
Ann. Inst. H. Poincaré D
Comb. Phys. Interact. 12 (2025), 517–544
DOI 10.4171/AIHPD/180

© 2023 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the escape rate of subshifts of finite type and
2-multiplicative integer systems on Nd

Jung-Chao Ban, Wen-Guei Hu, and Guan-Yu Lai

Abstract. In this article, we establish the escape rate formula for an Nd subshift of finite
type X by means of the horizontal transition matrices of the strip shifts induced from X . This
extends the previous result of Haritha and Agarwal (2019) to Nd , d � 1. The concept of the
escape rate for Nd 2-multiplicative integer systems is also introduced, and we give a similar
result for the estimate of the escape rate for such systems. Finally, the continuity property for
both systems is presented.

1. Introduction

The open dynamical system (or dynamical system with a hole) problem, which was
initiated by Piangiani and Yorke [39], can be put into the following frame. Let .X; d/
be a compact metric space and T WX ! X be a continuous map. For U � X , we
consider the set of points which under forward iteration do not enter U , i.e.,

XU D ¹x 2 X WT
k.x/ … U for all kº: (1.1)

Or specifically, consider U D B".z/ WD ¹y 2 X W d.y; z/ < "º for z 2 X and " > 0.
Let � be a T -invariant probability measure, the escape rate of � through U is defined
below. Let .XnU/n D ¹x 2 X WT i .x/ … U for 0 � i < nº,

��.U;X/ D � lim
n!1

1

n
log�..XnU/n/;

whenever the limit exists. The limit ��.U; X/ is known as the escape rate of �
throughU . Some interesting and significant research topics for open systems are listed
below:

• Find a formula for the escape rate ��.U;X/.

• Find a relationship between the escape rate ��.U; X/ and the dimension (Haus-
dorff or Minkowski) or the entropy of the open map .XU ; T jXU / (cf. [3, 19, 20]).
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• Discuss the continuity of the map " 7! ��.B".z/; X/, for each z 2 X .

• The dependence of the escape rate ��.B".z/; X/ on the position of the hole, that
is, the point z 2 X for each " > 0 (cf. [1, 2, 12, 21, 23]).

No attempt has been made here to provide a comprehensive bibliography for the
open system problem, and we refer the reader to [15] for a general survey. We empha-
size that the limit defining ��.U; X/ may not exist in general. However, the same
questions can be asked with respect to the upper and lower escape rate; namely,

x��.U;X/ D � lim inf
n!1

1

n
log�..XnU/n/

and
�
�
.U;X/ D � lim sup

n!1

1

n
log�..XnU/n/:

The purpose of this study is to investigate both problems for two systems; namely,
the ‘Nd subshifts of finite type (SFTs) for d � 2’ and the ‘multiplicative integer
systems’ (MISs). The motivation behind this study and the results are presented below.

Let A be an alphabet with jAj D k and F � A� WD
S
n�1 An is a finite col-

lection of words from A� that are forbidden. Suppose .†F ; �/ be an irreducible
SFT on N and � is the usual shift map, i.e., �..xi /1iD0/ D .xiC1/

1
iD0. It is known

that .†F ; �/ admits a unique Parry measure, for the case F � A [ A2, we may
assume that A D Œaij � 2 ¹0; 1ºk�k is the associated transition matrix of .†F ; �/ and
v D .v0; v1; : : : ; vk�1/

t , u D .u0; u1; : : : ; uk�1/ are normalized right and left eigen-
vectors of A with respect to the largest eigenvalue �A such that uv D 1. The Parry
measure on each admissible cylinder set of w D i1 : : : in 2 An is defined as

�.Œw�/ D
ui1vin

�n�1A

ai1i2ai2i3 : : : ain�1in

(general cases are defined in Section 2.2). Let F1 be another finite collection of
words from A� with F \ F1 D ;. Then the escape rate of � through the hole †F n

†F[F1 , denoted by ��.F1; †F /, can be characterized by the topological entropies
of htop.†F / and htop.†F[F1/. Precisely, Haritha and Agarwal prove that [22, Theo-
rem 3.1]

��.F1; †F / D htop.†F / � htop.†F[F1/; (1.2)

where htop.X/ stands for the topological entropy of X .
A natural question arises: is it possible to extend formula (1.2) to Nd SFTs?

To this end, we begin by introducing some necessary concepts first. It is known that
some Nd SFTs are the classical models in statistical physics, e.g., Ice model [28] and
Hard square system [11].
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A shape F is a finite subset of Nd . A pattern f on a shape F is a function
f WF ! A. Given a finite list F of patterns, put

†
Œd�

F
D ¹x D .xi/i2Nd 2 ANd

W � j.x/F … F for all j 2 Nd and for all shapes F º;

where .� j.x//i D xiCj for all i; j 2 Nd , and xF is the projection of x on the shape F .
We note that the calculation of the topological entropy of †Œd�

F
is a difficult job

(cf. [8, 10, 31, 32, 35, 36]), and there is a deep connection between the exact value
of the topological entropy and the pressure in statistical physics (cf. [11, 28, 34]).
For d D 2, a systematic method for generating possible Nm�n size patterns B, i.e.,
B �ANm�n , where Nm�n D Œ1;m�� Œ1; n�

1 using the sequence of ‘horizontal transi-
tion matrices’ say ¹Tnº1nD1, is established in [10]. The authors prove that htop.†

Œ2�

F
/D

limn!1
log�Tn
n

with similar results also found in [32, 36]. Fortunately, the method
in [10] also leads us to establish the formula and calculate the explicit value of escape
rate �.F1; †

Œ2�

F
/. Precisely, if we put F and F1 in the same size, say Nm�n, then

let ¹Tkºk�n be the sequence of horizontal transition matrices and ¹�kºk�n be the
associated sequence of Parry measures for k � n. Define the upper and lower escape
rate x�Œm;n�.F1; †

Œ2�

F
/ and �Œm;n�.F1; †

Œ2�

F
/ as in (2.1) and (2.2). That is, the upper and

lower growth rate of ��k .F1; †
Œ2�

F
/ on N � Œ1; k�. An analogous result as [22, Theo-

rem 3.1] for N2 SFTs is presented in Theorem 2.1. Specifically, the rigorous formula
for the lower escape rate is derived, and the error function between the lower and
upper escape rate is also presented. This provides us a sufficient condition for the
existence of the escape rate, and it is worth pointing out that such a condition is
strongly related to the mixing properties of the N2 SFTs. Furthermore, we prove
that ��.wjŒ1;n�d ; †

Œd�

F
/! 0 as n!18w 2 †Œd�

F
for d � 1 (cf. Theorem 4.2). This

establishes the continuity of " 7! ��.B".z// using w D z, where wjŒ1;n�d stands for
the term B".z/. As mentioned, in N2 SFT, it is extremely difficult to calculate the
explicit value (or existence) of the escape rate by computing the exact value of the
topological entropy. However, the method we used here enables us to compute the
exact value of the escape rate and the topological entropy for a class of N2 SFTs
with local forbidden sets possessing a symmetric structure (cf. Theorem 2.6). Finally,
similar results for Nd SFTs with d > 2 are presented in Theorem 2.4 (escape rate
formula) and Theorem 4.2 (continuity).

