact oper-

ator, since � is of finite index in SL2.Z/. Hence by Theorem 7.3 and the first statement,
we have the second one.

We collect the spectral properties of H�;� . We mainly refer to Baladi [2, Theorem 1.5]
for the general theory.

Proposition 7.5. Let B be as before. For .�; �/ 2 B , set

��;� WD lim
n!1

kHn
�;�1k1=n0 :

Then:

(1) The value ��;� is the spectral radius of H�;� on C 1.X/ with k � k1.
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(2) The operator H�;� has a positive eigenfunction ˆ�;� with eigenvalue ��;� . In partic-
ular, ˆ1;0.x; v/ D 1

.log2/.xC1/ and �1;0 D 1.

(3) The eigenvalue ��;� is of maximal modulus, positive, and simple.

(4) There is an eigenmeasure ��;� of the adjoint of H�;� that is a Borel probability meas-
ure with

R
X
ˆ�;� d��;� D 1 after normalizing ˆ�;� suitably. In particular, �1;0 is

equivalent to Lebesgue measure.

Proof. Even though the proof is almost the same as in [2, Theorem 1.5], we sketch it for
the reader’s convenience. See also Baladi–Vallée [3] and Parry–Pollicott [33] for more
details.

(1) Using Proposition 7.4 (1), it can be shown that the spectral radius of H�;� on
C 1.X/ with k � k1 is less than or equal to ��;� . We also have

lim
n!1

kHn
�;�k

1=n
1 � lim

n!1
kHn

�;�1k1=n1 � lim
n!1

kHn
�;�1k1=n0 ;

which implies the statement.
(2) Let �0 D ��;�; �1; : : : ; �` be the distinct eigenvalues of maximal modulus. Then,

by spectral projection, there exist‰,‰j 2C 1.X/ such that 1D‰C
P`
jD0‰j , kHn

�;�‰k1
D o.�n0/, and ‰j is in the generalized eigenspace for �j . By analyzing the Jordan normal
form of H�;� on the generalized eigenspace, it can be shown that there exists an integer
k > 0 such that for each j D 0; : : : ; `, the following limits exist:

lim
n!1

1

�nj n
k

Hn
�;�‰j DW ĵ :

Then H�;� ĵ D �j ĵ for each j D 0; : : : ; ` and at least one ĵ is not trivial. In sum,

0 �
Hn
�;�1
�n0n

k
D o.1/C

X
j

�
�j

�0

�nHn
�;�‰j

�nj n
k
:

From this inequality, using a version of the orthogonality relation:

1

M

MX
nD1

�
�j

�0

�n
D

´
1 if �j D �0;

o.1/ otherwise;

we deduce that the function ˆ0 is non-negative and non-trivial.
Suppose that ˆ0.x0; v0/ D 0 for some .x0; v0/ 2 X . For each n � 1, we have

0 D Hn
�;�ˆ0.x0; v0/ D

X
p2Bın

expŒg�.p/�j@�1p.x0; v0/j�ˆ0.p.x0; v0//:

Since the weights expŒg�.p/�j@�1p.x0; v0/j� are positive, ˆ0.p.x0; v0// D 0 for all
p 2 Bın. The density result of Proposition 5.1 (2) and continuity of ˆ result in a con-
tradiction. Hence, we obtain the statement with ˆ�;� WD ˆ0.

It is a classical result that ˆ1;0.x; v/ D 1
log.2.xC1// is an eigenfunction of L1;0 and

yL1;0 with eigenvalue 1 of maximal modulus. For Ms;w, recall that M1;0 D yL
2
1;0.



J. Lee, H.-S. Sun 44

(3) The first two claims come from the definition of ��;� . For geometric simplicity, let
‰ be a eigenfunction for �0 and set t WD min ¹ ‰.x;v/

ˆ0.x;v/
j .x; v/ 2 Xº. Since t D ‰.x0;v0/

ˆ0.x0;v0/

for some .x0; v0/ 2X by continuity, we conclude that‰D tˆ0 using a density argument.
For algebraic simplicity, assume that for a non-trivial ‰ 2 C 1.X/, one has

.H�;� � �0I/
2‰ D 0 and ˆ WD .H�;� � �0I/‰ ¤ 0. Then Hn

�;�‰ D �
n
0‰ C n�

n�1
0 ˆ,

and we deduce a contradiction from

kHn
�;�‰k0 � kH

n
�;�ˆ�;�k0kˆ

�1
�;�‰k0 D �

n
0kˆ

�1
�;�‰k0:

(4) Extending the functionals on the eigenspace for ��;� to C 1.X/ using a spectral
projection, we obtain a positive Radon eigenmeasure of the adjoint, which corresponds to
a Borel probability measure on X . Normalizing suitably, we obtain the statement.

