© 2025 European Mathematical Society Published by EMS Press

Haakan Hedenmalm

Corrigendum to "The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps"

Received 6 February 2025

Abstract. We fix an erroneous step in the earlier work [J. Eur. Math. Soc. 22, 1703–1757 (2020)] on solutions to the (1 + 1)-dimensional Klein–Gordon equation having Fourier transforms supported on one branch of the hyperbola associated with the Klein–Gordon equation.

Keywords: Fourier uniqueness, transfer operator, completeness, Klein-Gordon equation.

1. Background

In [3], uniqueness problems for solutions to the Klein–Gordon equation in one temporal and one spatial dimensions were studied. Follow-up work in [4, 5] further sharpened the results and methods, which were based on a certain reduction to ergodic theory. A further direction opened up recently with the interpolation methods of [1], which connect with the Fourier interpolation methods employed in, e.g., [6, 7] (cf. [2]).

2. The issue

It was pointed out to me a couple of years ago by Rajesh Srivastava that the proof of Theorem 1.6.1 in [4] contains an error. Here we fix that error.

2.1. Fixing the erroneous equivalence

We begin with the following assertion.

Haakan Hedenmalm: Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 10044 Stockholm, Sweden; Department of Mathematics and Statistics, University of Reading, Whiteknights campus, Reading RG6 6AX, UK; Department of Mathematics and Computer Science, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia; haakan00@gmail.com

Mathematics Subject Classification 2020: 42B10 (primary); 42B20, 35L10, 42B37, 43A15 (secondary).

Lemma 2.1. Suppose that $g \in L^1(\mathbb{R}_+)$, that is, $g \in L^1(\mathbb{R})$ and g(t) = 0 for a.e. $t \in \mathbb{R}_-$. Then we have the equivalence

$$\int_{\mathbb{R}_+} e^{i2\pi mt} g(t) dt = 0 \quad \forall m \in \mathbb{Z} \iff \sum_{j=0}^{+\infty} g(t+j) = 0 \quad a.e. \text{ on } [0,1].$$

Proof. The calculation

$$\int_{\mathbb{R}_{+}} e^{i2\pi mt} g(t) dt = \sum_{j=0}^{+\infty} \int_{[j,j+1]} e^{i2\pi mt} g(t) dt = \sum_{j=0}^{+\infty} \int_{[0,1]} e^{i2\pi mt} g(t+j) dt$$
$$= \int_{[0,1]} e^{i2\pi mt} \sum_{j=0}^{+\infty} g(t+j) dt$$

combined with the uniqueness theorem for Fourier series gives the claimed equivalence.

We remark that the assertion of Lemma 2.1 replaces equation (6.1.5) in [4] which is erroneous, as it claims that the sum in the lemma should vanish on all of \mathbb{R}_+ , which need not be true.

We proceed to indicate how the proof of Theorem 1.6.1 in [4] runs with the indicated change. It is given that $f \in L^1(\mathbb{R}_+)$, and that the relations

$$\int_{\mathbb{R}_+} \mathrm{e}^{\mathrm{i}2\pi mt} f(t) \,\mathrm{d}t = \int_{\mathbb{R}_+} \mathrm{e}^{\mathrm{i}2\pi\gamma n/t} f(t) \,\mathrm{d}t = 0, \quad m, n \in \mathbb{Z},$$
(2.1)

hold for a given real parameter γ with $0 < \gamma \le 1$. We may apply Lemma 2.1 to the vanishing of the left-hand side expression in (2.1) with g = f to conclude that

$$\sum_{j=0}^{+\infty} f(t+j) = 0 \quad \text{a.e. on } [0,1],$$

which is the same as the relation

$$f(t) = -\sum_{j=1}^{+\infty} f(t+j)$$
 a.e. on [0, 1]. (2.2)

As for the vanishing of the second integral in (2.1), we apply a change of variables in the integral, which gives that

$$\int_{\mathbb{R}_+} e^{i2\pi\gamma n/t} f(t) dt = \int_{\mathbb{R}_+} e^{i2\pi nt} f\left(\frac{\gamma}{t}\right) \frac{dt}{t^2} = 0, \quad m, n \in \mathbb{Z}.$$
 (2.3)