The second part of this article motivated from the multifractal analysis of the mul-
tiple ergodic average, e.g., for Hausdorff and Minkowski dimensions of 1-d multiple
subshifts [16, 17, 37], for Hausdorff and Minkowski dimensions of multidimensional
multiple subshifts [4, 6], for large deviation principle of 1-d multiple Ising mod-
els [13], for thermodynamics formalism of multiple subshifts [14]. We study the open

1Œ1;m� � Œ1; n� D ¹1; : : : ; mº � ¹1; : : : ; nº.
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system problem on the 2-multiplicative integer systems (2-MISs). Suppose F � A2,
let

†
.q/

F
D ¹x D .xk/

1
kD1 2 AN

W xkxqk … F 8k 2 Nº: (1.3)

Roughly speaking,†.q/
F

may be considered asXU in (1.1) by substituting T k.x/ with
.T .q//k.x/, where .T .q/.x//k D xqk for all k 2 N, and U D AN n†F . We are not
aware of any further research on the escape rate of†.q/

F
. The reason for the study (1.3)

comes from the particular case where A D ¹0; 1º, q D 2 and F D ¹11º. Under the
circumstances,

†
.2/

F
D ¹.xk/

1
kD1 2 AN

W xkx2k ¤ 11 8k 2 Nº

D ¹.xk/
1
kD1 2 AN

W xk � x2k D 0 8k 2 Nº;

where a � b is the usual product of a and b. The study of †.2/
F

is inspired by Fursten-
berg on his proof of the Szemerédi’s theorem [17, 25]. The Minkowski dimension is
computed in [17] and it is shown that (cf. [26, 38])

dimH †
.2/

F
D dimH

²
.xk/ 2 AN

W lim
n!1

1

n

nX
kD1

xk � x2k D 0

³
:

Hence, the study of†.2/
F

is strongly related to the multifractal analysis problem of the
multiple ergodic average 1

n

Pn
kD1 xk � x2k . Kenyon et al. [24] study the general form

of †.q/
F

, namely, let � � ¹0; : : : ; m � 1ºN be a subshift, define

†
.q/
� D ¹.xk/

1
kD1 2 ¹0; : : : ; m � 1º

N
W .xiql /

1
lD0 2 � for all i 2 Nº; (1.4)

and call such shifts multiplicative shifts since those systems are invariant under the
action of multiplicative integers, i.e., .xk/1kD1 2†

.q/
� implies .xrk/1kD1 2†

.q/
� 8r 2N.

There has been plenty of research on multiplicative shifts since then (cf. [5,13,14,18,
26, 27]). We also refer the reader to [16] for a nice survey of this subject.

To choose a good measure for the escape rate, we are reminded of the concept of
the telescope measure built in [24] to calculate the Hausdorff and Minkowski dimen-
sions of †.q/

F
. It is known that the first stage of the study of †.q/

F
is to decompose the

lattice into independence lattice (according to q) for which the rule in each indepen-
dent lattices behaves as the usual 1-step SFT. Suppose A is the associated transition
matrix of such 1-step SFT, and � is the corresponding Parry measure on it. The tele-
scope measure P�, which is defined as the product of measures of cylinders on each
independence lattice, is used to compute the Hausdorff and Minkowski dimension
of †.q/

F
. In (1.4), if � D †F , we simply write

†
.q/

F
D †

.q/
†F
D †

.q/
� :
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We study the escape rate of P� through the hole †.q/
F
n†

.q/

F[F1
,

�.F1; †
.q/

F
/ D lim

n!1

1

n
log P�.Bn.†

.q/

F[F1
//;

where Bn.X/ is the set of all n-block patterns of X . In Theorem 3.1, we estimate the
values of x�.F1; †

.q/

F
/ and �.F1; †

.q/

F
/ with the difference of the entropies

K D htop.†
.q/

F
/ � htop.†

.q/

F[F1
/;

and prove the continuity of escape rate (Theorem 4.7), i.e.,

lim
n!1

�.wjŒ1;n�; †
.q/

F
/ D 0 8w 2 †

.q/

F
:

Finally, we extend these results to multidimensional multiplicative shifts (see Theo-
rems 3.2 and 4.7).

There are two possible extensions for these two systems. For Nd SFTs, one can
consider the same problem on Nd sofic shifts, i.e., the factor of an Nd SFT. The dif-
ficulty in studying the escape rate problem of an Nd sofic shift is to construct the
appropriate measure and observe how the measure is affected by the factor. On the
other hand, the problem for 2-MIS can be extended to k-MIS for k � 3. In this sit-
uation, new ideas are necessary because our method for k-MIS (k � 3) is no longer
valid.

2. Escape rate of Nd subshifts of finite type

In this section, we would like to find the formula of the escape rate for Nd SFTs for
d � 2 by using the method established in [10]. Such a method could lead us to find
the rigorous value of the escape rate for Nd SFTs with some specific symmetrical
structure.

2.1. Strip shifts and their transition matrices

In a one-dimensional SFT †F � AN with a finite forbidden set F � An for some
n � 1, the associated transition matrix T.F / is usually introduced to study the con-
cepts about topological entropy, maximal measures, dynamical zeta functions and so
on [29]. Clearly, let

B D An
n F

be the corresponding basic set of admissible local patterns,†F (resp. T.F /) can also
be determined by B and is presented by †AnnB (resp. T.An n B/). Similarly, for
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an Nd SFT †Œd�
F
� ANd with forbidden set F � AN`�k1�����kd�1 , d � 2, the basic

set of local patterns B is equal to the set AN`�k1�����kd�1 n F . However, to the best
of our knowledge, there is no such transition matrix for an Nd SFT. For simplicity,
we only focus on d D 2 below. Instead of a transition matrix for an N2 SFT, Markly
and Paul [33] introduced a sequence of transition matrices ¹Tnº1nD1 on the horizontal
strip shift Hn.†

Œ2�

F
/ to study maximal measures and entropy, where Hn.†

Œ2�

F
/ is the

set of all patterns on N � Œ1; n� that contains no forbidden patterns in F and it can be
regarded as a one-dimensional SFT. It is well known that

h.†
Œ2�

F
/ D lim

n!1

log�Tn

n
;

where �Tn is the maximal eigenvalue of Tn. By considering the measure-theoretic
method on Hn.†

Œ2�

F
/, Pavlov [36] approximated the hard square entropy constant.

Ban and Lin [10] introduced the ordering matrices Xn (or Yn), n � 2, to arrange
systematically all patterns in ¹0; 1ºN2�n (or ¹0; 1ºNn�2) as follows.