We show the uniqueness of the eigenvalue of maximal modulus.

Proposition 7.6. Let g D b or c. Then, for .�; �/ 2 B , the eigenvalue ��;� is unique, i.e.,
H�;� has no other eigenvalue on the circle of radius ��;� .

Proof. Since the proof is almost the same as in [2, Theorem 1.5 (5)], we only sketch it.
First we need to show that

lim
n!1





 1

�n�;�
Hn
�;�‰ �ˆ�;�

Z
X

‰ d��;�






0

D 0 (7.3)

for all ‰ 2 C 1.X/. Our version of the density result in Proposition 5.1 (2) together with
Proposition 2.4 enables us to show that a continuous accumulation point of the sequence
��n�;�H�;�‰ is actually the function ˆ�;�

R
X
‰ d��;� . The limit is verified by applying

the Arzelà–Ascoli theorem to the equicontinuous family ¹��n�;�Hn
�;�‰ j n � 1º. Then the

statement of the proposition follows easily from (7.3).

8. Dolgopyat–Baladi–Vallée bound in a vertical strip

The main objective of this section is a uniform polynomial bound for the iterations
of Hs; , namely the Dolgopyat–Baladi–Vallée estimate. As a consequence, along with
the results from Section 7, we complete the proof of Proposition 3.2 at the end of this
section.

Dolgopyat [12] first established a result of this type for the plain transfer operators
associated to certain Anosov systems with a finite Markov partition, which depends on a
single complex parameter s. Let us roughly overview his ideas for the proof:

(1) Due to the spectral properties of the transfer operator, the main estimate can be
reduced to an L2-norm estimate, which involves a sum of oscillatory integrals over
pairs of inverse branches. This sum is divided into two parts.

(2) Relatively separated pairs of inverse branches form one part, in which the oscillatory
integrals can be easily dealt with, using the van der Corput lemma.



Dynamics of continued fractions and distribution of modular symbols 45

(3) In order to control the other part that consists of close pairs, the dynamical sys-
tem must satisfy the Uniform Non-Integrability (UNI) condition, which explains why
there are few such pairs.

This groundbreaking work has been generalized to other dynamical systems. In par-
ticular, Baladi–Vallée [3] modified the UNI condition to obtain a Dolgopyat-type estimate
for the weighted transfer operator associated to the Gauss map with countably many
inverse branches. Our proof is similar. In fact, focusing on classical continued fractions,
we mainly follow the more concise exposition of Naud [31].

8.1. Reduction to L2-estimates

Consider the normalized operator defined by

H s; ‰ WD �
�1
�;�ˆ

�1
�;�Hs; .ˆ�;� �‰/ (8.1)

for‰ 2C 1.X/. Then H�;� onC 1.X/ has spectral radius 1 and fixes the constant function
1, i.e., H�;�1 D 1.

For t ¤ 0, we use the norm

k‰k.t/ WD k‰k0 C
1

jt j
k‰k0 for ‰ 2 C 1.X/;

which is equivalent to k � k1. One of the main aims of this section is to estimate kHn
s; k.t/

or equivalently kHn
s; k.t/.

We start the calculation to obtain a Dolgopyat–Baladi–Vallée bound by reducing our
main estimate to an L2-type estimate. For the reduction we need the following result.

Lemma 8.1. Let .�; �/ 2 B where B is chosen small enough so that � > 3=4. For all
n � 1, we have

kHn
�;�‰k

2
0 �B A

2n
�;� �



Hn
1;0j‰j

2



0

for A�;� D ��1�;�
p
�2��1;2� > 0.

