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Faces of cosmological polytopes

Lukas Kühne and Leonid Monin

Abstract. A cosmological polytope is a lattice polytope introduced by Arkani-Hamed, Benin-
casa, and Postnikov in their study of the wavefunction of the universe in a class of cosmological
models. More concretely, they construct a cosmological polytope for any Feynman diagram,
i.e., an undirected graph. In this paper, we initiate a combinatorial study of these polytopes.
We give a complete description of their faces, identify minimal faces that are not simplices and
compute the number of faces in specific instances. In particular, we give a recursive description
of the f -vector of cosmological polytopes of trees.

1. Introduction

Arkani-Hamed, Benincasa, and Postnikov defined a cosmological polytope PG for
every undirected graph G D .V;E/, that is V D ¹v1; : : : ; vkº is a finite set of vertices
andE D ¹e1; : : : ; enº a finite set of edges with ei D ¹vj1

; vj2
º for some 1� j1; j2 � k.

Throughout this article, we work in the space RjV jCjE j with standard basis vectors xvi
,

yej for 1 � i � k and 1 � j � n.

Definition 1.1 ([2]). The cosmological polytope PG associated with a graph G D
.V;E/ is the convex hull of the following 3jEj C jV j vertices:

PG D conv
� [
eD¹v;wº2E

®
ye C xv � xw ; ye � xv C xw ;�ye C xv C xw

¯
[

[
v2V

xv
�
:

For an edge e D ¹v;wº, we will denote the above points in RnCk by

pe D �ye C xv C xw ; pe;w D ye � xv C xw ; pe;v D ye C xv � xw :

Remark 1.2. Definition 1.1 is slightly different from the standard definition of cos-
mological polytopes in [2], where a cosmological polytope is defined as a convex hull
of vertices pe , pe;v , pe;w only. The two definitions coincide in the case of graphs
with no isolated vertices since xv 2 conv.pe; pe;v; pe;w/ for any edge e D ¹v; wº
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Figure 1. The graph on the left corresponds to the cosmological polytope on the right.

of G. However, Definition 1.1 works better for graphs with isolated vertices, which
might appear in the recursion in Section 4.

Example 1.3. The cosmological polytope of a graph consisting of two parallel edges
e; e0 between two vertices v;w is a prism over a triangle which is depicted in Figure 1.

1.1. Physical perspective

In recent years, a connection between the physics of scattering amplitudes and a
class of mathematical objects called positive geometries was discovered [1]. Posi-
tive geometries can be thought of as a vast generalization of convex polytopes, they
encompass objects such as polytopes, the positive Grassmannian, and tree and loop
amplituhedra [4, 5]. The connection of positive geometries to physics is usually via
a top-dimensional form uniquely determined by the condition that it has logarith-
mic singularities (only) along all boundary components of a positive geometry. Thus,
computing the canonical form is the central goal in the studies of positive geometries.

There are two standard ways to compute the canonical form of a positive geom-
etry. The first method is to find a subdivision of a positive geometry X into simpler
positive geometries Y1; : : : ; Yk . In this case, the canonical form �X of X is given as
the sum

�X D �Y1
C � � � C�Yk

:

This strategy provides a direct way to get an expression for the canonical form and
was successfully applied in a number of situations [8, 11, 14, 17, 18, 20].

The disadvantage of this method is that one does not obtain a closed formula for
the canonical form. Thus, it is sometimes more convenient to compute the canonical
form directly from its definition. More concretely, let D1; : : : ; Dr be the boundary
components of a positive geometryX defined by polynomials f1; : : : ;fr , respectively.
Then, the condition on the singularities of the canonical form guarantees that it can
be written as

�X D
g

f1 � � � � � fr
!;
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where g is some polynomial and ! is a regular form onX . Thus, the problem of com-
puting �X boils down to the computation of the numerator polynomial g. Moreover,
the polynomial g is determined by the condition that it should cancel on the poles of
1=.f1 � � � � � fr/ outside of X , i.e., g should vanish along the intersections of the Di ’s
outside of X [3]. This observation leads to explicit formulas for the canonical form.
One particular example is [16], where the numerator of the canonical form of a plane
positive geometry was identified as the adjoint curve to the boundary.