For n � 1, let the nth-order counting function

 �  nW ¹0; 1º
n
! ¹j W 1 � j � 2nº

be

 .ˇ1ˇ2 � � �ˇn/ D 1C

nX
jD1

ǰ 2
.n�j /:

The horizontal ordering matrix Xn of patterns in ¹0; 1ºN2�n and vertical ordering
matrix Yn of patterns in ¹0; 1ºNn�2 , n � 2, can be defined by

Xn D ŒxnIij � D

26666664
ˇn1

e

f

g

h

a

c

d

k

l
b

ˇn2

:::
:::

ˇ21 ˇ22

ˇ11 ˇ12

37777775
2n�2n

and

Yn D ŒynIij � D

26664
ˇ12 ˇ22 � � � ˇn2

e f g h

a b c d

k

l

ˇ11 ˇ21 � � � ˇn1

37775
2n�2n

;

where ´
i D  .ˇ11ˇ21 � � �ˇn1/;

j D  .ˇ12ˇ22 � � �ˇn2/:
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In particular,

X2 D ; Y2 D :

Given a basic set B � ¹0; 1ºN2�2 , by the ordering matrices Xn and Yn, the cor-
responding transition matrices Hn and Vn can be defined, and their recursive formu-
lae are obtained as follows. For n � 2, the associated horizontal and vertical tran-
sition matrices Hn D Hn.B/ D ŒhnIij �2n�2n and Vn D Vn.B/ D ŒvnIij �2n�2n are
defined by

hnIij D

´
1 if xnIij can be generated by B;

0 otherwise;

and

vnIij D

´
1 if ynIij can be generated by B;

0 otherwise;

respectively. Furthermore, the recursive formulae for generating Hn and Vn is also
presented as follows. For n � 2, if

Hn D

"
HnI1 HnI2

HnI3 HnI4

#
2n�2n

;

where HnIj is a 2n�1 � 2n�1 matrix, then

HnC1 D

26664
h2I11HnI1 h2I12HnI2 h2I13HnI1 h2I14HnI2

h2I21HnI3 h2I22HnI4 h2I23HnI3 h2I24HnI4

h2I31HnI1 h2I32HnI2 h2I33HnI1 h2I34HnI2

h2I41HnI3 h2I42HnI4 h2I43HnI3 h2I44HnI4

37775 :
The recursive formula of Vn is similar to that of Hn and is omitted here. It is notewor-
thy that Pierce [40] also obtained the same formula and applied it to study the entropy
problems for N2 SFTs.
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For example, consider the hard square model, whose rule is that 1 cannot be next
to 1 in both horizontal and vertical directions. We have

H2.D V2/ D

"
H2I1 H2I2

H2I3 H2I4

#
D

26664
1 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0

37775 :
Then,

H3.D V3/ D

26666666666664

1 �

�
1 1
1 0

�
1 �

�
1 0
1 0

�
1 �

�
1 1
1 0

�
0 �

�
1 0
1 0

�
1 �

�
1 1
0 0

�
0 �

�
0 0
0 0

�
1 �

�
1 1
0 0

�
0 �

�
0 0
0 0

�
1 �

�
1 1
1 0

�
1 �

�
1 0
1 0

�
0 �

�
1 1
1 0

�
0 �

�
1 0
1 0

�
0 �

�
1 1
0 0

�
0 �

�
0 0
0 0

�
0 �

�
1 1
0 0

�
0 �

�
0 0
0 0

�

37777777777775

D

2666666666664

1 1 1 0 1 1 0 0

1 0 1 0 1 0 0 0

1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3777777777775
8�8

:

In certain cases, the topological entropy of †Œ2�
B

can be computed explicitly by
using the recursive formula [10] (the results are listed in Remark 2.8 (1)). In addition,
different kinds of topological mixing properties for N2 SFTs can be characterized
by ¹Hnº

1
nD2 and ¹Vnº1nD2 [9], which also leads us to study the dynamical zeta func-

tions for Nd SFTs [8]. It is noteworthy that the idea of ordering matrices also can be
considered for general B � ANm�n and for Nd , d � 2.

2.2. Parry measure and escape rate

Let B � ¹0; 1ºNm�n be a basic set of admissible patterns which is a set of m � n pat-
terns over ¹0; 1º. For m � 2, n � 1 and k � n, the .m; k/-counting function  m;k is
a bijection from ¹0;1ºN.m�1/�k to ¹1; : : : ; 2.m�1/kº. The matrices ¹TŒm;n�

k
º1
kDn

are hor-
izontal transition matrices of †1�kIF and are indexed by  m;k , k � n, respectively,
where†1�kIF is the SFT on N1�k with F D ¹0; 1ºNm�n nB. For convenience, we
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denote TŒm;n�
k

by Tk . For each k � n, let �k be the maximum eigenvalue of Tk and
.uk/

t , vk be the normalized left and right eigenvectors of Tk with respect to �k with
.uk/

tvk D 1. It can be shown that the measure

�k.U`�k/ D
.uk/i1.vk/i`�mC2

�`�mC1
k

.Tk/i1i2.Tk/i2i3 � � � .Tk/i`�mC1i`�mC2

is an equilibrium measure on†1�kIF , whereU`�k D Œj1j2 � � �j`� is an `� k cylinder
set of †1�kIF and ir D  m;k.jrjrC1 � � � jrCm�2/ for all 1 � r � ` �mC 2.

Assume the transition matrices of F and F [ F1 are same sizes for each k � n,
say ¹Tkº1kDn and ¹yTkº1kDn, respectively, and define the upper and lower escape rates
of N2 action � j†Œ2�

F
to the hole H Œ2�

F1
by

y�Œm;n�.F1I†
Œ2�

F
/ D � lim inf

`;k!1

1

`k
log�k.B`�k.†

Œ2�

F[F1
//; (2.1)

and
�Œm;n�.F1I†

Œ2�

F
/ D � lim sup

`;k!1

1

`k
log�k.B`�k.†

Œ2�

F[F1
//; (2.2)

respectively, where B`�k.X/ is the set of all ` � k patterns of X . If the above limit
exists, then we denote

�Œm;n� D y�Œm;n� D �Œm;n�:

For convenience, we denote �Œm;n�, y�Œm;n� and �Œm;n� by �, y� and �, respectively.