Proof. By the Cauchy–Schwarz inequality, we have

kHn
�;�‰k

2
0 � �

�2n
�;� kH

n
2��1;2�ˆ2��1;2�k0 �



Hn
1;0j‰j

2



0
:

The desired result comes from

Hn
1;0j‰j

2
�B Hn

1;0j‰j
2 and Hn

2��1;2�ˆ2��1;2� �B �
n
2��1;2�:

A crucial observation based on the spectral gap is that the projection operator P 1;0

associated with the dominant eigenvalue 1 satisfies H1;0 DP1;0CN 1;0 and the subdom-
inant spectral radius R1 of N 1;0 is strictly less than 1. In particular, P 1;0‰ D

R
X
‰ dm

and hence Hn
1;0‰ D

R
X
‰ dmCO.Rn1/: In sum, from Lemma 8.1, we get

kHnCk
s; ‰k20 �B A

2n
�;�

�Z
X

jHk
s; ‰j

2dmCO.Rn1/jt j k‰k
2
.t/

�
: (8.2)
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8.2. Estimating L2-norms

The normalized operator satisfies the Lasota–Yorke inequality, which comes from a direct
computation similar to the proof of Proposition 7.4.

Proposition 8.2. Let B be as before. For .s;  / with .�; �/ 2 B and all n � 1, we have

kHn
s; ‰k1 �B jsj k‰k0 C �

n
k‰k1:

The following L2-estimate is the heart of Section 8, in which the UNI property of
Proposition 7.2 plays an essential role together with the Lasota–Yorke inequality.

Proposition 8.3. For suitable constants ˛;ˇ > 0, for large jt j � 1=�2, and for .s; / with
.�; �/ 2 B , we have Z

X

jH
d˛ log jt je
s; ‰j2 dm�B �

ˇd˛ log jt je
k‰k2.t/:

Proof. First we express the integrand as

jHn
s; ‰j

2
D

1

�2n�;�

X
.p;q/2Bın�Bın

j@�1pjit j@�1qj�it �R�p;q

where we set

g .p;q/ WD expŒg .p/C g .q/�;

R�p;q WD ˆ
�2
�;� � g .p;q/j@�1pj� j@�1qj� � .ˆ�;�‰/ ı p � .ˆ�;�‰/ ı q

in order to simplify the notation. Thus we haveZ
X

jHn
s; ‰j

2 dm D
1

�2n�;�

X
.p;q/

Z
X

expŒi t…p;q�R
�
p;q dm: (8.3)

Here recall that …p;q D log j@�1pj � log j@�1qj.
Since the R�p;q are bounded, the sum is dominated by the oscillatory integrals which

are controlled by the behavior of the phase function …p;q, hence essentially by the geo-
metric properties of the skewed Gauss map. We divide the sum (8.3) into two parts: one
with close pairs, i.e., with small�.p;q/, and the other with relatively separated pairs, i.e.,
with relatively large �.p;q/. In other words,

R
X
jHn

s; ‰j
2 dm D I .1/ C I .2/, where

I .1/ WD
1

�2n�;�

X
�.p;q/�"

Z
X

eit…p;qR�p;q dm;

I .2/ WD
1

�2n�;�

X
�.p;q/>"

Z
X

eit…p;qR�p;q dm:

Let us consider the integral I .1/. We set ��;� WD ˆ�;���;� , which is fixed by the
normalized adjoint operator. We need the following results that are mere reformulations
of Naud’s [31, Lemma 4.2].
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Lemma 8.4. (1) For all p 2 Bın, we have k@�1pk�0=�
n
�;� �B ��;�.p.X//:

(2) Let A be a subset of Bın and Y D
S

q2A q.X/. Then ��;�.Y /�B A
2n
�;�m.Y /

1=2:

Obviously,

I .1/ �B

k‰k20
�2n�;�

X
�.p;q/�"

k@�1pk�0k@�1qk�0

Z
X

g�.p;q/ dm: (8.4)

Hence, by Lemma 8.4,

I .1/ �B k‰k
2
0

X
�.p;q/�"

��;�.p.X//��;�.q.X//
Z
X

g�.p;q/ dm

�B k‰k
2
0

X
p2Bın

��;�.p.X//
� X

q2Bın
�.p;q/�"

��;�.q.X//
�
:

For any 0 < a < 1, taking " D �an, we finally have

jI .1/j �B k‰k
2
0�
�n
�;�kH

n
�;01k0�an=2 �B �

an=2A2n�;�k‰k
2
0

by the UNI condition of Proposition 7.2 (1) and Lemma 8.4 (1).
The main point in estimating I .2/ is to deal with the oscillatory integrals with the

phase function …p;q. By Proposition 7.2 (2) and a version of the van der Corput lemma
(see Baladi–Vallée [3, p. 359]), we obtain

jI .2/j �
X

�.p;q/>"

kR�p;qk1

jt j

�
1

"
C
1

"2

�
�B k‰k

2
.t/

1C �njt j

jt j

�
1

"
C
1

"2

�
by applying the Lasota–Yorke type estimate for R�p;q. Then again choosing the scale
" D �an with n D d˛ log jt je for some ˛ and a satisfying jt j � ��an, we have jI .2/j �
�.1�2a/nk‰k2

.t/
.