In [2], it was noticed that the connection between physics and positive geome-
tries extends further to cosmology. More concretely, the cosmological polytope is
constructed in [2] as the positive geometric counterpart to the physics of cosmolog-
ical time evolution and the wavefunction of the universe. This motivates the study
of subdivisions and the face structure of cosmological polytopes as their facets are
the components D1; : : : ; Dr that are relevant to the computation of �X as discussed
above.

1.2. Combinatorial perspective

There are several constructions of polytopes arising from graphs. The most relevant
to cosmological polytopes are symmetric edge polytopes which recently gained con-
siderable attention [9,10,15]. In particular, the symmetric edge polytope is the image
of a linear projection of a facet of the cosmological polytope (the scattering facet) of
the same graph. Moreover, this projection sends the vertices of the scattering facet
to the vertices of the symmetric edge polytope. Thus, the information on the faces
of cosmological polytopes can be used to study coherent subdivisions of symmetric
edge polytopes.

1.3. Our contribution

In this paper, we start a comprehensive study of the faces of cosmological polytopes.
Concretely, we give a criterion for a subset of vertices of PG to form a face in Sec-
tion 3.1. This criterion can be checked easily by considering basic properties of the
graph G. As explained above, knowledge of the faces of PG is relevant to determine
both the numerator and denumerator of the canonical form of the polytope.

Subsequently, in Section 3.2, we describe two special families of faces of PG ,
corresponding to the vertices and cycles of G, respectively. Our general face criterion
yields that the faces of these two families are exactly the minimal faces in PG that are
not simplices.

For the special case of a tree T , we present a recursive way to compute the f -
vector of the cosmological polytopePT via the f -vectors of smaller trees in Section 4.
Such a recursive relation is based on the geometric realization of the cosmological
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polytope PG0 as a pyramid over a bipyramid over a cosmological polytope PG if G0

obtained from G by adding a leaf. As a byproduct this yields that the normalized
volume of the cosmological polytope of any tree with e edges is 4e . This geomet-
ric construction also lies behind the recursive formulae for the wavefunction of the
universe obtained in [2] via the frequency representation of the propagators. For
example, for a path graph …n on n nodes, we obtain the following recursion for the
f -polynomial f…n

.t/ of the polytope P…n
:

f…nC2
.t/ D .1C t /..1C 2t/f…nC1

.t/ � t2.1C t /f…n
.t//:

We close in Section 5 by applying our methods to counting specific classes of
faces of cosmological polytopes. Theorem 5.1 gives exact formulae for the number
of 1- and 2-dimensional faces of cosmological polytopes. Subsequently, we count
simplex faces of cosmological polytopes of graphs with one cycle in Section 5.2. For
example, the total number of simplex faces of the cycle graph on n nodes is 5n � 2nC1.

2. Preliminaries

In this section, we recall standard definitions and previous results on cosmological
polytopes. We refer to [21] for an in-depth introduction to polytopes and to [2, 6] for
a detailed introduction to cosmological polytopes.

A polytopeP �Rd is the convex hull of finitely many points in Rd . A faceF �P
is the set of points in the polytope P that maximizes a linear functional � W Rd ! R.
The dimension of a face is the dimension of the affine space spanned by its points.
Faces of dimension dim.P / � 1 are called facets. Each polytope has finitely many
faces and their numbers are counted in the f -vector f .P / of P which is f .P / D
.f�1; f0; : : : ; fdim.P // where fi is the number i -dimensional faces of P , and we set
f�1 D fdim.P / D 1.

Our analysis of the facial structure of cosmological polytopes relies on the fol-
lowing characterization of the facets of a cosmological polytope proved by Arkani-
Hamed, Benincasa, and Postnikov.

Theorem 2.1 ([2]). Facets of PG are in bijection with connected subgraphs H D
.VH ;EH / ofG. Under this bijection, a subgraphH corresponds to the facet FH with
all vertices of PG except

• pe for an edge e 2 EH ;

• pe;v for an edge e D ¹v;wº of G with v 2 VH and e … EH .