Theorem 2.1. For 2 � m; n 2 N, we have the following assertions:

K � �.F1I†
Œ2�

F
/ � y�.F1I†

Œ2�

F
/ � K C lim sup

`;k!1

log 1
˛k

`k
;

where
K D h.†

Œ2�

F
/ � h.†

Œ2�

F[F1
/

and ¹˛kº1kDn is a sequence such that .uk/i .vk/j � ˛k � 0 for all k � n and for all
1 � i; j � 2mk . Moreover, if

lim sup
`;k!1

log 1
˛k

`k
D 0; (2.3)

then � D y� and

�.F1I†
Œ2�

F
/ D h.†

Œ2�

F
/ � h.†

Œ2�

F[F1
/:

Proof. The proof is a case of Theorem 2.4, which we have omitted here.
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In order to consider the relation between condition (2.3) and mixing property of
an N2 SFT, we introduce the block gluing as follows. An Nd subshift X is called
block gluing if there exists a constant N > 0 such that for any two blocks U and V
of X with d.s.U /; s.V // � N , there exists x 2 X such that

xjs.U / D U and xjs.V / D V;

where s.W / is the support of W .

Corollary 2.2. Let X be an N2 SFT with horizontal transition matrices ¹Tkº. If X is
block gluing, then � D y� and

�.F1I†
Œ2�

F
/ D h.†

Œ2�

F
/ � h.†

Œ2�

F[F1
/:

Proof. We claim that if X is block gluing, then condition (2.3) holds. Then, applying
above theorem, the proof is complete.

Now, sinceX is block gluing, we have that the horizontal transition matrices ¹Tkº
are primitive with common primitive number mC N for all k � n, where N is the
block gluing constant and m is the width of patterns in B.

For any k � n, since Tk is primitive, by [29, Theorem 4.5.12], for all p � 1 and
for all 1 � i; j � 2mk

Œ.Tk/p�i;j D Œ.uk/i .vk/j C rkIi;j .p/�.�k/p; (2.4)

where rkIi;j .p/! 0 as p !1. This implies that

.uk/i .vk/j D
Œ.Tk/p�i;j
.�k/p

� rkIi;j .p/:

Then, by primitivity of Tk , it can be shown that

min
1�i;j�2mk

Œ.Tk/p�i;j � Œ.Tk/p�2.mCN/�i 0;j 0

for any 1 � i 0; j 0 � 2mk and for any p � 2.mCN/.
Hence,

max1�i;j�2mk .uk/i .vk/j
min1�i;j�2mk .uk/i .vk/j

D
max1�i;j�2mk Œ.Tk/p�i;j � rkIi;j .p/.�k/p

min1�i;j�2mk Œ.Tk/p�i;j � rkIi;j .p/.�k/p

�
Œ.Tk/p�I;J � rkII;J .p/.�k/p

Œ.Tk/p�2.mCN/�I;J � rkII 0;J 0.p/.�k/p
; (2.5)

where I , J are the indices for which max1�i;j�2mk Œ.Tk/p�i;j � rkIi;j .p/.�k/p is
attained, and I 0, J 0 are the indices for which min1�i;j�2mk Œ.Tk/p�i;j�rkIi;j .p/.�k/p

is attained.
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Combining (2.4) and (2.5), we have that for p � 2.mCN/,

max1�i;j�2mk .uk/i .vk/j
min1�i;j�2mk .uk/i .vk/j

�
Œ.uk/I .vk/J C rkII;J .p/�.�k/

p � rkII;J .p/.�k/
p

Œ.uk/I .vk/J C rkII;J .p � 2.mCN//�.�k/p�2.mCN/ � rkIi;j .p/.�k/p

p!1
�! .�k/

2.mCN/:

Since

max
1�i;j�2mk

.uk/i .vk/j D max
1�i�2mk

.uk/i max
1�j�2mk

.vk/j

and

min
1�i;j�2mk

.uk/i .vk/j D min
1�i�2mk

.uk/i min
1�j�2mk

.vk/j ;

it is clear that

1 �
max1�i�2mk .uk/i
min1�i�2mk .uk/i

;
max1�j�2mk .vk/j
min1�j�2mk .vk/j

� .�k/
2.mCN/:

Since uk and vk are normalized vectors, we have that the smallest possible value of
min1�j�2mk .vk/j and min1�i�2mk .uk/i isvuut 1

.�k/
4.mCN/

2mk � 1C 1

.�k/
4.mCN/

D

s
1

.�k/4.mCN/.2mk � 1/C 1
;

which yields

˛k WD
1

.�k/4.mCN/2mk
�

1

.�k/4.mCN/.2mk � 1/C 1
� min
1�i;j�2mk

.uk/i .vk/j :

Therefore, we obtain that

lim sup
`;k!1

log 1
˛k

`k
D lim sup

`;k!1

log..�k/4.mCN/2mk/
`k

D lim sup
`;k!1

4.mCN/ log.�k/Cmk log 2
`k

D 0:

The last equality is due to the fact limk!1
1
k

log�k D h.X/ (the topological entropy
of X ). The proof is complete.
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Example 2.3. We should note that the primitive assumption of Tk reflects the exis-
tence of lower bounds of ˛k such that ˛k > 0 for all k � n. For example, when F is
empty, then ˛k D 1

2mk
for all k � n. This implies

lim sup
`;k!1

log 1
˛k

`k
D lim sup

`;k!1

log 2mk

`k
D 0;

and so the limit of escape rate exists.

2.3. Setup and results for Nd subshifts of finite type

The following theorem is the Nd version of Theorem 2.1. Let B � ¹0; 1ºNn1�����nd

be a basic set of admissible patterns. For n1 � 2; n2; : : : ; nd � 1 and k1 � n2; : : : ;
kd�1 � nd , the .n1; k1; : : : ; kd�1/-counting function  n1;k1;:::;kd�1 is a bijection
from ¹0; 1ºN.n1�1/�k1�����kd�1 to ¹1; : : : ; 2.n1�1/k1���kd�1º. The matrices

¹TŒn1;:::;nd �
k1;:::;kd�1

º
1
k1Dn2;:::;kd�1Dnd

are horizontal transition matrices of †1�k1�����kd�1IF , and they are indexed by
 n1;k1;:::;kd�1 , k1� n2; : : : ;kd�1� nd , respectively, where F D¹0;1ºNn1�����nd nB.
For convenience, denote TŒn1;:::;nd �

k1;:::;kd�1
by Tk1;:::;kd�1 . For each k1 � n2; : : : ;kd�1 � nd ,

let �k1;:::;kd�1 be the maximum eigenvalue of Tk1;:::;kd�1 and uk1;:::;kd�1 ; vk1;:::;kd�1
are the normalized left and right eigenvectors of Tk1;:::;kd�1 with respect to �k1;:::;kd�1
with .uk1;:::;kd�1/

tvk1;:::;kd�1 D 1. It can be shown that the measure

�k1;:::;kd�1.U`�k1�����kd�1/ D
.uk1;:::;kd�1/i1.vk1;:::;kd�1/i`�n1C2

�
`�n1C1

k1;:::;kd�1

.Tk1;:::;kd�1/i1i2

� .Tk1;:::;kd�1/i2i3 � � � .Tk1;:::;kd�1/i`�mC1i`�n1C2

is an equilibrium measure on†1�k1�����kd�1IF , where U`�k1�����kd�1 D Œj1j2 � � �j`�
is an ` � k1 � � � � � kd�1 cylinder set of †1�k1�����kd�1IF and