Hence by the above choices of ", n, a and ˛, we finally obtain an estimate for
I .1/ C I .2/ with a constant ˇ D 1 � 2a > 0.

8.3. Uniform polynomial growth

Finally, the following Dolgopyat–Baladi–Vallée estimate can be deduced from the
L2-type estimate of Proposition 8.3.

Theorem 8.5. For 0 < � < 1=5, there is a small neighborhood B 0 � B such that for all
complex pairs .s;  / with .�; �/ 2 B 0, an integer n � 1, and jt j � 1=�2, we have

kHn
s; k.t/ �B;� .r��;�/

n
jt j�

for some 0 < r < 1. In particular, the quasi-inverse .I �Hs; /
�1 is well-defined and

analytic when .�; �/ 2 B 0.
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Proof. Set n0 D n0.t/ WD d˛ log jt je. From (8.2), for n1 D n1.t/ � n0, we have

kH
n1
s; ‰k

2
0 �B A

2.n1�n0/
�;�

�Z
X

jH
n0
s; ‰j

2 dmCR
n1�n0
1 jt j k‰k2.t/

�
�B A

2.n1�n0/
�;� .�ˇn0 CR

n1�n0
1 jt j/k‰k2.t/:

We take n1 D dz̨n0e for some z̨ > 1 large enough to have Rn1�n01 jt j D O.�ˇn0/ and
choose B 0 small enough that An1�n0�;� �B0 �

�ˇn0=2. Then

kH
n1
s; ‰k0 �B0 �

žn1k‰k.t/

for a suitable ž > 0. Repeated application of the Lasota–Yorke inequality from Proposi-
tion 8.2 enables us to write

kH
2n1
s; ‰k1 � jsj kH

n1
s; ‰k0 C �

n1kH
n1
s; ‰k1 � �

žn1 jt j k‰k.t/

and hence kH 2n1
s; k.t/ � �

žn1 . For a fixed t with jt j � 1=�2, writing any integer n as
.2n1/q Cm with m < 2n1, we obtain

kHn
s; k.t/ � kH

m
s; k.t/kH

2n1
s; k

q

.t/
� �

žqn1 � �
žn=2��

žn1

since for large jt j, we have kHm
s; k.t/� 1. This leads to the assertion by choosing � D žz̨

and r D � ž=2.
The more detailed computation of Baladi–Vallée [3, Section 3.3, (3.21)–(3.23)] gives

closed forms of z̨ and ž, which show that the constant � can be taken to be any value
between 0 and 1=5.

9. Coboundary conditions

First we collect some preliminary results to prove the main steps of Proposition 3.2. We
follow a similar argument of Baladi–Vallée [3, Proposition 1].

From [3, Proposition 0.6a]) together with Remark 6.5, we get

Proposition 9.1.
@�s;0

@s

ˇ̌̌̌
sD1

D �
�2

12� log 2
:

For a fixed real number h, define a piecewise differentiable cost function ‡ 2 L1.X/
by

‡.x; v/ WD

´
2h log jxj C  .v/ if g D b;

2h log jxj C  .v/C  
�
v
�
�m1.x/ 1
1 0

�
j
�

if g D c:

From now on, set
S WD yT or zT2

according to the choice of g D b or c. The following two results will be useful when
discussing the pole s.w/.
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Proposition 9.2. For  2 Ch�i, we have

d2

dw2
�1Chw;w 

ˇ̌̌̌
wD0

D lim
n!1

1

n

Z
X

�n�1X
kD0

‡ ı Sk
�2
ˆ1;0 dm:

Proof. We set �.w/ WD �1Chw;w and ‰.w/ WD ˆ1Chw;w . Note that �.0/ D 1 and
�0.0/ D 0. From Proposition 6.3, we obtain

�.w/n‰.w/ D Hn
1Chw;w ‰.w/ D Hn

1;0

h
exp

h
w

n�1X
kD0

‡ ı Sk
i
‰.w/

i
:

Differentiating this twice and setting w D 0, we have

n�00.0/‰.0/C‰00.0/ D Hn
1;0

h�n�1X
kD0

‡ ı Sk
�2
‰.0/C 2

�n�1X
kD0

‡ ı Sk
�
‰0.0/C‰00.0/

i
:

Hence,

�00.0/ D
1

n

Z
X

��n�1X
kD0

‡ ı Sk
�2
‰.0/C 2

�n�1X
kD0

‡ ı Sk
�
‰0.0/

�
dm:

We will show that the second term satisfiesZ
X

�
1

n

n�1X
kD0

‡ ı Sk
�
‰0.0/ dm D o.1/: (9.1)

Indeed, Z
X

�
1

n

n�1X
kD0

‡ ı Sk
�
‰0.0/ dm D

Z
X

‡

�
1

n

n�1X
kD0

Hk
1;0Œ‰

0.0/�

�
dm;

and since the spectral radius of N1;0 is strictly less than 1, we get

1

n

n�1X
kD0

Hk
1;0Œ‰

0.0/� D
1

n

n�1X
kD0

P k
1;0Œ‰

0.0/�C o.1/ D Cˆ1;0 C o.1/

for a constant C . Hence the LHS of (9.1) equals

C

Z
X

‡ˆ1;0 dmC o.1/ D C�
0.0/C o.1/ D o.1/:

This finishes the proof.

Proposition 9.3. There is ‚ 2 C 1.X/ such that for z‡ WD ‡ C‚ ı S �‚, we have

d2

dw2
�1Chw;w 

ˇ̌̌̌
wD0

D

Z
X

z‡2ˆ1;0 dm:

In particular, the last quantity is zero if and only if h D 0 and  is a coboundary over R.
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Proof. Recall that
R
X
‡ˆ1;0 dmD 0. Hence, kHn

1;0‡ˆ1;0k0� Rn1 for the subdominant
eigenvalue R1 < 1 as H1;0Œ‡ˆ1;0� 2 C

1.X/ and we obtain a function

‚ WD ˆ�11;0.I �H1;0/
�1H1;0Œ‡ˆ1;0�

that is well-defined in C 1.X/. Like (9.1), it can be shown thatZ
X

�
1

n

n�1X
kD0

z‡ ı Sk
�
ˆ1;0 dm D o.1/:

Since ‚ ı S �‚ is bounded, we conclude that

d2�

dw2
.1; 0/ D lim

n!1

1

n

Z
X

�n�1X
kD0

z‡ ı Sk
�2
ˆ1;0 dm:

Since H1;0Œ‰1‰2 ı S� D H1;0Œ‰1�‰2 for any ‰1; ‰2 2 C
1.X/, one can show that

H1;0Œ z‡ˆ1;0� D 0. Hence, for k > j ,Z
X

z‡ ı Sk z‡ ı Sjˆ1;0 dm D
Z
X

H
k�j�1
1;0

�
z‡ ı Sk�j�1H1;0Œ z‡ˆ1;0�

�
dm D 0;

which yields the first statement.
For the second statement, observe that the integral is zero if and only if z‡ D 0, i.e.,

‡ D ‚ � ‚ ı S. Since ‚ is bounded, the statement is equivalent to the conditions that
h D 0 and  is a coboundary over R.

Remark 9.4. Observe that  is a g-coboundary over k if and only if there exists a
ˇ 2 kh�i such that g .p/ D ˇ � ˇ ı �2p for any p 2 B.

The following result will be one of the crucial ingredients in the next section.

Proposition 9.5. Let Hs; D
yLs; or Ms; . Let t be a real number. Then 1 is an eigen-

value of H1Cit;i� if and only if t D 0 and � is a g-coboundary over R=2�Z.

Proof. First assume that there is a ‰ 2 C 1.X/ with k‰k0 D 1 such that

H1Cit;i�ˆ1;0‰ D ˆ1;0‰:

Suppose that j‰j attains a maximum at .x0; v0/. Setting

aq WD
1

ˆ1;0.x0; v0/
j@�1q.x0/jˆ1;0 ı q.x0; v0/;

bq WD
1

‰.x0; v0/
‰ ı q.x0; v0/ expŒig� .q/.v0/�j@�1q.x0/jit ;

we have
P

q2Bın aqbq D 1 for all n � 1. Since
P

q2Bın aq D 1 and jbqj � 1, we obtain
bq D 1 for all q. In other words,

expŒig� .q/.v0/�j@�1q.x0/jit‰ ı q.x0; v0/ D ‰.x0; v0/
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for any q 2 B1. Proposition 5.1 enables us to show j‰j � 1, the constant function. Then
we repeat the above process for any .x; v/ 2 X to conclude that

expŒig� .q/�j@�1qjit‰ ı q D ‰ (9.2)

for all q 2 B1.
From (9.2), we have

jt j � k@…p;qk0 D k@�1p � @.log‰/ ı p � @�1q � @.log‰/ ı qk0

for all p; q 2 Bın and n � 1. By uniform contraction in Proposition 7.1, we find that
jt j � k@…p;qk0 � �n � �an for all 0 < a < 1 and p; q 2 B1. Hence, t D 0, because
otherwise the last estimate violates the UNI property (a) in Proposition 7.2. In sum, there
exists a ‰ 2 C 1.X/ such that j‰j � 1 and

expŒig� .p/� D
‰

‰ ı p
for p 2 B: (9.3)

Since g� .p/ is independent of x, differentiating both sides of (9.3) with respect to x
we get j@�1pj � j@‰ ı pj D j@‰j for any p. As k@�1pk0 can be arbitrarily small, we get
@‰� 0, i.e.,‰ is a function only on h�i. This implies‰D expŒiˇ� for a ˇ 2 .R=2�Z/h�i.
From Remark 9.4, we conclude that � is a coboundary over R=2�Z.

Conversely, assume (9.3). Then it can be easily seen that ˆ1;0‰ is an eigenfunction
for H1;i� , which finishes the proof.

Remark 9.6. Let � D SL2.Z/. Then  W SL2.Z/nSL2.Z/! C is just a variable  D w
and � D � 2 R. Hence, � is a coboundary over R=2�Z if and only if � is zero in R=2�Z
if and only if � is an integral multiple of 2� . This is the result of [3, Proposition 0] with
L D 1.

10. Proof of Proposition 3.2

Combining all the previous results, we now prove Proposition 3.2. The proofs are quite
similar to those of Lemmas 8 and 9 of Baladi–Vallée [3]. For w 2 Cd , set

Hs;w WD Hs;w� and �.s;w/ WD �s;w� :

For each statement, we specify regions W1, W2, and W3 around 0 and in the end take the
intersection to get the desired W .

10.1. Statement (1)

We first handle the case v D 0. By Theorem 6.10, it is enough to discuss the behavior of
.I �Hs;w/

�1 since all the interval and auxiliary operators are analytic by Proposition 6.7;
and so are the final operators. To obtain statements (a) and (b), following the proof of
[3, Lemma 8], we split the region into three pieces I, II, and III according to t D =s.
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(I) When jt j is small: Let jw0j D 1 be fixed. As discussed by Baladi-Vallée [3], Kato [20],
and Sarig [36], when .s; w/ is subjected to a small perturbation near .1; 0/ 2 C2, one can
show that the operators Hs;ww0 and (6.2)–(6.4) with  D ww0 �  are all analytic. Fur-
thermore, the properties of the spectral gap, uniqueness, and simplicity of the eigenvalue
in Propositions 7.5 and 7.6 extend to a complex parameter family Hs;ww0 . As w0 is arbit-
rary, a standard argument in the theory of several complex variables ensures that all those
operators are analytic for the general variable w 2 Cd instead of ww0. Similarly we also
have the following result.

Proposition 10.1. There exists a complex neighborhood U of .1; 0/ such that for all
.s; w/ 2 U , the operator Hs; has a spectral gap with the decomposition Hs;w D

�s;wPs;w CNs;w, where �s;w, Ps;w, Ns;w are analytic on U and R.Ns;w/ < j�s;wj. Fur-
ther, the corresponding eigenfunction ˆs;w and its derivative @ˆs;w are well-defined and
analytic on U .

Note that @
@s
�s;0

ˇ̌
sD1
¤ 0 by Proposition 9.1. By the implicit function theorem, we

have an analytic map s from a neighborhood W1 of 0 to C such that for some ı1 > 0 and
t0 > 0, �.s.w/;w/D 1with j<s.w/� 1j � ı1 and j=s.w/j< t0 for all w 2W1. Obviously,
s.0/ D 1.