So, in particular, if an edge e D ¹v;wº is not in EH but both v and w are in VH both
vertices pe;v and pe;w are not part of the facet FH .
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Moreover, the facet FH is the intersection of PG with the following hyperplane:X
v2VH

xv C
X

eD¹v;wº;
v2VH ;w…VH

ye C
X

eD¹v;wº…EH ;
v2VH ;w2VH

2ye D 0:

The facet FG associated with the entire graph is called the scattering facet.

3. Face structure of cosmological polytopes

3.1. General faces

We start by giving a criterion that characterizes the faces of cosmological polytopes.

Theorem 3.1. Let G D .V;E/ be an undirected graph. A set of vertices X � V.PG/
defines a face of PG if and only if X satisfies both of the following two conditions.

(i) If for a node v 2 V the set X contains the vertices pe and pe;v for an edge
e D ¹v; wº 2 E then X contains the vertices pe0 and pe0;v for all edges
e0 D ¹v;w0º 2 E.

(ii) If X contains a subset ¹pe1;v1
; pe2;v2

: : : ; pek ;vk
º for a cycle

e1 D ¹v1; v2º; : : : ; ek D ¹vk; v1º

in G, then X also contains the subset ¹pe1;v2
; pe2;v3

; : : : ; pek ;v1
º.

Proof. First, we show that every set of vertices X satisfying the conditions (i) and (ii)
defines a face of PG . We do this by proving that X is an intersection of facets of PG .
Let y be a vertex of PG with y … X . It suffices to find a facet FH with X � FH and
y … FH . There are two cases: y D pe or y D pe;v for some e 2 E and v 2 V .

Case 1. Suppose y D pe . Let us define H D .VH ; EH / to be the connected compo-
nent of the edge induced subgraph ¹e jpe … Xº containing the edge e. Then, the facet
FH contains all vertices of PG except the vertices pe0 with e0 2 EH and the vertices
pe00;v00 with e00 D ¹v00; w00º … EH and v00 2 VH . Since e 2 H , the facet FH does not
contain y. Moreover, by construction, FH contains all vertices in X of the form pe0

for some e0 2 E.
Secondly, consider a vertex pe00;v00 2 X for some e00 D ¹v00; w00º. Assume for a

contradiction that pe00;v00 62 FH . Thus, by Theorem 2.1 this means that v00 2 VH , but
e00 62EH and thus pe00 2X . SinceH is connected, there exists an edge f 2EH that is
adjacent to v00. By condition (i), the vertex pf 2 X which contradicts the construction
of H .
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Case 2. Let yDpe;v with eD¹v;wº. We define a connected subgraphH inductively.
Let H0 D v be the vertex v itself. The subgraph HiC1 is defined from Hi in the
following way:

HiC1 WD Hi [
®
e0 D ¹v0; w0º j v0 2 Hi ; e

0
… Hi and pe0;v0 2 X

¯
:

SinceHi �HiC1 and G is a finite graph, the sequence .Hi /i2N stabilizes. We define
H to be the limit of the sequence .Hi /i2N , by construction H is connected. We need
to show the following three cases.

(1) Let X1 WD ¹pe0 j pe0 2 Xº. We need to show X1 � FH . We inductively show
X1 � FHi

for all i � 0 which implies the claim. The case of FH0
is triv-

ial as this facet contains all vertices of the form pe0 in PG . Next, we show
X1 � FH1

. Consider the edge e0 D ¹v; w0º 2 H1 and assume that pe0 2 X .
By construction of H1, we have pe0;v 2 X ; hence, by condition (i), the vertex
y D pe;v must also be in X which contradicts the assumption that y … X .
Hence, pe0 62 X and X1 � FH1

.
So now assume that X1 � FHi

for some i � 1. Consider again an edge e0 D
¹v0;w0º 2HiC1 nHi with v0 2Hi . Then, there exists an edge e00 D ¹v0;w00º 2
Hi since Hi is connected and i � 1. By induction, this implies that pe00 62

X and by construction of HiC1 the vertex pe0;v0 2 X . Hence, pe0 62 X by
condition (i) and thus X1 � FHiC1

.

(2) Let X2 WD X nX1. Secondly, we show that X2 � FH . This follows from the
construction of H as if there is a vertex pe0;v0 2 X n FH we would add the
edge e0 to H which contradicts the definition of H .