ir D  n1;k1;:::;kd�1.jrjrC1 � � � jrCn1�2/

for all 1 � r � ` � n1 C 2.
Assume that the transition matrices of F and F [ F1 have the same sizes for

each k1 � n2; : : : ; kd�1 � nd , say, for example, ¹Tk1;:::;kd�1º
1
k1Dn2;:::;kd�1Dnd

and

¹yTk1;:::;kd�1º
1
k1Dn2;:::;kd�1Dnd

, respectively, and define the upper and lower escape

rates of Nd action � j
†
Œd�

F

to the hole H Œd�

F1
by

y�Œn1;:::;nd �.F1I†
Œd�

F
/ D � lim inf

`;k1;:::;kd�1!1

1

`k1 � � � kd�1

� log�k1;:::;kd�1.B`;k1;:::;kd�1.†
Œd�

F[F1
//;
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and

�Œn1;:::;nd �.F1I†
Œd�

F
/ D� lim sup

`;k1;:::;kd�1!1

1

`k1 � � � kd�1

� log�k1;:::;kd�1.B`;k1;:::;kd�1.†
Œd�

F[F1
//;

respectively, whereB`;k1;:::;kd�1.X/ is the set of all `� k1 � � � � � kd�1 patterns ofX .
If the above limit exists, then we denote �Œn1;:::;nd �D y�Œn1;:::;nd �D �Œn1;:::;nd �. For con-
venience, we denote �Œn1;:::;nd �, y�Œn1;:::;nd � and �Œn1;:::;nd � by �, y� and �, respectively.

Theorem 2.4. For 2 � n1; : : : ; nd 2 N, we have the following assertions:

K � �.F1I†
Œd�

F
/ � y�.F1I†

Œd�

F
/ � K C lim sup

`;k1;:::;kd�1!1

log 1
˛k1;:::;kd�1

`k1 � � � kd�1
; (2.6)

where
K D h.†

Œd�

F
/ � h.†

Œd�

F[F1
/

and ¹˛k1;:::;kd�1º
1
k1Dn2;:::;kd�1Dnd

is a sequence such that

.uk1;:::;kd�1/i .vk1;:::;kd�1/j � ˛k1;:::;kd�1 � 0

for all k1 � n2; : : : ; kd�1 � nd and for all 1 � i; j � 2n1k1���kd�1 . Moreover, if

lim sup
`;k1;:::;kd�1!1

log 1
˛k1;:::;kd�1

`k1 � � � kd�1
D 0; (2.7)

then � D y� and

�.F1I†
Œd�

F
/ D h.†

Œd�

F
/ � h.†

Œd�

F[F1
/: (2.8)

Proof. We first prove the most left inequality of (2.6). It can be shown that

�.F1I†
Œd�

F
/D � lim sup

`;k1;:::;kd�1!1

1

`k1 � � � kd�1
log�k1;:::;kd�1.B`;k1;:::;kd�1.†

Œd�

F[F1
//

D � lim sup
`;k1;:::;kd�1!1

1

`k1 � � � kd�1

� log

P2n1k1���kd�1

i;jD1 .uk1;:::;kd�1/i .vk1;:::;kd�1/j ..
yTk1;:::;kd�1/

`�n1C1/ij

�
`�n1C1

k1;:::;kd�1

�� lim sup
`;k1;:::;kd�1!1

1

`k1 � � � kd�1
log

P2n1k1���kd�1

i;jD1 ..yTk1;:::;kd�1/
`�n1C1/ij

�
`�n1C1

k1;:::;kd�1

D � lim
`;k1;:::;kd�1!1

1

`k1 � � � kd�1
log
j.yTk1;:::;kd�1/

`�n1C1j

�
`�n1C1

k1;:::;kd�1

D h.†
Œd�

F
/ � h.†

Œd�

F[F1
/:
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The middle inequality of (2.6) is due to the definitions of � and y�. We are now in a
position to prove the most right inequality of (2.6). It is straightforward to verify that

y�.F1I†
Œd�

F
/ D lim sup

`;k1;:::;kd�1!1

1

`k1 � � � kd�1

� log
�
`�n1C1

k1;:::;kd�1P2n1k1���kd�1

i;jD1 .uk1;:::;kd�1/i .vk1;:::;kd�1/j ..
yTk1;:::;kd�1/`�n1C1/ij

� lim sup
`;k1;:::;kd�1!1

1

`k1 � � � kd�1

� log
�
`�n1C1

k1;:::;kd�1P2n1k1���kd�1

i;jD1 ˛k1;:::;kd�1..
yTk1;:::;kd�1/`�n1C1/ij

D lim
`;k1;:::;kd�1!1

log�k1;:::;kd�1
k1 � � � kd�1

� lim
`;k1;:::;kd�1!1

log j.yTk1;:::;kd�1/
`�n1C1j

`k1 � � � kd�1

C lim sup
`;k1;:::;kd�1!1

log 1
˛k1;:::;kd�1

`k1 � � � kd�1

Dh.†
Œd�

F
/ � h.†

Œd�

F[F1
/C lim sup

`;k1;:::;kd�1!1

log 1
˛k1;:::;kd�1

`k1 � � � kd�1
:

Finally, combining (2.6) with (2.7) yields (2.8). The proof is thus completed.

Using similar argument to Corollary 2.2, we have the following result.

Corollary 2.5. LetX be an Nd SFT with horizontal transition matrices ¹Tk1;:::;kd�1º.
If X is block gluing, then � D y� and

�.F1I†
Œd�

F
/ D h.†

Œd�

F
/ � h.†

Œd�

F[F1
/:

2.4. N2 subshifts of finite type where forbidden patterns are of size 2 � 2

with 2 symbols

Let B � ¹0; 1ºN2�2 be a basic set. The matrices ¹Hnº
1
nD2 are horizontal transition

matrices of†1�nIF , n� 2, respectively, where F D ¹0; 1ºN2�2 nB. For each n� 2,
let �n be the maximum eigenvalue of Hn, and let un, vn be the normalized left and
right eigenvectors of Hn with respect to �n with utnvn D 1. It can be shown that the
measure

�n.Um�n/ D
.un/i1.vn/im

�mn
.Hn/i1i2.Hn/i2i3 � � � .Hn/im�1im
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is an equilibrium measure on †1�nIF , where Um�n D Œi1i2 � � � im� is an m � n cylin-
der set of †1�nIF .

Assume the transition matrices of F and F [ F1 are same sizes for each n � 2,
say ¹Hnº

1
nD2 and ¹xHnº

1
nD2, respectively. If H2 and xH2 are of the form"

A B

B A

#
with A D

"
a a2

a3 a

#
and B D

"
b b2

b3 b

#
;

by applying [10], we have the following results.