(II) When t0 � jt j � 1=�2: As in [3, Lemma 8], one can conclude with the help of Pro-
position 9.5 that there exists ı2 > 0 and a neighborhood W2 of 0 such that the distance
between 1 and the spectrum of Hs;w is positive in the region j<s � 1j � ı2 for all w 2W2.
Hence, .I �Hs;w/

�1 is analytic and bounded on that region.

(III) When jt j � 1=�2: Using Theorem 8.5, we can find ı3 > 0 and a neighborhood W3
of 0 such that .I �Hs;w/

�1 is analytic on the region j<s � 1j � ı3 with j=sj � 1=�2 for
all w 2 W3.

Now take ˛1 to be the minimum of ı1, ı2, and ı3. For any 0 < y̨1 < ˛1, choose a
neighborhoodW of 0 small enough thatW �W1 \W2 \W3 and<s.w/ > 1� .˛1 � y̨1/
for all w 2 W .

To obtain (c), fix w0 ¤ 0 and set s.w/ WD s.ww0/ and  0 D w0 � . Also set Hs;w WD

Hs;w 0 and �.s; w/ WD �s;w 0 for w 2 C.
Since �.s.w/; w/ D 1 for small jwj, we have

s0.0/ D �
@�

@w
.1; 0/

ı@�
@s
.1; 0/: (10.1)

We also note that

@�

@s
.1; 0/s00.0/ D

d2

dw2
�.1C s0.0/w;w/

ˇ̌̌̌
wD0

: (10.2)

From Propositions 9.1 and 9.3, we find that  0 is not a g-coboundary over R if and only
if s00.0/ ¤ 0. Since w0 is arbitrary, we conclude that the Hessian of s.w/ at w D 0 is
non-singular if and only if the  i are linearly independent over R modulo Bg.�;R/.
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Let us consider statement (d). Let Rw be the residue operator of the quasi-inverse at
s D s.w/. Since Rw is the residue operator of .1� �s;w/�1Ps;w at s D s.w/, by Theorem
6.10 the residue of the Dirichlet series is

EJs;wRwGs;w‰.0; �/ D �
EJs;wˆs;w.0; �/

@
@s
�s;w

�Z
X

Gs;w‰ d�s;w

�
(10.3)

where EJs;w WD
yDJ
s;w or zDJ

s;w and Gs;w D yFs;w or zFs;w according as gD b or c. Let wD 0.
To evaluate the integral in (10.3) at w D 0, observe first that

R
X
‰ˆ�11;0 d�1;0 D

R
X
‰dm

since �1;0 D dm. For g D c, note also that
R
X
zF1;0‰ d�1;0 D 2

R
X
yF1;0‰ d�1;0. Hence

the integral in (10.3) equals

1

2� log 2

X
m�2

Z
X

1

.mC x/2
‰

�
1

mC x
; v

�
dx dv D

1

2� log 2

Z
.0;1=2/��nSL2.Z/

‰ dm:

Note also that for an open fundamental interval K D Kı.m1; : : : ; m`/, we obtain

EK1;0ˆ1;0.0; �/ D
Œ0I 1;m`; : : : ; m1�

Q.Œ0Im1; : : : ; m`�/2 log 2
D
jKj

log 2
:

Hence we also obtain the same expression for an interval J . In total, we obtain the desired
expression for the residue.

Now consider a general v. Let w be written as u C iv for u in W , a neighbor-
hood of 0. With Remark 9.4, one can easily show that Hs;w‰ D eiˇHs;uŒe

�iˇ‰� for
all ‰, and the same expressions for the operators EJs;w and Gs;w. Therefore, L‰;J .s;w/ D
eiˇ.�/Le�iˇ‰;J .s;u/. Hence, all the necessary properties ofL‰;J .s;w/ follow from those
of Le�iˇ‰;J .s;u/. This concludes the proof of statement (1).

10.2. Statement (2)

For a given v ¤ 0, choose a neighborhood W1 of iv small enough that w �  is not a
g-coboundary over R=2�Z for all w 2 W1. Then, using Proposition 9.5, the proof goes
exactly as the proof for (a) and (b).

10.3. Statement (3)

We split the region into three pieces I, II, and III as before. In region I, whether v �  2
Bg.�;R/ or not, i.e., whether the series is meromorphic or not, L‰;J .s;w/ is bounded on
<s D 1˙ ˛1. In region II, the series is bounded as it is analytic. In region III, we apply
the Dolgopyat–Baladi–Vallée bound.

This finishes the proof of Proposition 3.2.
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