(3) Lastly, we need to show y … FH . Assume that y D pe;v 2 FH . This means
that e 2 H . Therefore, there exists a cycle in H of the form e1 D ¹v1; v2º,
e2 D ¹v2; v3º, . . ., er D ¹vr ; v1º with e D er , v D v1, and ei 2 Hi nHi�1.
Thus, pei ;vi

2 X for all i D 1; : : : ; r by construction of Hi . By condition (ii)
this implies that pei ;viC1

2 X for all i 2 Z=rZ. In particular, y D per ;v1
2 X

which contradicts the assumption on y. Therefore, y … FH .

For the converse, we need to show that every face of PG satisfies the condition (i)
and (ii). First, notice that if two subsets X and Y satisfy both conditions so does their
intersection X \ Y . Therefore, it suffices to show conditions (i) and (ii) for the facets
of PG .

Let H D .VH ; EH / be a connected subgraph of G and FH its associated facet.
Consider a node v 2 V and assume that pe and pe;v are in FH , hence EH does
not contain the edge e as well as any other edge adjacent to the node v. Hence, by
definition of FH , the vertices pe0 ; pe0;v are in FH for all edges e0 adjacent to the node
v. So, FH satisfies the condition (i).
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For the condition (ii), let FH contain a subset ¹pe1;v1
; pe2;v2

; : : : ; pek ;vk
º for a

cycle e1 D ¹v1; v2º; : : : ; ek D ¹vk; v1º in G. First, assume that ¹e1; : : : ; ekº � EH . In
this case, by construction of FH it contains all the vertices ¹pe1;v2

;pe2;v3
; : : : ;pek ;v1

º

as well, so the condition (ii) is satisfied.
In the case when ¹e1; : : : ; ekº 6� EH , any edge adjacent to the nodes v1; : : : ; vk

cannot be contained in H as otherwise one of the vertices pei ;vi
would be excluded

from FH . But then, by construction of FH vertices ¹pe1;v2
; pe2;v3

; : : : ; pek ;v1
º are

contained in the facet FH , so the condition (ii) is satisfied.

An immediate corollary of this theorem yields a complete description of the edge
graph �G of PG .

Corollary 3.2. The edge graph �G of PG is a complete graph on the vertices of PG
with the following edges removed:

(1) ¹pe; pe;vº for any edge e and a non-leaf node v of G,

(2) ¹pe;v1
; pe0;v2

º for a pair of parallel edges e; e0 between the nodes v1 and v2.

A more general statement provides a description of all simplex faces of PG .

Theorem 3.3. Let G D .V;E/ be an undirected graph. A set of vertices X � V.PG/
defines a simplex face of PG if and only if

(i) the induced subgraph of the edge graph �G to the vertex setX is a complete
graph,

(ii) X does not contain a subset ¹pe1;v1
; : : : ; pek ;vk

º for a cycle e1 D ¹v1; v2º;
: : : ; ek D ¹vk; v1º in G.

Proof. By Corollary 3.2, if the subgraph of �G induced by the vertices X is a com-
plete graph, X must satisfy property (i) in Theorem 3.1. Hence, a subset X satisfying
the properties (i) and (ii) is a face of PG by Theorem 3.1. Moreover, the same proper-
ties (i) and (ii) are satisfied for every subset of vertices of the setX . Hence, any subset
of vertices of X defines a face of PG , so the vertices of X form a simplex face.

For the converse, if X defines a simplex face, then the induced subgraph of �G to
X is a complete graph and X satisfies (ii) by Theorem 3.1.

Remark 3.4. The face structure of cosmological polytopes was also studied in [7,
8] from a slightly different perspective. More concretely, these works study which
collections of facets of PG intersect in a face of expected codimension. The main tool
in this analysis is the connection to the residues of the canonical form �PG

.

3.2. Special faces

In this subsection, we will discuss two types of special faces appearing in cosmolog-
ical polytopes which are the minimal non-simplex faces of cosmological polytopes
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(see Corollary 3.8). We call the ones described in Proposition 3.5 vertex faces and the
ones described in Proposition 3.6 cycle faces.