Theorem 2.6. If H2 and xH2 are of the form above, then we have

K � �.F1I†
Œ2�

F
/ � y�.F1I†

Œ2�

F
/ � K C lim sup

m;n!1

log 1
˛n

mn
;

whereK D h.H2/� h.xH2/ and ¹˛nº1nD2 is a sequence such that .un/i .vn/j � ˛n � 0
for all n � 2 and for all 1 � i; j � 2n. Moreover, if

lim sup
m;n!1

log 1
˛n

mn
D 0;

then
�.F1I†

Œ2�

F
/ D h.H2/ � h.xH2/: (2.9)

Proof. The proof can be obtained using Theorem 2.1 and the table in [10] (see Re-
mark 2.8 (2)).

Example 2.7. Let

H2 D

26664
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

37775 and xH2 D

26664
1 1 1 1

0 1 1 1

1 1 1 1

1 1 0 1

37775 :
Then the Example 2.3 gives us the existence of the escape rate, and (2.9) of Theo-
rem 2.6 provides the escape rate which equals

�.F1I†
Œ2�

F
/ D log 2 � log

�1Cp5
2

�
D log

� 4

1C
p
5

�
� 0:2119:

Remark 2.8. (1) In [9], by using certain conditions on Hn.Vm/, the sufficient condi-
tions for block gluing is provided.

(2) Table of A, B , P.�/ the polynomial of recurrence relation of the maximal
eigenvalue of Hn, �� is the largest root of P.�/ and log�� D h.H2/ in [10].
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A B P.�/ ���
1 1
1 1

� �
1 1
1 1

�
� � 2 2�

1 1
1 1

� �
1 1
0 1

�
or
�
1 0
1 1

�
�3 � 2�2 C � � 1 � 1:75488�

1 1
0 1

�
or
�
1 0
1 1

� �
1 1
1 1

�
�2 � � � 1 � 1:61803�

1 1
1 1

� �
1 0
0 1

�
�2 � � � 1 � 1:61803�

0 1
1 0

� �
1 1
1 1

�
�2 � � � 1 � 1:61803�

1 1
0 1

� �
1 0
1 1

�
�3 � �2 � 1 � 1:46557�

1 0
1 1

� �
1 1
0 1

�
�3 � �2 � 1 � 1:46557�

0 1
0 0

�
or
�
0 0
1 0

� �
1 1
1 1

�
�3 � � � 1 � 1:32472�

0 1
1 0

� �
1 1
0 1

�
or
�
1 0
1 1

�
�4 � � � 1 � 1:22074

Let X1 and X2 be two N subshifts. The axial product of X1 and X2, which is
introduced by Louidor, Marcus and Pavlov [30], is defined by

X D X1 �X2 D ¹.xi;j /
1
i;jD1W .xi;j /

1
iD1 2 X1 and .xi;j /1jD1 2 X2 for all i; j 2 Nº:

Many interesting and important N2 shifts in statistical physics can be formed
by means of this product; for example, the hard square model. Theorem 2.9 reveals
the relation between the axial product and the horizontal transition matrix H2. The
formula allows us to use the aforementioned formula of the escape rate to the systems
derived from the axial product of two shifts. IfAD Œaij � andB D Œbij �, then the tensor
product of A and B is defined by A˝ B D ŒaijB�, and the Hadamard product of A
and B is defined by A ı B D Œaij bij �.

Theorem 2.9. If X is the axial product of two 1-step SFTs X1 and X2, then the
corresponding two-dimensional transition matrix H2 equals

H2 D .A1 ˝ A1/ ı .A2 ˝ A2/
Z ;

where A1 and A2 are transition matrices of X1 and X2, respectively. Here˝ denotes
the tensor product, ı is the Hadamard product, and AZ is the Z-shape transformation
of A, that is,

AZ D

26664
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

37775
Z

D

26664
a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44

37775 :
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Proof. It is easy to see that the admissibility of the horizontal and vertical directions
of a 2� 2 pattern are determined by A1˝A1 and .A2˝A2/Z , respectively. Thus the
proof is complete.

Example 2.10. (1) Table of A1 and A2.

A1 A2 H2 h.H2/�
1 1
1 1

� �
1 1
1 1

� �
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�
log 2

�
1 1
1 1

� �
1 1
1 0

�
or
�
0 1
1 1

� �
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

�
or
�
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

�
logg

�
1 1
1 0

� �
1 1
1 0

� �
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

�
> 0

The first classis full N2 shift, the second class is full N shift axial golden mean shift,
the third class contains a safe pattern.

(2) In case A1 D
�
1 1
1 1

�
, A2 D

�
1 1
1 0

�
, the transition matrices Vn D ˝nG; this

implies

.un/i .vn/j �
1

.1C g2/n

for all 1 � i; j � 2n. Thus,

lim sup
m;n!1

log 1
˛n

mn
D lim sup
m;n!1

log.1C g2/n

mn
D 0;

and so the escape rate exists.

(3) In case A1 D A2 D
�
1 1
1 0

�
, it can be verified that X is block gluing in [9].

Thus, the escape rate exists.

3. Escape rate of 2-multiplicative integer systems on Nd

In this section, we discuss the escape rate for the 2-MISs on Nd . Precisely, we con-
sider the following set:

†
.2/

F
D ¹.xi /

1
iD1 2 ¹0; 1º

N
W xix2i … F for all i 2 Nº:

The constraint F1 �A� is imposed as a hole, and then the following associated set is
considered:

†
.2/

F[F1
D ¹.xi /

1
iD1 2 ¹0; 1º

N
W xix2i … F [ F1 for all i 2 Nº:
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3.1. 2-multiplicative integer systems on N

Let A D ¹0; 1; : : : ; m � 1º be a finite alphabet,

†
.q/

F
D ¹.xk/

1
kD1 2 AN

W .xiq`/
1
`D0 2 †F for all i; q − iº;

where†F is a shift of finite type andA is the associated transition matrix (assumeA is
a k � k matrix). The topological entropy of†.q/

F
is h.†.q/

F
/D .q�1/2

q

P1
nD1

log jAn�1j
qn

(see [7]), where jAj of a matrix A is the sum of all entries in A.
Let P�.x/D

Q
q−i �..xiq`/

1
`D1

/. The lower and upper escape rates of multiplica-
tive integer action on †.q/

F
into the hole F1 are defined by

y�.F1I†
.q/

F
/ D � lim inf

n!1

1

n
log P�.Bn.†

.q/

F[F1
//

and
�.F1I†

.q/

F
/ D � lim sup

n!1

1

n
log P�.Bn.†

.q/

F[F1
//;

respectively. Assume the sizes of transition matrices of †F[F1 and †F are equal,
then we have the following estimate of the escape rate for the 2-MIS on N.