Next, we apply Lemma 2.1 with $g \in L^1(\mathbb{R}_+)$ given by $g(t) = t^{-2} f(\gamma/t)$, and find an equivalent formulation for the vanishing of the second expression in (2.3):

$$\sum_{j=0}^{+\infty} \frac{1}{(t+j)^2} f\left(\frac{\gamma}{t+j}\right) = 0 \quad \text{a.e. on } [0,1].$$
(2.4)

We single out the first term in the sum, and rewrite (2.4) further,

$$\frac{1}{t^2} f\left(\frac{\gamma}{t}\right) = -\sum_{j=1}^{+\infty} \frac{1}{(t+j)^2} f\left(\frac{\gamma}{t+j}\right),\tag{2.5}$$

a.e. on [0, 1]. After the change of variables $t \mapsto \gamma/t$, (2.5) becomes

$$f(t) = -\sum_{j=1}^{+\infty} \frac{\gamma^2}{(\gamma + jt)^2} f\left(\frac{\gamma t}{\gamma + jt}\right),$$
(2.6)

now a.e. on $[\gamma, +\infty[$. By combining the equality in (2.2) on [0, 1] with the equality in (2.6) on $[\gamma, +\infty[$, using that if $j \ge 1$ and $t \in [0, 1]$, we get $t + j \ge 1 \ge \gamma$, and that

$$f(t) = \sum_{j,l=1}^{+\infty} \frac{\gamma^2}{[\gamma + l(j+t)]^2} f\left(\frac{\gamma(t+j)}{\gamma + l(t+j)}\right) \quad \text{a.e. on } [0,1].$$
(2.7)

Finally, since $I_1^+ =]0, 1[$, condition (2.7) amounts to having

$$f = \mathbf{S}_{\gamma}^2 f \quad \text{a.e. on } I_1^+$$

where S_{γ} is the subtransfer operator used in [4]. The rest of the proof of Theorem 1.6.1 remains unchanged.

Acknowledgements. We thank Rajesh Srivastava for spotting the error in the prior publication.

Funding. This work was partially supported by Vetenskapsrådet (VR grant 2024-04706), the Leverhulme trust (grant VP1-2020-007), and by grant 075-15-2025-013 of the Government of the Russian Federation for the state support of scientific research, carried out under the supervision of leading scientists.

References

- Bakan, A., Hedenmalm, H., Montes-Rodríguez, A.: Hyperbolic Fourier series and the Klein– Gordon equation. arXiv:2401.06871v2 (2024)
- [2] Bakan, A., Hedenmalm, H., Montes-Rodríguez, A., Radchenko, D., Viazovska, M.: Fourier uniqueness in even dimensions. Proc. Natl. Acad. Sci. USA 118, article no. 2023227118 (2021) Zbl 1556.42039 MR 4294062
- [3] Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein–Gordon equation. Ann. of Math. (2) 173, 1507–1527 (2011) Zbl 1227.42002 MR 2800719
- [4] Hedenmalm, H., Montes-Rodríguez, A.: The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps. J. Eur. Math. Soc. (JEMS) 22, 1703–1757 (2020) Zbl 1437.42010 MR 4092897
- [5] Hedenmalm, H., Montes-Rodríguez, A.: The Klein–Gordon equation, the Hilbert transform and Gauss-type maps: H[∞] approximation. J. Anal. Math. 144, 119–190 (2021) Zbl 1481.42010 MR 4361892
- [6] Radchenko, D., Viazovska, M.: Fourier interpolation on the real line. Publ. Math. Inst. Hautes Études Sci. 129, 51–81 (2019) Zbl 1455.11075 MR 3949027
- [7] Viazovska, M. S.: The sphere packing problem in dimension 8. Ann. of Math. (2) 185, 991– 1015 (2017) Zbl 1373.52025 MR 3664816