Proposition 3.5. Let v 2 V be a vertex of G of degree d with the adjacent edges
e1 D ¹v; w1º; : : : ; ed D ¹v; wd º. Then, the cosmological polytope PG has a face of
dimension d with the 2d vertices given by

pe1
; pe1;v; : : : ; ped

; ped ;v:

We call this face a vertex face Fv .
Moreover, the face Fv is combinatorially equivalent to a d -dimensional cross-

polytope.

Proof. The first statement follows directly from Theorem 3.1 as the set of vertices

¹pe1
; pe1;v; : : : ; ped

; ped ;vº

clearly satisfies conditions (i) and (ii).
For the proof of the second statement notice that a shift of the face Fv by the

vector �xv is the convex hull of the points

ye1
� xw1

; xw1
� ye1

; : : : ; yed
� xwd

; xwd
� yed

:

Since the vectors ye1
� xw1

; : : : ; yed
� xwd

are linearly independent, the vertex face
Fv is affinely (and in particularly combinatorially) equivalent to a d -dimensional
cross-polytope.

Recall that the d -dimensional cyclic polytope C.n; d/ with n vertices is the con-
vex hull of x.t1/; : : : ; x.tn/ where t1 < t2 < � � � < tn are real numbers and x W R!
Rd ; t 7! .t; t2; t3; : : : ; td / is a parametrization of the moment curve. It is known that
cyclic polytopes are simplicial, i.e., all its proper faces are simplices (see, for exam-
ple, [12]). By Gale’s evenness condition (see [21, Theorem 0.7]), for a set of indices
I � Œn� of size d , the corresponding set of vertices ¹x.ti /ºi2I form a facet of C.n; d/
if and only if any two elements in Œn� n I are separated by an even number of elements
from Œn�.

Proposition 3.6. Let e1 D ¹v1; v2º; : : : ; ed D ¹vd ; v1º be a cycle � of length d in G
with vi ¤ vj for 1 � i < j � d and d > 1. Then, the cosmological polytope PG has
a face of dimension 2d � 2 with the 2d vertices:

pe1;v1
; pe1;v2

; : : : ; ped ;vd
; ped ;v1

:

We call this face a cycle face F� .
Moreover, the face F� is combinatorially equivalent to a cyclic polytope of dimen-

sion 2d � 2 with 2d vertices.
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Proof. The first statement follows directly from Theorem 3.1 as the set of vertices

X D
®
pe1;v1

; pe1;v2
; : : : ; ped ;vd

; ped ;v1

¯
clearly satisfies conditions (i) and (ii) of this theorem.

For the second statement, we will show that analogously to C.2d; 2d � 2/, facets
of F� are described by Gale’s evenness condition which implies that the polytopes
are combinatorially equivalent.

First, notice that if a subset Y � X defines facet of F� , then jY j � 2d � 2. More-
over, by condition (ii) of Theorem 3.1, to define a proper face of F� , the set Y should
not contain at least one of the points of type pei ;vi

and pej ;vj C1
for i; j 2 Z=dZ.

Therefore,
jY j D 2d � 2I

i.e., every facet of F� is a simplex. Finally, notice that the condition that

X n Y D ¹pei ;vi
; pej ;vj C1

º

for some i; j 2 Z=dZ is equivalent to Gale’s evenness condition if we order the
elements of X in the following way:

.pe1;v1
; pe1;v2

; : : : ; ped ;vd
; ped ;v1

/:

Remark 3.7. Note that the cycle face F� of PG corresponding to a cycle � of G
coincides with the scattering facet of P� . More generally, for any subgraph H � G,
the scattering facet of PH appears as a face of PG .

We can now characterize the minimal non-simplex faces of a cosmological poly-
tope, i.e., the faces that are combinatorially a simplicial polytope but not a simplex.

Corollary 3.8. A minimal non-simplex face F of a cosmological polytope is either a
vertex face or a cycle face.

Proof. The above propositions imply that the vertex faces are cross-polytopes and the
cycle faces are cyclic polytopes which are both simplicial polytopes but not simplices.