Theorem 3.1. Let †.q/
F

be a 2-MIS on N and F1 � A� be a hole. If the transition
matrix A of the SFT †F is primitive, then for q � 2,

K �
q � 1

q
logC2 � �.F1I†

.q/

F
/ � y�.F1I†

.q/

F
/ � K �

q � 1

q
log.˛C1/;

where K D h.†.q/
F
/ � h.†

.q/

F[F1
/, and for all n 2 N, C1�nA � jA

nj � C2�
n
A with �A

is the maximum eigenvalue of A and the corresponding normalized eigenvectors (left
and right) are u and v satisfying utv D 1 and 0 < ˛ � uivj � 1 for all 1 � i; j � k.

Proof. The proof is a direct consequence of Theorem 3.2 and is omitted.

3.2. 2-multiplicative integer systems on Nd

For d � 2, the d -dimensional upper and lower escape rates of multiplicative integer
action on †.q/

F
into the hole F1 are defined by

y�.F1I†
.q/
F
/ D � lim inf

n1;:::;nd!1

1

n1 � � �nd
log P�.Bn1;:::;nd .†

.q/
F[F1

//

and
�.F1I†

.q/
F
/ D � lim sup

n1;:::;nd!1

1

n1 � � �nd
log P�.Bn1;:::;nd .†

.q/
F[F1

//;
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respectively, where q D .q1; : : : ; qd / and2

†
.q/
F[F1

D ¹.xi/i2Nd 2 ANd
W .xi�q`/

1
`D0 2 †F[F1 for all i 2 	qº

with
	q D ¹.i1; : : : ; id / 2 Nd

W qj − ij for some 1 � j � dº:

Denote � D y� D � if the above limit exists. We have the following theorem for the
relationship between the escape rate and topological entropy.

Theorem 3.2. Let †.q/
F

be a 2-MIS on Nd and F1 � A� be a hole. If the transition
matrix A of the SFT †F is primitive, then for q1; : : : ; qd � 2,

K �
q1 � � � qd � 1

q1 � � � qd
logC2 � �.F1I†

.q/
F
/ � y�.F1I†

.q/
F
/

� K �
q1 � � � qd � 1

q1 � � � qd
log.˛C1/;

where
K D h.†

.q/
F
/ � h.†

.q/
F[F1

/;

and for all n 2 N,
C1�

n
A � jA

n
j � C2�

n
A; (3.1)

where �A is maximum eigenvalue of A, and the corresponding normalized eigenvec-
tors (left and right) are u and v satisfying utv D 1 and 0 < ˛ � uivj � 1 for all
1 � i; j � k.

Proof. Let A and B be the associated transition matrices of †F and †F[F1 , respec-
tively (assume A and B are k � k matrices). Then we have

y�.F1I†
.q/
F
/ D � lim inf

n1;:::;nd!1

1

n1 � � �nd
log P�.Bn1;:::;nd .†

.q/
F[F1

//

D � lim inf
n1;:::;nd!1

1

n1 � � �nd
log

n1���ndY
nD1

�.Bn.†F[F1//
RnIn1;:::;nd

D � lim inf
n1;:::;nd!1

1

n1 � � �nd
log

n1���ndY
nD1

� kX
i;jD1

uivj

�n�1A

.Bn�1/ij

�RnIn1;:::;nd
;

and

�.F1I†
.q/
F
/ D � lim sup

n1;:::;nd!1

1

n1 � � �nd
log

n1���ndY
nD1

� kX
i;jD1

uivj

�n�1A

.Bn�1/ij

�RnIn1;:::;nd
;

2q` D .q`
1
; : : : ; q`

d
/.
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where

RnIn1;:::;nd D
�
1 �

1

q1 � � � qd

�� dY
kD1

j nk

qn�1
k

k
�

dY
kD1

jnk
qn
k

k�
;

u D .u1; : : : ; uk/ and v D .v1; : : : ; vk/ are the normalized left and right eigenvectors
corresponding to the maximum eigenvalue of A, �A, that is utv D 1.

If �A > 0, there is an ˛ > 0 such that 0 < ˛ � uivj � 1, then we have

�
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

log jB
n�1j

�n�1
A

.q1 � � � qd /n
� �.F1I†

.q/
F
/ � y�.F1I†

.q/
F
/

� �
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

log.˛ jB
n�1j

�n�1
A

/

.q1 � � � qd /n
:

Then by condition (3.1), we have

�
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

log.C2
jBn�1j

jAn�1j
/

.q1 � � � qd /n
� �.F1I†

.q/
F
/ � y�.F1I†

.q/
F
/

� �
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

log.˛C1
jBn�1j

jAn�1j
/

.q1 � � � qd /n
:

This implies

K �
q1 � � � qd � 1

q1 � � � qd
logC2 � �.F1I†

.q/
F
/ � y�.F1I†

.q/
F
/

� K �
q1 � � � qd � 1

q1 � � � qd
log.˛C1/;

where
K D h.†

.q/
F
/ � h.†

.q/
F[F1

/:

The proof is complete.

4. Continuities of the escape rates of subshifts of finite type and
2-multiplicative integer systems on Nd

4.1. Nd subshifts of finite type

We apply the result in [35], which gives the continuity of entropy of Nd SFTs.

Theorem 4.1. For any d > 1 and any strongly irreducible Nd SFT X on an alpha-
bet A with jAj> 1, there exist constants CX ;DX > 0, AX , BX andNX 2N such that
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for any n > NX and any pattern w 2 AŒ1;n�d which appears as a subpattern of some
point of X ,

CX

eh.X/.nCAX /
d
< h.X/ � h.Xw/ <

DX

eh.X/.nCBX /
d
;

where Xw D ¹x 2 X Ww not appear as a subpattern of xº.

Using Theorem 4.1 with the escape rate formula (Theorem 2.4), the following
result for the continuity of an Nd SFT is immediate.

Theorem 4.2. If †F is strongly irreducible and satisfies (2.7), there exist constants
CF ; DF > 0, AF ; BF and NF 2 N such that for any n > NF and any pattern
w 2 ¹0; 1ºŒ1;n�

d
which appears as a subpattern of some point of †Œd�

F
,

CF

eh.†
Œd�

F
/.nCAF /

d
< �.wI†

Œd�

F
/ <

DF

eh.†
Œd�

F
/.nCBF /

d
:

Moreover, for any w 2 †Œd�
F

, limn!1 �.wjŒ1;n�d I†
Œd�

F
/ D 0.

Proof. Theorem 2.4 gives the existence of the escape rate

�.wI†
Œd�

F
/ D h.†

Œd�

F
/ � h.†

Œd�

F[w
/;

and the proof is thus complete by applying Theorem 4.1.

Remark 4.3. We remark that the continuity of the case d D 1 is obtained by com-
bining [22, Theorem 3.1] and Theorem 4.6.

