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Abstract. We fix an erroneous step in the earlier work [J. Eur. Math. Soc. 22, 1703-1757 (2020)] on
solutions to the (1 4 1)-dimensional Klein—Gordon equation having Fourier transforms supported
on one branch of the hyperbola associated with the Klein—-Gordon equation.
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1. Background

In [3], uniqueness problems for solutions to the Klein—-Gordon equation in one temporal
and one spatial dimensions were studied. Follow-up work in [4, 5] further sharpened the
results and methods, which were based on a certain reduction to ergodic theory. A further
direction opened up recently with the interpolation methods of [1], which connect with
the Fourier interpolation methods employed in, e.g., [6,7] (cf. [2]).

2. The issue

It was pointed out to me a couple of years ago by Rajesh Srivastava that the proof of
Theorem 1.6.1 in [4] contains an error. Here we fix that error.

2.1. Fixing the erroneous equivalence

We begin with the following assertion.
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Lemma 2.1. Suppose that g € L'(R.), that is, g € L'(R) and g(t) =0 fora.e.t € R_.
Then we have the equivalence

+o00

/ 2™ a(1)dt =0 Vm e Z & Zg(t 4+ j) =0 ae onl0,1].
R4 j=0

Proof. The calculation

+o0 o0
[ e127'rmtg(t) dt = Z/ e12nmtg(t) dr = Z/ elantg(t + ])dl
Ry j=0 j,j+1] j=0 [0,1]

+00
=/ TN gt + j)dt
[0.1] o

combined with the uniqueness theorem for Fourier series gives the claimed equiva-
lence. ]

We remark that the assertion of Lemma 2.1 replaces equation (6.1.5) in [4] which is
erroneous, as it claims that the sum in the lemma should vanish on all of R, which need
not be true.

We proceed to indicate how the proof of Theorem 1.6.1 in [4] runs with the indicated
change. It is given that € L'(IR,), and that the relations

/ eizﬂmtf(l) dr = / eiZHVn/lf([) dt =0, mnelZ, 2.1)
Ry Ry

hold for a given real parameter y with 0 < y < 1. We may apply Lemma 2.1 to the
vanishing of the left-hand side expression in (2.1) with g = f to conclude that

+o0
Zf(l +j)=0 ae.on[0,1],

j=0
which is the same as the relation
+o00
f@O) ==Y f@+j) aeonl0,1]. (2.2)
Jj=1

As for the vanishing of the second integral in (2.1), we apply a change of variables in the
integral, which gives that

. : dr
/ elZJT}/n/l‘f(Z) dr = / elznan(Z) - = 0, mmnelZ. (2.3)
Ry Ry t/t

Next, we apply Lemma 2.1 with g € L'(R4) given by g(¢) = t=2 f(y/t), and find an
equivalent formulation for the vanishing of the second expression in (2.3):

+o00 1
3 i j)2f<; IJ) —0 ae onf0,1]. 2.4)
j=0
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We single out the first term in the sum, and rewrite (2.4) further,

+00
#I(0) - Za ()

a.e. on [0, 1]. After the change of variables ¢ — y/t, (2.5) becomes

+o00 2
_ y yt
) = ;(erj[)zf(Hj[), (2.6)

now a.e. on [y, +o0o[. By combining the equality in (2.2) on [0, 1] with the equality in (2.6)
on [y, +o0, using that if j > 1l and ¢t € [0, 1], we getf 4+ j > 1 > y, and that

+o00

_ y? v +J)
f(t) _,-,12=:1 TESTEE: f(y T +j)) ae.on [0, 1]. 2.7)

Finally, since /;” = ]0, 1[, condition (2.7) amounts to having
f=S]2,f ae.on I,

where S, is the subtransfer operator used in [4]. The rest of the proof of Theorem 1.6.1
remains unchanged.
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