So, assume that F is a simplicial polytope that does not contain vertices of a vertex
face or a cycle face. Condition (i) in Theorem 3.1 together with the assumption that
F does not contain a vertex face now implies that for every non-leaf edge e D ¹v;wº
the face F can contain at most one of the vertices pe , pe;v , and pe;w . The assumption
that F does not contain a cycle face implies that for any pair of parallel edges e; e0

between the nodes v1; v2 the face F can only contain at most one of the vertices pe;v1

and pe0;v2
. By Corollary 3.2 this implies that the edge graph of F is a complete graph

on its vertices. Moreover, the same assertion is true for every subset of vertices of the
face F which implies that F is combinatorially a simplex.
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4. Trees

In this section, we investigate the cosmological polytopes associated to the trees. Our
main tool is the following proposition which describes how the cosmological polytope
PG changes after adding a leaf to the graph G.

Proposition 4.1. Let G be a graph and let G0 be the graph that arises from G by
adding an vertex v and an edge eD¹v;wº for some vertexw ofG. Then, the following
statements hold.

(i) The cosmological polytope PG0 has a facet F containing all vertices except
of pe;v . In particular, PG0 is a pyramid over F with apex pe;v .

(ii) The facet F is a bipyramid over PG with apices pe and pe;w with the inter-
val between pe; pe;w intersecting PG in the interior of the vertex face Fw
defined in Proposition 3.5.

Proof. (i) By Theorem 2.1 the facet F corresponding to the subgraph ¹vº in G0 con-
tains all vertices of PG0 except pe;v . Thus, PG0 is a pyramid over F with apex pe;v .

(ii) Filtered by the xe coordinate, the vertices of F come in three layers: The layer
xe D �1 contains the vertex pe , the layer xe D 0 the vertices in PG and the layer
xe D 1 the vertex pe;w . The interval between pe and pe;w intersects the xe D 0 layer
in the point xw which is in the interior of the face Fw . This implies the claim.

One corollary of Proposition 4.1 is the computation of the volume of the cosmo-
logical polytopes of trees.

Corollary 4.2. Let G;G0 be as before, then one has

Vol.PG0/ D 4Vol.PG/;

where Vol is the normalized volume. In particular, for any tree T with e edges, the
normalized volume of the cosmological polytope PT equals 4e .

Proof. One can check that the facet F is a union of two pyramids of lattice height 1
overPG which shows that Vol.F /D 2Vol.PG/. Moreover, the cosmological polytope
PG0 is a pyramid of lattice height 2 over F , so the normalized volume of PG0 is
computed as follows:

Vol.PG0/ D 2Vol.F / D 4Vol.PG/:

Proposition 4.3. For a cosmological polytope PG and a vertex w 2 V.G/ it holds
that fPGnw

.t/ equals the “upper f -vector” of the vertex face Fw in PG , that is the
f -vector of faces containing Fw .

Proof. Consider the partition of the vertices of PG by coordinate xw .
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Claim 1. There is a bijection � of facets containing Fw in PG and facets of PGnw .
Specifically, the facets of PG which contain Fw are determined by connected sub-
graphs H of G which do not contain w. Such subgraphs are in bijection with the
connected subgraphs of G n w which in turn determines facets of PGnw . The map �
maps a facet of PG given by a connected subgraph of G that avoids w to the facet of
PGnw given by the corresponding connected subgraph of G n w.

Claim 2. This bijection extends to a bijection between the faces containing Fw in PG
and all faces of PGnw . Specifically, we consider the following map:

� W
®
� � Fw j � a face of PGº ! ¹� j � a face of PGnw

¯
;

� 7! � D
\

��F;F is a facet of PG

�.F /:

This map respects the dimension of the faces, that is dim.�.�//D dim.�/� dim.Fw/.

Claim 3. This implies that the upper f -vector of Fw in PG equals the (shifted) f -
vector of PGnw .

Definition 4.4. For a polytope P , with f -vector .f�1; : : : ; fdimP / we will define its
f -polynomial fP .t/ to be

fP .t/ D

dimPX
iD�1

fi t
iC1:

We can use Proposition 4.1 to get a recursive relation for the f -polynomial of
cosmological polytopes of the graphs G and G0.