4.2. 2-multiplicative integer systems on Nd

Theorem 4.4. If †F is n-step SFT and w 2 ¹0; 1ºn is any pattern which appears as
a subpattern of some point of †F , then

K �
.q1 � � � qd � 1/ log.C2/

.q1 � � � qd /nC1

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� K C
.q1 � � � qd � 1/Œ.n � 1/ log 2 � log.C1˛/�C log 2

.q1 � � � qd /nC1
;

where
K D h.†

.q/
F
/ � h.†

.q/
F[w

/:

In particular, for w 2 †F ,

lim
n!1

�.wjŒ1;n�; †
.q/
F
/ D K:
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Proof. Our goal is to estimate ˛, C1, C2 in Theorem 3.2. For simplicity, we assume
that †F is a 2-step SFT with the transition matrix

A D

"
a11 a12

a21 a22

#
;

and let �A be the largest eigenvalue of A with the corresponding eigenvector v D
.v1; v2/

t such that "
a11 a12

a21 a22

#"
v1

v2

#
D �A

"
v1

v2

#
:

This implies ´
a11v1 C a12v2 D �Av1;

a21v1 C a22v2 D �Av2:

For 2-block representation of A, say AŒ2�, is defined by

AŒ2� D

26664
a11a11 a11a12 0 0

0 0 a12a21 a12a22

a21a11 a21a12 0 0

0 0 a22a21 a22a22

37775 :
It is easy to see that the vector vŒ2� D .v1; v2; v1; v2/t is an eigenvector corresponding
to the eigenvalue �A (after deleting the zero columns and rows of AŒ2�). Similarly,
the n-block representation of A, say AŒn�, has �A as the largest eigenvalue with corre-
sponding eigenvector

vŒn� D Œ.˝n�1.1; 1//˝ .v1; v2/�
t

(after deleting the zero columns and rows of AŒn�).
Let

˛ D
min¹v21 ; v

2
2º

v21 C v
2
2

and ˛n D min
i;j

v
Œn�
i v

Œn�
j ;

then we have

˛ � 2n�1˛n: (4.1)

If A is primitive, then AŒn� is primitive (after deleting the zero columns and rows) for
all n � 2. Then the Perron–Frobenius theorem provides that for m � 1,

C1�
mCn
A � j.AŒn�/mj D jAnCmj � C2�

mCn
A ; (4.2)

where C1 and C2 are defined in (3.1).
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Applying (4.2), we have

�
.q1 � � � qd � 1/

2

q1 � � � qd

1X
iD1

log.C2
j.BŒn�/i�1j

j.AŒn�/i�1j
/

.q1 � � � qd /nCi

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/ � �

.q1 � � � qd � 1/
2

q1 � � � qd

1X
iD1

log.˛nC1
j.BŒn�/i�1j

j.AŒn�/i�1j
/

.q1 � � � qd /nCi
:

This implies

K �
.q1 � � � qd � 1/

2

q1 � � � qd

1X
iD1

log.C2/
.q1 � � � qd /nCi

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/ � K �

.q1 � � � qd � 1/
2

q1 � � � qd

1X
iD1

log.˛nC1/
.q1 � � � qd /nCi

;

where K D h.†.q/
F
/ � h.†

.q/
F[w

/.
Then by (4.1), we have

K �
.q1 � � � qd � 1/ log.C2/

.q1 � � � qd /nC1

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� K C
.q1 � � � qd � 1/Œ.n � 1/ log 2 � log.C1˛/�C log 2

.q1 � � � qd /nC1
:

The proof is thus complete.

Remark 4.5. Since �.F1I†F / D � limn!1
1
n

log�.Bn.†F[F1// and by [22, The-
orem 3.1], �.F1I†F / D h.†F / � h.†F[F1/, we can see that there is a sequence of
positive real numbers ¹"nº1nD1 such that

n.h.†F / � h.†F[F1/ � "n/ � � log�.Bn.X†F[F1
//

� n.h.†F / � h.†F[F1/C "n/

for all n 2 N. Then we have

.q1 � � � qd � 1/
2

q1 � � � qd

1X
nD1

n.h.†F / � h.†F[F1/ � "n/

.q1 � � � qd /n

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

�
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

n.h.†F / � h.†F[F1/C "n/

.q1 � � � qd /n
:
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This implies

.q1 � � � qd � 1/.h.†F / � h.†F[F1// �
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

n"n

.q1 � � � qd /n

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� .q1 � � � qd � 1/.h.†F / � h.†F[F1//C
.q1 � � � qd � 1/

2

q1 � � � qd

1X
nD1

n"n

.q1 � � � qd /n
:

We need the following result [35, Theorem 1.1].

Theorem 4.6. For any irreducible N SFT X on an alphabet A with positive entropy,
there exist constants CX ; DX > 0, and NX 2 N such that for any n > NX and any
pattern w 2 An which appears as a subpattern of some point of X ,

CX

eh.X/n
< h.X/ � h.Xw/ <

DX

eh.X/n
:

Then we have the continuity of the escape rate of 2-MISs on Nd .

Theorem 4.7. If †F is irreducible SFT on N with positive entropy, there exist con-
stants CF ;DF > 0, and NF 2 N such that for any n > NF and any pattern w 2An

which appears as a subpattern of some point of †F ,

.q1 � � � qd � 1/CF

eh.†F /n
� Cn � �.wI†

.q/
F
/ � y�.wI†

.q/
F
/

�
.q1 � � � qd � 1/DF

eh.†F /n
C Cn;

where

Cn D C
.q1 � � � qd � 1/nC 1

.q1 � � � qd /n
:

Moreover, for any w 2 †F ,

lim
n!1

�.wjŒ1;n�I†
.q/
F
/ D 0:

Proof. By Remark 4.5, we have

.q1 � � � qd � 1/.h.†F / � h.†F[w// �
.q1 � � � qd � 1/

2

q1 � � � qd

1X
iDn

i"i

.q1 � � � qd /i

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� .q1 � � � qd � 1/.h.†F / � h.†F[w//C
.q1 � � � qd � 1/

2

q1 � � � qd

1X
iDn

i"i

.q1 � � � qd /i
:
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Since "i ! 0 as i !1, there is a constant C such that j"i j � C for all n � 1. This
implies

.q1 � � � qd � 1/.h.†F / � h.†F[w// �
C.q1 � � � qd � 1/

2

q1 � � � qd

1X
iDn

i

.q1 � � � qd /i

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� .q1 � � � qd � 1/.h.†F / � h.†F[w//C
C.q1 � � � qd � 1/

2

q1 � � � qd

1X
iDn

i

.q1 � � � qd /i
:

Hence

.q1 � � � qd � 1/.h.†F / � h.†F[w// � C
.q1 � � � qd � 1/nC 1

.q1 � � � qd /n

� �.wI†
.q/
F
/ � y�.wI†

.q/
F
/

� .q1 � � � qd � 1/.h.†F / � h.†F[w//C C
.q1 � � � qd � 1/nC 1

.q1 � � � qd /n
:

The proof is thus completed by Theorem 4.6.
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