Theorem 4.5. The f -polynomials of PG and PG0 are related in the following way:

fF .t/ D .1C 2t/fPG
.t/ � tdeg.w/C1.1C t /fPGnw

.t/;

fPG0 D .1C t /fF .t/:

Proof. Indeed, the f -polynomial of a pyramid P with base F is given by fP D
.1 C t /fF .t/ as every face of F of dimension d produces two faces of P one of
dimensions d and another of dimension d C 1. The f -polynomial of a the generic
bipyramid over a polytope PG can be computed as .1C 2t/fPG

.t/. The description
of faces of non-generic bipyramid follows, for example, from [19, Proposition 2.3]
as it is a particular example of subdirect sum: F D .I; I / ˚ .Fv; PG/, where I is
an interval, and Fv is a vertex face corresponding to the node v of G. The face count
involves the correction of .1C 2t/fPG

.t/ by the generating polynomial of the number
of faces of PG containing Fv . Using Proposition 4.3, we obtain

fF .t/ D .1C 2t/fPG
.t/ � tdeg.w/C1.1C t /fPGnw

.t/;

which completes the proof.
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This gives an inductive way of computing the f -vector of cosmological poly-
topes of trees. In the case of paths this yields the following recursion for their f -
polynomials.

Corollary 4.6. Let …n be the path graph on n vertices. Then, we have the following
recursion for the f -vector f…n

.t/ of the cosmological polytopes P…n
W

f…nC2
.t/ D .1C t /..1C 2t/f…nC1

.t/ � t2.1C t /f…n
.t//

and
f…1

.t/ D t C 1; f…2
.t/ D t3 C 3t2 C 3t C 1:

The number of all faces of P…n
is the evaluation of this recursion at t D 1 which is

the sequence A154626 in the Online Encyclopedia of Integer Sequences (OEIS).

5. Counting faces

In this section, we use our general description of faces of cosmological polytopes
to compute their number in certain examples. To simplify the exposition and obtain
closed formulae for the face numbers, we assume that the graphG does not have loops
throughout this section.

5.1. Low-dimensional faces

The main result of this subsection are formulas for the number of the edges and 2-
dimensional faces of cosmological polytopes.

Theorem 5.1. LetGD .V;E/ be an undirected graph where e is the number of edges,
l the number of leaves, v2 the number of vertices of degree 2, and �i the number of
cycles of length i in G. The characterization of faces then yields the following.

(1) The number of edges of the cosmological polytope PG is

f1.PG/ D

�
3e

2

�
� 2e C l � 2�2:

(2) For a simple graph G, the number of 2-dimensional faces of the cosmological
polytope PG is

f2.PG/ D 27

�
e

3

�
C 3.e C l/.e � 1/C v2 � 2�3:

Proof. The first part follows directly from Corollary 3.2. Indeed, the number of edges
of the complete graph on 3e vertices is

�
3e
2

�
; the number of removed edges of type

https://oeis.org/A154626
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¹pe;v; peº for each non-leaf node v is 2e � l and the number of edges pe;v1
; pe0;v2

for a pair of parallel edges e; e0 between the nodes v1 and v2 is 2�2.

The second part is deduced similarly. By Corollary 3.8 and the discussion there-
after, there are only two types of faces of dimension 2: triangles and quadrilaterals.
First, let us count the number of triangular faces of PG . For this we first count the
number of complete subgraphs of size 3 of the edge graph �G of PG . Since G is
simple, from the description of Corollary 3.2 it follows that the number of complete
subgraphs of size 3 of �G is

27

�
e

3

�
C 3.e C l/.e � 1/:

Now, for every cycle of length 3 in G, there are exactly 2 complete subgraphs in �G
which do not satisfy condition (ii) of Theorem 3.3. So, the final count of triangles in
a simple graph is given by

27

�
e

3

�
C 3.e C l/.e � 1/ � 2�3:

On the other hand, each quadrilateral is either a vertex face of a node of degree 2, or
a cycle face for a cycle of length 2. However, in a simple graph there is no cycle of
length 2, hence the total number of 2-dimensional faces is given by

27

�
e

3

�
C 3.e C l/.e � 1/ � 2�3 C v2:

It is possible to deduce a formula for the number of 2-dimensional faces of PG
for a general graph G. For this one has to take into account contributions coming
from the banana subgraphs (the graph on two vertices with multiple parallel edges).
In particular, one has to compute the number of 2-dimensional faces of banana graphs
which we do in Example 5.2. It amounts to careful bookkeeping to deduce the general
formula for the number of 2-faces of PG from the general description of simplex faces
in Theorem 3.3 and the count in Example 5.2.

Example 5.2. Let Bk be the banana graph consisting of two vertices and k parallel
edges between them for k � 1. The cosmological polytopes PB1

and PB2
have one

and five 2-dimensional faces, respectively. In general, for k � 3, we have

f2.PBk
/ D 15

�
k

3

�
C 3

�
k

2

�
:

One way to prove this formula is as follows. Using, for example, polymake [13] one
can compute that PB2

has two triangles and PB3
has 21 triangles. Since every triangle
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can involve vertices corresponding to at most three edges of Bk this immediately
yields that PBk

has

15

�
k

3

�
C 2

�
k

2

�
many triangles for k � 2. By Theorem 3.1, we obtain that every quadrilateral of PBk

for k � 3 is a cycle face stemming from a cycle of length two in Bk . The general
formula now follows from the fact that there are

�
k
2

�
many such cycles in Bk .

5.2. Simplex faces

In this subsection, we count simplex faces in particular graphs. For a polytope P we
denote by f �

k
.P / the number of k-dimensional simplex faces of P .

Proposition 5.3. Let Cn be the cycle graph on n nodes. Then, for 1 � k � 2n the
cosmological polytope PCn

has

f �k�1.PCn
/ D �2

�
n

k � n

�
C

bk
2 cX
iD0

�
n

i

��
n � i

k � 2i

�
3k�2i : (1)

In total, PCn
has 5n � 2nC1 many simplex faces.

Proof. Say the cycle graph Cn has nodes v1; : : : ; vn and edges e1; : : : ; en, where

ei D ¹vi ; viC1º for i 2 Z=nZ:

The edge graph �PCn
of PCn

consists of n triples of vertices pei
, pei ;vi

, and pei ;viC1

where within a cluster only the last two vertices are joined by an edge in �PCn
and all

pairs of vertices between different clusters are joined by an edge. Therefore,�
n

i

��
n � i

k � 2i

�
3k�2i

is the number of complete subgraphs of �PCn
on k vertices with exactly i edges within

an edge cluster as described above for 0 � i � bk
2
c. Hence, the sum in equation (1) is

the number of all complete subgraphs of �PCn
on k vertices.

By Theorem 3.3 we need to exclude the complete subgraphs of �PCn
that contain

either all vertices pei ;vi
or all vertices pei ;viC1

for i 2Z=nZ. For n� k � 2n there are
exactly 2

�
n
k�n

�
such complete subgraphs which is the term we subtract in equation (1).

For the last statement, note that when we want to count all complete subgraphs of
�PCn

we have five choices for each of the n vertex clusters: no vertex, one of the ver-
tices pei

, pei ;vi
, and pei ;viC1

or both of the vertices pei ;vi
and pei ;viC1

. We just need
to exclude the choice of no vertices at all, which yields 5n � 1 complete subgraphs
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in total. We claim that for the complete subgraphs we need to exclude by the cycle
condition exactly 2nC1 � 1 choices. Indeed, once a complete subgraphs contains all
vertices pei ;vi

for i 2 Z=nZ then there are two choices in every cluster: the complete
subgraph can contain the vertex pei ;viC1

or not. After counting the analogous pos-
sibilities for the complete subgraphs containing all vertices pei ;viC1

for i 2 Z=nZ,
we obtain the term 2nC1 � 1 we need to subtract since there is one configuration that
appears in both of these versions.

A similar argument yields the following generalization.

Proposition 5.4. Let G D .V;E/ be a graph with exactly one cycle. Say this cycle is
of length d and assume d > 2. Let e D jEj and l be the number of leaves of G. Then,
the number simplex faces of PG is

6l � 5e�l�d � .5d � 2dC1 C 1/ � 1:
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